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Abstract9

The integration of direct bottom-up inputs with contextual information is a core feature of neocortical circuits. In10

area V1, neurons may reduce their firing rates when their receptive field input can be predicted by spatial context.11

Gamma-synchronized (30-80Hz) firing may provide a complementary signal to rates, reflecting stronger synchroniza-12

tion between neuronal populations receiving mutually predictable inputs. We show that large uniform surfaces, which13

have high spatial predictability, strongly suppressed firing yet induced prominent gamma synchronization in macaque14

V1, particularly when they were colored. Yet, chromatic mismatches between center and surround, breaking pre-15

dictability, strongly reduced gamma synchronization while increasing firing rates. Differences between responses to16

different colors, including strong gamma-responses to red, arose from stimulus adaptation to a full-screen background,17

suggesting prominent differences in adaptation between M- and L-cone signaling pathways. Thus, synchrony signaled18

whether RF inputs were predicted from spatial context, while firing rates increased when stimuli were unpredicted19

from context.20
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Introduction23

Visual processing relies on an integration of information over space, and an understanding of spatial relationships.24

This integration takes place in part in a feedforward manner through convergence of neurons with small receptive25

fields (RFs) onto neurons with larger RFs in higher areas (DiCarlo et al., 2012; Felleman and C Van Essen, 1991;26

Lamme and Roelfsema, 2000; Serre et al., 2005). However, already in early visual cortex, neuronal responses to27

sensory inputs into the RFs are strongly modulated by the spatio-temporal context in which they are embedded. For28

instance, the firing rates of V1 neurons to stimuli in their classical RF (CRF), i.e. the region in space where stimuli29

have a strong driving effect, can be increased or decreased by stimuli presented in their surround (Angelucci et al.,30

2017; Gilbert, 1992; Rao and Ballard, 1999; Vinje and Gallant, 2000) In terms of anatomy, surround modulation31

represents a departure from feedforward processing. It is mediated by recurrent lateral and feedback connections,32

through which a given V1 neuron can be informed about a larger region of space than covered by its CRF (Angelucci33

et al., 2017; Gilbert, 1992; Lund et al., 2003). One view on surround modulation is that it merely represents a form of34

normalization, such that neuronal firing rates are essentially scaled by the amount of drive in the surround (Carandini35

and Heeger, 2011). Additionally, it has been suggested that surround modulation may play an important role in various36

related functions like contour integration (Liang et al., 2017), perceptual filling-in (Land, 1959; Wachtler et al., 2003;37

Zweig et al., 2015), figure-ground separation (Lamme, 1995), computation of a saliency map (Coen-Cagli et al., 2012;38

Li, 2002), as well as efficient and predictive coding operations (Rao and Ballard, 1999; Vinje and Gallant, 2000).39

∗These authors contributed equally
∗∗These authors contributed equally



Theories of efficient coding postulate that surround suppression of neuronal firing contributes to remove image40

redundancies across space from neuronal representations (Barlow, 2001; Coen-Cagli et al., 2012, 2015; Rao and41

Ballard, 1999; Schwartz and Simoncelli, 2001; Simoncelli and Olshausen, 2001; Vinje and Gallant, 2000; Zhu and42

Rozell, 2013). Predictive coding theories hold that neuronal responses result from a comparison between predictions43

from the surround and the inputs into the CRF (Friston, 2005; Rao and Ballard, 1999; Spratling, 2010). Most studies44

on surround modulation have focused on the modulation of neuronal firing rates. However, if the modulation of45

neuronal firing rates arises from specific relationships between stimuli across space, then it might also have important46

consequences for temporal correlations among neuronal responses (Singer and Gray, 1995).47

Recent work has extended the frameworks of efficient and predictive coding beyond firing rate modulations to in-48

clude neuronal synchronization (Bastos et al., 2012; Chalk et al., 2016; Jadi and Sejnowski, 2014; Vinck and Bosman,49

2016). Neuronal synchronization plays a functional role for the encoding and transmission of information, as well50

as for synaptic plasticity, and may therefore play an important role in contextual integration processes (Abeles, 1982;51

Akam and Kullmann, 2010, 2014; Azouz and Gray, 2000; Ballard and Jehee, 2011; Ballard and Zhang, 2018; Bernan-52

der et al., 1994; Börgers and Kopell, 2008; Bressler et al., 1993; Buzsáki, 2006; Buzsáki and Wang, 2012; Cardin53

et al., 2009; Fries, 2005, 2009; Fries et al., 2007; Havenith et al., 2011; Kempter et al., 1998; Kopell et al., 2000;54

O’Keefe and Recce, 1993; Palmigiano et al., 2017; Salinas and Sejnowski, 2000, 2001; Sejnowski and Paulsen, 2006;55

Singer, 1999; Singer and Gray, 1995; Sohal et al., 2009; Varela et al., 2001; Vinck et al., 2010a; Wang, 2010). A56

distinguishing feature of V1 activity, induced by many stimulus conditions, is synchronization of neuronal activity57

in the gamma-frequency band (≈30-80 Hz) (Fries, 2009; Gieselmann and Thiele, 2008; Gray et al., 1989; Jia et al.,58

2013b; Ray and Maunsell, 2010; Vinck and Bosman, 2016). A link between contextual modulation processes and V159

gamma-band synchronization is suggested by the finding that the amplitude of V1 gamma oscillations increases with60

stimulus size and therefore surround stimulation (Chalk et al., 2010; Gieselmann and Thiele, 2008; Gray et al., 1990;61

Jia et al., 2011, 2013b; Perry et al., 2013; Ray and Maunsell, 2011) (for a detailed discussion, see Vinck and Bosman62

(2016)). There are different views on the way in which gamma oscillations might relate to predictive and efficient63

coding operations and therefore center-surround relationships (Arnal and Giraud, 2012; Bastos et al., 2012; Chalk64

et al., 2016; Jadi and Sejnowski, 2014; Korndörfer et al., 2017; Vinck and Bosman, 2016). Bastos et al. (2012) and65

Arnal and Giraud (2012) hypothesized that gamma-band synchronization subserves the encoding and transmission66

of prediction error signals in the feedforward direction, and that lower frequency bands carry feedback predictions67

from higher areas (Arnal and Giraud, 2012; Bastos et al., 2012, 2015). Consistent with this hypothesis, bottom-up68

and top-down Granger-causal influences are strongest in the gamma and alpha/beta (≈10-20 Hz) band, respectively69

(Bastos et al., 2015; Bosman et al., 2012; Bressler et al., 2006; Michalareas et al., 2016; Richter et al., 2018; van70

Kerkoerle et al., 2014). According to this hypothesis, a mismatch between center and surround stimuli should lead71

to an increase in both firing rates and gamma-band synchronization, conveying prediction error signals. In contrast,72

Vinck and Bosman (2016) recently hypothesized that (1) the amplitude of gamma oscillations in a given column73

reflects the extent to which classical RF inputs are predictable from the surround, and (2) that gamma-band synchro-74

nization among columns with non-overlapping RFs reflects predictability among their visual inputs. This could in75

turn provide a mechanism for orchestrating interactions between distributed neuronal columns, and for integrating76

efficiently-encoded signals in higher visual areas (Vinck and Bosman, 2016) (see Discussion). According to this hy-77

pothesis, redundancy between center and surround stimuli should lead to a decrease in firing rates (reflecting efficient78

coding) yet an increase in gamma-band synchronization. To distinguish between these conflicting views, precise79

manipulations of center-surround predictability are required.80

As a starting point to test the interdependence between center-surround relationships, synchronization and firing81

rates, we considered the case of uniform surfaces and varied their size, center-surround relationships and color. The82

latter is an important feature for object recognition and visual search, and plays a role in social interactions and83

foraging (Bichot et al., 2005; Corso et al., 2016; D’Zmura, 1991; Gerald et al., 2007; Santos et al., 2001; Waitt et al.,84

2006). Despite the importance of the color domain in vision, colored stimuli have rarely been studied with respect85

to gamma synchronization (Brunet et al., 2015; Rols et al., 2001; Shirhatti and Ray, 2018). Furthermore, uniform86

surfaces are of particular interest because they contain highly redundant information across a relatively large image87

region. The predictability hypothesis (Vinck and Bosman, 2016) suggests that large, uniform surfaces should reliably88

induce gamma-band synchronization but be accompanied by low neuronal discharge rates. It further suggests that89

a modulation of center-surround predictability due to a chromatic mismatch (e.g. red center and green surround90

stimulus) should strongly reduce gamma-band synchronization but increase firing rates.91
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Uniform surfaces are characterized by hue, luminance and saturation, and can be broadly divided into chromatic92

and achromatic (black and white) surfaces. Although uniform chromatic and achromatic surfaces both have a high93

degree of predictability at the (physical) image level, there are likely substantial differences in the way these surfaces94

are processed by area V1. Correspondingly, their predictability on the neuronal level likely differs. There are two95

different ways through which V1 surface representations may arise (Zweig et al., 2015). First, neurons with RFs at96

the uniform region of a surface stimulus (e.g. the center) may be directly activated. These may generate redundant97

(predictable) signals locally. Specifically for chromatic surfaces, single-opponent, hue-selective neurons (in LGN or98

V1) with RFs at the uniform surface region may directly encode color and luminance information. These are neurons99

with L+/M-, M+/L-, or blue (S) and yellow (L and M) color opponencies (Livingstone et al., 1984; Shapley and100

Hawken, 2011). Second, surface information may be encoded by neurons with RFs at the edge of the surface, and101

then propagate towards neurons with RFs at the uniform region of the surface (Land, 1959; Wachtler et al., 2003;102

Zweig et al., 2015). The relative contributions of these two mechanisms (local vs. edge-derived) remain largely103

unknown and likely differ between chromatic and achromatic surfaces (Zurawel et al., 2014; Zweig et al., 2015).104

Zweig et al. (2015) have addressed this question by making voltage-sensitive dye recordings of V1 populations and105

comparing the responses at the surface’s center to the edge (Zweig et al., 2015). Activity patterns for achromatic106

surfaces were consistent with an edge-derived “fill-in” process (Zweig et al., 2015). However, this was not observed107

for chromatic surfaces (Zweig et al., 2015), which could be due to the availability of another, surface rather than edge-108

based, information source provided by single-opponent cells. Because contextual interactions likely have a different109

nature for achromatic than chromatic stimuli, we asked whether there are differences in the contextual modulation of110

firing activity and gamma-band synchronization between these two classes of stimuli.111

In this study, we investigated the contextual modulation of V1 firing activity and gamma-band synchronization112

using chromatic and achromatic surfaces of different sizes, and a center-surround mismatch paradigm. Additionally,113

we examined differences among color hues, adaptation over time, and the influence of the full-screen background on114

which surfaces were displayed.115

Results116

We recorded multi-unit (MU) activity and local field potentials (LFP) from the primary visual cortex (area V1)117

in two macaque monkeys, while they performed a fixation task. These recordings were made using a 64 channel118

chronic microelectrode array in monkey H and a 32-channel semichronic microelectrode array in monkey A (see119

Methods). Classical receptive fields (RFs, referring to classical RFs unless otherwise mentioned) of the MU activity120

were estimated using moving bar stimuli (see Methods; monkey H: median RF eccentricity 6.2 deg, range 5.2-7.1 deg,121

median RF diameter 0.48 deg, range 0.26-1.88 deg; monkey A: median eccentricity 5.4 deg, range 3.2-8.5 deg, median122

RF diameter 0.91 deg, range 0.46-2.3 deg). Compared to a surface stimulus of 6 deg diameter, receptive fields had a123

median proportional diameter of 0.08 (0.04-0.31, monkey H) or 0.15 (0.08-0.38, monkey A). We first studied LFP and124

MU responses to the presentation of stationary surface stimuli, namely large uniform disks covering the cluster formed125

by all RFs (6 deg diameter, flashed on and then maintained on screen; Figures 1A-B; Dataset 1, see Methods). The126

stimuli did not overlap with the fixation spot. Note that the stimuli were much larger than the RFs of the multi-units,127

such that they covered a large portion of the multi-units’ respective surround regions.128

Initially, we analyzed differences between chromatic and achromatic surface stimuli (Figures 1 and 2; see Meth-129

ods). We then considered the specific differences among responses to distinct color hues and achromatic stimuli130

(Figures 4-7). The LFP power spectra had similar frequency profiles in the two monkeys (i.e. the peaks were well131

aligned; Figure 1-figure supplement 2), and the MUs showed similar temporal profiles (Figure 1-figure supplement132

2). Therefore, we pooled the data from the two animals. Note that statistical parameters are largely described in the133

figure captions.134

Characteristics of firing activity and LFP signals in response to uniform surface stimuli135

We examined the effect of uniform surface stimuli on LFP power spectra. The presentation of large, chromatic136

surface stimuli (equiluminant red, green and blue; see Methods) induced prominent, narrow-band gamma oscilla-137

tions in LFP power spectra (Figure 1C-D). These oscillations were clearly visible in the LFP traces (Figure 1B).138

In comparison, gamma-band oscillations were significantly weaker for achromatic surface stimuli (black or white,139
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maximal contrast to background; Figures 1C-D). This finding was highly consistent across sites. For each site and140

chromatic/achromatic condition, we determined the peak power change in the gamma-frequency range (30-80 Hz)141

using a polynomial fit (see neuronal and Methods). Gamma peak power changes were stronger for chromatic than142

achromatic surface stimuli at 97.8% (45 out of 46) of LFP recording sites (Figure 1-figure supplement 2). Note that in143

the Section Controls for luminance-contrast and cone-contrast, we will describe the results of control experiments in144

which the chromatic and achromatic stimuli are matched in terms of luminance-contrast and DKL cone-contrast (see145

Methods) to the full-screen background. We find that the difference in gamma-band oscillations between chromatic146

and achromatic stimuli is not explained by either luminance or cone-contrast to the full-screen background. We also147

removed 100 ms data epochs after each microsaccade and found that the LFP results on gamma oscillations were148

qualitatively unchanged (Figure 1-figure supplement 3).149

To test whether V1 spiking activity was synchronized with the induced LFP gamma oscillations, we computed150

spike-field phase locking spectra (Pairwise Phase Consistency, Vinck et al. (2010b)) between MU and LFP activity151

obtained from nearby but separate sites (Figure 1E; see Methods). Spike-field phase-locking spectra for chromatic152

surface stimuli showed a prominent peak in the gamma-frequency band consistent with the gamma peak in the LFP153

power spectrum (Figure 1D), whereas phase-locking was significantly weaker for achromatic surface stimuli (Figure154

1E). The main point of this analysis is that gamma-synchronization for chromatic stimuli is not merely observed at155

the level of synaptic currents within V1, but also at the level of V1 output spikes.156

Next, using the same stimulus paradigm, we examined the way in which the presentation of uniform surface stimuli157

affected MU firing activity. The presentation of chromatic and achromatic surface stimuli induced short-latency onset158

transients of similar magnitude (Figure 1F). However, we observed a stronger decrease in MU firing activity over time159

during continuous stimulus presentation for chromatic than achromatic surface stimuli, starting around 200 ms after160

the stimulus onset (Figure 1F). Strikingly, for chromatic surface stimuli, MU firing activity fell below baseline levels161

(Figure 1F). Note that in Figure 4D, we show that the decrease in MU firing below baseline only occurred for a subset162

of colors. The reduction in MU firing rates (0.3-1.3 s period) for chromatic as compared to achromatic surface stimuli163

was observed for 92% of recording sites. Control analyses in which data epochs after microsaccades were removed164

indicate that the late decrease in MU firing was not due to microsaccades (Figure 1-figure supplement 3).165

These findings demonstrate that large, uniform, chromatic surface stimuli induce low firing activity yet highly166

gamma-synchronous V1 responses, whereas achromatic surface stimuli induce much weaker gamma-band synchro-167

nization but relatively more vigorous firing activity (for further interpretation of this finding, see Discussion).168

Dependence of firing activity and LFP signals on stimulus size169

The results shown in Figure 1 are consistent with the predictability hypothesis (Vinck and Bosman, 2016) out-170

lined in the Introduction. Yet, they do not demonstrate directly that the enhancement in gamma-band synchronization171

observed for large uniform colored surfaces is due to contextual surround modulation, because we did not manipulate172

the surround input. Furthermore, it remains unclear whether the observed differences between chromatic and achro-173

matic surfaces can be explained by a difference in contextual surround modulation or other factors like stimulus drive.174

To address these questions directly, we used a paradigm that varied the stimulus size across trials (Figure 2A; see175

Methods). We selected one site (or a few nearby sites with RF centers within 0.5 deg of the target site) per session and176

centered the stimulus on the multi-unit’s RF, which was previously mapped with moving bars. In each trial a stimulus177

of a particular size (0.5, 1, 2 or 6 deg diameter) was presented for 600 ms (Figures 2A-B).178

We first examined how the characteristics of LFP power spectra depended on stimulus size. Analysis of LFP power179

spectra revealed a strong dependence of gamma power on stimulus size for chromatic stimuli, and by comparison a180

much weaker dependence for achromatic stimuli (Figure 2B). To quantify this size dependence, we determined the181

gamma peak power between 30-80 Hz (as described for Figure 1). For chromatic stimuli, increases in stimulus size182

resulted in increases in induced gamma peak power as soon as the stimulus also covered the surround (i.e. from183

2 deg onwards, Figure 2B). By contrast, for achromatic stimuli, a gamma peak in the 30-80 Hz band emerged from184

2 deg stimulus size onwards and showed no further increase with stimulus size. Given the relatively broad increase in185

>100 Hz LFP power seen in Figure 2B, we also determined gamma peak power and peak frequency in a wider range186

(30-150 Hz). This analysis revealed LFP power peaks >100 Hz for the sizes below 2 deg, and again the strong size187

dependence for chromatic compared to achromatic stimuli (Figure 2-figure supplement 1A; also see Figure 2-figure188

supplement 1B for an analysis per animal).189
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We further investigated the way in which MU firing was modulated by surround stimulation. We observed that190

for both achromatic and chromatic stimuli, MU firing activity was highest for 0.5-1 deg stimulus sizes (Figure 2C).191

This was consistent with the estimates obtained from RF mapping and the fact that we centered the presented stimuli192

on the MUs’ estimated RFs. For small stimuli (0.5-1 deg), only the initial transient in MU firing activity showed a193

difference between chromatic and achromatic conditions, with slightly higher firing activity for achromatic than chro-194

matic stimuli (Figure 2C). In contrast, the presentation of a 2 or 6 deg stimulus, increasingly covering the surround,195

induced strong suppression of MU firing activity as compared to the 0.5 deg stimulus (Figure 2C, rightmost panel).196

This surround suppression was stronger for chromatic than achromatic stimuli (Figure 2C).197

Furthermore, we analyzed responses during a later period in the trial, when the small stimulus had been presented198

for 600 ms, and a large (6 deg) surface stimulus of the same color was added for another 600 ms period (Figure199

2-figure supplement 1C). We found that this addition of the surround stimulus alone induced a rapid suppression of200

MU firing activity, which was significantly more pronounced for chromatic than achromatic stimuli (Figure 2-figure201

supplement 1C).202

These findings suggest that the relatively strong decrease in firing over time observed for large, chromatic surfaces203

(Figure 1) is at least partially explained by surround suppression. They furthermore indicate that for the small RF204

stimuli, there are no substantial differences on average between chromatic and achromatic surfaces in terms of MU205

and LFP responses. Yet, we find a prominent difference in the way chromatic and achromatic stimuli are affected by206

surround stimulation.207

Modulation of firing activity and LFP signals by center-surround predictability208

A potential explanation for the results shown in Figure 1-2 may be the center-surround predictability hypothesis209

outlined in the Introduction (Vinck and Bosman, 2016). Yet, the employed paradigm used stimuli of different sizes,210

which may have recruited different neuronal circuits and may also have changed stimulus salience. We therefore used211

an additional stimulus paradigm in which surround influences were modified, while stimulus size was held constant.212

Specifically, we created three sets of equally sized stimuli. In one set, the surround was fully predictive of the RF213

stimulation, because it used a uniform surface (called “uniform” stimulus). In the second set (called “blob mismatch”),214

the surround was not predictive of the RF stimulation, because the surround stimulus and the 1 deg RF stimulus had215

different colors (which were physically equiluminant). In the third set (called “annulus mismatch”), the surround216

had the same color as the RF stimulation, but the two were separated by an annulus ring of a different, physically217

equiluminant color. This annulus ring had 0.25 deg thickness and an inner diameter of 1 deg.218

We found that compared to the uniform surfaces, stimuli with a chromatic (blob or annulus) mismatch had higher219

MU firing activity (Figure 3C). This held true both for the initial transient period and the subsequent sustained response220

period (Figure 3C). At the same time, we observed a marked decrease in the amplitude of LFP gamma oscillations for221

the chromatic mismatch compared to the uniform surface stimuli (Figures 3B-C). This result was consistent across222

animals (Figure 3-figure supplement 1A).223

We further investigated whether this pattern of changes was specific to the sites having RFs near the center stimu-224

lus. To this end, we examined sites with RFs on the outer uniform regions of the stimulus (with RF centers 1.5-2 deg225

from the stimulus center; Figure 3D). For these sites the MU firing responses did not differ significantly between con-226

ditions during the initial transient period (Figure 3D). During the later sustained response phase, however, MU firing227

activity was reduced for the chromatic mismatch stimuli compared to the uniform surface stimulus (Figure 3D). Note228

that whenever the RF center covered a large uniform surface region, either in the uniform stimulus condition or when229

it covered the surround region of the mismatch stimuli, sustained firing levels were below baseline. This confirmed230

the respective finding reported in Figure 1.231

These results suggest that a mismatch between stimuli at the RF center and the surround can dramatically change232

the surround influence on responses to the center. We wondered whether the surround influence on gamma oscillations233

originates from the uniform surface region or rather from the edge of the surface. To this end, we analyzed sessions in234

which we compared two sets of trials: First, trials with a full surface stimulus centered on a site’s RF (“RF-on-center”235

condition; Figure 3-figure supplement 1B). Second, trials with a full surface stimulus positioned such that its edge236

fell into the RF center, i.e. with the surface shifted by 3 deg horizontally (“RF-on-edge” condition; Figure 3-figure237

supplement 1B). We found that the amplitude of gamma oscillations was significantly higher at the center (“RF-on-238

center”) than at the edge of the surface stimulus (“RF-on-edge”), whereas the opposite was observed for MU firing239

activity (Figure 3-figure supplement 1B). In one session (monkey H), we also showed disk stimuli that had their edge240
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blurred with a Gaussian (2.5 deg size, 1 deg standard deviation). There were clear gamma-responses also in this case241

(Figure 3-figure supplement 1C).242

Together, these results indicate that for colored surfaces the amplitude of gamma-band oscillations is commensu-243

rate with the “chromatic” predictability among visual inputs in space, and that gamma-band oscillations are not a mere244

consequence of input drive to a larger cortical region. Furthermore, these results suggest that gamma strength can be245

dissociated from stimulus salience, because the chromatic mismatch condition provided a highly salient stimulus in246

the RF, but resulted in weaker gamma.247

Differences in firing activity and LFP signals between color hues248

The results above show prominent differences between chromatic and achromatic surfaces in terms of gamma-249

band synchronization. The respective analyses pooled different chromatic conditions (equiluminant red, green and250

blue) together. However, there may exist further differences in gamma-band synchronization within the chromatic251

conditions, i.e. between different hues. To investigate this we used two types of stimulus sets, which were presented252

in separate sessions. In the first stimulus set (Figure 4A) we presented each surface color at its maximum possible253

luminance level (given the limits of the employed monitor), and sampled from the entire spectrum of hues available254

with the monitor (see Methods). In the second stimulus set, we presented surface stimuli with different color hues at255

equated luminance levels (Figures 4B-C).256

Using the first stimulus set, we found that gamma-band LFP oscillations were reliably induced across the entire257

spectrum of hues (Figure 4A, Figure 4-figure supplement 1, see also Supplementary Table 1 for all luminance and258

CIE values). In addition, we found that gamma-band synchronization was reliably induced by surfaces with “extra-259

spectral” colors, i.e. colors resulting from a mixture of blue and red primaries (Figure 4A), as well as brownish hues.260

We further replicated our finding that gamma oscillations were relatively weak for both black and white surface stimuli261

as compared to all colored surfaces (Figure 4A). In one monkey (A), we found that gamma-band activity was stronger262

for black than for white stimuli, consistent with previous results showing stronger firing rate responses to black than263

white stimuli (Xing et al., 2010; Yeh et al., 2009). However a trend in the opposite direction was observed for monkey264

H (Figure 4-figure supplement 2).265

For the first stimulus set (Figure 4A), the different colors were presented at their maximum possible luminance266

levels, which might confound the effects of hue and luminance. We therefore used a second stimulus set in which267

we presented surface stimuli with different color hues at three levels of equal physical luminance, i.e. different color268

values (Figures 4B-C). For all three hues, gamma amplitudes were greater for the highest compared to the lowest269

luminance condition (P<0.05, bootstrap test, see Methods; Figures 4B-C). The dependence of gamma amplitude on270

stimulus luminance was greater for green than for red or blue surface stimuli (difference between high versus low,271

Figures 4B-C). Gamma oscillations had a higher amplitude for red than for blue or green surface stimuli across all272

three luminance conditions (Figures 4B-C), whereas gamma amplitude was higher for blue than green surface stimuli273

for low and intermediate luminance conditions (Figures 4(B-C)). Another difference between the hues was that the274

gamma peak had a significantly lower frequency for green compared to red or blue surface stimuli (P<0.05, bootstrap275

test; Figures 4B-C and Figure 4-figure supplement 2). The results of these analyses were consistent across both276

monkeys (Figure 4-figure supplement 2).277

Given the relationships between MU firing activity and LFP gamma-band oscillations shown in Figures 1-3,278

we asked how these differences in LFP gamma oscillations were related to changes in firing activity. During the279

initial transient, MU firing activity was higher for red and blue rather than for green surface stimuli, with slightly280

stronger responses for red than blue surface stimuli (Figure 4D). Yet, we found that the post-transient decrease in MU281

firing activity over time was particularly pronounced for red and particularly weak for green stimuli (Figure 4D). In282

agreement with the data shown in Figure 1, we observed that MU firing activity fell below baseline levels for red and283

blue surface stimuli (Figure 4D).284

Together, these results indicate that surfaces of all color hues tend to induce gamma-band oscillations with a higher285

amplitude compared to achromatic surfaces, and that the amplitude of gamma oscillations is relatively high for red286

surfaces.287

Controls for luminance-contrast and cone-contrast288

In the analyses above, we observed a strong difference in gamma-band power between chromatic and achromatic289

surfaces. We performed several control analyses and experiments to investigate whether this observed difference was290
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explained by differences in DKL cone contrast or luminance contrast between chromatic and achromatic surfaces. A291

linear regression of gamma peak height against absolute Michelson luminance contrast (luminance stimulus - lumi-292

nance baseline / (luminance stimulus + luminance baseline)) across the surface stimuli shown in Figure 4B showed no293

significant relationship (r=-0.44,p=0.16, F-test, Figure 4-figure supplement 2; note that the relationship, if any, was294

negative). In an additional control experiment, we directly matched the luminance (and thereby luminance-contrast)295

of the achromatic and chromatic stimuli across 5 brightness values, including the full-screen background brightness296

and two steps of positive and negative contrast. We found that achromatic gamma-responses were much weaker than297

chromatic gamma-responses regardless of overall luminance level, also under these matched conditions (Figure 4-298

figure supplement 3A). We additionally used this experiment as a control for the effect of pupil size (see Methods) on299

gamma-band amplitudes (Figure 4-figure supplement 3B). Note that gamma responses for achromatic stimuli were300

weak regardless of the degree of pupil change.301

In another experiment, which is part of the data shown in Figure 6, we matched cone-contrasts between chromatic302

and achromatic stimuli. Specifically, we compared gamma-responses to a colored surface on an achromatic full-screen303

background with gamma responses to a corresponding achromatic surface on a chromatic full-screen background of304

the same respective color (e.g. red on a gray background versus gray on a red background). These comparisons keep305

the changes in cone-activation relative to the background the same. Note that this does not mean that the cone-contrasts306

are matched in the DKL space, because this space contains an additional normalization step, which incorporates the307

extent to which the full-screen background itself activates the different cones. Nevertheless, although only the non-308

normalized changes in cone-contrasts are matched, it can be seen that e.g. the white stimuli have very strong DKL309

cone-contrast to the chromatic full-screen backgrounds along the L-M and S-(L+M) axes (Figure 6-figure supplement310

1). This cone-contrast for white surfaces on chromatic backgrounds exceeds that of chromatic stimuli on the white311

background (Figure 6-figure supplement 1). Our analyses reveal that for each tested color (except for red on a black312

surface), gamma was much stronger for chromatic than achromatic surfaces of matched cone contrast (Figure 6F).313

Together, these data indicate that the difference in gamma-band response between chromatic and achromatic surfaces314

was not due to luminance- or DKL cone-contrast relative to the full-screen background. ’315

In the previous section, colored stimuli were either presented at maximum brightness or presented at the same316

physical luminance. We performed additional experiments in which colored surfaces were matched in terms of DKL317

space coordinates in units of Weber cone contrast (see Methods, Figure 4-figure supplement 4). These coordinates318

were the L-M (red-green opponency), S-(L+M) (blue-yellow opponency) and L+M (luminance) cone-contrasts rel-319

ative to the gray full-screen background. In the first experiment (Figure 4-figure supplement 4A), we selected three320

luminance steps (L+M cone-contrast was -0.25, 0, or +0.25). For each luminance step, we then took an equal step in321

the positive and negative L-M direction. This step was taken as the maximum possible step for which the magnitudes322

were equal in both directions. Similarly, we took a step of equal magnitude in the positive or negative S-(L+M) direc-323

tion. In the second experiment (Figure 4-figure supplement 4B), we sampled from 8 different angles in the DKL plane324

at an equiluminant level to the gray background. Note that this yields stimuli that are highly desaturated as compared325

to the stimuli shown in Figure 4.326

The data from these control experiments show that gamma-band responses were stronger for reddish than greenish327

hues. This is consistent with the results shown in Figure 4A (see Figure 4-figure supplement 1D). Achromatic stimuli328

did not induce detectable gamma-band response peaks, neither in the positive or negative luminance-contrast (L+M)329

step, consistent with the findings of Figure 1-2 and 4. Furthermore, these data suggest that increasing S-(L+M) cone-330

contrast (blue-yellow opponency) independent (or in absence of) L-M cone-contrast also boosts gamma oscillations331

(Figure 4-figure supplement 4B). These results further support the notion that gamma-band oscillations for uniform332

surfaces are mediated by color-opponency signals. They further indicate that hue (i.e. the angle in the DKL-plane)333

itself is a determinant of gamma-band oscillation strength, and that the dependence on hue is not explained by the334

magnitude of cone-contrasts. This is also consistent with the finding that the magnitudes of the DKL cone-contrasts335

for the chromatic surface stimuli shown in Figure 4A are not significantly correlated with gamma-band power (Figure336

4-figure supplement 1C). Note that this lack of a correlation might be due to the use of stimuli with largely very high337

brightness and cone contrasts, such that the effects of hue differences dominate.338

Temporal evolution of gamma-band responses339

The observed differences in gamma oscillations between the color hues (Figure 4) might reflect a static and340

context-independent property of visual cortex to respond differently to distinct hues. Yet, the continuous presen-341
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tation of a uniform surface stimulus for the duration of an entire trial likely induces substantial adaptation at many342

levels of the nervous system. We thus wondered whether different hues might adapt at different rates. To address this,343

we examined the temporal evolution of LFP power spectra over a longer time period, i.e. up to 3 s after stimulus on-344

set. Time-frequency representations showed that qualitative differences between hues and between luminance levels345

tended to be relatively stable over time (Figure 5A). However, we found that the amplitude of gamma-oscillations de-346

creased more rapidly over time for green than for blue or red surface stimuli (Figures 5A-B). This result held also for347

both animals individually (monkey H/A red change over time -0.07±0.05/-0.12±0.04, green -0.51±0.06/-0.36±0.04,348

blue -0.23±0.05/-0.10±0.04). The main effect of decrease with time, as well as stronger decreases for green compared349

to both red and blue, were signicant in both animals individually (all P < 0.05 corrected for multiple comparisons).350

This suggests that there may be differences in the time course and strength of adaptation between color hues,351

specifically stronger adaptation for green surface stimuli.352

Dependence on full-screen background hue353

One potential source of adaptation, other than the surface stimulus of a given trial, is the color composition of354

the continuously presented background. In the experiments described above, all surface stimuli were displayed on a355

gray full-screen background (FSB). Gamma-band responses to achromatic and chromatic surface stimuli may have356

been affected by the use of this gray FSB, given that the FSB itself may induce adaptation at many levels of the357

nervous system. We therefore asked how gamma-band responses to surface stimuli depend on the color of the FSB.358

To answer this question, we performed experiments in which we used different FSBs in separate, adjacent sessions359

(gray, white, black, blue, green, yellow and red) (Figure 6A and Figure 6-figure supplement 1; see Methods). The360

FSB was continuously presented during the entire session, i.e. remained on both during the pre-stimulus period,361

post-stimulus period and the period during which the surface stimuli were displayed (Figure 6A). In Figure 6, we362

analyze LFP responses to the presentation of chromatic surface stimuli of different hues, which were presented at the363

maximum possible luminance level (see Figure 6-figure supplement 2 for equiluminant red, green and blue as well as364

achromatic surface stimuli).365

We first examined how the responses to surface stimuli with specific hues (e.g. green) were altered by using an366

FSB with the same hue (e.g. green), comparing them to the sessions with a gray FSB (Figure 6B). Surprisingly, we367

found that when the FSB had the same hue as the surface stimulus, there was a nearly complete abolishment of gamma368

oscillations for blue, green and yellow stimuli (Figure 6B and Figure 6-figure supplement 2). This was observed both369

when the surface stimulus had the same luminance as the background (Figure 6) and when the surface stimulus had370

a lower luminance (Figure 6-figure supplement 2). Interestingly, red stimuli could still induce detectable gamma371

oscillations when presented on a red FSB, although the gamma amplitude was strongly reduced compared to the gray372

FSB condition (Figure 6B and Figure 6-figure supplement 2).373

The reduction in gamma-band oscillations for the same-hue FSB condition may have been an effect of stimulus374

size, because the background is effectively a very large surface. Alternatively, it may have been an effect of stimulus375

history. To investigate these possibilities, we analyzed the post-stimulus period immediately following the offset of a376

gray surface stimulus that was displayed on a colored FSB. We found that the reappearance of the FSB after the offset377

of the colored surface induced prominent gamma-band oscillations (Figure 6-figure supplement 3). This indicates378

that the decrease in gamma-band oscillations with the same hue FSB condition was not due to the large size of the379

background color stimulation, but that it was due to the continuous presence of the same-hue background. This is also380

consistent with a previous report showing strong gamma with full-screen color stimuli that change color across trials381

(Shirhatti and Ray, 2018), and with the positive relation between gamma and stimulus size shown in Figure 2C.382

Next, we considered interactions between distinct hues. We wondered whether gamma oscillations can not only be383

reduced by same-hue FSBs, but also enhanced by FSB hues that are different from the stimulus hue, in particular when384

FSB and stimulus assume opponent colors. The organization of color vision around color-opponency axes, namely385

the red-green and the blue-yellow axes, is a key principle found both at the neurophysiological and psychophysical386

level (Livingstone et al., 1984; Solomon and Lennie, 2007; Tailby et al., 2008a; Wachtler et al., 2003). These color387

opponencies are thought to result from the computation of differences among signals deriving from L and M cones388

(red-green), and S cones versus L and M cones (blue-yellow). We found that for all surface hues, gamma oscillations389

were amplified when stimuli and FSBs were of opponent color hues (Figure 6C). This suggests that gamma oscillations390

are dependent on opponency signals along the red-green and the blue-yellow axes (Figure 6C). Given the strong391

dependence of gamma-band oscillations on the FSB, we asked whether the use of a gray FSB may have induced392
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differences in gamma-band amplitude among distinct hues. To examine this possibility, we used a black FSB, which393

should induce minimal adaptation for all cones. Quite surprisingly, the difference among red, green and blue hues394

that we had observed with a gray FSB could not be replicated when we presented the stimuli on a black FSB (Figure395

6D). Compared to the gray FSB condition, gamma-band amplitudes were significantly lower for red and blue surface396

stimuli and significantly higher for yellow and green surface stimuli (Figure 6D). As a consequence, for the black FSB397

condition, gamma-band power was no longer highest in response to red stimuli, but showed a different dependence398

on hue (Figure 6D; Figure 6-figure supplement 2). Specifically, gamma-band power was higher for green and yellow399

than red and blue surface stimuli (Figure 6D). The resulting pattern could not be explained by luminance contrast400

differences, because contrast increased for all hues on the black compared to the gray FSB, whereas gamma increased401

for some hues and decreased for others (Figure 6D).402

In Figure 6B-C, we compared stimulus responses in the same-hue and opponent-hue background conditions with403

stimulus responses in the gray background condition. However, because of the evidence that the gray FSB may not404

have affected all stimulus hues equally, we also directly compared the same-hue and opponent-hue FSB conditions405

with the black FSB condition. This analysis revealed a marked difference between red and the other hues (Figure 6E).406

First, when an FSB of the same hue as the stimulus was compared to a black FSB, gamma was almost abolished for407

blue, green and yellow, but not for red stimuli. Second, when an FSB of the opponent hue was compared to a black408

FSB, gamma was enhanced for all colors, but particularly strongly for red (Figure 6E). The full matrix of gamma409

responses for different FSB conditions in Figure 6-figure supplement 2 shows that for all non-red chromatic FSBs,410

gamma oscillations were strongly amplified for red surface stimuli.411

We also analyzed the gamma-responses to achromatic stimuli on colored backgrounds, and asked in particular412

whether responses of achromatic stimuli on colored surfaces were as strong as responses of colored stimuli on achro-413

matic surfaces (Figure 6F ). Achromatic responses on colored backgrounds were substantially weaker than the reverse414

(see Section Controls for luminance-contrast and cone-contrast). These data demonstrate that gamma oscillations de-415

pend strongly on the FSB, in a way that follows the color-opponency axes. Furthermore, a commonly used “default”416

of the display, namely gray, introduces adaptation effects that are color-specific.417

A quantitive model relating hue dependence of gamma-band oscillations to adaptation418

To explain how gamma-band responses to surface stimuli depend on the FSB, we constructed a quantitative model419

by estimating the degree to which each FSB differentially adapts the S-, M- and L-cone pathways. Note that this model420

is agnostic to the neuronal locus at which adaptation of the distinct cone pathways occurs, e.g. it might occur in the421

retina, LGN or visual cortex. We hypothesize that gamma-band oscillations for colored surface stimuli are mediated422

by the activation of single color-opponent cells in a large spatial region by the same color input. The combination of423

bottom-up drive at each point of the surface and strong surround modulation may then lead to gamma oscillations.424

The result that gamma oscillations are particularly strong in the opponent-hue background condition (Figure 6) further425

suggests that when this circuit is more strongly activated (leading to stronger input drive as well as stronger surround426

modulation), gamma oscillations increase.427

Following this reasoning, we further hypothesized that the dependence of gamma-band oscillations on the FSB428

can be explained by adaptation of specific cone pathways (see Discussion for further argumentation). As an example,429

a green FSB should lead to stronger adaptation of the M-cone compared to the L-cone pathway. This should increase430

the degree to which single-opponent cells with L+/M- color-opponencies are activated by red surface stimuli, which431

may in turn increase the amplitude of gamma-band oscillations.432

To capture this intuition in a quantitative manner, we constructed a model in which we aimed to predict the433

difference in gamma-band amplitudes between red and green surface stimuli (for blue and yellow surface stimuli see434

further below). The variable to be predicted was the red-green gamma ratio, defined as γratio = log10(γred/γgreen),435

where γred and γgreen are the respective gamma-amplitudes for red and green surface stimuli. This γratio was computed436

separately for all the different FSBs. We estimated the degree to which each FSB adapts the M- and L-cones, using437

the known response curves of the three cones as a function of wavelength from macaque monkeys (Hárosi, 1987) (see438

Methods, Figure 7A). We then measured the physical wavelength spectrum for each FSB as realized on our monitor.439

We multiplied the FSB spectra of the different color primaries with the response functions of each cone and summed440

over wavelengths. This yielded for each FSB stimulus two parameter values, Madapt and Ladapt. We then fitted a441

multiple regression model predicting γratio from Madapt and Ladapt plus a constant regression intercept (Figure 7B).442
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For this model, we used response data for both green and red surfaces presented at maximum possible luminance, as443

well as equiluminant red and green surfaces, across the different FSBs.444

The regression analysis reveals that γratio can be highly accurately predicted by the way in which each FSB adapts445

the L and the M cones (Figure 7B; R2=0.91, P < 0.05, F-Test). The regression coefficients for Madapt and Ladapt were446

positive and negative, respectively. This indicates that adaptation of the M-cone increases γratio, whereas adaptation of447

the L-cone decreases γratio (Figure 7B). We also found that the γratio could not be significantly predicted when using448

S adapt and Ladapt as predictors (P=0.23), consistent with the idea that the neuronal mechanisms underlying the red-449

green opponency are dependent on the M versus L cone contrast. The regression intercept of the model (on the γratio450

axis) was not significantly different from zero. This indicates that green and red tend to generate gamma oscillations451

of similar amplitude when the FSB does not adapt the cones, consistent with the findings shown for the black FSB452

(Figure 6). Strikingly, we found that the Madapt coefficient had an absolute magnitude approximately twice as large as453

the Ladapt coefficient (Figure 7B). This suggests that uniform surfaces tend to adapt the M-cone pathway more strongly454

than the L-cone pathway, or that adaptation of the M-cone pathway has a stronger effect on gamma-band oscillations455

than adaptation of the L-cone pathway.456

The model further explains some non-trivial findings that would have been unexpected if FSBs had affected the457

M- and L-cone pathway in a similar way: We observed that the yellow FSB strongly amplified γratio (Figure 7B).458

Given its wavelength spectrum, the yellow FSB is expected to adapt the L-cones more strongly than the M-cones,459

which would predict a reduced γratio, i.e. red responses being weaker than green responses. By contrast, we found460

that γratio was enhanced. The models explain this by the fact that the stronger L-cone than M-cone activation by461

the yellow background is more than compensated by the much greater Madapt than Ladapt coefficient. Similarly, the462

γratio increased for a gray compared to a black FSBs, even though gray FSBs should in principle adapt the M- and463

L-cone pathways to a similar degree (Figure 6). This was again compensated by the much greater Madap than Ladap464

coefficient.465

We performed a similar analysis for the yellow-blue (L+M - S) opponency axis, aiming to predict the gamma ratio466

of blue over yellow (Figure 7C). We first fitted a model with the S, L and the M cone parameters, and γratio was now467

defined as γratio = log10(γblue/γyellow). This regression model explained a large degree of variance (R2 = 0.99), with al-468

most equal magnitude of S (negative, -1.23) and L (positive, 1.24) coefficients, but a much smaller and non-significant469

coefficient for the M cone (-0.29). The finding that the model fit included a highly positive L-cone coefficient and470

non-significant (and negative) M-cone coefficient seems prima facie to contradict the canonical idea that the percep-471

tual blue-yellow opponency axis is mediated by an S versus (L+M) opponency. However, neurophysiological data has472

shown that the main opponency for LGN cells on the yellow-blue axis is the L versus S cone (Tailby et al., 2008b).473

We further simplified our model using two predictive parameters, equating the blue axis to the S cone and the yellow474

axis to the L cone (Figure 7C). Again, we found a highly predictive relationship with negative weight for the S cone475

and a positive weight for the L cone (Figure 7C), with only a small and non-significant difference in the magnitude of476

the adaptation coefficients. The results were qualitatively highly similar between animals and individually significant477

(Figure 7- figure supplement 1). These findings indicate that gamma oscillations are mediated not only by opponency478

signals along the red-green axis, but also along the blue-yellow axes, consistent with the data shown in Figure 4-figure479

supplement 4. Note that the results of the model shown in Figure 7 were qualitatively highly similar between animals480

and individually significant (Figure 7- figure supplement 1).481

Discussion482

Summary483

We investigated the way in which V1 responses to chromatic and achromatic surfaces are modulated by spatial484

and temporal context. We report the following main findings:485

(1) Compared to achromatic surfaces, chromatic surfaces induced strong synchronization of neuronal activity in486

the gamma-frequency band (Figures 1 and 2). This finding held true for color hues across the entire wavelength487

spectrum (Figure 4).488

(2) Whereas chromatic and achromatic surfaces induced an initial MU firing transient of similar magnitude (Figure489

1 and 2), we found relatively weaker firing responses to chromatic surfaces in the sustained stimulation period, which490

was evident from a stronger decrease in firing over time related to an increase in surround suppression (Figures 1 and491

2).492
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(3) Compared to uniform chromatic surfaces, composite stimuli with a chromatic mismatch between the stimulus493

covering the RF center and the surrounding surface evoked high firing activity, yet induced a very prominent reduction494

in the amplitude of gamma band oscillations (Figure 3). This supports the hypothesis of Vinck and Bosman (2016)495

outlined in the Introduction, namely that gamma-band synchronization reflects the degree to which inputs into the496

CRF can be predicted from the surround.497

(4) Stimulus-induced gamma-band oscillations were also strongly modulated by the larger spatio-temporal con-498

text: We found that their amplitude depended strongly on the full-screen background (FSB) on which the surfaces499

were displayed (Figures 4-7). We concluded that the dependence of gamma-band synchronization on the FSB was500

explained by two key factors: First, color opponency along one of the two main color-opponency axes (red versus501

green and yellow versus blue). Second, a comparatively stronger adapting influence of FSBs on the M-cone pathway,502

which leads to comparatively stronger gamma oscillations for red surfaces for many (but not all) FSBs (Figures 6-7).503

This is consistent with our finding that the decrease in gamma-band amplitude within a trial is particularly strong for504

green surface stimuli (Figure 5).505

Differences between chromatic and achromatic surfaces506

We asked whether there are differences in V1 gamma-band synchronization and firing responses between chro-507

matic and achromatic stimuli. A previous voltage-sensitive dye imaging study has shown differences in V1 responses508

to chromatic compared to achromatic surfaces (Zweig et al., 2015). For achromatic surfaces, V1 response charac-509

teristics were indicative of a fill-in process, in which surface information emanates from the surface’s edge. This510

was not the case for chromatic surfaces (Zweig et al., 2015), which suggests that the V1 representation of surface511

color may largely depend on single-opponent LGN inputs to V1 and responses of V1 neurons with RFs within the512

uniform surface (Livingstone et al., 1984; Shapley and Hawken, 2011; Zweig et al., 2015). Indeed, the data shown in513

Figures 6-7 suggests that V1 gamma oscillations are mediated by color-opponency signals. It has been shown that514

a subset of neurons with chromatic opponencies in LGN and V1 exhibit elevated firing as compared to baseline for515

large chromatic surfaces, and carry information about the surfaces hue (Ts’o and Gilbert, 1988). These cells can be516

subdivided into Type I, Type II and modified Type II responses. These color-selective neurons would not be active517

for a large achromatic stimulus (Ts’o and Gilbert, 1988), indicating that there may be stronger LGN and/or layer 4518

cortical drive for chromatic than achromatic stimuli. However, a subset of V1 neurons also fire to temporal luminance519

changes for black and white surfaces (Xing et al., 2010), and neurons might also be activated for achromatic surfaces520

by fill-in processes from the surround (Zweig et al., 2015). This means that chromatic and achromatic stimuli may521

differ in input drive, and perhaps other aspects of processing (Zweig et al., 2015). Several human imaging studies522

have shown stronger fMRI signals in response to chromatic stimuli (for review, see Schluppeck and Engel (2002),523

Shapley and Hawken (2011)). Because the fMRI signal correlates not only with spiking activity, but also with gamma524

responses (Ekstrom (2010); Logothetis and Wandell (2004); Maier et al. (2008); Nir et al. (2007); Scheeringa et al.525

(2016); Thomsen et al. (2004); Viswanathan and Freeman (2007), for visual gamma in particular Bartolo et al. (2011);526

Niessing et al. (2005)), it remains unclear how these fMRI findings are related to the present findings.527

In the present study, we observed that chromatic surfaces exhibited much stronger gamma-band synchronization528

yet more suppressed firing than achromatic surfaces. This finding is consistent with the idea that V1 representations529

of surface color depend on the direct activation of neurons with RFs in the uniform region of the surface. It further530

supports the hypothesis that gamma-band synchronization arises from the predictability of visual inputs across space531

(Vinck and Bosman, 2016). Together, these data suggest that one could think of color, like stimulus orientation, as532

a “feature”, with predictive value for stimulus features in color space. If the features at the center stimulus are cor-533

rectly predicted by the surround (context), this results in strong gamma-band synchronization. On the other hand,534

predictability of stimulus luminance by itself in the absence of color information, as in the case of a large uniform535

white stimulus, may not be processed as a stimulus feature. Luminance by itself, in the absence of color information,536

may not be sufficient for inducing strong gamma-band synchronization. In contrast, prominent gamma-band synchro-537

nization can be generated in response to achromatic stimuli when they have structural features (orientation, frequency,538

phase) that are highly predictable over space, e.g. bars and gratings (Chalk et al., 2010; Gail, 2000; Gieselmann and539

Thiele, 2008; Gray et al., 1989; Singer, 2018).540

Overall, our data suggests that both sufficient drive and spatial predictability are the necessary ingredients for the541

generation of V1 gamma. There are several cases in our manuscript where differences in V1 gamma are dissociated542

from differences in firing rate. For example, in Figure 3 we show a strong increase in firing rates for the annulus543
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and blob condition as compared to the uniform surface, however gamma oscillations are markedly decreased. In544

Figure 3-figure supplement 1B, we show that gamma-band oscillations are stronger at the center than the edge of a545

chromatic surface stimulus, however firing rates are much stronger at the edge of the chromatic surface stimulus. In546

V1, most cells with chromatic opponencies are found in the superficial layers, to which our recordings are biased and547

in which gamma is thought to be generated (see Discussion section Mechanisms of gamma-band synchronization).548

Most of these V1 neurons are strongly driven by the presence of chromatic edges and have band-pass rather than549

low-pass spatial characteristics, and the majority of neurons has been classified as double-opponent rather than single-550

opponent (Friedman et al., 2003; Johnson et al., 2008; Shapley and Hawken, 2002, 2011). This is consistent with our551

finding that firing rates are relatively high at the edge of the chromatic surface stimulus and for the blob and annulus552

mismatch conditions (Figure 3, Figure 3-figure supplement 1B). As opposed to these cases where high firing rates are553

accompanied by weak gamma, we also present cases where stimuli have high spatial predictability, but where gamma554

is weak or absent likely due to low drive (Figure 1 achromatic stimuli, Figure 6 chromatic stimuli after prolonged555

adaptation).556

An important question is how to functionally relate the dependence of gamma on both predictability and drive.557

Notably, even though chromatic and achromatic (uniform) surfaces both have high spatial predictability at the image558

level, they may differ in the degree of predictability at the level of inputs at the neuronal level. Before information559

about an image reaches the cortex, it is processed through various stages. Noise could accumulate through these560

processing steps, for example due to synaptic release noise, ion channel noise and background synaptic activity. We561

can sketch two extreme cases as a function of the signal-to-noise ratio, which we call the efficient coding (1) and the562

inference regime (2) (de Lange et al., 2018; Rao and Ballard, 1999):563

(1) In the efficient coding regime where the signal-to-noise ratio is high and the image has predictable relationships564

over space, redundant information should be removed by a subtraction of predictions. The removal of redundant565

information should lead to a sparse code (Rao and Ballard, 1999), accompanied by gamma-synchronization. This566

may be mediated by GABAergic, inhibitory mechanisms (Jadi and Sejnowski, 2014; Vinck et al., 2013b) (see the567

discussion section on mechanisms below).568

(2) If the sensory input is relatively weak, as in case of stimulus with low luminance-contrast, the signal-to-569

noise ratio is expected to be low. In such a case, there is less redundancy between center and surround inputs, i.e.570

less predictability. The principle of Bayesian inference tells us that in these kind of conditions, the surround may571

effectively be used to infer representations at the RF location (de Lange et al., 2018; Rao and Ballard, 1999). In other572

words, the representation in this case is biased towards the contextual prediction, and is essentially a weighting of573

the input with the contextual prediction (de Lange et al., 2018; Rao and Ballard, 1999). The weighting of contextual574

surround information with the input may in this case rely on an increase in local firing driven by excitatory surround575

influences, and a concurrent decrease in the recruitment of GABAergic interneurons by surround inputs (Jadi and576

Sejnowski, 2014; Rao and Ballard, 1999). Consistent with these ideas, previous work has shown surround facilitation577

and an expansion of the classical receptive field under low luminance-contrast condition (Grosof et al., 1993; Kapadia578

et al., 1999, 1995; Von Der Heydt et al., 1984), and perception is biased towards expectation under low signal-to-579

noise ratio conditions (for a review see de Lange et al. (2018)). Furthermore, it has been shown that gamma-band580

synchronization for grating stimuli increases with luminance-contrast (Hadjipapas et al., 2015; Henrie and Shapley,581

2005; Ray and Maunsell, 2010; Roberts et al., 2013). For achromatic stimuli, responses at the surface’s center derived582

from local signals may be weak. Responses should therefore be influenced by excitatory contextual influences from583

neurons with receptive fields on the surface’s edge (Zweig et al., 2015). In contrast, the surface representation for584

chromatic stimuli may largely depend on the direct activation of single-opponent cells with RFs on the uniform region585

of the surface. In this case, there is high redundancy across space and the efficient coding process dominates, which586

is accompanied by gamma-synchronization. Future studies are required to carefully characterize the responses of587

different color-responsive cell types to investigate this hypothesis. The dependence of predictability of inputs on the588

signal-to-noise ratio may potentially also explain the disappearance of gamma-band synchronization with prolonged589

visual stimulation (Figure 6, see next subsection).590

Dependence of gamma-band oscillations on hue and full-screen background591

We demonstrated a prominent difference in gamma-band synchronization and firing activity between chromatic592

and achromatic surfaces. However, we also found prominent hue-related differences. These differences could reflect593

a constant property of the visual system to respond differently to particular hues, or might arise from other contextual594
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processes, such as adaptation to the full-screen background (FSB) on which the surfaces were displayed. When using595

a gray FSB, we found that gamma oscillations were particularly strong for surface stimuli with red hues. This finding596

is consistent with previous work that used a gray FSB throughout and showed stronger gamma-band synchronization597

for red stimuli (Rols et al., 2001; Shirhatti and Ray, 2018). Note that with a gray FSB, gamma oscillations were598

reliably induced by all surface hues, which is consistent with our findings suggesting that both yellow-blue and red-599

green opponencies contribute to the generation of V1 gamma oscillations (Figure 4-figure supplement 4, Figures 6600

and 7).601

Importantly, we found that differences in gamma-oscillation strength among hues were highly dependent on the602

FSB and that with a black background a different dependence on hue emerged. In particular, with a black compared to603

a gray FSB, gamma oscillations increased in amplitude for green and yellow surface stimuli, but decreased in ampli-604

tude for red and blue surface stimuli. The quantitative model presented in Figure 7 suggests that the M-cone pathway605

adapts more strongly than the L- and S-cone pathways, even when the adaptation-inducing FSB is supposedly “neu-606

tral” (gray). By extension, background hues during natural vision would play a similar adapting role. An explanation607

for this phenomenon may be that, in general, uniform surfaces induce stronger or faster adaptation of the M-cone than608

L- and S-cone pathways, which may have a retinal, thalamic and/or cortical source. This interpretation is consistent609

with our finding that gamma-band amplitude decreased on a time-scale of seconds more rapidly for green than red or610

blue surfaces (Figure 5). We observed several other unique response features for green surfaces consistent with the611

idea of differential M-cone adaptation: First, we found that gamma oscillations were strongly dependent on luminance612

for green surfaces in particular, which suggests that a stronger luminance is needed to overcome adaptation (Figure613

4B). Second, we found that gamma oscillations had a significantly lower peak frequency for green than for red or614

blue surface stimuli (Figure 4B). This suggests a weaker stimulus drive for green than red surface stimuli, because615

enhancing stimulus drive has been shown to increase the frequency of gamma oscillations (Hadjipapas et al., 2015;616

Henrie and Shapley, 2005; Jia et al., 2013b; Ray and Maunsell, 2010; Roberts et al., 2013). Third, with a gray FSB,617

we found that evoked MU transients were weaker for green than for equiluminant red and blue surface stimuli, which618

is consistent with increased adaptation of the M-cone pathway. Yet, we found that green stimuli exhibited a weaker619

decrease in firing over time (Figure 4D), and that the decrease in firing over time was particularly pronounced for red620

stimuli.621

These findings have two important implications: (1) A gray FSB may differentially change neuronal responses to622

surfaces of different color hues. This may have implications for the design of studies examining differences in neu-623

ronal or behavioral responses between color hues. (2) Differential adaptation to distinct hues may have consequences624

for color perception in general. Interestingly, at the psychophysical level, it has been shown that psychophysical after-625

effects emerge more rapidly after viewing green than viewing red stimuli (Werner et al., 2000). Differential adaptation626

of M-cones may reflect important behavioral requirements of primates. The visual environment of primates is domi-627

nated by green and yellowish stimuli like leaves and trees (Mizokami et al., 2003). Detection of fruits with relatively628

high energy in red hues may be an important behavioral task for many primates (Melin et al., 2017). Trichomacy pro-629

vides behavioral advantages for such detection (Melin et al., 2017), which may be aided by fast adaptation of M-cone630

derived signals.631

Differential effects of spatial and temporal context on gamma-band synchronization632

This study reports two main findings: When the RF stimulus is part of a larger uniform surface, the spatial context633

allows a prediction of RF content, and gamma oscillations are enhanced. Yet, when the RF stimulus is part of a634

longer uniform stimulation period, the temporal context allows a prediction of RF content, and gamma oscillations635

are reduced. This suggests that the two effects are brought about by different mechanisms. When RF content is636

spatially predictable, enhanced gamma oscillations are accompanied by reduced firing rates. This pattern of results637

is highly suggestive of enhanced inhibition (Vinck and Bosman, 2016), and is in line with the prominent role of638

inhibition in the generation of gamma (see Mechanisms of gamma-band synchronization further below). By contrast,639

when the RF content is temporally predictable, the pattern of results is more suggestive of an adaptation mechanism640

leading to a progressive reduction in gamma strength. This part of our results is in line with previous reports from641

crossmodal and auditory studies (Arnal et al., 2011; Todorovic et al., 2011), which found enhanced gamma oscillations642

for unexpected stimuli. These findings are consistent with an earlier hypothesis, which stated that gamma oscillations643

should be enhanced for stimuli that generate prediction errors (Bastos et al., 2012). Note that the effects of both spatial644

and temporal predictability do not necessarily rely on top-down feedback.645
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The relationship of V1 gamma-band synchronization to temporal context may be more complex than suggested646

by this general conceptual notion, however: Previous studies have shown that when continuous stimulus motion647

has a large degree of jitter/randomness, either in case of entire video frames or in case of bar stimuli, V1-gamma-648

band synchronization tends to be weak, whereas V1 gamma-band synchronization tends to be strong in cases where649

stimulus motion is predictable (Kayser et al., 2003; Kruse and Eckhorn, 1996; Vinck and Bosman, 2016). Thus,650

the notion that V1 gamma-band synchronization increases when stimuli are unexpected or salient given the temporal651

context might apply only to discrete stimulus onsets and not generalize to cases where there is continuous stimulus652

motion. Furthermore, stimulus repetition can lead to a monotonic increase in V1 gamma-band synchronization over653

trials (Brunet et al., 2014). This increase of V1 gamma-band synchronization with stimulus repetition may reflect a654

slower learning process in which spatial center-surround interactions are modified by experience (Vinck and Bosman,655

2016).656

Mechanisms of gamma-band synchronization657

The results discussed above revealed several principles underlying the stimulus dependence of gamma synchro-658

nization. Yet, it remains unclear what precise neuronal mechanisms account for the emergence of V1 gamma synchro-659

nization, and its dependence on center-surround predictability. Previous work indicates that in primate and cat V1,660

gamma-band oscillations are generated cortically, specifically in the superficial layers of the cortex as well as layer661

4B (Bastos et al., 2014; Buffalo et al., 2011; Herculano-Houzel et al., 1999; Livingstone, 1996; Xing et al., 2012).662

Furthermore, they have not been detected in the LGN of awake primates (Bastos et al., 2014). Together with the663

results presented in this paper, this indicates that the emergence of gamma oscillations in superficial layers depends664

on the integration of bottom-up inputs from the LGN and layer 4 with contextual information mediated through lateral665

and top-down feedback. Notably, superficial layers exhibit strong lateral connectivity and are densely innervated by666

top-down feedback (Barone et al., 2000; Lund et al., 1993; Markov et al., 2014).Within the cortex, the interaction667

between inhibitory and excitatory neurons likely plays a critical role (Bartos et al., 2007; Buzsáki and Wang, 2012;668

Cardin et al., 2009; Hasenstaub et al., 2005; Jadi and Sejnowski, 2014; Kopell et al., 2000; Perrenoud et al., 2016;669

Sohal et al., 2009; Tiesinga and Sejnowski, 2009; Veit et al., 2017; Vinck et al., 2013a; Whittington et al., 1995; Wom-670

elsdorf et al., 2014). Specialized electrophysiological sub-classes of pyramidal neurons like chattering (fast-rhythmic671

bursting) cells, which have resonant properties in the gamma-frequency band, could also be a critical component of672

gamma rhythmogenesis (Cardin et al., 2005; Gray and McCormick, 1996; Nowak et al., 2003). Tangential, excita-673

tory connections linking preferentially columns with similar feature preferences (e.g. color or orientation) may play674

a crucial role in synchronizing neuronal assemblies coding for related features (Gray et al., 1989; Korndörfer et al.,675

2017; Vinck and Bosman, 2016). A stimulus with high spatial predictability is likely to simultaneously activate a large676

number of preferentially coupled columns. This could then give rise to enhanced cooperativity among these columns677

and boost gamma synchronization by the recruitment of local excitatory and inhibitory neurons. In addition, feedback678

from higher visual areas could be critical, considering that the spatial spread of tangential connections is somewhat679

limited and covers a smaller surround region than cortical feedback (Angelucci et al., 2017).680

Functions of gamma-band synchronization681

We finish with a discussion of the functional implications of the present findings. Early theories of gamma syn-682

chronization proposed that it may contribute to solving the “binding problem” (Singer, 1999; Singer and Gray, 1995).683

This refers to the problem that the visual system segments images into segregated objects, which raises the problem684

that the local features comprising the object must at some processing stage be bound together. It was proposed that685

the activity of distributed neurons can be dynamically grouped together through synchrony according to perceptual686

Gestalt principles (Engel et al., 1992; Milner, 1974; Singer, 1999, 2018; Singer and Gray, 1995; Von Der Malsburg,687

1994). Notably, functions that have been linked to surround modulation, such as contour integration (Liang et al.,688

2017), perceptual filling-in (Land, 1959; Wachtler et al., 2003; Zweig et al., 2015), and figure-ground segregation689

(Lamme, 1995), may contribute to perceptual grouping and underlie some of the Gestalt principles. Later work em-690

phasized that gamma synchronization can flexibly regulate communication between neuronal populations (Akam and691

Kullmann, 2010; Colgin et al., 2009; Fries, 2005; Jia et al., 2013a; Knoblich et al., 2010; Palmigiano et al., 2017;692

Salinas and Sejnowski, 2001). For example, the communication-through-coherence hypothesis states that communi-693

cation between neuronal populations can be flexibly modulated by selective coherence according to cognitive demands694
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(Fries, 2005, 2015). Recent studies have shown that neuronal groups in distant visual areas show gamma-band coher-695

ence primarily when they processes an attended stimulus and that the level of coherence predicts behavioral benefits696

of attention (Bosman et al., 2012; Buschman and Miller, 2007; Gregoriou et al., 2009; Grothe et al., 2012; Rohenkohl697

et al., 2018).698

In the context of efficient and predictive coding and the relationship of V1 gamma with spatial predictability, V1699

gamma synchronization may play two functional roles (Vinck and Bosman, 2016), which remain to be tested:700

1) Gamma synchronization may be a mechanism to increase the effective synaptic gain of V1 neurons on post-701

synaptic targets (e.g. V2) (Bernander et al., 1991; Fries, 2005; König et al., 1996; Salinas and Sejnowski, 2000, 2001;702

Softky, 1994) when a stimulus is efficiently encoded. This may ensure reliable transmission of V1 outputs even when703

firing is sparse, which is especially important in the presence of noise within or competing inputs to the receiving area.704

2) Gamma synchronization could play an important role in coordinating the interactions between distributed V1705

columns receiving related, and thereby redundant, visual inputs. The outputs of these columns need to be synaptically706

integrated, for which gamma synchronization could be a mechanism (Fries, 2005; König et al., 1996)707

In sum, the present work provides evidence that visual cortex shows sparse and gamma-synchronized responses708

when surround stimulation predicts RF center stimulation. In contrast, firing rates are high when the surround does not709

predict the center. These effects are particularly pronounced in case of chromatic, compared to achromatic surfaces.710

A second key insight is that the FSB on which surfaces are displayed strongly modulates gamma synchronization, in711

a way that suggests that uniform surfaces lead to stronger adaptation of the M-cone compared to L-cone pathways.712

This not only explains differences in gamma-band oscillations between surfaces of different hues, but may also have713

important behavioral and perceptual consequences, which needs to be explored in future work.714
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Methods727

All procedures complied with the German and European regulations for the protection of animals and were ap-728

proved by the regional authority (Regierungspräsidium Darmstadt).729

Surgical procedures730

Two male adult macaque monkeys (Macaca mulatta) were used in this study (age 9-10 years, 15-17 kg). All731

surgeries for implantations were performed under general anesthesia and were followed by analgesic treatment post-732

operatively. A head post was implanted in both monkeys to allow for head fixation. In monkey H, we implanted733

CerePort (”Utah”) arrays with 64 microelectrodes (inter-electrode distance 400 µm, tip radius 3-5 µm, impedances734

70-800 kOhm at 1000 kHz, half of them with a length of 1 mm and half with a length of 0.6 mm, Blackrock Mi-735

crosystems). One such array was implanted into area V1, another one in V4, both in the left hemisphere. The V4736

array is not considered here. For array implantation, a large trepanation covering both areas was performed, the dura737

was cut open and reflected, arrays were inserted using a pneumatic device (Blackrock Microsystems), and both dura738

and bone were surgically closed. A reference wire was inserted under the dura towards parietal cortex. In monkey A,739

we implanted a semi-chronic microelectrode array Microdrive into area V1 of the left hemisphere (SC32-1, Gray740

15



Matter Research, containing 32 independently movable Alpha Omega glass insulated Tungsten electrodes with an741

impedance range of 0.5-2 MegaOhm and an inter-electrode distance of 1.5 mm). The microdrive chamber was used742

as the reference during recordings. The precise layers/depths that were recorded from could not be identified based743

on histological verification, which is the current gold-standard, because the animals are still alive. However, based on744

the observation that all sites in monkey H and the vast majority of sites in monkey A do not show the typical inversion745

of the event-related potential as is found in the deep layers (Li et al., 2015), we estimate that our recordings mainly746

sample activity from layers 2-4. Sites in monkey A and monkey H behaved qualitatively in a consistent manner across747

depths, such that all recording sites were pooled.748

Behavioral task749

Both monkeys were trained on a fixation task. Monkeys were seated in a custom-made primate chair in a darkened750

booth. The two animals were positioned 83 (monkey H) or 64 cm (monkey A) in front of a 22 inch 120 Hz LCD751

monitor (Samsung 2233RZ, (Ghodrati et al., 2015; Wang, 2011). Both monkeys self-initiated trials by fixating on a752

small fixation spot, which was presented at the screen center. Monkey H performed a pure fixation task. For monkey H,753

the fixation spot was a Gaussian with a white center, tapering smoothly into the background. For recordings with white754

background, the fixation spot color was changed to red. Note that the pattern of results for gray and white FSBs was755

very similar despite this difference (Figure 6-figure supplement 2), and that receptive fields were not covering the756

fovea. The task of monkey A was to report a change in the fixation spot from red to green or blue (randomly) with757

a lever release. The change in the fixation spot occurred only after the stimulus period and an additional 700 ms of758

background stimulation, during which the animal maintained fixation. For the recordings with colored backgrounds759

in monkey A, fixation colors were changed to remain visible, with a magenta fixation spot during the baseline and760

stimulus period. For both animals, trials during which the eye position deviated from the fixation spot by more than761

0.8-1.5 visual deg radius were aborted. Correctly performed trials were rewarded with diluted fruit juice delivered762

with a solenoid valve system.763

Recordings764

Data acquisition was performed using Tucker Davis Technologies (TDT) systems. Data were filtered between765

0.35 and 7500 Hz (3 dB filter cutoffs) and digitized at 24.4140625 kHz (TDT PZ2 preamplifier). Stimulus onsets766

were recorded with a custom-made photodiode. Eye movements and pupil size were recorded at 1000 Hz using an767

Eyelink 1000 system (Eyelink Inc.) with infrared illumination. Eye signals were calibrated before each recording768

session using a standardized fixation task. Behavioral control and stimulus presentation was done using in house769

custom software running in Matlab, including ARCADE (Dowdall et al., 2018).770

Visual stimulation paradigms during recordings771

For all paradigms, stimuli were circular, did not have overlap with the fixation spot, and typically spanned a772

region from ca. 3-9 deg of eccentricity (monkey H) or 2.5-8.5 deg (monkey A, maximum: 1.6-9.6 deg for Dataset 4)773

in the lower right visual quadrant, matching RF locations. Trials always started with a baseline that lasted 0.5-0.6 s774

(monkey H) or 0.5-0.8 s (monkey A), and during which only the FSB and the fixation spot was shown. We used the775

following stimulus paradigms:776

Dataset 1: For Figure 1, 4B and 5, we presented large uniform stimuli of 6 deg visual angle diameter on a gray777

FSB. For the chromatic condition, we used stimuli that were either green, red, or blue, at three different luminance778

levels (which are shown in Figure 4). For Figure 1, only the chromatic conditions with the highest available luminance779

level were used, approximately corresponding to the maximum possible luminance level for the blue primary. For the780

achromatic condition, we used either black (minimum luminance) or white (maximum luminance) stimuli.781

The background was of an intermediate gray value that allowed for good eye tracking quality (see Table S1 for all782

luminance, RGB and CIE values). Stimulus duration was 3.3 s. This dataset included 3 sessions from monkey H and783

2 sessions from monkey A. There were 20 ±0 (H) and 20 ±0 (A) trials in each session for each of the 11 conditions784

(2 color hues * 3 luminance levels + black and white). Dataset 2: For Figure 2, i.e. the size tuning paradigm, we785

presented a smaller (either 0.5, 1, or 2 deg) stimulus and a larger (6 deg) surface stimulus in the same trial sequentially,786

with each stimulus presented for only 0.6 s. In each trial, either the smaller (“small-first”) or largest (“large-first”)787

surface was presented first. In addition, we used an “edge” condition in which the selected multi-unit’s RF was788
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centered around the vertical edge of the 6 deg stimulus, again followed or preceded by the standard full condition789

(Figure 3-figure supplement 1). The colors used were red, blue and green (at the same luminance intensities shown790

in Figure 1), black and white, and in case of monkey H, also orange, cyan and magenta hues. This dataset included 5791

sessions from monkey H and 4 sessions from monkey A. There were 12.78±4.3 (H, 64 conditions) and 12.86±5.4 (A,792

40 conditions) trials in each session for each of the conditions (4 stimulus sizes * 2 presentation orders * 8/5 colors793

(H/A)).794

Dataset 3: For Figure 3, we used only red, green and blue hues (with the same luminances as the maximum795

luminant red, green and blue used in Dataset 1, Figure 1). We presented three stimulus conditions: The uniform796

surface, the “annulus” and the “blob” condition (Figure 3). Stimuli in annulus or blob conditions were of the same797

size as the uniform surface, but the center 1 deg of the surface was either surrounded by a thin (0.25 deg) annulus798

of one of the other, equiluminant, hues, or filled completely with one of the other hues (Figure 3). For each surface799

of a given hue, there were therefore two “annulus” and “blob” conditions with the two remaining colors (Figure 3).800

In the analysis, we averaged over all the color combinations for a given condition, and compared the three main801

conditions. For monkey H, we additionally recorded two sessions with maximally luminant instead of equiluminant802

hues. Note that this generated strong luminance contrast changes between the colors, but yielded qualitatively similar803

results. This indicates that the observed effects do not depend on equiluminance, a condition that may occur rarely804

in nature. Because results were qualitatively similar, we pooled these sessions with the remaining 5 sessions of this805

animal. We used stimulus presentation times of 1.3-3.3 s. The first 1.3 s were analyzed, as in Figure 1. This dataset806

included 7 sessions from monkey H and 1 session from monkey A. There were 15.88±0.21 (H) and 18.87±0.34 (A)807

trials in each session for each of the 15 conditions (3 uniform conditions + 3 color hues * 2 color hues for mismatch808

* 2 (annulus vs blob mismatch)). Dataset 4: For Figure 4A, we recorded “rainbow” sessions in which surfaces809

(again 6 deg diameter size) of different colors were presented at the maximum possible luminance. We sampled the810

visible light spectrum linearly in 15 steps of equal size in terms of wavelength, with the MATLAB (MathWorks, Inc.)811

internal function spectrumRGB.m. Note that the monitor cannot produce line spectra, but can only approximate the812

corresponding hues through mixing of RGB channels (see e.g. Figure 7A for a yellow hue). We additionally included813

brown and pink (extra-spectral) hues (see Table S1 and Figure Figure 4-figure supplement 1) and achromatic stimuli.814

For the analyses shown in Figure 4B, we used Dataset 1. This dataset included 3 sessions from monkey H and 2815

sessions from monkey A. There were 12.1±6.9 (H) and 20±0 (A) trials in each session for each of the 22 conditions.816

Dataset 5: For Figures 6 and 7, we used FSBs of various hues. The backgrounds used were red, green, blue and yellow817

at maximum possible luminance, as well as black, white and gray, presented at the same luminance intensities as in818

the other datasets. Surface stimuli of 6 (monkey H) or 8 (monkey A) deg diameter in size were used. The size was819

slightly increased for monkey A to place the edge of the surface stimulus further from the most peripheral RFs. The820

hues used for the surface were identical to the ones used for the FSBs. In addition, we presented chromatic surfaces821

with reduced values, namely red, green and blue with the same luminance levels as in Figure 1, and a brown surface.822

All possible combinations of surface and FSB hues were shown. All other presentation parameters were kept as for823

Dataset 1.824

For all stimulus paradigms for monkey A, and in Dataset 5 for monkey H, there was a post-stimulus period of825

0.7 s (0.5 s in monkey H) after the offset of the stimulus, during which the monkeys was required to maintain fixation.826

For monkey A, the fixation color would change after this period and the monkey had to respond to this change with827

the release of a lever, whereupon the fixation spot was removed. Presentation of different stimulus conditions was828

in a pseudo-random order. Typically, 15-20 correctly performed repetitions per condition and session were collected829

(see also Figure captions for trial numbers). This dataset included 16 sessions from monkey H and 9 sessions from830

monkey A (1-2 per FSB). There were 17.89±0.17 (H) and 19.00±0.08 (A) trials in each session for each of the 11831

conditions.832

DKL Color Space833

In order to calibrate the monitor outputs, the luminance of the RGB monitor primaries were measured with Konica834

Minolta CS-100A chroma meter and look-up tables were generated. Monitors were gamma-corrected to linearize the835

dependence of luminance on RGB values. .836

The Derrington-Krauskopf-Lennie (DKL) Color Space was introduced as a color-opponent modulation space837

(Derrington et al., 1984; Krauskopf et al., 1982). DKL color space is based on a cone-contrast representation, where838
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cone activation to a color stimulus is quantified as the relative change of the cone activations with respect to the back-839

ground color (Brainard, 1996). Weber cone-contrasts are computed in three steps: 1) The change in cone-activation840

relative to the full-screen background is computed, 2) This change in cone-activation is normalized (divisively) by the841

extent to which the background differentially activates the different cones (Brainard, 1996). These cone contrasts are842

then transformed into 3 primary axes of the DKL space, which correspond to the mechanisms of L+M (luminance),843

LM (red-green opponency), and S-(L + M) (blue-yellow opponency). Along the L-M axis, maximum L/M cone con-844

trasts were 9.60% and 14.81% respectively, along the S-(L+M) axis S cone contrast was 79.35%. These values were845

found to be similar to previous studies (De Valois et al., 2000; Hansen and Gegenfurtner, 2013)846

Data analysis847

Preprocessing. Data were analysed in MATLAB using the FieldTrip toolbox (Oostenveld et al., 2011). Only848

correctly performed trials were analyzed. LFPs were derived from the broadband signal using MATLAB’s deci-849

mate.m function, by low-pass filtering with a cutoff frequency of 24414.0625/24/2 Hz (FIR Filter with order 30) and850

downsampling to 24414.0625/24 Hz. Line noise was removed using two-pass 4th order Butterworth bandstop filters851

between 49.9-50.1, 99.7-100.3 and 149.5-150.5 Hz. LFPs had a unipolar reference scheme described in Recordings.852

Explorative analyses with local bipolar derivations, obtained by subtracting the signals from immediately neighboring853

electrodes from each other, yielded comparable results (data not shown). MU signals were derived from the broad-854

band signal through bandpass filtering between 300 and 6000 Hz (4th order butterworth), rectification, and applying855

low-pass filtering and downsampling the same way as for the LFPs. For the calculation of rate modulations, this MU856

signal was smoothed with a Gaussian kernel with an SD of 20 ms. Qualitatively similar results were obtained using857

thresholded multi-unit data. We used this MU signal for all analyses in the main text, as in previous studies by other858

labs (Legatt et al., 1980; Schmid et al., 2013; Self et al., 2013; Xing et al., 2012).859

Receptive field estimation. Receptive fields were mapped with moving bar stimuli (spanning the entire monitor).860

Moving bars (width 0.1 deg, speed 10/17 deg/s) were presented in 8 orientations for monkey H and 8-16 orientations861

for monkey A, each for 10-20 repetitions. Mapping sessions were intermittent for monkey H and typically daily for862

monkey A, to confirm stability of the recordings. MU responses were projected onto the stimulus screen, after shift-863

correction by the response latency that maximized the back-projected response. MU responses were then fitted by a864

Gaussian function. This Gaussian was used to extract the 10th percentile and the 90th percentile, and this was done865

separately for each movement direction. Across the 16 directions, this yielded 32 data points, which were fit with866

an ellipse. This ellipse was defined as that MU’s RF. The RF size is defined as the diameter based on (area of the867

ellipse/pi)*2.868

Electrode selection. We included all electrodes for analysis that met the following criteria: (1) the MU showed a869

response to RF stimulation that was at least two SDs above stimulation outside the RF. (2) The MU response during870

the response period (0.05-0.15 s) of at least one condition of the respective dataset was at least 2 SD above the871

corresponding baseline (-0.1-0 s). In case of Figures 2-3, it was additionally required that the RF center of the MU872

was within 0.5 deg of the stimulus center. In the remaining figures, it was required that the RF center was within the873

surface stimulus.874

Estimation of LFP power spectra. For Figures 1, 3-4 and 6-7, the baseline period was the last 500 ms before875

stimulus onset, and each stimulation period yielded two non-overlapping epochs of 500 ms (0.3-1.3 s period). For876

Figure 2, due to the short presentation times, we used epochs of 300 ms (300-600 ms after the onset of the stimulus, and877

for baseline 300 ms before stimulus onset). LFP epochs were multiplied with discrete prolate spheroidal sequences878

(multi-tapers for ±5 Hz smoothing), Fourier transformed and squared to obtain LFP power spectral densities (for a879

recent discussion on spectral estimation see Pesaran et al. (2018)). For Figure 5, we used windows of 0.3 s length,880

slid over the data in steps of 50 ms. Data were multiplied with a Hann taper before Fourier transformation.881

Normalization of LFP power spectra. To show LFP power changes, we computed relative power spectra by882

dividing single-trial power spectra from the stimulation period by the average power spectra across conditions and883

trials from the baseline. This was shown as a fold-change in all figures showing relative changes except for Figure 5884

TFRs, where for visualization purposes, we transformed this into dB units.885

To investigate absolute LFP power (without reference to the baseline), we normalized power spectra per electrode886

by the total power above 25 Hz in the baseline condition. This normalization reduced variance or scaling in the887

LFP power spectra across sessions and animals before averaging. By normalizing both the baseline and the stimulus888

period by the same normalization factor, we could still examine changes in raw LFP power across conditions, for each889
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frequency bin separately. This would not have been possible if we had normalized the LFP power spectrum in a given890

condition by the total power across frequencies in the same condition. These power spectra were averaged across the891

selected channels (except for single-channel analyses as in Figure 1-figure supplement 2).892

Quantification of LFP gamma-band amplitude. Quantification of the differences in gamma-band amplitude be-893

tween conditions is in general a difficult problem because changes in firing rate can cause broad-band shifts in the894

LFP power spectrum, and because spikes can “bleed-in” at higher LFP frequencies (Buzsáki et al., 2012; Miller et al.,895

2009; Pesaran et al., 2018; Ray and Maunsell, 2011). We developed an algorithm to extract gamma-band amplitude in896

order to address these problems (see neuronal for an illustration). We present two versions of this algorithm that are897

used for separate figures, and are based on constructing a polynomial fit of the LFP spectrum which was detrended in898

two separate ways. The first algorithm had the following structure:899

1. Power spectra were log-transformed and the frequency axis was also sampled in log-spaced units to avoid over-900

fitting of high-frequency datapoints. All subsequent polynomial fits were performed on the 20-140 Hz range.901

2. We used the change in stimulus-induced LFP power versus the common baseline (see above), expressed as902

∆P = log(Pstim) − log(Pbase)903

3. To determine the polynomial order, we used a cross validation procedure to prevent overfitting. A random half904

of the trials was used for the fitting and deemed the “training set”. The remaining trials were the “test set”.905

Polynomials of order 1-20 were fit to ∆P as a function of frequency for the “training set”, minimizing the mean906

squared error. We then computed the mean squared error using the same polynomial fit on the “test set” for907

each of the 20 orders. This procedure was then repeated for multiple (50) iterations, with a random half of the908

trials selected for each iteration, and for each iteration, the best-performing order was retained.909

4. A polynomial with the median of the best-performing orders was then fit to the complete set of trials.910

5. On the polynomial fit, local maxima and minima in the 30-80 Hz range were identified. The peak gamma911

frequency was the location of the maximum. The band-width of gamma was estimated as twice the distance912

between the frequency of the maximum (Fmax) and the frequency of the first local minimum to the left of913

the maximum (Fmin), i.e. b = 2Fmax − Fmin (neuronal). The gamma amplitude was then assessed from the914

difference between the value of the polynomial fit at the maximum and the average of the polynomial fit at Fmin915

and Fmax + Fmin (neuronal).916

6. This difference was taken in log-space (because the power spectra were originally log-transformed) and then917

transformed to a fold-change.918

If firing rate changes relative to baseline (or between conditions) were very strong, e.g. with small stimuli, this919

fitting procedure occasionally ran into problems, because relative LFP power spectra showed broad increases that were920

likely due to non-rhythmic processes like spikes or postsynaptic potentials (see Figure 3 for an example of this effect).921

In addition, in Figure 6 and 7, because we used background stimuli of different hues, a “neutral baseline” like the gray922

background screen was not always available. In these cases we modified the second step of this algorithm. Instead923

of computing the change in LFP power relative to baseline, we performed a 1/Fn correction on the raw LFP power924

spectrum. The 1/Fn correction was performed by fitting an exponential to the LFP power spectrum, excluding data925

points in the typical gamma range of 30-80 Hz. Note that we fitted an exponential function because in many cases,926

bleed-in of spiking energy in the LFP caused a departure from a linearity in the log(power) versus log(frequency)927

graph (see also Haller et al. (2018); Shirhatti and Ray (2018)). We visually inspected the fits for a large number of928

spectra and compared this also to a procedure with a mixture of a linear fit and a Gaussian fit to the log(power) versus929

log(frequency) graph, which had substantially more problems in dealing with spike-bleed at high frequencies, as well930

as with additional peaks (potentially harmonics) at higher frequencies (e.g. for the red surfaces) (data not shown).931

Spike-field coherence. For spike-field coherence, we used only electrodes selected by the procedure described932

above. In addition, for LFP-MUA pairs, we required that the electrodes were direct neighbors in the grid, and in the933

case of monkey H, given that the microelectrode array had two fixed depths, were of the same depth. Spike-field934

phase-locking was computed as follows. We estimated the cross-spectral density between LFP and MU signal for935

each trial separately (cross-spectra) using the same spectral estimation settings as for the LFP power spectrum. This936

yielded one cross-spectrum per trial. We then normalized the cross-spectrum per trial by its absolute values, to obtain937

the cross-spectral phases (without amplitude information). We used those normalized cross-spectra to compute the938

Pairwise Phase Consistency (PPC), using FieldTrip (Oostenveld et al., 2011). This measure has the advantage that939

the bias by trial count, inherent to e.g. the spectral coherence, is avoided (Vinck et al., 2010b). For a given MU site,940
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the PPC values were then averaged across all the combinations with LFPs from the other selected channels. Note941

that MU-LFP combinations from the same electrode were excluded to avoid artifactual coherence due to bleed-in of942

spikes into the LFP (Buzsáki et al., 2012; Ray and Maunsell, 2011). Because of the distance between electrodes (at943

least 400 micrometer), this was not an issue for MU-LFP combinations from different electrodes.944

The standard error of the PPC was estimated across sessions. This was different from SE estimation for power and945

rate, which used the bootstrap (see below). Bootstrap estimates are problematic for PPC because bootstraps contain946

repetitions of identical trials, which trivially yield high coherence values.947

Rate modulation. Rate modulation was computed as log10 Mstim/Mbase, where Mstim and Mbase represent the948

MU firing activity in the stimulus and baseline period, respectively. To quantify surround suppression, we took the949

differences of these rate modulation indices between small and large stimulus size conditions.950

Modulation index of fold-changes To quantify the modulation of LFP gamma-amplitude (expressed as fold-951

change) between conditions (Figure 5, 6), we computed a modulation index as (A − B)/(A + B), where A and B952

are the gamma-amplitudes in the two conditions, taken as the fold-change minus 1. Note that the fold-change was953

extracted using the polynomial fitting procedure described above, and a fold-change of 1 indicated the absence of a954

gamma peak.955

Microsaccade detection and subsequent LFP analysis. For microsaccade detection, we smoothed horizontal and956

vertical eye signals (rectangular window of ±5 ms) and differentiated the signals over time points separated by 10 ms to957

obtain robust eye velocity signals. For monkey H, for whom data from both eyes were available, data were averaged958

across eyes. We then used the microsaccade detection algorithm described in Engbert and Kliegl (2003) with a959

velocity threshold of 6*c, where c is the criterion defined as c ≡ Median[v2] − (Median[v])2. Threshold crossings960

in either the horizontal or vertical direction were considered as microsaccades. We tested several threshold levels961

and obtained qualitatively similar results. We then removed data epochs of 100 ms after each microsaccade and962

recomputed our analyses (based on Lowet et al. (2016); 100 ms is approximately the duration of microsaccade effects963

in V1). Removing 200 ms after each microsaccade yielded qualitatively similar results but fewer remaining epochs.964

For the analysis of LFP gamma amplitude, we switched to analyzing epochs of 100 ms using a Hann taper, instead of965

the 500 ms time bins used before. This is sacrificing some frequency resolution and limiting the results to frequencies966

>20Hz, in order to obtain a large number of microsaccade-free epochs. Epochs were zero-padded to 1s, effectively967

smoothing the spectra. Note that we show the results for the data including microsaccades with the identical epoch968

length and taper to allow a fair comparison.969

Pupil responses. Pupil signals across the two eyes were averaged for monkey H. Pupil size during the compara-970

tively stable period 200ms to stimulus onset was used as a baseline. Pupil size was then computed as percent change971

from the average response during this time (A-B)/B, where A is the pupil response at each time point and B is the972

average response during the baseline period. Note that since the Eyelink system gives outputs with arbitrary units,973

and these were negative during the baseline period, we took the absolute value for the denominator such that pupil974

size decreases are indicated by negative values.975

Statistics976

Error bars or shaded error regions correspond to ± one standard error of the mean (SEM). SEM was estimated977

using a bootstrap procedure, with the exception of spike-field coherence (see above). For the b-th bootstrap out of978

B = 1000 bootstraps, b = 1, . . . , B, the following was done. For each condition in a given session, with a set of N979

trials T , we took a random set of N trials from T with replacement, yielding a new set of trials Sb. For that sample980

of N trials Sb, we then computed the statistic of interest. For LFP signals, we then computed the average statistic981

in a given session over all channels, then averaged over sessions, and then monkeys. The rationale behind averaging982

across all LFP channels was that these signals are likely highly statistically dependent because of volume conduction983

among the relatively closely spaced electrodes. For MU signals, we computed the average statistic of interest across984

sessions per MU site separately, and then averaged across all recording sites. The standard error of the mean was then985

defined as the standard deviation over the B average statistics, as is common with bootstrapping procedures.986

We used the bootstrap distributions for inference on fold-change estimates or fold-change modulation indices987

between conditions, as well as differences in peak gamma frequency. In this case, we computed for each bootstrap the988

difference between average statistics for two conditions, and then tested whether this distribution was different from989

zero (with Bonferonni correction for number of comparisons).990
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For frequency- or time-resolved differences (in absolute and relative LFP power spectra and rate modulation991

scores), we used multiple-comparison corrected permutation tests: In this case, we shuffled the trials between two992

conditions per permutation P times, and then constructed a permutation distribution of average absolute differences993

between conditions. We equalized trial numbers for each comparison, for example between chromatic/achromatic994

conditions or the different stimulus sizes. We then compared the observed difference between average statistics against995

this permutation distribution. For multiple-comparison correction, we used the procedure from Korn et al. (2004),996

which is based on the sorted distribution of absolute differences, with alpha and false discovery rate values of 0.05.997

In this iterative procedure, values in the observed distribution exceeding the 95th percentile of the P maximal values998

of each permutation distribution (critical value) are deemed significant. Significant values are removed from the999

observed distribution, and the same positions are removed from all P permutation distributions. Values in the observed1000

distribution exceeding the critical value based on these permutation distributions are then iteratively collected until no1001

value in the observed distribution exceeds the critical value. Note that statistical parameters are reported mostly in the1002

figure captions.1003

Quantitative model for dependence of gamma-band amplitude on background stimulus1004

Cone data were extracted from Hárosi (1987) (bleaching difference corrected spectra). Polynomials of order 71005

were fit to these curves. The cone response curves were then normalized to the maximum. We measured the spectral1006

energy of each color as well as black, white and gray (Ocean Optics WaveGo; XWAVE-STS-VIS-RAD). The spectral1007

energies of the colors were normalized to unit mass. For gray, we added the normalized energies of R, G and B and1008

multiplied with the energy ratio of gray over white. We then convolved the cone response curves with the normalized1009

spectral energies to determine how strongly each background adapts the three cones. Regression models were then1010

fit as explained in the Results text and caption of Figure 7. SEM for regression coefficients are obtained by the same1011

bootstrap procedure as described above.1012
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Figure 1: Analysis of LFP and multi-unit activity in response to large, uniform surfaces. (A) Illustration of experimental paradigm with large,
6 deg diameter surfaces (Dataset 1, see Methods; n = 5 sessions, 60±0 trials per session for chromatic and 40±0 trials per session for achromatic
conditions. Trials numbers were euqated by random subselection for statistics.). Trials were self-initiated by fixating on the fixation spot (enlarged
for visibility), followed by a baseline period of 0.5-0.8 s with a gray background screen. Surfaces were either chromatic (red, blue, or green) or
achromatic (black or white) and presented for 3.3 s, the first 1.3 s of which are analyzed here. Right panel shows the RF locations of analyzed sites
in one session. (B) Representative trials of LFP signals for achromatic and chromatic conditions (having gamma power close to the median of the
respective condition). (C) Average LFP power spectra for chromatic (turqoise), achromatic (black) and baseline (gray) conditions. LFP power was
estimated using Discrete Fourier Transform of non-overlapping epochs of 500 ms, with multi-tapering spectral estimation (±5 Hz). LFP spectra for
all three conditions were normalized to the summed power (>20 Hz) for the baseline (gray) condition (see Methods). (D) Average change in LFP
power, expressed as fold-change, relative to baseline. (E) Average MU-LFP locking, which was estimated using the pairwise phase consistency
(PPC, see Methods). (F) Modulation of firing rate relative to baseline, expressed as log10(stim/base). (D-F) Shadings indicate standard errors of the
means obtained with bootstrapping (see Methods). Gray bars at bottom of figure indicate significant differences between chromatic and achromatic
stimuli, obtained from permutation testing with multiple comparison correction across all frequencies and time points (see Methods).
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Figure 2: Dependence of LFP power spectra and MU firing activity on surface size. (A) Illustration of experimental paradigm (Dataset 2, see
Methods; n = 9 sessions, 59.75±0.09/25.64±0.12 trials chromatic vs achromatic trials per condition in each session). Uniform surfaces of four
different sizes were presented on a gray background screen. Fixation spot is enlarged for visibility. Right: Receptive field estimated with bar
stimuli for a representative target channel, with the outline (orange dashed line) of the largest size stimulus (see Methods). Note that the activation
outside the RF is due to the use of large bar stimuli sweeping over the monitor. (B) LFP power spectra for different sizes and chromatic/achromatic
conditions. LFP power spectrum estimated and normalized as in Figure 1C, but now using 300 ms epochs. Right panel shows the gamma-band
amplitude as a function of size, estimated using a polynomial fitting procedure between 30-80 Hz (see Methods). The difference between 6 and
0.5 deg stimuli was significantly larger for chromatic than achromatic condition (P<0.05, bootstrap test, see Methods). (C) Modulation of firing
rate relative to baseline, expressed as log10(stim/base), for different sizes and chromatic/achromatic conditions. Right panel shows surround
suppression, which was defined as the difference in firing rate modulation between the 0.5 degree size and the other sizes.
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Figure 3: Dependence of LFP power spectra and firing rates on spatial predictability. (A) Illustration of paradigm (Dataset 3, see Methods; n = 8
sessions, 16.26±0.19 trials in each of the 15 conditions per session). We grouped stimuli intro three types. In the “Uniform surface” group of
conditions, stimuli of 6 deg diameter were presented with either a red, blue or green hue (R B G, equiluminant). In the second “blob mismatch”
group, the central 1 deg of the stimulus had a different (equiluminant) color than the rest of the stimulus. In the third “annulus mismatch” group, we
presented an annulus ring (of 0.25 deg) of another color on top of the uniform surface (at equiluminant intensity) around the inner 1 degree from
the stimulus center. All combinations of hues and stimulus types were presented, yielding a total of 15 individual conditions. (B) Representative
LFP traces (having gamma power close to the median of all trials for the respective condition) for the three stimulus types. (C) Analysis for target
channels with RFs at the center of the stimulus. Shown from left to right are: (1) The change in MU firing activity relative to baseline expressed
as log10(stim/base). (2) LFP power spectra for the three stimulus conditions and the baseline. LFP power spectrum estimated and normalized as
in Figure 1C. (3) The change in LFP power relative to baseline, expressed as a fold-change. (4) The gamma-band amplitude, estimated using a
polynomial fitting procedure (see Methods). Gamma-band amplitude was significantly higher for uniform surface than blob and annulus conditions
(P<0.05, bootstrap test, see Methods). (D) Same as (C), but now for target channels with RFs between 1.5 and 2 deg from the stimulus center,
i.e. close to the central region of the larger, uniform region of the stimulus. Gamma-band amplitude did not significantly differ between conditions
(bootstrap test, all P>0.08 ).
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trials per condition in each session ). In addition, we presented black and white surfaces. Shown is the change in LFP power relative to the baseline
(gray screen), expressed as a fold-change. (B) Three hues (red, green and blue) were presented at three different luminance levels (approximately
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and intermediate luminance conditions (P<0.05, bootstrap test). (D) Modulation of firing rate relative to baseline, expressed as log10(stim/base).
Horizontal bars at bottom of panel represent significant differences between stimuli at P<0.05 (permutation test, multiple comparison corrected for
time bins). (B-D) Color hues were adjusted for better discriminability, panel A of Figure 4-figure supplement 2 shows actual hues. .
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Figure 6: Dependence of LFP power spectra on background stimulus. (A) Illustration of paradigm (Dataset 5, see Methods; n = 25 sessions,
18.64±0.11 trials per condition and session). In a given session, a fixed background stimulus was used, and a set of chromatic and achromatic
surfaces (6 or 8 deg) were presented in separate trials (see Methods). (B) Average LFP power spectra for the different color conditions during gray
background versus same-hue background sessions. We show analyses for blue, green, yellow, and red surfaces, presented at maximum possible
luminance. Right: modulation index of LFP gamma-amplitudes (see Methods). Main effect: P<0.05, bootstrap test. R versus G, B or Y, and G
versus B: P<0.05, bootstrap test. (C) As B) for comparison of opponent color background and black background condition Main effect: P<0.05.
B versus R, G or Y, P<0.05. (D) black background versus gray background. Main effect not significant. All color differences significant (P<0.05,
bootstrap test). (E) Modulation of gamma-band amplitude for same-hue vs black background condition (left), as well as opponent-hue vs black
background condition (right). Left: P<0.05: R versus G, B or Y; B versus G or Y Right: P<0.05: all combinations except G versus Y. (F)
Comparison of gamma-band responses between chromatic surfaces shown on achromatic background and achromatic surfaces shown on the same
respective chromatic background (using the data shown in Figure 6-figure supplement 2).32
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Supplementary Legends

Fig 1-figure supplement 1

Illustration of fitting procedure. (A) Average LFP power spectra for a large chromatic condition of an example
session used in Figure 2. LFP spectra for all conditions were normalized to the summed power (>20 Hz) for the
baseline condition (see Methods). (B) Log-transformed, 1/Fn corrected spectra (solid line) and their fit (dashed line).
Peak height was determined as the difference between the peak value at location Fmax and a baseline estimate based
on the average of the power at location Fmin and Fmin+2*(Fmax-Fmin), the estimate of peak width.

Fig 1-figure supplement 2

Analysis of LFP and multi-unit activity in response to large, uniform surfaces. (A) Average LFP power spectra for
chromatic (turquoise), achromatic (black) and baseline (gray) conditions. LFP power was estimated using Discrete
Fourier Transform of non-overlapping snippets of 500 ms with a Hanning taper. LFP spectra for all three conditions
were normalized to the summed power (>20 Hz) for the baseline (gray) condition (see Methods). (B) Average change
in LFP power, expressed as fold-change, relative to baseline. (C) Scatter-plot for all the LFP recordings sites in two
monkeys, showing the gamma-band amplitude (expressed as fold change) in chromatic and achromatic conditions.
(D) Average LFP power spectra for chromatic (turquoise), achromatic (black) and baseline (gray) conditions for
monkey A, using same estimation settings and normalization for power spectral density as in Figure 1 of main text.
(E) Average change in LFP power, expressed as fold-change, relative to baseline. (F) Modulation of firing rate relative
to baseline, expressed as log10 (stim/base), for monkey A. (G-I) as (D-F), but now for monkey H. (A-I) Shadings and
error bars indicate standard errors of the means (see Methods). Gray bars at bottom of figure indicate significance
bars, obtained from permutation testing with multiple comparison correction across all frequencies and time points.

Fig 1-figure supplement 3

Control analysis for microsaccades. (A) Average LFP power spectra and rate modulation for chromatic (turquoise),
achromatic (black) and baseline conditions, separately for data epochs defined irrespective of microsaccades (top) and
epochs excluding 100 ms after each microsaccade. Microsaccade detection was based on the algorithm of Engbert
and Kliegl (2003) (see Methods). Analysis was based on same dataset as in Figure 1. Analyses were performed as
for Figure 1, except that the Fourier spectra were computed based on 100 ms epochs that were Hann-tapered and
zero-padded to 1 s. (B) Modulation of firing rate relative to baseline, expressed as log10 (stim/base), separately for
data with microsaccade epochs included (top) and excluded (bottom).

Fig 2-figure supplement 1

Analysis of LFP and multi-unit activity in response to stimuli of varying size. (A) Gamma-band peak amplitude
and peak-frequency as a function of size, estimated using a polynomial fitting procedure between 30-150 Hz. A wider
range instead of the standard 30-80 Hz range was used here, to also capture peaks >100 Hz, which is far outside the
typical range of classical visual gamma range. This activity may reflect spike bleed-through, which is beyond the
scope of the present study. (B) Average gamma-band peak height in 30-80 Hz range, shown separately for the two
monkeys. This figure panel corresponds to Figure 2B of the main text. The difference between 6 and 0.5 deg stimuli
was significantly larger for the chromatic than achromatic condition for both animals (P<0.05, bootstrap test). (C)
Each trial contained a sequence of two stimuli, either the small stimulus first for 600 ms, or the large stimulus first
for 600 ms (see Methods). Here we show the first type of sequence to illustrate the onset of a surround when the
stimulus covering the classical RF is already present. Modulation of firing rate relative to baseline, expressed as log10
(stim/base), for different sizes and chromatic/achromatic conditions. Note rapid firing suppression after onset of the
large stimulus following the 0.5 deg stimulus, with a significant difference arising already after ≈100 ms.

Fig 3-figure supplement 1

Additional analyses and experiments performed in relationship to Figure 3 in the main text. (A) Comparison of
gamma-band power between full surface and mismatch conditions, separately for the two monkeys. For both monkeys,
gamma-band amplitude was significantly higher for uniform surface than blob and annulus conditions when the RF
was at the center of the surface stimulus (P<0.05, bootstrap test, see Methods). (B) Illustration of paradigm (Dataset
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2). Uniform surfaces were either centered on the unit’s RF, or the edge of the surface was centered on the unit’s RF.
(C) Modulation of firing rate relative to baseline, expressed as log10 (stim/base). (D) Average LFP power spectra,
using the same analysis time window and spectral estimation parameters as in Figure 2 of main text, comparing “RF-
on-center” and “RF-on-edge” conditions. Dashed gray line corresponds to baseline (gray background screen). Right:
Gamma-band amplitude (expressed as fold-change) for the two conditions. Gamma-band amplitude was significantly
higher for “RF-on-center” condition (P<0.05, bootstrap test). (E)-(H): Single session (from monkey H) illustrating
responses to Gaussian surface stimuli. Stimuli were otherwise the same as Dataset 1. Gamma oscillations were
not abolished by removal of the sharp stimulus edge. (E) Example Gaussian stimulus that had a blurred edge. (F)
Average LFP power spectra for chromatic (turquoise), achromatic (black) and baseline (gray) conditions, computed
as in Figure S1. (G) Average change in LFP power, expressed as fold-change, relative to baseline. (H) Modulation of
firing rate relative to baseline, expressed as log10 (stim/base), for monkey A.

Fig 4-figure supplement 1

Dependence of gamma LFP power on the surface hue: additional analyses in relation to main Figure 4A. (A)
Representation of hues used for Figure 4A in DKL space. (B) LFP power spectra as in Figure 4A, for additional hues.
The pure blue, green and red stimuli are shown for reference, followed by red surfaces of decreasing luminance and
the brown surface stimuli. See Table S1 for CIE and luminance values. (C) Correlations of gamma-band amplitude
(log10 of peak height estimate) with absolute cone contrasts in DKL space were not significant, with trends for
negative correlation values. Log-transformed values were used to reduce the effects of outliers on correlations. The
pattern was similar across monkeys, with monkey A showing a significant, negative correlation of absolute S-(L+M)
value to peak height (p=0.039 corrected for multiple comparisons within but not across animals). (D) Gamma peak
height as a function of angle in the DKL plane. Angles were obtained by normalizing the L-M and S-(L+M) axes to
the maximum absolute value for each respective axis. The resultant vector length was at an angle of 73.95 deg (where
90 deg is defined as maximum L-M contrast and no S-(L+M) contrast) and significantly clustered (resultant length =

0.33, P<0.001, permutation test). The panel on the right shows the DKL space coordinates of the colors used in the
left panel.

Fig 4-figure supplement 2

Dependence of gamma LFP power on the surface hue: further analyses in relation to main Figure 4B. (A) Rep-
resentation of hues used for Figure 4B in DKL space. (B) Peak frequency estimates (Hz) based on cross-validated
fitting procedure (see Methods) for the surface stimuli of Figure 4B. (C) A regression of absolute luminance contrast
(Michelson contrast) against gamma peak height (fold-change) showed no significant relationship (p=0.23). Note that
since there was relatively little gamma power for achromatic, high-contrast stimuli, if anything there would be a neg-
ative relationship between luminance contrast and gamma power, the very opposite of findings about gamma power
for achromatic gratings. Also note that for red stimuli, gamma power appears to follow a U-shape with decreasing
luminance and increasing contrast (see also Figure 4A). (D) Gamma power (fold change) and peak frequency esti-
mates (Hz) for the surface stimuli of Figure 4B, per animal. For both animals, the brightest stimuli showed stronger
gamma-responses than the darkest stimuli. The difference in fold-change gamma amplitude as a function of lumi-
nance was greater for green than for red for both animals and significantly greater than blue in monkey A. Moreover,
red responses across luminances were stronger than green or blue responses, with the exception of the brightest blue
responses in monkey H. (B-D) Color hues were adjusted for better discriminability given the small dot sizes, (A)
shows actual hues.

Fig 4-figure supplement 3

Dependence of gamma LFP power on the surface hue: control experiment for luminance-contrast. (A) Single
session from monkey H with luminance match between achromatic and chromatic surface stimuli. Each color, includ-
ing gray, was shown at 5 luminance levels, namely equiluminant to the background grey, or in two steps of 10cd/m2

brighter or darker than the background. Blue and red hues at higher luminances were obtained by adding luminance
from the green channel to maximal blue or red output, respectively. Note that achromatic responses are weaker than
chromatic responses also in this luminance-matched case. (B) Dependence of gamma-band power on pupil responses.
Pupil responses represent the maximal percent change from baseline during the stimulus period. The correlation over
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all hues was not significant (r=0.38, p=0.1). Note that gamma responses for achromatic stimuli were poor regardless
of the degree of pupil change.

Fig 4-figure supplement 4

Gamma-band power for stimuli defined on equiluminant DKL planes, control experiment related to Figure 4 of
main text. (A) The DKL-space plots at the top illustrate the employed colors. They were designed to present stimuli
with equal cone-contrast in L-M (red-green opponency) and S-(L+M) (blue-yellow opponency) directions, separately
for three luminance (L+M) steps of -0.25, 0 and +0.25 relative to the gray background (having RGB values of 175,
175, 175) (N=1 session in Monkey H). These luminance intensities corresponded to 54.7± 7.9 cd/m2. The spectra and
bar plots below show the resulting gamma-band responses. Gamma-band oscillations were stronger for reddish than
greenish stimuli and very weak or non-detectable for the blue/yellow and achromatic stimuli. Note however that the
blue/yellow components were perceptually very faint at these S-(L+M) values that were matched to the L-M cone-
contrast values. In (B) we therefore used a normalization of the S-(L+M) axis to the most negative S-(L+M) value
obtainable (along the L-M=0 axis). (B) Top: Gamma-band activity for stimuli with equal cone-contrast in positive
and negative L-M directions, and equal cone-contrast in positive and negative S-(L+M) directions (N=1 session in
monkey H). Stimuli were equiluminant relative to the gray background, which was the same as in (A). Gamma was
stronger for reddish than greenish hues. In addition, with a stronger S-(L+M) cone-contrast as compared to panel
(A), prominent gamma-band activity was now generated in the absence of a cone-contrast in the L-M direction. This
gamma-band activity was stronger in the yellow (positive S-(L+M) values) than the blue direction. Bottom: Same as
top, but now for a darker gray background (the same as used for Figure 1 in main text) and darker surface stimuli (of
matched luminance to background) (N=1 session in Monkey H).

Fig 6-figure supplement 1

DKL-space representation for Figure 6 (main text) and Figure 6-figure supplement 2.

Fig 6-figure supplement 2

Dependence of gamma LFP power on the combination surface hue and background stimulus. We show here all
the condition combinations for Dataset 5. Different rows correspond to different stimulus background conditions.
The color of the background is indicated by the background stimulus shown on the left. The second row corresponds
to a white background. Different columns correspond to different stimulus hue conditions, which are indicated by
the color of the lines in each graph. Each graph depicts the average LFP power spectrum, using the same estimation
parameters as in Figure 6 of the main text. Bar graphs on the bottom show the gamma peak amplitude (fold-change)
for the different backgrounds, separate for each surface hue. Bar graphs on the right show the gamma peak amplitude
(fold-change) for the different surface hues, separate for each background condition.

Fig 6-figure supplement 3

LFP power spectra for the post-stimulus period for the four chromatic background hues (3.5-3.8 s, excluding the
initial transient response after stimulus offset at 3.3 s). Clear gamma-band responses were observed for full-screen
surfaces after both gray and opponent-hue surface presentation in the stimulus period.

Fig 7-figure supplement 1

Analysis of Figure 7 in main text performed separately for the two monkeys. Top: Red-green opponency. Shown
are the adaptation coefficients Madapt and Ladapt for the two monkeys separately, and the regression coefficients of the
red-green γratio as a function of these coefficients. Bottom: Same, but now for blue-yellow opponency.

Supplementary File 1

RGB values, luminances (cd/m2) and CIE values (*1000) used in this study. Luminances and CIE values were
measured with a Konica Minolta CS-100A chromameter, CIE values refer to the 1931 2 degree standard observer.
Standard black, white and gray used across datasets are in rows 1-3.
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