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Abstract Despite anatomical similarities, there are differences in susceptibility to cardiovascular

disease (CVD) between primates; humans are prone to myocardial ischemia, while chimpanzees are

prone to myocardial fibrosis. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs)

allow for direct inter-species comparisons of the gene regulatory response to CVD-relevant

perturbations such as oxygen deprivation, a consequence of ischemia. To gain insight into the

evolution of disease susceptibility, we characterized gene expression levels in iPSC-CMs in humans

and chimpanzees, before and after hypoxia and re-oxygenation. The transcriptional response to

hypoxia is generally conserved across species, yet we were able to identify hundreds of species-

specific regulatory responses including in genes previously associated with CVD. The 1,920 genes

that respond to hypoxia in both species are enriched for loss-of-function intolerant genes; but are

depleted for expression quantitative trait loci and cardiovascular-related genes. Our results

indicate that response to hypoxic stress is highly conserved in humans and chimpanzees.

DOI: https://doi.org/10.7554/eLife.42374.001

Introduction
Understanding human susceptibility to disease, and the mechanisms that underlie disease suscepti-

bility, are central goals of biomedical research. One common approach to investigate the regulatory

mechanisms that underlie inter-individual disease susceptibility differences is to combine disease

association studies with investigations of genetic variants that associate with molecular-level pheno-

types using a quantitative trait locus (QTL) framework. However, one of the limitations of a QTL-

based approach is that it is not clear what proportion of loci have actual functional consequences. A

complementary approach to gaining insight into human susceptibility to disease is to investigate the

genetic, molecular, and cellular differences between humans and our closest evolutionary relatives,

the great apes. The challenge of a comparative approach is that it can be difficult to determine the

specific basis of inter-species phenotypic differences, such as disease, because many observations

are often correlated with each other across the species. The limitations and challenges of these

approaches may be addressed by a combined analysis of comparative and QTL data, which can help

us better understand the functional role of regulatory QTLs, by focusing on QTLs that impact genes

whose regulation is either conserved or correlated with inter-species phenotypic differences.

The framework for our comparative study begins with the observed inter-species difference in

cardiovascular disease (CVD). CVD is responsible for about a third of both human and captive chim-

panzee deaths (WHO; Varki et al., 2009). The anatomy of the healthy human and chimpanzee heart

is similar; however CVD pathology differs. Chimpanzee disease is often associated with interstitial

myocardial fibrosis, while human heart disease predominantly results from coronary artery arthero-

sclerosis, leading to ischemic damage (Lammey et al., 2008; Varki et al., 2009). The interstitial

fibrosis etiology prevalent in chimpanzees is also the most frequently diagnosed form of CVD in
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captive bonobos, gorillas and orangutans (Lowenstine et al., 2016). It is unclear whether these

apparent differences in susceptibility between species are due to genetic or environmental factors.

A consequence of myocardial ischemia, the reduction of blood flow to the heart tissue, is oxygen

deprivation. Oxygen sensing and response is an essential process across species. If the balance

between anti-oxidants and pro-oxidants, such as reactive oxygen species (ROS), is decoupled, redox

signaling is disrupted, and oxidative stress ensues. The heart is the most oxygen-demanding tissue

in the body (Giordano, 2005). Maintenance of oxygen homeostasis is essential for cardiac function

as imbalance of ROS can result in myocardial infarction and heart failure. Indeed, 20–40 min of oxy-

gen deprivation results in irreparable damage to the human heart (Bretschneider et al., 1975).

It is well appreciated that CVD is a complex disease with many contributing genetic and environ-

mental factors. These effects are difficult to distinguish in in vivo studies within and between species

because, in order to establish clear causal relationships and mechanism, directed perturbation is

required. This is infeasible in humans and other apes due to practical and ethical considerations.

More tractable model organisms such as mice are not optimal models of CVD given the differences

in relative heart size and heart rate (Doevendans et al., 1998; Milani-Nejad and Janssen, 2014). In

addition to genome-level differences between humans and mice, the electrophysiology of mouse

cardiomyocytes differs substantially from that of human cardiomyocytes (Moretti et al., 2013). To

understand intrinsic gene regulatory processes in cell types relevant to human disease, one might

have to study human cells. Primary human cardiac cells are not easy to access, and have a limited

lifespan in cell culture. The advent of induced pluripotent stem cell (iPSC) technology now allows us

to access disease-relevant cell types across human individuals and other primates, control the extra-

cellular environment of these cells in culture, and test the effects of perturbation. We have recently

established a panel of human and chimpanzee iPSC lines (Gallego Romero et al., 2015), and we

have shown that cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) can effec-

tively model gene regulation in hearts from humans and chimpanzees (Pavlovic et al., 2018). iPSC-

CMs can be used to study CVD phenotypes including channelopathies such as long QT syndrome,

and dilated cardiomyopathies such as Barth syndrome (Tanaka et al., 2015).

eLife digest Understanding why some people get heart disease and others do not could help

scientists find better ways to treat or prevent the condition. Genetics likely plays a role, and one way

to identify genes that are important for heart health is to compare genes in humans and their closest

evolutionary relatives, the chimpanzees. Though it is not exactly the same as seen in humans,

chimpanzees do get heart disease. Differences in the genes involved in heart disease in humans and

chimpanzees may help explain what leads to the disease in humans.

Studying heart disease in chimpanzees and humans has been challenging because heart tissue

from humans and chimpanzees is hard to come by. Yet scientists can now convert easy-to-access

skin cells from humans and chimpanzees into heart cells and grow them under laboratory conditions.

Ward and Gilad have used exactly this approach to see how human and chimpanzee cells

respond when they are starved of oxygen, which simulates a heart attack. First, skin cells collected

from eight humans and seven chimpanzees were coaxed into becoming heart cells and grown in the

laboratory. Ward and Gilad then compared the activity levels of about 12,000 genes in these heart

cells when their oxygen was limited. The responses were very similar, with 1,920 genes switching on

or off in both species. But the activity of hundreds of other genes differed between humans and

chimpanzees. For example, a gene called RASD1, which is known to be important in human heart

disease, became active in oxygen-starved human cells but not in chimpanzee cells.

Genes that vary in their activity between healthy human individuals are thought to be important

in disease. However, Ward and Gilad found that the activity of genes that switch on or off in both

species after oxygen starvation did not vary a lot in a collection of heart samples from hundreds of

individuals. These experiments may help scientists narrow down which genes are likely most

important in heart disease. More studies are needed to understand what these genes do and how

they contribute to heart disease.

DOI: https://doi.org/10.7554/eLife.42374.002
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Cardiomyocytes make up 70–85% of the heart volume, 30–40% of the total cellular composition

(Pinto et al., 2016; Zhou and Pu, 2016), and are susceptible to ischemia following coronary artery

occlusion. In order to gain insight into human gene regulatory adaptation in the heart, and the evo-

lution of disease susceptibility and resistance, we developed a model of hypoxia and re-oxygenation

in human and chimpanzee iPSC-CMs. This cell culture-based system enables an in-depth characteri-

zation of the inter-species response to, and recovery from, hypoxic stress. We can now determine

intrinsic inter-species regulatory differences in response to a universal cellular stress, which could

provide insight into the observed phenotypic differences in the manifestation of CVD between

species.

Hypoxia induces a transcriptional response following stabilization of the HIF transcription factors

under conditions of low oxygen (Samanta and Semenza, 2017). We therefore determined both the

global transcriptional response to hypoxia and re-oxygenation by RNA-seq, and the cellular

response by measuring features of oxidative damage including lipid peroxidation and DNA damage,

cytotoxicity, and cytokine release, in both species. While an iPSC-derived cardiomyocyte-based sys-

tem has been previously used to study the effects of hypoxia in a single human and a single rhesus

macaque individual, here we use a panel of human and chimpanzee individuals to identify a set of

conserved and species-specific response genes (Zhao et al., 2018). The identification of inter-spe-

cies gene regulatory differences allowed us to develop hypotheses about molecular mechanisms

that might explain phenotypic differences between species.

Results
We differentiated cardiomyocytes from iPSCs of eight human and seven chimpanzee individuals,

including replicate differentiations from a subset of the lines (Figure 1A, and Figure 1—figure sup-

plement 1A). The 15 human and chimpanzee iPSC lines we used have been well characterized as

described here and previously (Figure 1—figure supplement 2 and Key Resource Table)

(Gallego Romero et al., 2015; Burrows et al., 2016; Pavlovic et al., 2018; Ward et al., 2018). To

increase the purity of the cardiomyocyte cultures, we used a metabolic purification step

(Tohyama et al., 2013). To obtain more mature cardiomyocytes, we cultured the cells for 30 days

post induction of differentiation (Chan et al., 2013; Robertson et al., 2013), subjected the cells to

electrical stimulation to increase cellular elongation and improve calcium handling (Chan et al.,

2013), and cultured the cells in the presence of galactose instead of glucose to shift the cells’

metabolism from fetal-associated glycolysis to adult-associated mitochondrial respiration

(Rana et al., 2012).

After 30 days in culture, differentiated cells, likely predominantly ventricular in subtype

(Burridge et al., 2014), express the cardiomyocyte markers cardiac troponin T (TNNT2), sarcomeric

alpha-actinin (ACTN1), and the ventricle-specific marker Iroquois Homeobox 4 (IRX4), in both species

(Figure 1—figure supplement 1B). We determined the purity of differentiated cardiomyocytes in

each culture independently, by measuring the proportion of cells expressing TNNT2 by flow cytome-

try (see Materials and methods). Only samples with greater than 45% TNNT2-expressing cells (see

Materials and methods) were retained. Importantly, there is no difference in the median purity of the

cardiomyocyte cultures between humans and chimpanzees (median purity in both species: 78%, Fig-

ure 1—figure supplement 3). Though we only measured purity by flow cytometry analysis once, we

note that TNNT2 mRNA expression levels, a proxy for purity, do not change during the course of

the experiment.

In order to mimic in vivo physiological oxygen levels experienced by cardiomyocytes in the heart,

we cultured our cells at 10% oxygen, starting on the 25th day of differentiation. Peri-cellular oxygen

levels were measured non-invasively using an oxygen sensor applied to the inside sidewall of the car-

diomyocyte cultures. Transferring the cardiomyocytes from atmospheric oxygen levels (21% O2) to

10% O2 did not seem to induce stress in the cultures (Figure 1—figure supplement 4A). In what fol-

lows, we consider 10% O2 to be the baseline normoxia condition (designated as condition A). In

order to determine the response of the cultures to hypoxia and subsequent recovery to normoxia,

we subjected the cardiomyocyte cultures to the following conditions (see Figure 1A for a schematic

of the study design): We first lowered the O2 levels to 1% for 6 hr (condition B), we then re-oxygen-

ated to 10% O2 for 6 hr of recovery in normoxic conditions (condition C), and 24 hr of recovery
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Figure 1. Induction of hypoxia in human and chimpanzee iPSC-CMs. (A) Experimental design of the study. Cardiomyocytes were differentiated from

iPSCs from eight human (H.sap), and seven chimpanzee (P.tro) individuals together with replicates from three individuals of each species. For the

oxygen stress experiment iPSC-CMs in each species were cultured in normoxic conditions (10% O2 - condition A) for 6 hr prior to induction of hypoxia

Figure 1 continued on next page
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(condition D). Oxygen levels were monitored and recorded for each experimental batch (Figure 1B).

The same differentiation culture was used across conditions for each individual.

To confirm that perturbing the peri-cellular oxygen level affected cardiomyocytes from both spe-

cies, we measured two phenotypes associated with oxidative damage. First, we determined whether

damage to DNA is induced following hypoxic stress. Guanine is the nucleotide most prone to oxida-

tion, and in general undergoes base excision repair. The repair products of the oxidative DNA

lesions are subsequently released as 8-hydroxydeoxyguanosine (8-OHdG). The amount of 8-OHdG

released therefore reflects both the amount of oxidative damage to DNA, and the efficiency of base

excision repair. We observed an increase in the level of 8-OHdG following hypoxia and re-oxygen-

ation in both species (BMean = 0.09 vs. CMean = 1.32; t-test; p=0.002 in chimpanzees, and

BMean = �0.21 vs. CMean = 1.42; p=0.01 in humans; Figure 1—figure supplement 5A). Within a con-

dition, there is no difference in the amount of 8-OHdG released between species (human

DMean = 1.19, chimpanzee DMean = 1.34). Second, we determined the extent of lipid peroxidation by

measuring the release of the isoprostane 8-iso-Prostaglandin F2a (8-iso-PGF2a), which is induced

following ROS-mediated damage to cellular membrane phospholipids. We found an increase in 8-

iso-PGF2a release in chimpanzees following hypoxia (AMean = 0 vs. BMean = 35.65; p=0.006), and a

further increase following long-term re-oxygenation (DMean = 77.28; p=0.03; Figure 1—figure sup-

plement 5B). While there is no difference in 8-iso-PGF2a release between species within any condi-

tion, we do not find a significant increase in 8-iso-PGF2a release following hypoxia in humans

(AMean = 0 vs. BMean = 13.25; p=0.2). This pattern may be explained by incomplete power to detect

differences in 8-iso-PGF2a release either between time points or between species. Nevertheless,

our observations are intriguing because 8-iso-PGF2a is known to be elevated in heart failure

(Mallat et al., 1998; Wolfram et al., 2005), and is a risk marker for coronary heart disease

(Schwedhelm et al., 2004).

Characterizing the regulatory response to hypoxia in cardiomyocytes
We used RNA sequencing to characterize gene expression levels in all conditions, and study the reg-

ulatory response to hypoxia in the human and chimpanzee cardiomyocytes (see

Materials and methods). We processed the samples using a study design that was balanced with

respect to a number of recorded potential technical confounders (Supplementary file 1-Table S1).

Following sequencing of the RNA, we mapped reads to primate orthologous exons (Figure 2—fig-

ure supplement 1), and filtered lowly-expressed genes to yield a final data set with expression

measurements for 11,974 genes (see Materials and methods). Within each condition, inter-species

correlation in read counts is somewhat lower than intra-species variation, as expected (median

Spearman’s correlation when comparing human samples = 0.97, when comparing chimpanzee sam-

ples = 0.98, and for human vs. chimpanzee samples = 0.92; Figure 2—figure supplement 2). Using

the RNA-seq data we confirmed that genes known to be expressed in cardiomyocytes are expressed

in both our human and chimpanzee samples, including genes involved in cardiac structure, ion chan-

nels, and adrenoreceptors (Figure 2—figure supplement 3).

Figure 1 continued

at 1% O2 for 6 hr (condition B). Following hypoxia, iPSC-CMs were re-oxygenated to 10% O2 for 6 hr (condition C), or 24 hr (condition D). (B) Peri-

cellular O2 levels measured at each stage of the experiment for each experimental batch. Also see Figure 1—figure supplements 1–5.

DOI: https://doi.org/10.7554/eLife.42374.003

The following figure supplements are available for figure 1:

Figure supplement 1. Cardiomyocytes can be differentiated from iPSCs from both humans and chimpanzees.

DOI: https://doi.org/10.7554/eLife.42374.004

Figure supplement 2. New human iPSC lines are pluripotent and display normal karyotypes.

DOI: https://doi.org/10.7554/eLife.42374.005

Figure supplement 3. iPSC-CM purity is similar in humans and chimpanzees.

DOI: https://doi.org/10.7554/eLife.42374.006

Figure supplement 4. Optimising the induction of a hypoxic response in iPSC-CMs.

DOI: https://doi.org/10.7554/eLife.42374.007

Figure supplement 5. Hypoxia induces oxidative damage in both species.

DOI: https://doi.org/10.7554/eLife.42374.008
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As mentioned above, we included in our study differentiation replicates from a subset of samples

(see Supplementary file 1-Table S2 for details). We expect that gene expression data from pairs of

replicates should be more similar to each other than to data from any other individual. We used this

expected property of the data to account and correct the entire data set for unwanted technical var-

iation (see Materials and methods for more details). After accounting for unwanted variation, sam-

ples cluster by species and then by individual or condition (Figure 2—figure supplement 4). We

note that one technical factor, the presence or absence of episomal reprogramming vectors (three

human samples tested positive; Figure 2—figure supplement 5), remains a partial confounder with

species. However, we confirmed that our conclusions are robust with respect to the inclusion of

these three human samples (Figure 2—figure supplement 6 and Supplementary file 1-Table S3).

To determine which genes respond to hypoxia, we analyzed the data from all four conditions

using the framework of a linear model. The model included fixed effects for ‘species’, ‘condition’, a

‘species by condition interaction’, a random effect for ‘individual’, and four unwanted factors of vari-

ation as covariates (see Materials and methods). For this analysis, we randomly selected one of each

of the samples we had replicate data for. We were first interested in classifying genes into the fol-

lowing four categories within each species independently: genes that respond to hypoxia, genes

that respond to short-term (6 hr) re-oxygenation following hypoxia, genes that respond to long-term

(24 hr) re-oxygenation following hypoxia, and genes that differ between long-term re-oxygenation

and baseline normoxia. Of 11,974 expressed genes, we identified ~4,000 genes that respond to hyp-

oxia at 10% FDR in each species, and a slightly higher number of genes whose expression has

changed upon re-oxygenation (Figure 2; the results of all tests are in Supplementary file 1-Table

S3A).

We then focused on inter-species gene expression differences within each condition, indepen-

dently, and found that roughly half of all expressed genes are differentially regulated between spe-

cies, regardless of the condition (at FDR of 10%; Supplementary file 1-Table S3A, Figure 2—figure

supplement 7A). Using this approach we were also able to identify hundreds of genes that are dif-

ferentially expressed between species exclusively in a single condition, for example following hyp-

oxia (Figure 2—figure supplement 7B). However, this approach does not provide strong evidence

for true differences in the dynamic response to hypoxia between humans and chimpanzees, because

of incomplete power to detect inter-species differentially expressed genes in any given condition.

Thus, in order to determine the species-specificity of the global response to changing oxygen condi-

tions we explicitly compared the effect size of expression change between pairs of conditions, for all

genes, across species. Overall, there is a strong correlation in the global gene expression response

to both hypoxia and re-oxygenation in humans and chimpanzees (median Spearman correla-

tion = 0.78; sign test p<10�4 for all comparisons; Figure 3), suggesting that the general response to

changes in oxygen level is conserved in the two species. Genes that respond to either hypoxia or re-

oxygenation in both species include VEGFA (a known hypoxia response gene), TRPV1 (implicated in

ischemia-reperfusion injury in the heart [Wang and Wang, 2005]), and DDX41 (implicated in stress

survival regulation [Shih and Lee, 2014]).

Species-specific transcriptional changes in response to hypoxia
The observation that the response to changes in oxygen level is generally conserved in the two spe-

cies notwithstanding, we next focused on dynamic inter-species differences in our study. To do so,

we used two approaches. First, we estimated a gene-specific interaction effect between species

using the framework of the linear model described above. We identified 147 genes that responded

to hypoxia in one species but showed little or no response in the other species, or that responded in

both species but showed the opposite direction of effect (at FDR of 10%; Figure 4;

Supplementary file 2). We did not find inter-species differences in the response to either the short

or long re-oxygenation treatments.

We did not find enrichment of particular pathways among the species-specific response genes,

but this may not be surprising as stress response pathways are often regulated by a small number of

key master regulator genes (Haynes et al., 2010; Li et al., 2011; Natarajan et al., 2013;

Mahat et al., 2016; Quirós et al., 2017). However, several of the genes with significant species by

condition interactions have functions related to G-protein signaling, TGF-b signaling, and metabo-

lism (Figure 4—figure supplement 1). Our most significant interaction corresponds to the RASD1

gene, which is up-regulated specifically in humans following hypoxia (Figure 4). This gene encodes a
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Ras GTPase, which activates G-protein signaling. Conversely, the LRRC25 gene responds to hypoxia

specifically in chimpanzees, and has been found to inhibit NF-kb signaling (Feng et al., 2017)

(Figure 4).

Directly modeling interaction effects with small numbers of samples is an underpowered

approach. In order to side-step the challenge of incomplete power when performing multiple pair-

wise comparisons, we used a second approach; a joint Bayesian model, to classify genes based on

their expression levels between conditions within each species during the course of the hypoxia-re-

oxygenation experiment (see Materials and methods). Four gene clusters were empirically deter-

mined to explain the predominant expression patterns in the data (lowest BIC and AIC after testing
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Figure 2. Hypoxia induces a gene expression response in humans and chimpanzees. (A) Volcano plots representing genes that are differentially

expressed (DE; 10% FDR) in pairwise comparisons across conditions in each species independently. In a comparison of A vs. B, genes that are up-

regulated in hypoxia are represented in blue, and genes that are up-regulated in normoxia are represented in brown. Genes that are up-regulated in

condition C are represented in coral, and genes that are up-regulated in D are represented in dark red. (B) Overlap of genes that are differentially

expressed in pairs of conditions in each species independently. Also see Figure 2—figure supplements 1–7.

DOI: https://doi.org/10.7554/eLife.42374.009

The following figure supplements are available for figure 2:

Figure supplement 1. RNA-seq sample quality is similar between species.

DOI: https://doi.org/10.7554/eLife.42374.010

Figure supplement 2. Inter-species variability in read counts is greater than intra-species variability.

DOI: https://doi.org/10.7554/eLife.42374.011

Figure supplement 3. Range of cardiomyocyte genes are expressed in human and chimpanzee iPSC-CMs.

DOI: https://doi.org/10.7554/eLife.42374.012

Figure supplement 4. RNA-seq samples cluster by species and then by oxygen level or individual.

DOI: https://doi.org/10.7554/eLife.42374.013

Figure supplement 5. Species and individual are most correlated with the first two principal components in PCA.

DOI: https://doi.org/10.7554/eLife.42374.014

Figure supplement 6. Inter-species results are recapitulated using a subset of the data.

DOI: https://doi.org/10.7554/eLife.42374.015

Figure supplement 7. Thousands of genes are differentially expressed between species in each condition.

DOI: https://doi.org/10.7554/eLife.42374.016
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1–15 clusters; Figure 5—figure supplement 1). Using this approach we categorized 9,414 genes as

not responding to hypoxia in either humans or chimpanzees (non-response genes), 1,920 genes that

respond to hypoxia in both species (conserved response genes), 430 genes that respond to hypoxia

in chimpanzees only (chimpanzee-specific response genes), and 199 genes that respond to hypoxia

only in humans (human-specific response genes; Figure 5 and Supplementary file 3). It is notable

that there is no prevalent pattern of genes responding specifically to re-oxygenation in either spe-

cies, which suggests that the expression of most genes returns to baseline by the end of the experi-

ment. We do not identify additional gene expression patterns even when we increase the number of

clusters.

log fold change

lo
g

 f
o

ld
 c

h
a

n
g

e

same direction di�erent direction

A B C DB

rho=0.78 rho=0.79 rho=0.78

A)

B)

g
e

n
e

 e
xp

re
ss

io
n

 (
lo

g
2
cp

m
)

VEGFA TRPV1 DDX41

*

* * *

*

*

B

4

2

0

-2

-4

420-2-4

A B C D A B C D A B C D A B C D A B C D A B C D

6

7

8

9

10

11

0

1

2

3

4

5

6

6.5

7.0

7.5

8.0

8.5

420-2-4 420-2-4

2,6322,4302,566

Figure 3. The hypoxic gene expression response is highly correlated across species. (A) The log fold change in expression of 11,974 genes between

pairs of conditions in humans on the x-axis, and chimpanzees on the y-axis. Genes whose expression changes in the same direction in both species are

represented in black, and genes whose expression change direction differs across species are represented in purple. (B) Examples of genes that are

differentially expressed in both species in A vs. B (VEGFA), B vs. C (TRPV1), and B vs. D (DDX41) are shown. Asterisk denotes a statistically significant

difference in expression between conditions (10% FDR).

DOI: https://doi.org/10.7554/eLife.42374.017
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Properties of hypoxic response genes
To confirm that our approach identifies meaningful response genes, we considered the overlap of

genes assigned to our four response categories with a set of genes previously identified to respond

to hypoxia in human, and a more evolutionary distant primate, the rhesus macaque (Zhao et al.,

2018). As expected, genes previously found to respond to hypoxia are enriched among genes

assigned to the ‘conserved response’ category in our study, and depleted among genes assigned to

the ‘non-response’ category (Chi-squared test; p<10�15 in both; Figure 6—figure supplement 1).

To explore properties of the response genes, we integrated our gene expression data with data

from human chromatin immunoprecipitation followed by high through-put sequencing (ChIP-seq)

experiments for three transcription factors that are known to bind to the genome in response to

altered oxygen levels - HIF1a, HIF2a and FOXO3 (Schödel et al., 2011; Eijkelenboom et al., 2013).

We arbitrarily designated genes as potentially regulated by the three transcription factors by identi-

fying the closest orthologous gene to each human transcription factor-bound region. Consistent

with previous literature (Samanta and Semenza, 2017), the 356 HIF1a-bound regions, and 301

HIF2a-bound regions are enriched near conserved response genes compared to non-response

genes (Chi-squared test; p<10�10 for both factors; Figure 6A). We thus asked whether differences in

HIF binding could account for inter-species gene expression differences. Indeed, both HIF1a- and

HIF2a-bound regions are enriched near conserved response genes compared to species-specific

response genes (p<0.01 for both factors; Figure 6A). In particular, chimpanzee-specific response

genes are depleted for HIF binding (p<0.05 for both factors; Figure 6A). The 934 FOXO3-bound

regions are not enriched near conserved response genes compared to non-response genes, nor are

conserved response genes enriched compared to species-specific response genes.

We asked whether differences in sequence conservation at transcription factor-bound regions are

associated with inter-species gene expression differences. To do so, we calculated the phyloP score

at each bound region in close proximity to expressed genes. We found no difference in sequence

conservation at HIF1a-, HIF2a- and FOXO3-bound regions when comparing conserved response

genes to non-response genes, or conserved response genes to species-specific response genes
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Figure 4. 147 genes show a species-specific response following hypoxia. Middle panel: The log fold change in expression of 11,974 genes between

normoxia (A) and hypoxia (B) in humans on the x-axis, and chimpanzees on the y-axis. Genes with a species-by-condition interaction are represented in

blue. All species-by-condition interactions affected the hypoxic condition; therefore only a representative pairwise comparison is shown (A vs. B). An

example of a gene that responds in chimpanzees only (LRRC25) is shown in the left panel, and an example of a gene that responds only in humans

(RASD1) is shown in the right panel. Also see Figure 4—figure supplement 1.

DOI: https://doi.org/10.7554/eLife.42374.018

The following figure supplement is available for figure 4:

Figure supplement 1. Genes responding in a species-specific manner have a variety of cellular functions.

DOI: https://doi.org/10.7554/eLife.42374.019
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(Figure 6B). However, it should be noted that the numbers of species-specific response genes in

proximity to binding sites for these transcription factors is small.

In addition to transcription factor-mediated gene expression responses to stress, non-coding

transcripts can also play a regulatory role in hypoxia, immune responses, and cardiac development

and disease (Scheuermann and Boyer, 2013; Choudhry et al., 2014; Danko et al., 2018). To char-

acterize the contribution of non-coding transcripts to the hypoxic response, we classified our 11,974

expressed genes as protein-coding, antisense, or long interspersed non-coding RNA (lincRNA; see

Materials and methods). The 205 antisense transcripts are enriched in conserved response genes
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DOI: https://doi.org/10.7554/eLife.42374.020

The following figure supplement is available for figure 5:

Figure supplement 1. Four patterns of gene expression predominate across the course of the experiment.

DOI: https://doi.org/10.7554/eLife.42374.021

Ward and Gilad. eLife 2019;8:e42374. DOI: https://doi.org/10.7554/eLife.42374 10 of 32

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.42374.020
https://doi.org/10.7554/eLife.42374.021
https://doi.org/10.7554/eLife.42374


A)

−4

−2

0

2

4

6

−6

***

***

R
a

ti
o

 C
V

 g
e

n
e

s 
to

 a
ll

 g
e

n
e

s
(p

ro
p

. C
V

 g
e

n
e

s 
- 

 p
ro

p
. a

ll
 g

e
n

e
s 

p
e

r 
ca

te
g

o
ry

)

*

Cardiovascular-associated genes (n=2,756)

A
ll

(n
=

3
5

6
)

(n
=

6
5

)

(n
=

4
1

)

(n
=

3
)

(n
=

3
)

A
ll

(n
=

3
0

1
)

(n
=

2
8

)

(n
=

2
5

)

(n
=

2
)

A
ll

(n
=

9
3

5
)

(n
=

8
9

)

(n
=

1
6

)

(n
=

0
)

B)

C) D)

R
a

ti
o

 g
e

n
e

s 
cl

o
se

st
 t

o
 T

F
 b

in
in

g
 s

it
e

 r
e

la
ti

v
e

 t
o

 a
ll

 g
e

n
e

s
(p

ro
p

. g
e

n
e

s 
w

it
h

 T
F

 s
it

e
 -

 p
ro

p
. a

ll
 g

e
n

e
s 

p
e

r 
ca

te
g

o
ry

)

40

20

0

-20

-40

(n=120) (n=58) (n=109)

15

5

0

-5

-15

R
a

ti
o

 g
e

n
e

 t
yp

e
  t

o
 a

ll
 g

e
n

e
s

(p
ro

p
. g

e
n

e
 t

yp
e

 -
 p

ro
p

.a
ll

 g
e

n
e

s 
p

e
r 

ca
te

g
o

ry
)

lincRNA
(n=59)

antisense
(n=205)

protein-coding
(n=11,395)

p
h

yl
o

P
 s

co
re

 

1.0

0.5

0.0

-0.5

-2.0

-1.0

-1.5

HIF1α HIF2α FOXO3 

(n
=

0
)

(n
=

4
)

Oxygen-responsive transcription factor ChIP-seq regions Sequence conservation scores of  ChIP-seq regions

Gene type

Response Hu. & Ch. Response Hu. only Response Ch. onlyNo response Hu./Ch. 

HIF1α HIF2α FOXO3 

***

***

**

***

***

**

***
***

***

10

-10

**

**
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proportion of all genes within a response category. Response categories are: non-response (grey), conserved response (magenta), human-specific

response (orange), and chimpanzee-specific response (green). Asterisk denotes a significant difference between the proportion of the gene set in each

response category, and the proportion of all genes within a response category (Chi-squared test; *p<0.05, **p<0.005, ***p<0.0005). Also see

Figure 6—figure supplements 1–2.

DOI: https://doi.org/10.7554/eLife.42374.022

The following figure supplements are available for figure 6:

Figure 6 continued on next page

Ward and Gilad. eLife 2019;8:e42374. DOI: https://doi.org/10.7554/eLife.42374 11 of 32

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.42374.022
https://doi.org/10.7554/eLife.42374


compared to non-response genes (49 vs. 142; p=0.001; Figure 6C). However, species-specific

response genes are no more likely to be antisense transcripts than conserved response genes. Con-

served response genes are no more likely to be one of 59 annotated lincRNAs than non-response

genes, and species-specific response genes are no more likely to be lincRNAs than conserved

response genes. That said, considering the more stringent set of species-by-condition interaction

genes, we found enrichment of lincRNAs compared to all expressed genes (4/147 interaction genes;

Fisher’s exact test, p=0.007). These lincRNAs are APTR, NEAT1, RNF139-AS1 and LINC02615.

Finally, we wanted to determine whether response categories are enriched for particular path-

ways, using a background set of all expressed genes. In the non-response gene category, there is a

significant enrichment in KEGG pathways related to the heart (e.g. dilated cardiomyopathy, hyper-

trophic cardiomyopathy, arrhythymogenic right ventricular cardiomyopathy and adrenergic signaling

in cardiomyocytes, 10% FDR; Figure 6—figure supplement 2). In the conserved response category,

various signaling pathways related to sensing the external environment, and responding to oxygen

are significantly enriched including HIF1a, MAPK and FOXO1. There are no significantly enriched

pathways in the species-specific gene response categories. Given the apparent enrichment of cardio-

vascular genes in the non-response category, we explicitly tested the contribution of a set of cardio-

vascular-associated genes to the response to hypoxia (see Materials and methods). Indeed, we

found that there is a depletion of genes implicated in cardiovascular development and disease

amongst the genes that respond to hypoxia in both species (Chi-squared test; p=8.3�10�6;

Figure 6D).

Associating genetic variation with hypoxic response genes
It has been suggested that genetic variants that associate with gene expression levels (eQTLs), may

mediate disease phenotypes (Emilsson et al., 2008; Albert and Kruglyak, 2015; Yao et al., 2015;

GTEx Consortium et al., 2018). In order to test the contribution of eQTLs to the response to stress,

a phenotype that is likely to provide insight into disease, we overlapped our four response gene cat-

egories with genes whose expression level is associated with genetic variants in human heart tissues

(eGenes; see Materials and methods). We observe a depletion of eGenes in the conserved response

category, when compared to all expressed genes within each category, using data from the heart

left ventricle (Chi-squared test; p=0.01), heart right atrial appendage (p=1.4�10�5), and iPSC-

derived cardiomyocytes (p=6.4�10�5; Figure 7A and Figure 7—figure supplement 1). iPSC-

derived cardiomyocytes consist mainly of ventricular-like cells. We therefore focused on eQTLs iden-

tified in the heart left ventricle. The depletion of eGenes corresponds to a difference in the contribu-

tion of eGenes to the non-response and conserved response categories (p<10�15; Figure 7C). This

observation is further supported by the fact that the absolute effect size of eQTLs, measured by alle-

lic fold change, is significantly lower in the conserved response category compared to the non-

response category (p=0.001; Figure 7B). We confirmed that there is no correlation between the

eQTL effect size, and gene expression level in either response category (Figure 7—figure supple-

ment 1B). The pattern of depletion of eGenes among conserved response genes is also observed

across 12 other tested tissues; however the magnitudes of the effect differ between tissues (Fig-

ure 7—figure supplement 1C). We found that human-specific response genes are also depleted of

eGenes when we considered all eGenes identified in at least 1 of the 14 tested tissues

(p=7.1�10�5), while chimpanzee-specific response genes are neither enriched nor depleted. Con-

versely, when we compare heart left ventricle eGenes to all expressed genes, we find that eGenes

are depleted for conserved response genes (p=0.02). We next considered human gene expression

response effect sizes, independent of response classification, in eGenes and non-eGenes. In accor-

dance with the aforementioned findings, there is a lower absolute log fold change in expression in

response to hypoxia in eGenes compared to non-eGenes (p<0.002; Figure 7—figure supplement

2).

Figure 6 continued

Figure supplement 1. Conserved response genes are enriched in an orthogonal hypoxia data set.

DOI: https://doi.org/10.7554/eLife.42374.023

Figure supplement 2. Conserved response genes are enriched in stress response pathways.

DOI: https://doi.org/10.7554/eLife.42374.024
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Figure 7. eGenes in heart tissue are depleted in conserved hypoxic response genes, while loss-of-function intolerant genes are enriched. (A) The

proportion of heart left ventricle eGenes (GTEx Consortium) in each response category, relative to the proportion of all genes in each category. (B)

eQTL effect size (defined as allelic fold change) of eGenes within the non-response, conserved response, human-specific, and chimpanzee-specific

response categories. (C) QQ-plot representing all eGenes identified in heart left ventricle that overlap the non-response category (grey), and conserved

response category (magenta). (D) The proportion of genes within three gene sets in the non-response and conserved response categories relative to

the proportion of all genes within a response category. Gene sets include GWAS-associated genes (Lek et al., 2016), loss-of-function (LoF) intolerant

genes (Lek et al., 2016), and eGenes identified in 14 tissues by the GTEx consortium. Also see Figure 7—figure supplements 1–4.

DOI: https://doi.org/10.7554/eLife.42374.025

The following figure supplements are available for figure 7:

Figure supplement 1. Conserved response genes are depleted for eGenes across tissues.

DOI: https://doi.org/10.7554/eLife.42374.026

Figure supplement 2. eGenes have lower gene expression response effect sizes between conditions, than non-eGenes.

DOI: https://doi.org/10.7554/eLife.42374.027

Figure 7 continued on next page
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As we observed depletion of eQTLs found in healthy individuals among the conserved response

genes in our study, we next considered eQTLs found among CVD patients. To do so, we investi-

gated the contribution of eQTLs identified in left ventricle heart tissue from patients undergoing aor-

tic valve replacement surgery pre- and post-cardioplegic arrest and ischemia, to our hypoxia

response categories (Stone et al., 2019). Again, we observed a depletion of eGenes in the con-

served response category for both pre- and post-ischemia eGenes (p=0.03 and p=0.006 respec-

tively; Figure 7—figure supplement 3A). Interestingly, when we considered genes that are

differentially expressed between pre- and post-ischemia samples, we observed the opposite pattern

to that of the eGenes (i.e. differentially expressed genes are enriched in the conserved response cat-

egory, and depleted in the non-response category); however the effect is not significant (p=0.08 for

non-response genes and p=0.09 for conserved response genes; Figure 7—figure supplement 3B;

see Materials and methods).

Differences in the gene expression response to hypoxia in eGenes compared to all expressed

genes might imply differences in genetic tolerance to stress. We therefore overlapped our con-

served response genes and non-response genes with genes associated with different levels of toler-

ance to mutation. When considering a set of 3,382 genes designated as loss-of-function intolerant in

humans (Lek et al., 2016), we found that there is an enrichment of these genes in the conserved

response category (p=0.02, Figure 7D; see Materials and methods), and depletion in the non-

response category (p=0.005). Similarly, the probabilities of loss-of-function intolerance (pLI) scores

for all genes in the conserved response category are significantly higher than those of genes within

the non-response category (p=2�10�5, Figure 7—figure supplement 4). We then reasoned that

4,523 GWAS-associated genes are likely to be somewhat more tolerant to mutation than loss-of-

function intolerant genes. Indeed, we found that there is no difference in the enrichment of these

genes between the conserved response and non-response categories (Figure 7D).

Cellular responses to hypoxia
We attempted to gain additional comparative insight in our system by characterizing cellular pheno-

types that might relate to disease. First, we determined sensitivity to oxygen deprivation by measur-

ing the level of cytotoxicity during the course of the experiment. A hallmark of cellular toxicity is the

permeabilisation of the outer cellular membrane resulting in the release of intracellular components

into the surrounding milieu. The activity of the lactate dehydrogenase (LDH) enzyme, which intercon-

verts pyruvate and lactate, can be measured in the cell culture media as a proxy of this process. We

observed a marginal yet significant increase in LDH activity following hypoxia in humans, and a sig-

nificant increase following short-term re-oxygenation in both species (Student’s t-test; p<0.05;

Figure 8A). A significant increase is only observed in humans following hypoxia, and long-term re-

oxygenation (human Bmean = 0.61, human Dmean = 4.82, chimpanzee Bmean = 0.24, chimpanzee

Dmean = 2.49; Student’s t-test; p<0.05 for human A vs. B and B vs. D). Despite these apparent

within-species differences in response to hypoxia, there is no significant difference in LDH activity

between species within a condition.

Second, we asked whether oxygen deprivation experienced by cardiomyocytes results in the

secretion of cytokine signaling molecules, which could imply downstream consequences on other

cell types in the heart such as cardiac fibroblasts. The TGFb�1 cytokine mediates the development

of fibrosis following stress in the heart (Liu et al., 2017). We therefore measured secreted TGFb�1

by ELISA for four individuals in each species. We found that TGFb�1 release was significantly

increased following re-oxygenation after hypoxic stress in both species (p<7�10�3); however there

is no difference between species under any condition (Figure 8B). The results from these cellular

assays support the gene expression data indicating a generally conserved response to hypoxia

across species.

Figure 7 continued

Figure supplement 3. Conserved hypoxic response genes are depleted of ischemia eGenes, and enriched for ischemia response genes.

DOI: https://doi.org/10.7554/eLife.42374.028

Figure supplement 4. pLI scores of conserved response genes are higher than non-response genes.

DOI: https://doi.org/10.7554/eLife.42374.029
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Discussion
Studying the human response to stress in an evolutionary context can potentially provide insight into

disease susceptibility, incidence, aetiology, and response to treatment. In order to understand

human adaptation and susceptibility to oxygen deprivation in the heart, we developed a cell-culture

model to study the response to, and recovery from, hypoxia in iPSC-CMs from humans and chimpan-

zees. Using this system we were able to control exposure to changing oxygen levels in both species

and study the ensuing in vitro response.

We found that, in humans and chimpanzees, the expression of ~4,000 genes (about a third of all

expressed genes) is altered following six hours of hypoxic stress. Many of these genes return to

baseline expression levels within 24 hr of re-oxygenation. The response to hypoxia is highly con-

served in the two species with 1,920 genes responding similarly in humans and chimpanzees (75% of

all genes that respond in at least one species). There have not been many comparative studies of

functional perturbations in primates to provide us with broad context, but the conservation in

response to hypoxia in our study is much greater than the conservation in immune response to infec-

tion between humans and chimpanzees (Barreiro et al., 2010). This suggests that the response to

oxygen is a fundamentally conserved process across species, unlike the rapidly-evolving response to

pathogens.
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Figure 8. Hypoxia induces cytotoxicity and cytokine release in both species. (A) Levels of LDH activity, a measure of cytotoxicity, in the cell culture

media from each phase of the experiment in all samples from each species. (B) Levels of TGFb�1, a pro-fibrotic cytokine, in the cell culture media from

four representative individuals of each species. Values are normalized to normoxia or hypoxia values that is A (A-A), B (B-A), C (C-B), and D (D-B). Values

from the baseline normoxic (A: brown), hypoxic (B: blue), short-term re-oxygenation (C: coral), and long-term re-oxygenation (D: dark red) conditions

are shown in each species. Asterisk denotes a significant difference between conditions (*p<0.05, **p<0.005, ***p<0.0005).

DOI: https://doi.org/10.7554/eLife.42374.030
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Considering our observations in a broader context results in better
functional insight
Conserved hypoxic response genes correspond to signaling pathways related to oxidative stress and

hypoxia including the FOXO1 and HIF1 signaling pathways. However, genes responding to hypoxia

are significantly depleted for known cardiovascular-associated genes, suggesting that hypoxic stress

response genes are expressed, and active in multiple tissues. This is supported by the fact that we

observe that conserved response genes are depleted for eGenes identified in the heart as well as in

other tissues. These results suggest that there is less tolerance for genetic variability that results in

variation in the expression of genes that are necessary for eliciting a response to stress. Indeed,

while eGenes are depleted in conserved response genes, genes identified to be intolerant to loss of

function, are enriched in conserved response genes. GWAS-associated genes, likely to have individu-

ally small effects on a trait, and therefore more tolerance to mutation, are neither enriched nor

depleted in conserved response genes. Cellular stress, including oxidative stress, can contribute to

cellular damage and lead to disease pathology (Giordano, 2005; Sack et al., 2017).

A common notion is that genetic variants that modulate gene expression levels (eQTLs) are

important in mediating disease phenotypes (Emilsson et al., 2008; Albert and Kruglyak, 2015;

Yao et al., 2015; GTEx Consortium et al., 2018). Thousands of genetic variants that associate with

various phenotypes, including disease presentation, have been identified through genome-wide

association studies (GWAS). Given that most of these variants are located within non-coding regions

of the genome, it is thought that integrating GWAS data with eQTL data will help to identify genes

that are relevant to the phenotype of interest (Hormozdiari et al., 2016; Zhu et al., 2016). The

observation that up to half of GWAS-identified variants are also eQTLs in at least one tissue

(Battle et al., 2017), provided some measure of support for this notion. However, there are several

lines of evidence, which indicate that the relationship between eQTLs and complex disease may be

relevant mainly to diseases that manifest late in life, and are therefore unlikely to have an effect on

fitness: (i) Highly constrained genes with missense and protein-truncating variants, that might be

expected to contribute to disease, are depleted for eQTLs but enriched for GWAS variants

(Lek et al., 2016). (ii) Most eQTLs are shared across a large number of tissues and are expected to

have broad functional effects, which are therefore unlikely to be highly deleterious (Battle et al.,

2017). (iii) eQTLs identified in other primates are often also eQTLs in human (Tung et al.,

2015; Jasinska et al., 2017) suggesting that, across species, eGenes can tolerate the accumulation

of associated mutations, which perturb their regulation. Together, these findings suggest that most

eQTLs may be neutral. In this study, we performed perturbation experiments to determine the con-

sequences on gene expression across species. Our results, which show a depletion of eQTLs in

genes that respond to hypoxic stress in cardiomyocytes across species, suggest that eQTLs alone

may not give immediate insight into stress phenotypes associated with cardiovascular disease.

Genetic variants that modulate gene expression levels only in response to direct perturbation

(response QTLs) are more likely to be informative in disease. Indeed, the association between

GWAS variants is more pronounced in response QTLs than naı̈ve QTLs (Barreiro et al., 2012;

Alasoo et al., 2018). There are currently a limited number of data sets that allow for a systematic

investigation of this association. However, using an available data set of heart tissue from CVD

patients, we again observed a depletion of eQTLs in stress response genes. Our results suggest that

eQTLs correspond to a set of genes that are largely distinct from genes, which respond to stress, or

which are relevant to disease. Indeed, genes that are differentially expressed between pre- and

post-ischemia samples show the opposite pattern to that of eQTLs in our data that is they are

enriched in genes that respond to stress across species. While many eQTLs act in cis, it has been

suggested that trans-eQTLs are more likely to associate with complex traits (Westra et al., 2013;

Battle et al., 2017). However, we are currently underpowered to confidently identify these variants

and determine their relevance to stress and disease.

In addition to quantifying gene expression levels in response to hypoxia, we measured cellular

stress phenotypes in our comparative cardiomyocyte system. The baseline level of DNA oxidation

damage is similar in humans and chimpanzees, and increases following recovery from hypoxia in

both species. The baseline level of lipid peroxidation is also similar in humans and chimpanzees, and

shows a trend towards increased levels during the course of the experiment in both species; how-

ever this increase is only significant in chimpanzees. These findings are in line with a study of

Ward and Gilad. eLife 2019;8:e42374. DOI: https://doi.org/10.7554/eLife.42374 16 of 32

Research article Evolutionary Biology

https://doi.org/10.7554/eLife.42374


oxidative stress markers in blood from ten male humans and ten male chimpanzees, which showed

that there is no significant difference in the levels of 8-OHdG between species, but there is signifi-

cantly elevated 8-iso-PGF2a levels in chimpanzees compared to humans (Videan et al., 2009).

Cytoxicity and cytokine release also increase during the course of the experiment in both species.

Another comparative study on the effects of hypoxia in human and rhesus macaque cardiomyocytes

demonstrates that the secreted metabolome is highly correlated between species after 24 hr of hyp-

oxia (Zhao et al., 2018), suggesting an additional layer of regulatory conservation.

Inter-species differences in response to oxygen perturbation
Although the overall correlation in the response to hypoxia is high between humans and chimpan-

zees, a stringent interaction analysis identified 147 genes with species-specific expression in the hyp-

oxic condition.

The most significant species-specific response gene is RASD1, which is similarly expressed in

humans and chimpanzees in normoxic conditions but is significantly up-regulated after hypoxia only

in humans. RASD1 was found to be up-regulated in samples from patients with ischemic disease

compared to patients with dilated cardiomyopathy (heart damage despite normal blood flow), and

non-failing hearts (Liu et al., 2015). These results suggest that aberrant RASD1 expression could be

specifically involved in the response to oxygen deprivation, and the pathogenesis of ischemic heart

disease.

The RAI1-PEMT-RASD1 region is a replicated, genome-wide significant locus for coronary artery

disease (CAD) (McPherson and Tybjaerg-Hansen, 2016). It is unclear what pathway, related to the

CAD phenotype, is affected by the RASD1 locus (Khera and Kathiresan, 2017), and further experi-

mentation specifically focused on this gene is beyond the scope of the current study. That said, sev-

eral previous observations are also consistent with the notion of a relationship between RASD1

expression and the response to oxygen. The SNP in the RASD1-PEMT-RAI locus that is associated

with CAD is not associated with various vascular-related traits (Schunkert et al., 2011); yet it is asso-

ciated with ischemic stroke, with the same direction of effect (Dichgans et al., 2014), suggesting a

potential role for oxygen deprivation. It was also previously reported that many CAD case partici-

pants in GWAS studies have suffered from myocardial infarction, which results in myocardial ische-

mia and hypoxia, and that there is evidence for the SNP-GWAS association in the myocardial

infarction sub-phenotype of CAD (Schunkert et al., 2011). Moreover, the SNP is an eQTL for

RASD1 expression in monocytes (Emilsson et al., 2008; Schunkert et al., 2011), suggesting that it

has the potential to influence RASD1 expression in the right context. Finally, while RASD1 expression

is induced following hypoxia in humans only, the RAI1 gene within this locus responds to hypoxia in

both species, suggesting a link between hypoxia and this locus (PEMT expression doesn’t signifi-

cantly change in either species upon hypoxia). In addition to RASD1, there are four other CAD-asso-

ciated genes (MRPS6, SWAP70, SNF8 and TRIB1) that respond to hypoxia in a species-specific

manner. MRPS6, another human-specific response gene, encodes a mitochondrial ribosomal protein

likely important in the translation of mitochondrial mRNAs necessary for oxidative phosphorylation.

RASD1 is an activator of G-protein signaling (Cismowski et al., 2000), and is thought to contrib-

ute to the stress response (Sato and Ishikawa, 2010). Indeed, G-proteins are important sensors of

the environment at the cell membrane and mediate a signaling cascade to initiate an intra-cellular

response to external stimuli. RASD1 is one of several species-specific response genes related to

G-protein signaling; other examples include ARRDC2, RASL11B, ARL6 RASSF1, GTPBP4, RAB3A,

RHOF, SYDE2, and CNKSR1.

In fact, there are several genes that respond in a species-specific manner, which belong to similar

pathways, or perform similar functions. For example, multiple genes (ACVR2A, SNIP1, JUNB,

SMAD4, TGFBR2, SMAD6, FGF9) are related to TGF-b signaling. TGF-b is induced following myocar-

dial infarction, and mediates the development of fibrosis (Bujak and Frangogiannis, 2007). While

we did not observe differences in the secretion of TGFb�1, it is tempting to speculate that differen-

ces in the expression of these genes under oxygen stress, could contribute to the fibrotic heart phe-

notype observed in chimpanzees. Several of these genes have been implicated in heart physiology

and disease suggesting that they could be relevant to the phenotype (Galvin et al., 2000;

Wang et al., 2005; Alfonso-Jaume et al., 2006; Tseng et al., 2009; Itoh et al., 2016; Lu et al.,

2016; Dogra et al., 2017).
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Many species-specific response genes are involved in post-transcriptional layers of the gene regu-

latory cascade including RNA modifications (METTL14), RNA folding (DDX20), splicing (CCDC49),

nuclear-cytoplasmic transport (NUP214), and protein degradation (CBLL1, UBQLN4, TRIM13,

DNAJB2). This suggests that additional inter-species differences may emerge in processes down-

stream of transcription. For example, METTL14 deposits the N6-methyladenosine RNA modification,

which has been implicated in the stabilization of mRNA molecules following hypoxia (Fry et al.,

2017). Intriguingly, differences in N6-methyladenosine levels have been reported between primates

(Ma et al., 2017). Alternative splicing is another mechanism for inter-species differences between

humans and chimpanzees, and, interestingly, one gene that undergoes differential splicing between

species is the GSTO2 gene, which is protective against oxidative stress (Calarco et al., 2007).

Genes that respond to oxygen deprivation in a species-specific manner could have phenotypic

consequences as rapid changes in gene expression in response to stress can lead to evolutionary

adaptation (López-Maury et al., 2008; de Nadal et al., 2011). This mechanism has been implicated

in mediating inter-species differences in epithelial cancer incidence as coordinated gene expression

differences between humans and chimpanzees have been observed in fibroblasts subjected to serum

starvation (Pizzollo et al., 2018). Conversely, it has been suggested that species-specific gene

responses to stress across divergent yeast species may be adaptive, or, more likely, compensated by

the response of related genes, or reflective of biological noise (Tirosh et al., 2011). The latter could

explain the overall inter-species similarity in the cellular and transcriptional response, and the fact

that genes peripherally related to similar pathways show species-specific differences.

Potential limitations of our model
We performed our experiments using an in vitro iPSC-CM model. To characterize the potential rele-

vance of our observations to in vivo systems, we considered the results of Pavlovic et al., who charac-

terized regulatory differences between primary heart tissues and iPSC-CMs in humans and

chimpanzees (Pavlovic et al., 2018). Out of 2,459 genes that respond to hypoxia in one or both spe-

cies based on our data, only 371 (16%) were found to be differentially expressed between hearts

and iPSC-CMs in Pavlovic et al. Similarly, 34 of the 147 species-by-condition interaction genes in our

data (23%) were found to be differentially expressed between hearts and iPSC-CMs. In addition, we

find that there is no significant difference in the proportions of conserved response genes and non-

response genes in the overlap with genes that are differentially expressed between heart tissue and

iPSC-CMs. Similarly, there is no significant difference in the proportion of conserved response and

species-specific response genes that overlap with genes differentially expressed between heart tis-

sue and iPSC-CMs. Put together, this analysis suggests that there is no systematic bias in our cell cul-

ture system.

It is important to note that following myocardial infarction and ischemia, highly metabolically

active cardiomyocytes undergo rapid cell death thereby initiating a cascade of events including an

inflammatory response by immune cells, cardiac fibroblast activation, and

fibrosis (Frangogiannis, 2014). Our study was designed to measure the primary response to oxygen

deprivation in the heart at the level of cardiomyocytes. Given the high mitochondrial content of car-

diomyocytes, these cells are likely to be more susceptible to oxidative stress than other cell types.

Indeed, cardiomyocytes are more sensitive to superoxide radicals than cardiac fibroblasts (Li et al.,

1999). However, our system was not able to capture secondary effects on extracellular matrix

remodeling and fibroblast proliferation (Ugolini et al., 2017), which may differ between species and

also contribute to the different disease phenotypes. We attempted to measure secondary disease

processes by assaying TGFb�1 secretion by cardiomyocytes, but did not find a significant difference

in the release of this factor by cardiomyocytes between species.

In summary, to date there have been few well-powered studies investigating the evolution of the

stress response in primates. Here we measured the genome-wide transcriptional response to a uni-

versal cellular stress, oxygen deprivation, across species in a CVD-relevant cell type. We find that the

cellular and transcriptional response is largely similar across species; however there are hundreds of

genes that respond in a species-specific manner.
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Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(H.sapiens, Female)

H20682 iPSC Ward et al., 2018

Cell line
(H.sapiens, Male)

H20961 iPSC Burrows et al., 2016

Cell line
(H.sapiens, Female)

H21792 iPSC Ward et al., 2018

Cell line
(H.sapiens, Female)

H22422 iPSC This study Age 19, Caucasian,
fibroblast origin

Cell line
(H.sapiens, Female)

H24280 iPSC Pavlovic et al., 2018

Cell line
(H.sapiens, Female)

H25237 iPSC This study Age unknown,
Caucasian, fibroblast
origin

Cell line
(H.sapiens, Male)

H28126 iPSC Burrows et al., 2016

Cell line
(H.sapiens, Male)

H28815 iPSC Ward et al., 2018

Cell line
(P.troglodytes,
Female)

C3647 iPSC Gallego Romero et al., 2015

Cell line
(P.troglodytes, Male)

C3649 iPSC Gallego Romero et al., 2015

Cell line
(P.troglodytes, Female)

C40210 iPSC Gallego Romero et al., 2015

Cell line
(P.troglodytes, Female)

C40280 iPSC Gallego Romero et al., 2015

Cell line
(P.troglodytes, Female)

C40300 iPSC Pavlovic et al., 2018

Cell line
(P.troglodytes, Male)

C4955 iPSC Gallego Romero et al., 2015

Cell line
(P.troglodytes, Male)

C8861 iPSC Gallego Romero et al., 2015

Samples
We used eight biological replicates (individuals) from human, and seven from chimpanzee. In addi-

tion, technical replicates (independent cardiomyocyte differentiation and oxygen stress experiments)

from three human and three chimpanzee individuals were used to estimate unwanted factors of vari-

ation in the data. This number of biological and technical replicates is sufficient to be able to identify

inter-species gene expression differences (Gallego Romero et al., 2015; Pavlovic et al., 2018;

Ward et al., 2018). All iPSC lines, from both species, were derived from fibroblasts using the same

experimental design and reprogramming protocol as previously described (Gallego Romero et al.,

2015). Regardless, Gallego Romero et al. found the effects of different reprogramming protocols,

population of origin, and originating cell types on inter-species DNA methylation and gene expres-

sion differences to be exceedingly small (Gallego Romero et al., 2015). 13 iPSC lines have been

described and characterized previously (Gallego Romero et al., 2015; Burrows et al., 2016;

Pavlovic et al., 2018; Ward et al., 2018). Two additional iPSC lines are first described and charac-

terized in this study (H22422 and H25237). All lines tested negative for mycoplasma contamination.

Differentiating cardiomyocytes from iPSCs
Feeder-independent iPSCs were maintained at 70% confluence on Matrigel hESC-qualified Matrix

(354277, Corning, Bedford, MA, USA) at a 1:100 dilution. Cells were cultured in Essential 8 Medium

(A1517001, ThermoFisher Scientific, Waltham, MA, USA) with Penicillin/Streptomycin (30002 Cl,
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Corning) at 37˚C, 5% CO2 and atmospheric O2. Cells were passaged every 3–4 days with dissociation

reagent (0.5 mM EDTA, 300 mM NaCl in PBS), and seeded with ROCK inhibitor Y-27632 (ab12019,

Abcam, Cambridge, MA, USA). iPSC-CM differentiations were largely performed based on the pro-

tocol described by Burridge et al. (2014). Importantly, the same differentiation protocol was used

in both species. iPSCs cultured for 10–50 passages were seeded in 4 � 10 cm Matrigel-coated cul-

ture dishes until 70–100% confluent (Days �4/–3). The optimum cell density for efficient differentia-

tion depended on the individual iPSC line. On Day 0, 6 mM of the GSK3 inhibitor, CHIR99021

trihydrochloride (4953, Tocris Bioscience, Bristol, UK) was added to the cultures in 12 ml Cardiomyo-

cyte Differentiation Media [500 mL RPMI1640 (15–040 CM ThermoFisher Scientific), 10 mL B-27

Minus Insulin (A1895601, ThermoFisher Scientific), 5 mL Glutamax (35050–061, ThermoFisher Scien-

tific), and 5 mL Penicillin/Streptomycin)], and a 1:100 dilution of Matrigel. 24 hr later, on Day 1, fresh

Cardiomyocyte Differentiation Media, supplemented with 6 mM CHIR99021 was added to the cul-

tures. Chimpanzee iPSCs, in general, were more sensitive to the addition of CHIR99021 hence the

reduction from the optimal 12 mM CHIR99021 for 24 hr as described in Burridge et al., to 6 mM for

48 hr. The GSK3 inhibitor was removed with the addition of fresh Cardiomyocyte Differentiation

Media 24 hr later on Day 2. After 24 hr, on Day 3, 2 mM of the Wnt signaling inhibitor Wnt-C59

(5148, Tocris Bioscience), diluted in Cardiomyocyte Differentiation Media, was added to the cultures.

The media was replaced with 2 mM Wnt-C59 in Cardiomyocyte Differentiation Media 24 hr later, on

Day 4. Cardiomyocyte Differentiation Media was replaced on Days 5, 7, 10 and 12. Spontaneously

beating cells appear on Days 7–10.

To remove non-cardiomyocytes from the cultures, iPSC-CMs were purified by metabolic selec-

tion. 10 mL of glucose-free, lactate-containing media (Purification Media) [500 mL RPMI without glu-

cose (11879, ThermoFisher Scientific), 106.5 mg L-Ascorbic acid 2-phosphate sesquimagenesium salt

(sc228390, Santa Cruz Biotechnology, Santa Cruz, CA, USA), 3.33 ml 75 mg/ml Human Recombinant

Albumin (A0237, Sigma-Aldrich, St Louis, MO, USA), 2.5 mL 1 M lactate in 1 M HEPES (L(+)Lactic

acid sodium (L7022, Sigma-Aldrich)), and 5 ml Penicillin/Streptomycin] was added on Day 14. Purifi-

cation Media was replaced on Days 16 and 18. On Day 20, iPSC-CMs were dissociated with 4 mL

0.05% Trypsin-EDTA solution (25–053 Cl, ThermoFisher Scientific) for ~10 min, and quenched with

double the volume of Cardiomyocyte Maintenance Media [500 mL DMEM without glucose (A14430-

01, ThermoFisher Scientific), 50 mL FBS (S1200-500, Genemate), 990 mg Galactose (G5388, Sigma-

Aldrich), 5 mL 100 mM sodium pyruvate (11360–070, ThermoFisher Scientific), 2.5 mL 1 M HEPES

(SH3023701, ThermoFisher Scientific), 5 mL Glutamax (35050–061, ThermoFisher Scientific), 5 mL

Penicillin/Streptomycin]. This change in carbohydrate source shifts metabolism away from glycolysis

towards aerobic mitochondrial respiration, which is the predominant pathway used to generate

energy in adult cardiomyocytes in vivo. A single cell suspension was generated by straining the cells

through a 100 mm nylon mesh cell strainer three times, and once through a 40 mm mesh strainer. 1.5

million iPSC-CMs were plated per well of a Matrigel-coated 6-well plate in 3 mL Cardiomyocyte

Maintenance Media. iPSC-CMs for each of the four conditions were plated on separate 6-well

plates.

Culturing iPSC-CMs
iPSC-CMs were matured in culture for a further 10 days. Cardiomyocyte Maintenance Media was

replaced on Days 23, 25, 27, 28 and 30.

While cells are typically cultured in vitro at atmospheric oxygen levels (21% O2), this oxygen level

is not experienced by mammalian cells in vivo - arterial oxygen levels are ~13%, and levels drop to

5–10% within tissues (Brahimi-Horn and Pouysségur, 2007; Carreau et al., 2011;

Jagannathan et al., 2016). We therefore chose to culture our cells at 10% O2, which falls within this

physiological range. On Day 25, iPSC-CMs cultured at atmospheric oxygen levels, were transferred

to an oxygen-controlled incubator (HERAcell 150i CO2 incubator, ThermoFisher Scientific) represent-

ing physiological oxygen levels (10% O2). Oxygen levels are maintained through displacement of

oxygen by nitrogen.

To allow further maturation, and to synchronize iPSC-CM beating, iPSC-CMs were pulsed with

the IonOptix C-Dish and C-Pace EP Culture Pacer from Day 27 until the end of the oxygen perturba-

tion experiment. Cells were pulsed at a voltage of 6.6 V/cm, frequency of 1 Hz, and pulse frequency

of 2 ms.
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Immunocytochemistry iPSC-CM samples were dual-stained in two
independent staining reactions
Stain 1
Cells were fixed with 3–4% paraformaldehyde for 15 min at room temperature and then washed

three times with PBS. Cells were permeabilized with 0.3% Triton X-100 for 10 min prior to another

three washes with PBS. Cells were blocked with 5% BSA for 30 min and then incubated with primary

antibodies diluted in 5% BSA O/N at 4˚C. Anti-Cardiac Troponin T rabbit polyclonal antibody

(ab45932, Abcam) was added at a 1:400 dilution. Anti-alpha-Actinin (Sarcomeric) mouse monoclonal

antibody (A7811, Sigma) was added at a 1:500 dilution. After primary antibody incubation, cells

were washed with 0.1% Tween-20 in PBS three times. Secondary antibodies, donkey anti-Rabbit IgG

Alexa Fluor 594 (A21207, ThermoFisher Scientific), and Donkey anti-Mouse IgG Alexa Fluor 488

(A21202, ThermoFisher Scientific), were added at a 1:1000 dilution in 2.5% BSA for 1 hr at room

temperature. Cells were washed three times with PBS prior to counter-staining with Hoechst for 10

min.

Stain 2
Cells were fixed with 3–4% paraformaldehyde for 15 min at room temperature and washed three

times with PBS. Cells were not permeabilized or blocked. Primary antibodies were diluted in Perme-

abilization Buffer (FOXP3/Transcription Factor Staining Buffer Set, 00–5523, ThermoFisher Scientific),

and incubated O/N at 4˚C. Anti-IRX4 rabbit polyclonal antibody (ab123542, Abcam) at a 1:200 dilu-

tion, and Cardiac Troponin T Monoclonal Antibody (MA5-12960 clone 13–11, ThermoFisher Scien-

tific) at a 1:200 dilution, were used. Cells were washed three times with Permeabilization Buffer after

primary antibody incubation. Secondary antibodies were added at a 1:1000 dilution in Permeabiliza-

tion Buffer for 1 hr at room temperature. Donkey anti-Mouse IgG Alexa 594 (A21203, ThermoFisher

Scientific), and Donkey anti-Rabbit IgG Fluor 488 (A21206, ThermoFisher Scientific), were used. Cells

were washed three times with PBS prior to counter-staining with Hoechst for 10 min.

Flow cytometry
iPSC-CMs were dissociated with 0.05% Trypsin-EDTA solution and quenched with four times the vol-

ume of Cardiomyocyte Maintenance Media. In order to obtain a single cell suspension, cells were

strained twice through a 100 mm strainer, and once through a 40 mm strainer. 1 million cells were

stained with Zombie Violet Fixable Viability Kit (423113, BioLegend) for 30 min at 4˚C prior to fixa-

tion and permeabilization (FOXP3/Transcription Factor Staining Buffer Set, 00–5523, ThermoFisher

Scientific) for 30 min at 4˚C. Cells were stained with 5 ml PE Mouse Anti-Cardiac Troponin T antibody

(564767, clone 13–11, BD Biosciences, San Jose, CA, USA) for 45 min at 4˚C. Cells were washed

three times in permeabilization buffer and re-suspended in autoMACS Running Buffer (130-091-221,

Miltenyi Biotec, Bergisch Gladbach, Germany). Several negative controls were used in each flow

cytometry experiment: 1) iPSCs, which should not express TNNT2, 2) an iPSC-CM sample that has

not been labeled with viability stain or TNNT2 antibody, and 3) an iPSC-CM sample that is only

labeled with the viability stain.

10,000 cells were captured and profiled on the BD LSRFortessa Cell Analyzer. Several gating

steps were performed to determine the proportion of TNNT2-positive cells: 1) Cellular debris was

removed by gating out cells with low granularity on FSC versus SSC density plots, 2) From this popu-

lation, live cells were identified as the violet laser-excitable, Pacific Blue dye-negative population, 3)

Two populations of TNNT2-positive cells were identified within the set of live cells: one conservative

gate selected high-intensity TNNT2-positive cells, and a lenient gate included TNNT2-positive cells

with a range of intensities. Both gates were created so as to exclude any cells that overlap the pro-

files of the negative control samples. iPSC-CM purity is reported as the proportion of TNNT2-posi-

tive live cells. Values from the lenient threshold are reported in the main text. Values for the

conservative and lenient thresholds are reported in Figure 1—figure supplement 3 and

Supplementary file 1-Table S2. Importantly, there is no difference in purity between species

whether a conservative or lenient threshold is used.
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Oxygen stress experiment
Several pilot experiments were performed to determine the optimal oxygen conditions to initiate a

gene expression response in iPSC-CMs. The expression of stress response genes is induced within 6

hr of hypoxia at 1% oxygen (Figure 1—figure supplement 4B), and cell damage (lactate dehydroge-

nase activity) is evident after 24 hr (Figure 1—figure supplement 4C). It is noteworthy that culturing

the iPSC-CMs in media with a glucose carbohydrate source, instead of galactose, does not elicit a

stress response following hypoxia (Figure 1—figure supplement 4). Given that we were interested

in determining the early transcriptional response to hypoxia, prior to the induction of cell death, we

chose the 6 hr time-point in our subsequent experiments.

Oxygen stress experiments were conducted on Day 31 or 32 after the initiation of differentiation.

At the start of the experiment (total elapsed time = 0 hr), one plate (A) remained at 10% O2, while

three plates (B, C and D) were transferred to an oxygen-controlled cell culture incubator set at 1%

O2. After six hours, plates A and B were harvested, while plates C and D were transferred back to

10% O2 (elapsed time = 6 hr). Plate C was harvested six hours after the end of the hypoxic incuba-

tion (elapsed time = 12 hr). Plate D was harvested 24 hr after the end of the hypoxic incubation

(elapsed time = 30 hr). Ten batches of oxygen stress experiments were performed. For each of the

four conditions, iPSC-CMs were harvested by manual scraping, flash-frozen as cell pellets, and

stored at �80˚C, together with the cell culture media from each sample, until further processing.

Oxygen levels in the cell culture media of a representative iPSC-CM sample were measured dur-

ing the course of the oxygen perturbation experiment, in each experimental batch. An oxygen sensi-

tive sensor was applied to the inner wall of a well of a 6-well plate (SP-PSt3-NAU-D5-YOP, PreSens

Precision Sensing GmbH, Regensburg, Germany). Oxygen levels were measured non-invasively

through the wall of the cell culture plate using a Polymer Optical Fiber (NWDV29, Coy, Grass Lake,

MI, USA), and a Fiber Optic Oxygen Meter (Fibox 3 Transmitter NWDV16, Coy).

Oxidative DNA damage assay
8-OHdG levels were measured by competitive enzyme-linked immunoassay using the OxiSelect Oxi-

dative DNA Damage ELISA Kit (STA-320, Cell Biolabs Inc). Levels were measured in 50 ml of cell cul-

ture media, in duplicate, according to the manufacturer’s instructions. Samples were processed on

three species-balanced 96-well plates. 8-OHdG was quantified relative to a standard curve using 4-

and 5-parameter logistic models implemented in the drc package in R. Final 8-OHdG release is

reported as four measurements either relative to the basline condition A or hypoxic condition B: A

(A-A), B (B-A), C (C-B) and D (D-B). For the three individuals with replicate experiments in each spe-

cies, mean values from both experiments are reported.

Lipid peroxidation assay
Secreted 8-iso-PGF2a was measured by competitive enzyme-linked immunoassay using the OxiSe-

lect 8-iso-Prostaglandin F2a ELISA kit (STA-337, Cell Biolabs Inc, San Diego, CA, USA). Levels were

measured in 55 ml of cell culture media, in duplicate, according to the manufacturer’s instructions.

Samples were processed on three species-balanced 96-well plates. 8-iso-PGF2a was quantified rela-

tive to a standard curve using 4- and 5-parameter logistic models implemented in the drc package

in R. Final 8-iso-PGF2a release is reported as four measurements either relative to the baseline, con-

dition A, or the hypoxic condition that is A (A-A), B (B-A), C (C-B) and D (D-B). For the three individu-

als with replicate experiments in each species, mean values from both experiments are reported.

Lactate dehydrogenase activity assay
Lactate dehydrogenase (LDH) activity levels were measured by colourimetric determination of NAD

reduction to NADH using the Lactate Dehydrogenase Activity Assay Kit (MAK066, Sigma-Aldrich).

Samples were processed on four species-balanced 96-well plates, and each sample was assayed in

triplicate. 5 ml of cell culture media was assayed as per the manufacturer’s instructions. LDH activity

is reported as the difference in NADH levels measured at the start of the enzymatic reaction, and 25

min after the addition of the substrate. Enzyme activity is calculated relative to a linear standard

curve. Final LDH activity is reported as four measurements either relative to the baseline, condition

A, or the hypoxic condition that is A (A-A), B (B-A), C (C-B) and D (D-B). For the three individuals

with replicate experiments in each species, mean values from both experiments are reported.
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TGFb�1 ELISA assay
TGFb�1 levels were measured by enzyme-linked immunoassay using the TGF beta 1 Human ELISA

Kit (ab100647, Abcam). Levels were measured in 100 ml of cell culture media, in duplicate, according

to the manufacturer’s instructions. Four representative individuals from each species were assayed

on one 96-well plate. TGFb�1 levels were quantified relative to a standard curve using 4- and 5-

parameter logistic models implemented in the drc package in R. Final TGFb�1 release is reported

as four measurements: A (A-A), B (B-A), C (C-B) and D (D-B).

RNA-seq library preparation and sequencing
RNA was extracted from ~1.5 million cells from 84 iPSC-CM samples representing 15 individuals.

Extractions were performed in ten species-balanced batches using the ZR-Duet DNA/RNA extraction

kit (D7001, Zymo, Irvine, CA, USA). All four conditions from one human and one chimpanzee individ-

ual were extracted per batch (one batch had three individuals). RNA concentration and quality was

measured using the Agilent 2100 Bioanalyzer. RIN scores were greater than 7.5 for all samples

(human median: 9.1, chimpanzee median: 9.2).

RNA-seq libraries were prepared from 250 ng of RNA in three species-balanced batches using

the Illumina TruSeq RNA Sample Preparation Kit v2 (RS-122–2001 and �2002, Illumina). Libraries in

each batch were multiplexed together to generate four pools for sequencing. Each pool was

sequenced 50 base pairs, single-end on the HiSeq4000 according to the manufacturer’s instructions.

Pools 1,3,4 were sequenced on three lanes (24 samples per pool), and Pool two was sequenced on

two lanes (12 samples in the pool).

RNA-seq data processing
RNA-seq data quality was determined by FastQC (http://www.bioinformatics.babraham.ac.uk/proj-

ects/fastqc/). Sequencing adapters were trimmed, and sequencing reads from each species aligned

to their respective genome (hg19 or panTro3) using TopHat2 (version 2.0.11) (Kim et al., 2013). The

number of mapped sequencing reads is similar across species and conditions (median human A:

53,547,009, median human B: 40,872,328; median human C: 40,635,553, median human D:

42,041,844; median chimpanzee A: 42,258,525; median chimpanzee B: 33,054,882; median chim-

panzee C: 28,792,150, median chimpanzee D: 36,903,485). In order to have a comparable set of

genes from which to identify gene expression differences, we quantified gene expression levels at

orthologous meta-exons from 30,030 Ensembl genes from hg19, panTro3 and rheMac3

(Blekhman et al., 2010) using featureCounts within subread (version 1.4.6) (Liao et al., 2014). In

order to compare gene expression profiles equivalently across individuals regardless of sex, genes

were filtered to only include those on the autosomes. Log2-transformed counts per million were cal-

culated using edgeR (Robinson et al., 2010). Lowly-expressed genes were filtered such that only

genes with a mean log2 cpm >0 across samples were retained.

Prior to differential expression analysis, unwanted factors of variation were estimated in the RNA-

seq data using RUVSeq (Risso et al., 2014). As we have two replicate samples from six of the indi-

viduals (three in each species), the RUVs function for estimating the factors of unwanted variation

using replicate samples was used. This approach takes advantage of the fact that replicate samples

have constant covariates of interest. We tested different numbers of unwanted factors of variation (k

values) until the data clustered best by our biological factors of interest that is species, individual

and condition. Four factors of unwanted variation were thus selected.

To assess data quality we performed Principal Component Analysis (PCA) on the RUVs-normal-

ised log2 cpm expression values. We correlated known biological and technical factors with the first

six PCs.

Differential expression analysis
The TMM-voom-limma pipeline was used to identify differentially expressed genes between species

and conditions. Filtered read counts from a randomly selected replicate were taken forward in this

analysis. Normalization factors were used to scale the raw library size to the effective library size of

each sample using the trimmed mean of M-values (TMM) implemented in edgeR (Robinson et al.,

2010). The mean-variance relationship was removed using precision weights in voom (Law et al.,

2014).
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A linear model was fitted for expression values of each gene using limma (Smyth, 2004):

Y ~b0þbspeciesXspecies þbBXB þbCXC þbDXDþbspecies;BXspecies;Bþ

bspecies;CXspecies;C þbspecies;DXspecies;DþXRUV1þXRUV2 þXRUV3 þXRUV4þ Iþ �

where b0 is the mean expression level of gene g for chimpanzee cells grown under normoxic con-

ditions (A), bspecies is the fixed effect for species, bB is the effect for condition B, bC is the effect for

condition C, bD is the effect for condition D, bspecies;B is the fixed interaction effect of condition B and

species, bspecies;C is the fixed interaction effect of condition C and species, bspecies;D is the fixed interac-

tion effect of condition D and species. The four unwanted factors of variation determined by RUVs

are modeled as covariates XRUV1, XRUV2, XRUV3, XRUV4, and I is the random effect for individual, which

was implemented using the limma function duplicateCorrelation.

In order to obtain more precise gene-wise variability estimates, we used empirical Bayes modera-

tion, which takes information across all genes into account. We used contrast tests in limma to iden-

tify genes that are differentially expressed between conditions within each species, genes that are

differentially expressed between species at each condition, and species-by-condition interactions for

conditions B, C, and D. We corrected for multiple testing at each gene using the Benjamini and

Hochberg false discovery rate (FDR) (Benjamini and Hochberg, 1995). Genes with FDR-adjusted

p values of < 0.1 are considered to be differentially expressed.

Identification of gene expression trajectories
In order to cluster genes by their gene expression trajectories during the course of the experiment,

all data was jointly modeled using a Bayesian Hierarchical model across pairwise differential tests

implemented in the Cormotif R package (Wei et al., 2015). Cormotif fits correlation motifs to multi-

ple pairs of tests to identify differential expression patterns. To identify gene expression trajectories

(correlation motifs), TMM-normalised cpm values for each gene were compared across three pairs of

conditions within each species (6 pairs of tests in total; 1: human A vs. B, 2: human B vs. C, 3: human

B vs. D, 4: chimpanzee A vs. B, 5: chimpanzee B vs. C, 6: chimpanzee B vs. D). In order to select the

best model to fit the data, we varied the number of correlation motifs (1 through 15). The best fit

was determined using the Bayesian information criterion (BIC) and Akaike information criterion (AIC).

The BIC and AIC were minimized when four correlation motifs were modeled. Cormotif calculates

the posterior probability of differential expression for each gene, in each of the six pairwise tests.

These values are plotted in the heatmap in Figure 5A. We used a threshold posterior probability of

0.5 to classify genes into each of the four correlation motifs as suggested by the authors. Motif 1

(non-response): p<0.5 in tests 1,2,3,4,5,6; motif 2 (chimpanzee-specific response): p<0.5 in tests

1,2,3 and p>0.5 in tests 4,5,6; motif 3 (conserved response): posterior probability >0.5 in tests

1,2,3,4,5,6; motif 4 (human-specific response): p>0.5 in tests 1,2,3 and p<0.5 in tests 4,5,6.

Comparison of our data to that collected in human and rhesus macaque
iPSC-CMs
The set of 187 genes that were previously found to respond to hypoxia in both human and rhesus

macaque iPSC-derived cardiomyocytes were overlaid with our four Cormotif gene expression

response categories (Zhao et al., 2018). 164 of the human-rhesus conserved response genes are

expressed in our data.

We calculated the proportion of human-rhesus conserved response genes within each of our four

response gene categories (value one for each category), and the proportion of all genes that belong

to each of the four response categories in our data (value two for each category). We subtracted

value twofrom value one to obtain an enrichment score per response category. This score is multi-

plied by 100 and plotted in Figure 6—figure supplement 1. A chi-squared test is used to determine

whether there is a significant enrichment or depletion of human-rhesus response genes in each of

our four response gene categories compared to all expressed genes in that category. This approach

is used in all subsequent analyses investigating the properties of the four response categories.

Oxygen-sensitive transcription factor binding integration analysis
Human transcription start sites (TSS) were downloaded from the UCSC genome bowser Table

Browser (http://genome.ucsc.edu/cgi-bin/hgTables) using ‘txStart’ from Ensembl genes
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(Karolchik, 2004). Each gene was assigned a single TSS based on the 5’ most transcript of genes on

the sense strand, and the 3’ most transcript from genes on the anti-sense strand. The list of TSS was

filtered to include only those representative of orthologous genes used in the gene expression

analysis.

We obtained published human ChIP-seq data sets for HIF1a (356 sites), HIF2a (301 sites)

(Schödel et al., 2011), and FOXO3 (934 sites) (Eijkelenboom et al., 2013). HIF1a and HIF2a bind-

ing was measured in a breast cancer cell line following HIF stabilization with dimethyloxaloylglycine.

FOXO3 binding was measured in a colon cancer cell line with a Tamoxifen-inducible FOXO3A3-ER

fusion protein. Binding locations for each transcription factor were converted to hg19 coordinates.

Each transcription factor binding location was assigned its closest gene using bedtools (Quinlan and

Hall, 2010). Genes were stratified into each of the four response gene categories, and the propor-

tion of genes within each class calculated as described previously. The conservation status of each

transcription factor binding location was determined using the phyloP score (Pollard et al., 2010)

implemented on the Galaxy platform (Afgan et al., 2018).

Non-coding RNA analysis
The ‘gene_biotype’ annotation associated with each Ensembl gene ID was obtained through bio-

maRt. Biotypes include lincRNA, antisense RNA, transcribed unitary pseudogenes, transcribed

unprocessed pseudogenes, processed transcripts, and protein coding genes. We focused on four

gene types: protein coding genes, lincRNA and antisense transcripts given that the other categories

have fewer than 50 instances in our data set. We determined the proportion of each gene type in

our four response categories as previously described.

Gene ontology analysis
The gene sets belonging to each of the four response categories were investigated for common

pathway enrichment using the KEGG database (Kanehisa et al., 2017), within the DAVID genomic

annotation tool (Huang et al., 2009b; Huang et al., 2009a). Enrichment was calculated relative to

the set of all 11,974 expressed genes. Multiple testing was performed by the Benjamini-Hochberg

method. Pathways enriched at 10% FDR are considered to be significant.

Cardiovascular gene analysis
A set of 5,010 genes implicated in cardiovascular development or disease (BHF-UCL gene associa-

tion file) was obtained from the Cardiovascular Gene Ontology Annotation Initiative (https://www.

ebi.ac.uk/GOA/CVI). The 2,756 genes that are expressed in our study were overlapped with our four

response categories. We determined the proportion of cardiovascular genes in our four response

categories as previously described.

eQTL analysis
For the overlap of our response categories with eGenes from healthy individuals, the list of eGenes

in 14 GTEx tissues was downloaded from v7 in the GTEx portal (www.gtexportal.org). eGenes were

selected at 5% FDR in each tissue. eGenes from iPSC-derived cardiomyocytes were obtained from

Banovich et al. (2018) (10% FDR). The eQTL effect sizes of eGenes are defined and reported as alle-

lic fold change by the GTEx consortium.

For the overlap of our response categories with eQTLs identified pre- and post-ischemia, an

RNA-seq study of 114 patients undergoing aortic valve replacement surgery was used (Stone et al.,

2019). In this study, samples of heart left ventricle were obtained for each individual pre- and post-

cardioplegic arrest/ischemia. We obtained lists corresponding to all eGenes (5% FDR) identified in

males and females combined within the pre-ischemic state (496 expressed in our data), all eGenes in

males and females combined in the post-ischemic state (416 expressed), and differentially expressed

genes (5% FDR) between pre- and post-ischemia (6,571 in 46 females, and 6,572 in 68 males). Genes

that are differentially expressed between pre- and post-ischemia in both males and females (5,115)

were used to calculate enrichment in hypoxia response categories. We determined the proportion

of eGenes in our four response categories as previously described.
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Genetic tolerance analysis
Existing gene lists, related to genetic tolerance, were overlapped with our hypoxia response genes.

The following gene lists were obtained from the Macarthur lab (https://github.com/macarthur-lab/

gene_lists): genes nearest to GWAS peaks (MacArthur et al., 2017), loss-of-function intolerant

genes, and pLI scores (Lek et al., 2016). We determined the proportion of gene in each gene set in

our four response categories as previously described.

Data access
All RNA-seq data have been deposited in the Gene Expression Omnibus (www.ncbi.nlm.nih.gov/

geo/) under accession number GSE117192.
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Choudhry H, Schödel J, Oikonomopoulos S, Camps C, Grampp S, Harris AL, Ratcliffe PJ, Ragoussis J, Mole DR.
2014. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused
RNApol2. EMBO Reports 15:70–76. DOI: https://doi.org/10.1002/embr.201337642, PMID: 24363272

Cismowski MJ, Ma C, Ribas C, Xie X, Spruyt M, Lizano JS, Lanier SM, Duzic E. 2000. Activation of heterotrimeric
G-protein signaling by a ras-related protein. implications for signal integration. The Journal of Biological
Chemistry 275:23421–23424. DOI: https://doi.org/10.1074/jbc.C000322200, PMID: 10840027

Danko CG, Choate LA, Marks BA, Rice EJ, Wang Z, Chu T, Martins AL, Dukler N, Coonrod SA, Tait Wojno ED,
Lis JT, Kraus WL, Siepel A. 2018. Dynamic evolution of regulatory element ensembles in primate CD4+ T cells.
Nature Ecology & Evolution 2:537–548. DOI: https://doi.org/10.1038/s41559-017-0447-5, PMID: 29379187

de Nadal E, Ammerer G, Posas F. 2011. Controlling gene expression in response to stress. Nature Reviews
Genetics 12:833–845. DOI: https://doi.org/10.1038/nrg3055, PMID: 22048664

Dichgans M, Malik R, König IR, Rosand J, Clarke R, Gretarsdottir S, Thorleifsson G, Mitchell BD, Assimes TL, Levi
C, O’Donnell CJ, Fornage M, Thorsteinsdottir U, Psaty BM, Hengstenberg C, Seshadri S, Erdmann J, Bis JC,
Peters A, Boncoraglio GB, et al. 2014. Shared genetic susceptibility to ischemic stroke and coronary artery
disease: a genome-wide analysis of common variants. Stroke 45:24–36. DOI: https://doi.org/10.1161/
STROKEAHA.113.002707, PMID: 24262325

Doevendans PA, Daemen MJ, de Muinck ED, Smits JF. 1998. Cardiovascular phenotyping in mice.
Cardiovascular Research 39:34–49. DOI: https://doi.org/10.1016/S0008-6363(98)00073-X, PMID: 9764188

Dogra D, Ahuja S, Kim HT, Rasouli SJ, Stainier DYR, Reischauer S. 2017. Opposite effects of activin type 2
receptor ligands on cardiomyocyte proliferation during development and repair. Nature Communications 8:
1902. DOI: https://doi.org/10.1038/s41467-017-01950-1, PMID: 29196619

Eijkelenboom A, Mokry M, de Wit E, Smits LM, Polderman PE, van Triest MH, van Boxtel R, Schulze A, de Laat
W, Cuppen E, Burgering BM. 2013. Genome-wide analysis of FOXO3 mediated transcription regulation
through RNA polymerase II profiling. Molecular Systems Biology 9:638. DOI: https://doi.org/10.1038/msb.
2012.74, PMID: 23340844

Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F, Zhu J, Carlson S, Helgason A, Walters GB,
Gunnarsdottir S, Mouy M, Steinthorsdottir V, Eiriksdottir GH, Bjornsdottir G, Reynisdottir I, Gudbjartsson D,
Helgadottir A, Jonasdottir A, Jonasdottir A, Styrkarsdottir U, et al. 2008. Genetics of gene expression and its
effect on disease. Nature 452:423–428. DOI: https://doi.org/10.1038/nature06758, PMID: 18344981

Feng Y, Duan T, Du Y, Jin S, Wang M, Cui J, Wang RF. 2017. LRRC25 functions as an inhibitor of NF-kB signaling
pathway by promoting p65/RelA for autophagic degradation. Scientific Reports 7:13448. DOI: https://doi.org/
10.1038/s41598-017-12573-3, PMID: 29044191

Ward and Gilad. eLife 2019;8:e42374. DOI: https://doi.org/10.7554/eLife.42374 28 of 32

Research article Evolutionary Biology

https://doi.org/10.1038/nature24277
http://www.ncbi.nlm.nih.gov/pubmed/29022597
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1101/gr.099226.109
http://www.ncbi.nlm.nih.gov/pubmed/20009012
http://www.ncbi.nlm.nih.gov/pubmed/20009012
https://doi.org/10.1016/j.febslet.2007.06.018
http://www.ncbi.nlm.nih.gov/pubmed/17586500
http://www.ncbi.nlm.nih.gov/pubmed/239002
https://doi.org/10.1016/j.cardiores.2006.10.002
http://www.ncbi.nlm.nih.gov/pubmed/17109837
https://doi.org/10.1038/nmeth.2999
http://www.ncbi.nlm.nih.gov/pubmed/24930130
https://doi.org/10.1371/journal.pgen.1005793
http://www.ncbi.nlm.nih.gov/pubmed/26812582
https://doi.org/10.1101/gad.1606907
http://www.ncbi.nlm.nih.gov/pubmed/17978102
https://doi.org/10.1111/j.1582-4934.2011.01258.x
http://www.ncbi.nlm.nih.gov/pubmed/21251211
https://doi.org/10.1007/s12265-013-9510-z
http://www.ncbi.nlm.nih.gov/pubmed/24081385
https://doi.org/10.1002/embr.201337642
http://www.ncbi.nlm.nih.gov/pubmed/24363272
https://doi.org/10.1074/jbc.C000322200
http://www.ncbi.nlm.nih.gov/pubmed/10840027
https://doi.org/10.1038/s41559-017-0447-5
http://www.ncbi.nlm.nih.gov/pubmed/29379187
https://doi.org/10.1038/nrg3055
http://www.ncbi.nlm.nih.gov/pubmed/22048664
https://doi.org/10.1161/STROKEAHA.113.002707
https://doi.org/10.1161/STROKEAHA.113.002707
http://www.ncbi.nlm.nih.gov/pubmed/24262325
https://doi.org/10.1016/S0008-6363(98)00073-X
http://www.ncbi.nlm.nih.gov/pubmed/9764188
https://doi.org/10.1038/s41467-017-01950-1
http://www.ncbi.nlm.nih.gov/pubmed/29196619
https://doi.org/10.1038/msb.2012.74
https://doi.org/10.1038/msb.2012.74
http://www.ncbi.nlm.nih.gov/pubmed/23340844
https://doi.org/10.1038/nature06758
http://www.ncbi.nlm.nih.gov/pubmed/18344981
https://doi.org/10.1038/s41598-017-12573-3
https://doi.org/10.1038/s41598-017-12573-3
http://www.ncbi.nlm.nih.gov/pubmed/29044191
https://doi.org/10.7554/eLife.42374


Frangogiannis NG. 2014. The inflammatory response in myocardial injury, repair, and remodelling. Nature
Reviews Cardiology 11:255–265. DOI: https://doi.org/10.1038/nrcardio.2014.28, PMID: 24663091

Fry NJ, Law BA, Ilkayeva OR, Holley CL, Mansfield KD. 2017. N6-methyladenosine is required for the hypoxic
stabilization of specific mRNAs. RNA 23:1444–1455. DOI: https://doi.org/10.1261/rna.061044.117, PMID: 2
8611253

Gallego Romero I, Pavlovic BJ, Hernando-Herraez I, Zhou X, Ward MC, Banovich NE, Kagan CL, Burnett JE,
Huang CH, Mitrano A, Chavarria CI, Friedrich Ben-Nun I, Li Y, Sabatini K, Leonardo TR, Parast M, Marques-
Bonet T, Laurent LC, Loring JF, Gilad Y. 2015. A panel of induced pluripotent stem cells from chimpanzees: a
resource for comparative functional genomics. eLife 4:e07103. DOI: https://doi.org/10.7554/eLife.07103,
PMID: 26102527

Galvin KM, Donovan MJ, Lynch CA, Meyer RI, Paul RJ, Lorenz JN, Fairchild-Huntress V, Dixon KL, Dunmore JH,
Gimbrone MA, Falb D, Huszar D. 2000. A role for smad6 in development and homeostasis of the cardiovascular
system. Nature Genetics 24:171–174. DOI: https://doi.org/10.1038/72835, PMID: 10655064

Giordano FJ. 2005. Oxygen, oxidative stress, hypoxia, and heart failure. Journal of Clinical Investigation 115:
500–508. DOI: https://doi.org/10.1172/JCI200524408, PMID: 15765131
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