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∀j ∈ 𝔼 , ∀z ∈ 𝔼∖P .
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,

v1 = σ ⋅ l i g h t ⋅ [Po] ,
v2 = τ ⋅ [P*] ,
vi = kd ⋅ σ ⋅ l i g h t ⋅ [P*] ,

∀j ∈ 𝔼 .

parameter definition value source
Pm cell membrane permeability to inorganic carbon 0.108 [ dm h-1 ] (2)
Acell cell surface area 1.26 · 10-9 [ dm2 cell-1 ] This study
Vcell cell volume 4.19 · 10-15 [ dm3 cell-1 ] This study
NA Avogadro constant 6.022 · 1023 [ mol-1 ]
ktcat maximal import rate 43560 [ h-1 ] (3)
Kt half-saturation constant of the transporter enzyme 15 [ μM ] (4)
kmcat maximal metabolic rate 32700 [ h-1 ] (5)
Km half-saturation constant of the metabolic enzyme 2441560 [ molecules cell-1 ] (5)
γmax maximal translation rate 79200 [ aa h-1 molecules-1 ] (6)
Ka, Ke half-saturation constant of amino acids and energy units for each reaction 10000 [ molecules cell-1 ] (1)
dp protein half-life 1/23 [ h-1 ] (7)
σ effective absorption cross-section of the photosynthetic unit 0.7 [ nm2 ] This study
τ maximal turnover rate of the photosynthetic unit 270000 [ h-1 ] This study
kd rate constant for photodamdage 10-6 This study
mv energy maintenance rate 7 · 109 [ molecules cell-1 h-1 ] (8)
Dc average cell density (protein mass per cell) 1.4 · 1010 [ aa cell-1 ] (1)
nR ribosome length 7358 [ aa molecule-1 ] (1)
nQ average protein length for house-keeping proteins 300 [ aa molecule-1 ] This study
nP length of one photosynthetic unit 95451 [ aa molecule-1 ] (1)
nT transporter length 1681 [ aa molecule-1 ] (1)
nM length of one metabolic enzyme complex 28630 [ aa molecule-1 ] (1)
mα amount of energy units consumed to create one amino acid 45 (1)
mc average carbon chain length of an amino acid 5 (1)
mγ amount of energy units needed for one translational elongation step 3 (1)
mΦ amount of energy units produced during photosynthesis 8 (1)
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