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Abstract Microbes are nature’s chemists, capable of producing and metabolizing a diverse array

of compounds. In the human gut, microbial biochemistry can be beneficial, for example vitamin

production and complex carbohydrate breakdown; or detrimental, such as the reactivation of an

inactive drug metabolite leading to patient toxicity. Identifying clinically relevant microbiome

metabolism requires linking microbial biochemistry and ecology with patient outcomes. Here we

present MicrobeFDT, a resource which clusters chemically similar drug and food compounds and

links these compounds to microbial enzymes and known toxicities. We demonstrate that compound

structural similarity can serve as a proxy for toxicity, enzyme sharing, and coarse-grained functional

similarity. MicrobeFDT allows users to flexibly interrogate microbial metabolism, compounds of

interest, and toxicity profiles to generate novel hypotheses of microbe-diet-drug-phenotype

interactions that influence patient outcomes. We validate one such hypothesis experimentally,

using MicrobeFDT to reveal unrecognized gut microbiome metabolism of the ovarian cancer drug

altretamine.

DOI: https://doi.org/10.7554/eLife.42866.001

Introduction
Complex gut microbiome phenotypes shape human nutrition (Martens et al., 2014;

Sonnenburg et al., 2016; Bretin et al., 2018), therapeutic drug responses (Guthrie et al., 2017;

Haiser et al., 2013; Koppel et al., 2017) and disease susceptibility (Koeth et al., 2013). Multi’omic

studies suggest that the human gut microbiota can be discretized at the resolution of microbial

enzymes (Guthrie et al., 2017; Tang and Hazen, 2014), species (Haiser et al., 2013; Haiser et al.,

2014), guilds (Joossens et al., 2011; Wu et al., 2013) or metabolites (Clayton et al., 2009) to char-

acterize a range of human health and disease states. Gut microbial mediated biochemical transfor-

mations have consequences for drug treatment efficacy (Koppel et al., 2017;

Spanogiannopoulos et al., 2016; Alexander et al., 2017; Wilson and Nicholson, 2017) and the eti-

ology of inflammatory gastrointestinal diseases (Tilg et al., 2018; Arthur et al., 2014;

Belcheva et al., 2014; Brennan and Garrett, 2016), however despite many examples there exist

few unifying principles that govern microbiome impacts on human health.

Some microbiome/drug interactions have been characterized in detail. For example, the inactiva-

tion and decreased bioavailability of digoxin, a cardiac glycoside inhibitor, is linked to cgr operon

expression levels in a single species, E. lenta (Haiser et al., 2013). Microbial b-glucuronidases medi-

ate the reactivation of the key therapeutic metabolite of irinotecan, a chemotherapeutic prodrug

used in the treatment of colorectal cancer, causing toxicity in some patients (Guthrie et al., 2017;

Wallace et al., 2010). Notably, diet-derived compounds that are conjugated to glucuronic acid in
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the human liver and excreted via the biliary route into the GI tract are known substrates for microbial

b-glucuronidases (O’Leary et al., 2003; Sakurama et al., 2014; Maathuis et al., 2012).

Many other gastrointestinally-routed drugs share overlapping chemical properties with diet-

derived compounds. We understand in detail species-specific metabolism of some discrete chemical

structures in dietary compounds, particularly polysaccharides (Martens et al., 2008); however we

know little about the potential spectrum of drug metabolism by the microbiome.

Beyond the role of the microbiome in therapeutic drug treatment efficacy and polysaccharide

metabolism, we have some mechanistic insight into how microbial metabolism contributes to host

immunity. Microbial enzymes mediate the conversion of tryptophan into indole (Sasaki-

Imamura et al., 2010) and indole derivatives (Arora and Bae, 2014) that shape human host immune

responses (Levy et al., 2017; Blacher et al., 2017). Microbe produced indole 3-aldehyde functions

as an activating ligand for human host aryl hydrocarbon receptors which are expressed by immune

cells (Zelante et al., 2013). Indole binding induces IL-22 secretion by innate lymphoid cells, promot-

ing the secretion of antimicrobial peptides that protects the host from pathogenic infection by Can-

dida albicans (Zelante et al., 2013). Microbial production of short chain fatty acids (SCFAs) from

dietary fiber also shapes host immunity, contributing to both innate and adaptive immune system

functions (Fukuda et al., 2011; Donohoe et al., 2011; Smith et al., 2013).

Host-microbe interactions and phenotypes, ranging from host drug response to host immune

response, are thus intimately connected to gut chemical signaling. Beyond these few well under-

stood examples lie a vast space of uncharacterized microbe-drug-diet-phenotype interactions. We

propose three key requirements to characterize the dynamics of the gut chemical space and its

impact on health. The first is predicting which compounds microbes can metabolize, the second is

connecting the chemistry of gut microbes to host phenotypes, and the third is linking gut chemistry

to microbial ecology.

Towards the goal of systematically mapping the gut microbial chemistry that contributes to the

metabolism of xenobiotics, including therapeutic drugs, recent efforts have used chemical structure-

centric approaches to enable high-throughput computational predictions of gut microbe metabolism

of drugs (Sharma et al., 2017; Mallory et al., 2018). These tools represent an important first step

eLife digest Microbes in the human gut can play helpful roles by producing vitamins or

breaking down complex carbohydrates. Collectively, gut microbes carry out these roles using a large

toolkit of enzymes that catalyze a diverse range of chemical reactions, some of which cannot be

carried out by human enzymes. However, these microbial enzymes can also cause harm if they alter

drugs in a way that makes them toxic or prevents them from working. Little is known about which

microbial enzymes interact with which foods and drugs, or how these interactions affect human

health.

Guthrie et al. have now developed and tested a tool called MicrobeFDT that can help researchers

to understand these complex interactions. In MicrobeFDT, 10,000 compounds produced by the

human body or found in food or drugs are grouped based on their structure. Compounds are linked

to the microbial enzymes that interact with them and drugs are annotated with information on

known toxicities. The result is a network where compounds with similar structure are linked to each

other.

If a microbial enzyme interacts with one compound in a group, it may interact with related

compounds as well, potentially causing similar effects on human health. The network makes it easier

for researchers to work out which compounds are affected by particular gut microbes. For example,

MicrobeFDT suggested how gut microbes might alter the structure of an ovarian cancer drug called

altretamine, which can cause diarrhea and kidney damage as side effects. Experiments confirmed

that the predicted structural change does occur in human feces.

MicrobeFDT may increase how quickly researchers can assess harmful interactions between gut

microbes, food, and drugs. It also may help them to develop new strategies to improve human

health based on how microbial enzymes interact with food and drugs.

DOI: https://doi.org/10.7554/eLife.42866.002
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towards ecological and mechanistic insights into gut microbiota driven biotransformation of foods

and drugs. The second requirement, which has not yet been achieved, is to connect the known and

predicted chemistry of gut microbes to host phenotypes. To date, information on human responses

to therapeutic drugs is available in disparate databases and formats including FDA Adverse Report

System (FAERs) (Burkhart et al., 2015), the Side Effect Resource (SIDER) (Kuhn et al., 2016) and

DrugBank (Law et al., 2014). The third requirement, also lacking, is to systematically link gut

microbe chemistry to microbial ecology to understand how the distribution of enzymes in popula-

tions of microbes facilitates ecological interactions that structure the human gut.

Here, we develop MicrobeFDT, a resource encompassing this 3-step framework that connects

compound structure, enzyme function, taxonomy, and toxicity to characterize microbe-diet-drug-

phenotype interactions. We organize ~10,000 food, drug, and endogenous compounds by structural

similarity. We then link toxicity, enzyme interactions, and the propensity for gut microbes to carry

out metabolism on each compound to the structural similarity network. We validate MicrobeFDT

computationally by demonstrating that structural similarity is a reasonable proxy for toxicity, enzyme

sharing, and coarse-grained functional similarity. We propose, and experimentally validate, active

gut microbiome demethylation of an ovarian cancer drug, altretamine, a metabolism that we pro-

pose may drive toxicity of this drug. All data is available in the MicrobeFDT database (MicrobeFDT;

Guthrie, 2019; copy archived at https://github.com/elifesciences-publications/microbeFDT-neo4j).

Figure 1. MicrobeFDT is a searchable resource of gut microbiome food and drug metabolism with associated toxicities. (1) Diet-derived, xenobiotic-

derived and endogenous compounds were clustered based on the PubChem fingerprint system (Kim et al., 2016) and the Tanimoto coefficient

(Bajusz et al., 2015). (2) The pairwise similarity matrix forms the basis of the (3) substructure similarity network in which nodes are compounds and links

are weighted by substructure similarity. (4) A Z-score based threshold method was used to identify significant chemical similarity relationships between

nodes (Baldi and Nasr, 2010). (5) The property graph model of nodes and relationships in the network highlights node-relationship pairs that can be

queried. Node entities include compounds (blue), uses (orange) and enzymes (green). A compound node can have up to four types of directional

relationships: compound pairwise substructure similarity, compound pairwise toxicity similarity, compound treatment use descriptor and compound

microbial mediated metabolism descriptor.

DOI: https://doi.org/10.7554/eLife.42866.003
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Results

Structural similarity as a metric to organize enzyme/taxonomy/toxicity
links between compounds
The foundation of the MicrobeFDT resource is a chemical similarity network linking 10,822 food,

drug, and endogenous compounds with PubChem compound identifier (CIDs) (Kim et al., 2016). In

the network, nodes designate compounds and edges are weighted by pairwise chemical substruc-

ture similarity quantified by comparing PubChem fingerprints (Kim et al., 2016) using the Tanimoto

score (Bajusz et al., 2015) (Figure 1). The Tanimoto score prioritizes overlap between compounds

that share substructures over compounds with shared co-absences (Bajusz et al., 2015). We hypoth-

esized that compounds with overlapping substructure and physiochemical properties, in which one

compound is a known substrate of an enzyme, will be more likely to serve as substrates for the same

enzyme. Recent in silico approaches to predict enzymatic reactions of drugs in the context of human

enzyme catalyzed reactions also employ this hypothesis (Niu et al., 2013; Yu et al., 2018). Substruc-

ture-based clustering thus serves as a first step towards synthesizing publicly available information

on gut compound chemical diversity and gut microbiome biochemistry.

To validate that our network can identify shared metabolism, we developed an in silico prediction

model to assign a probability of shared metabolism between compounds based on substructure

overlap and the following physiochemical categories: geometry, functional groups, amino acid com-

position, polarity and hydrophobicity. We find that the probability estimates of compound-pairs

sharing an enzyme based on substructure and physiochemical parameters, increase as the substruc-

ture overlap score between compound pairs increases (Figure 2). Weighting compound pair chemi-

cal similarity relationships based on substructure similarity is thus a reasonable filtering step to

identify compounds that may share metabolism.

As an example of how the network can reveal shared metabolism we selected compounds in the

network with substructure overlap with digoxin, a cardiac glycoside inhibitor. Reduction of digoxin

by a human microbiome reductase inactivates the drug, contributing to poor bioavailability in some

individuals (Haiser et al., 2013; Haiser et al., 2014; Lindenbaum et al., 1981). Koppel et al.,

Figure 2. Higher substructure similarity scores between pairs of compounds are associated with higher probability

of sharing an enzyme. Potential enzyme mediated metabolism of compound pairs is compared with substructure

similarity to determine the probability that compounds have an experimentally determined shared enzyme (pink)

or no known shared enzyme (blue). The gray vertical dashed line indicates the average cutoff for significance in

substructure similarity neighborhood construction. Probability estimates are based on a Bayesian approach for

support vector machines implemented in R using the probsvm package (Zhang et al., 2013).

DOI: https://doi.org/10.7554/eLife.42866.004
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biochemically characterized the capacity of a single flavin- and [4Fe-4S] cluster-dependent reductase,

cgr2, to reduce various substrates with a range of substructure similarity to digoxin (Koppel et al.,

2018). We identified the substructure overlap between digoxin and compounds in the Koppel et al.

study that were evaluated as substrates of Cgr2 enzyme. Among the biochemically assayed com-

pounds (Koppel et al., 2018) that are present in the MicrobeFDT network, compounds with sub-

structure similarity scores greater than 0.8 are also substrates for Cgr2. This assessment suggests

that for the cgr enzyme substructure based clustering can distinguish experimentally characterized

substrates from non-substrates (Figure 3).

Previous studies have found that structural similarity predicts both toxicity and drug target simi-

larity (Campillos et al., 2008). To evaluate whether our network also recapitulates shared drug toxic-

ity we fit a linear regression and computed the effect size to assess the association between

substructure similarity and toxicity similarity for therapeutic drugs in our network. We find that struc-

tural similarity moderately positively predicts toxicity similarity for therapeutic drug pairs linked by

structural similarity overall in the network (r = 0.03116, p<2.2e-16) (Figure 4).

Finally, we evaluated how well our compound clustering recapitulates structure-based chemical

taxonomy as defined by the ClassyFire (Djoumbou Feunang et al., 2016) resource, a comprehensive

chemical classification schema, at the level of superclass taxonomy. We found that substructure-

based compound clustering, significantly groups compounds within a ClassyFire superclass based on

a comparison of the MicrobeFDT network with a randomized network with the same number of

Figure 3. Substructure similarity range of Cgr2 enzyme susceptible compounds. Substructure based clustering distinguishes experimentally

characterized substrates from non-substrates of the Cgr2 enzyme. Digoxin clusters with other cardenolides that are experimentally characterized

substrates (Koppel et al., 2018) for Cgr2 at substructure similarity values greater than 0.8. Compounds that are not substrates of Cgr2 have lower

substructure similarity with digoxin; compounds with minimal reduction (Koppel et al., 2018) include progesterone and cortisone (substructure

similarity <= 0.63). Color bar intensity increases with compound overlap with digoxin.

DOI: https://doi.org/10.7554/eLife.42866.005
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nodes and edges (p<8.06�10–15, Wilcoxon rank-sum test). Compound-pairs at higher substructure

similarity share Superclass membership at higher substructure values and at a greater frequency

than randomized pairs, indicating that the MicrobeFDT substructure similarity metric can capture

established chemical classifications (Figure 5).

Overlapping structural diversity of food, drug, and endogenous
compounds
In the network, therapeutic drug structural diversity is embedded within food-derived chemical

diversity. For example, drugs share structural similarity with food-derived compounds from a diverse

range of classes including benzenoids, lipids, nucleosides and phenylpropanoids (Figure 6). Food

derived compounds also contributed significantly greater molecular structure diversity (Figure 6—

figure supplement 1) and higher self-similarity than therapeutic drug compounds (two-sample K-S

test 0.49, p value=4.7395e-06).

Assessing the distribution of enzymatic functions across taxonomic
groups
Metabolic functions are not necessarily equally distributed across microbes in the microbiome. For

example, as described above, inactivation of digoxin, a cardiac glycoside inhibitor, is linked to cgr

operon expression levels in a single species, E. lenta (Haiser et al., 2013; Koppel et al., 2018). In

contrast, the deconjugation and resulting reactivation of SN-38, the active metabolite of the chemo-

therapeutic colorectal cancer drug irinotecan, is linked to a phylogenetically diverse guild of micro-

bial b-glucuronidase carrying microbes (Guthrie et al., 2017; Pollet et al., 2017; Wallace et al.,

2015).

The question arises, how many microbes can perform specific enzymatic functions? Knowing the

taxonomic distribution of a function can guide approaches to validate hypotheses of microbiota

driven modification of specific therapeutic drug or food compounds. More broadly, addressing this

Figure 4. Substructure similarity is predictive of toxicity similarity. We evaluated the predictive power of

substructure similarity to identify compounds with shared toxicity using a measure of pairwise toxicity defined by

Campillos et al. (2008) and used a linear regression to determine the strength of the association. We find a

modest positive correlation between substructure similarity and toxicity similarity that is stronger for more

structurally similar compounds.

DOI: https://doi.org/10.7554/eLife.42866.006
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question informs therapeutic approaches for targeting specific enzymes to modulate patient

responses to drugs and foods.

In MicrobeFDT, we quantify how many taxa have the capacity to carry out a specific function by

applying a modified Simpson index function to compute an Enzyme Commission number-specific

dominance (ECsD) score for all enzymes present in the network. ECsD scores are based on the abun-

dance of enzymes annotated at the species level across healthy human metagenomes from the Inte-

grative Human Microbiome Project (iHMP) (Proctor et al., 2014) and are normalized between 0 and

1. Functions carried out by small numbers of species have values closer to 0 while functions carried

out by taxonomically diverse groups have functions closer to 1. Thus, the ECsD indicates how broadly

distributed a function is, a crucial metric for (1) understanding how to modify a function in the micro-

biome and (2) predicting how disruptive to the community modifying a function might be.

To validate ECsD scores we first identified biochemical pathways containing enzymes with high

and low taxonomic dominance in the literature. Bacterial synthesis of various B group vitamins

including biotin, cobalamin and riboflavin vary in the number of potential producers at the Phylum

level (Magnúsdóttir et al., 2015). The most commonly synthesized B vitamin across diverse micro-

bial taxa is riboflavin while vitamin B12 is dominated by Fusobacteria (Magnúsdóttir et al., 2015).

The ECsD scores of cobalt-precorrin-2 C(20)-methyltransferase (0.305502) from the anaerobic Vita-

min B12 synthesis pathway and riboflavin synthase (0.691618) from the riboflavin synthesis pathway

in MicrobeFDT agree with the prior systematic genome assessment and experimental results of

Magnúsdóttir et al. (2015) (Figure 7). While most bacteria do not synthesize sphingolipids, sphin-

golipid biosynthetic capacity has been identified in Sphingomonas spp, Bacteroides and human

intestinal pathogens that synthesize and incorporate sphingolipids into their membranes or target

host sphingolipids as a point of entry into host cell types (Heaver et al., 2018; Heung et al., 2006;

Olsen and Jantzen, 2001). The low ECsD score of phosphatidate phosphatase (0.007353), an

Figure 5. Compound-pairs share superclass annotation at a greater frequency as substructure similarity scores increase. Ratio of compound-pairs

substructure similarity with matched and unmatched superclass annotation for all compound pairs represented in MicrobeFDT. Within the hierarchical

ClassyFire classification schema, the superclass level annotation represents the second level and includes 31 different structure-based categories

(Djoumbou Feunang et al., 2016).

DOI: https://doi.org/10.7554/eLife.42866.007
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Figure 6. The chemical space of the gut microbiome. (a) Chemical similarity network of food-derived or

endogenous compounds (gray circles, "Other") and therapeutic drugs (black diamonds, "Drug"). Tan edges are

weighted by substructure similarity where thicker edges indicate higher substructure similarity. The distribution of

compounds in chemical similarity space illuminates regions of low and high chemical substructure

overlap between drugs and other compounds. (b) Compounds from selected regions of the network are colored

by their superclass level taxonomy based on the FooDB chemical structure classification (Wishart, 2012). Food-

derived or endogenously produced compounds are identified with blue circles, therapeutic drugs with red

diamonds. Within high-drug density, highlighted regions 1 and 2, drugs share substructure similarity with food-

derived benzenoids, lipids, phenylpropanoids and polyketides. In the low-drug density highlighted region 3, drugs

overlap with organonitrogen compounds and nucleosides. Region 4 includes organonitrogen compounds and

nucleosides in addition to lipid-like molecules which have minimal overlap with therapeutic drugs.

DOI: https://doi.org/10.7554/eLife.42866.008

The following source data and figure supplement are available for figure 6:

Source data 1. Chemical similarity scores for drug and non-drug compounds.

DOI: https://doi.org/10.7554/eLife.42866.010

Figure 6 continued on next page
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enzyme involved in sphingolipid biosynthesis and metabolism (Olsen and Jantzen, 2001), mirrors

the limited distribution of the sphingolipid biosynthetic capacity across gut microbes.

Combining chemical and toxicity similarity to predict microbial
N-demethylase contribution to drug metabolism and toxicity
To provide a practical example of using multiple features of MicrobeFDT to identify uninvestigated

microbiota-driven drug toxicity, we searched the network for compounds with high structural and

toxicity similarity. Among these compounds were the ovarian cancer drug altretamine (Lee and

Faulds, 1995) and the environmental contaminant melamine (Figure 8). Both melamine and altret-

amine have toxicity profiles that include diarrhea and renal toxicity (Rose et al., 1996; Zheng et al.,

2013). Melamine, an industrial compound, has experimentally validated microbiome-mediated toxic-

ity (Zheng et al., 2013). Altretamine toxicity, however, has not previously been linked to an

Figure 7. Linking enzymatic functions with taxonomic diversity. The Simpson index was adapted to describe enzyme-specific taxonomic dominance and

diversity based on enzyme abundance in taxonomy-linked gene counts across healthy individuals in the Integrative Human Microbiome Project

(Proctor et al., 2014). We define a microbial enzyme as high dominance and low taxonomic diversity if its Simpson index value falls below 0.46 (red

dotted line), the mean value across all enzymes. Dominance-diversity values for gut microbiota functions that fall above or below the mean are

highlighted by gray dashed lines and include the following enzymes and pathways: phosphatidate phosphatase (0.007353), cobalt-precorrin-2 C(20)-

methyltransferase (0.305502) from the Vitamin B12 synthesis pathway, b-glucuronidase (0.691618), Acetyl-CoA synthase (0.718163) which is involved in

the production of propionate from complex carbohydrates, riboflavin synthase (0.794781) from the riboflavin synthesis pathway and acetate kinase

(0.931892) which is involved in acetate production. The shaded regions indicate the range of EDsD values that are one standard deviation above and

below the mean and reflect the most broadly distributed functions and most specialized functions.

DOI: https://doi.org/10.7554/eLife.42866.011
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individual’s gut microbiota. Approximately half of patients taking altretamine orally experience vari-

ous forms of gastrointestinal toxicity including diarrhea, nausea and/or vomiting (Keldsen et al.,

2003).

Within the network altretamine is linked to microbial N-demethylase enzymes which may remove

methyl groups from this compound, potentially leading to similar toxic effects as seen with mela-

mine. We found no published experimental evidence of gut microbiota mediated conversion of

altretamine. However, N-demethylases in Pseudomonas putida CBB5 enable this microbe to grow

on caffeine and other purine alkaloids as the sole carbon and nitrogen source; thus annotated

N-demethylases in P. putida CBB5 can act on compounds that are structurally similar to altretamine

(Summers et al., 2012). Furthermore, we identify hypothetical proteins homologous to Pseudomo-

nas putida CBB5 N-demethylases in a subset of healthy human guts (Figure 9—figure supplement

1). We hypothesized that gut microbial N-demethylases may partially or completely N-demethylate

altretamine, converting it into metabolites that contribute to patient toxicity.

A first step in validating this hypothesis is to demonstrate that the gut microbiome can demethyl-

ate altretamine. We incubated altretamine in a pooled fecal slurry generated from three

healthy individuals and monitored altretamine and potential metabolites using LC-MS. We controlled

for the formation of spontaneous N-demethylation of altretamine, which has been reported in the lit-

erature (Damia and D’Incalci, 1995), and found that a metabolite that is structurally identical to pen-

tamethylmelamine, a demethylated altretamine metabolite, increases in active fecal microcosms

over 48 hr (Figure 9). In active fecal biotic conditions the metabolite continually increased between

Figure 8. Structure-toxicity relationship between melamine and altretamine suggests a role for microbial N-demethylases in altretamine toxicity. (a)

Substructure overlap between altretamine and its nearest neighbors in MicrobeFDT. A Z-score based threshold of significant overlap indicates that

altretamine has both high substructure and (b) toxicity overlap with melamine. (c) The two compounds are distinguishable by the presence of N-methyl

groups.

DOI: https://doi.org/10.7554/eLife.42866.012

The following figure supplement is available for figure 8:

Figure supplement 1. Phylogenetic distribution of N-demethylases in healthy human guts.

DOI: https://doi.org/10.7554/eLife.42866.013
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time 0 and 48 hr. Killed controls demonstrated an increase in metabolite between 0 and 24 hr,

though to a lesser extent than in active fecal microcosms. Notably there was little metabolite forma-

tion after 24 hr, indicating that in addition to abiotic N-demethylation, active gut microbes demeth-

ylate altretamine to the putative metabolite pentamethylmelamine.

Figure 9. Fecal microbiomes actively demethylate altretamine. Liquid chromatography with tandem mass

spectrometry (LC-MS) was used to quantify the formation of (a) pentamethylmelamine, an N-demethylated

metabolite of altretamine identified in the pooled fecal microbiomes of three healthy unrelated individuals. (b) The

formation of metabolite 1 at 24 and 48 hr was significantly increased under the experimental condition in

comparison to the contribution of spontaneous N-demethylation by an unpaired two-sample Wilcoxon test

(*=P < 0.05).

DOI: https://doi.org/10.7554/eLife.42866.014

The following figure supplement is available for figure 9:

Figure supplement 1. Experimental design and controls used to quantify fecal microbiome turnover of

altretamine.

DOI: https://doi.org/10.7554/eLife.42866.015
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Food derived compounds and non-antibiotic therapeutic drugs with
potential antimicrobial properties
MicrobeFDT suggests an unrecognized role for bile acid-like foods and drugs in altering the compo-

sition of the human gut. Conjugated primary bile acids (BA) function as potent detergents and anti-

microbial agents capable of dissolving microbial membranes and causing intracellular acidification;

bile acid function is linked to specific structural features of these compounds (Jones et al., 2008;

Begley et al., 2006). Taurochenodeoxycholic acid (TCDCA) is a taurine conjugated primary bile acid

with a diet-tunable concentration in the gut (Ridlon et al., 2016). Energy drinks, animal protein and

fish are rich sources of taurine while vegetarian and vegan diets dominated by fruits, vegetables,

legumes and soy are poor sources (Ridlon et al., 2016). Taurine conjugated bile acids are hypothe-

sized to contribute to the etiology of colorectal cancer by generating hydrogen sulfide during micro-

bial mediated de-conjugation of taurine conjugates (Ridlon et al., 2016). Conjugated primary bile

acids have demonstrated in vitro activity as antimicrobial compounds, for example glycocholic and

taurocholic conjugated bile acids are bacteriostatic, inhibiting S. aureus growth by decreasing intra-

cellular pH and disrupting the proton motor force (Sannasiddappa et al., 2017).

Using MicrobeFDT, we identified therapeutic drug and food compounds that are structurally simi-

lar to TCDCA; we propose these compounds might have similar antimicrobial effects on the micro-

biome and we discuss studies from other groups that support this hypothesis (Figure 10a).

Bile salt hydrolase (BSH) mediated bile salt deconjugation is one mechanism that gut microbes

use to detoxify conjugated primary bile acids (Begley et al., 2006); thus BSH activity may support

gut bacterial persistence in face of frequent contact with primary BAs. We first subdivided TCDCA-

like antimicrobial compounds based on BSH enzyme susceptibility. BSH enzymes are phylogeneti-

cally diverse and abundant across healthy human fecal metagenomes (Figure 10—figure supple-

ment 1). Among the BSH-susceptible therapeutic drug compounds, we identified known antibiotics

such as clindamycin and lincomycin, as well as non-antibiotic prescribed therapeutics such as finaste-

ride, which is used for the treatment of androgenetic alopecia (Manabe et al., 2018) and benign

prostatic hyperplasia (Chau et al., 2015), and the oral antidiabetic drug saxagliptin (Men et al.,

Figure 10. Food-drug compounds chemically similar to TCDCA are putative antimicrobials. (a) Chemical structure of taurochenodeoxycholic acid

(TCDCA). (b) TCDCA-like therapeutic drugs that are susceptible to bile salt hydrolases include finasteride and saxagliptin. (c) Non-susceptible TCDCA-

like therapeutic drugs include betamethasone, dexamethasone and cortisone. (d) TCDCA-like food derived compounds include steviol, lanosterol and

tomatidine.

DOI: https://doi.org/10.7554/eLife.42866.016

The following figure supplement is available for figure 10:

Figure supplement 1. Phylogenetic distribution of bile salt hydrolases in healthy human guts.

DOI: https://doi.org/10.7554/eLife.42866.017
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2018) (Figure 10b). Notably, in a Wistar rat model of chronic bacterial prostatitis (CBP), finasteride

reduces bacterial infection as a single agent and has a synergistic effect with ciprofloxacin through

an unknown mechanism (Lee et al., 2011). Through in vitro studies, Chavex-Dozal and colleagues

propose a role for finasteride in the prevention of Candida albicans biofilm formation and filamenta-

tion (Chavez-Dozal et al., 2014). These experimental results support the hypothesis that finasteride

may have unrecognized off-target antibiotic effects.

Most TCDCA-like compounds in MicrobeFDT are non-BSH susceptible food-derived compounds.

Among the TCDCA-like non-BSH susceptible compounds are oral steroid medications, including

dexamethasone and betamethasone (Figure 10c). The immunomodulatory activities of glucocorti-

coids, including dexamethasone, involve the activation of genes related to anti-inflammatory cyto-

kines such as IL-10 and proteins that inhibit the pro-inflammatory NFkB signaling pathway

(Coutinho and Chapman, 2011; Huang et al., 2015). Dexamethasone has known anti-microbial

properties. For example, dexamethasone has dose-dependent anti-microbial activity against clini-

cally isolated Streptococcus milleri, Aspergillus flavus, and Aspergillus fumigatus in culture, while not

killing Staphylococcus aureus (Neher et al., 2008). Pseudomonas aeruginosa was found to be sus-

ceptible to dexamethasone at high concentrations (Neher et al., 2008). Cortisone, which also has

significant structural overlap with TCDCA, has been linked to a variety of opportunistic infections by

enteric bacterial pathogens, for example an increase in gastrointestinal parasites (Nair et al., 1981)

and reactivation of Chlamydia pneumoniae (Laitinen et al., 1996).

Food-derived TCDCA-like compounds include steviol, lanosterol and tomatidine. Steviol is a com-

ponent of stevia which has antimicrobial properties against Borrelia burgdorferi in vitro

(Theophilus et al., 2015), and lanosterol derivatives have antifungal activities (Shingate, 2013).

Tomatidine was recently identified as an antibiotic molecule that inhibits ATP synthesis against

Staphylococcus aureus (Lamontagne Boulet et al., 2018); we hypothesize that the antimicrobial

activity of this compound may include intracellular acidification given its structural overlap with

Figure 11. Microbial b-glucuronidase potential substrate pool of compounds structurally similar to SN-38G. (a) SN-38G conversion to SN-38 in the

gut is mediated by microbial b-glucuronidases. (b) The substrate pool for b-glucuronidases with above threshold substructure overlap with SN-38G are

members of a diverse range of chemical structure superclasses as defined by FooDB chemical ontology (Wishart, 2018). (c) These compounds include

glucuronidated food-derived compounds (purple), endogenous glucuronides (tan) and other non-glucuronides (blue).

DOI: https://doi.org/10.7554/eLife.42866.018
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TCDCA (Figure 10d). The network thus identifies compounds with known anti-microbial properties

in addition to proposing additional, structurally related compounds with uncharacterized effects. We

propose that in addition to modulating immune responses, bile salt-like compounds may selectively

alter human microbiomes, again, with unknown consequences for treatment outcomes and health.

MicrobeFDT identifies the diet-derived substrate pool for microbial
BGs and candidates for nutritional competition with SN-38G
We next applied MicrobeFDT to identify diet-derived substrates of a gut carbohydrate active

enzyme, b-glucuronidase. b-glucuronidases play a major role in the toxicity of the colorectal cancer

chemotherapeutic prodrug irinotecan (CPT-11), whose active form, SN-38, is inactivated by hepatic

glucuronidation and excreted into the gut as the inactive metabolite SN-38 glucuronide (SN-38G)

(Wallace et al., 2010; Sparreboom et al., 1998). Microbial b-glucuronidases hydrolyze the glucuro-

nide group, releasing the aglycone SN-38 into the intestinal environment (Figure 11a). Deconjuga-

tion promotes epithelial damage and severe diarrhea in some patients and in mouse models

(Wallace et al., 2010; Sparreboom et al., 1998; Slatter et al., 2000).

We previously demonstrated that individual human fecal samples have variable capacities to

deconjugate SN-38G (Guthrie et al., 2017). Identifying the full substrate pool of b-glucuronidases is

thus important for 1) understanding how diet contributes to b-glucuronidase abundance and expres-

sion levels in the gut and 2) to enable novel therapeutic strategies such as nutritional competition.

Some food compounds may be preferred substrates for microbiome b-glucuronidases which

would otherwise deconjugate SN-38G. If true, one could potentially alleviate toxicity associated with

the deconjugation of SN-38G via nutritional competition with a preferred substrate. Therefore, we

scanned the chemical similarity module containing SN-38G for dietary compounds that may serve as

alternative substrates for microbial b-glucuronidases. Most compounds identified as significantly sim-

ilar to SN-38G were food derivatives or other constituents (Figure 11b). Among these targets were

flavonoids such as baicalin and scutellarin which are widely distributed in plants (Kumar and Pandey,

2013) (Figure 11c). We propose that these compounds may compete with SN-38G for turnover by

microbial b-glucuronidases and are a potential avenue for decreasing the adverse drug responses

associated with irinotecan administration.

Discussion
The chemical space of the human gastrointestinal tract ecosystem is shaped by host dietary intake,

xenobiotic exposure, and host and gut microbiome derived products. In turn, diet shapes the com-

position and potential niches of organisms within human gut microbiomes. A combination of com-

pound, host, and microbiome features influence potential microbial metabolism. Examining these

features individually cannot reliably infer clinical phenotypes associated with microbiome/compound

interactions. Two molecules may have the same toxicity profile but very different biochemistry, for

example. Automated enzyme annotation may be incorrect, and compound structural similarity is

often insufficient to predict substrate preferences. Finally, enzymes that carry out a reaction associ-

ated with a patient phenotype may be unevenly distributed across microbes and across human

microbiomes. MicrobeFDT is designed to overcome some of these limitations by enabling a more

holistic analysis of toxicity, structure, metabolism and ecology. We used a combination of network

features to successfully predict the novel microbial metabolism of the cancer drug altretamine.

Metabolomics data indicate active demethylation of altretamine by fecal slurries but cannot pro-

pose a mechanism by which microbial activity metabolizes this compound. MicrobeFDT suggests

that altretamine is a putative substrate of microbial N-demethylases. Microbe-mediated N-demethyl-

ation reactions, and the subsequent release of N-methyl groups, occur as a part of amino acid and

nucleotide metabolism (D’Mello and International, 2017). Notably, diet is a source of amino acids

which are derived in part from metabolism of dietary choline, carnitine and legumes, and have physi-

ological functions for bacteria including osmoprotection and incorporation into bacterial flagellin

proteins and lipid membranes (Goldfine and Hagen, 1968). Amino acid-specific bacterial N-deme-

thylases have been identified but are poorly characterized (Wargo, 2017). Additionally, fecal and

species specific N-demethylation has been observed for other therapeutic drugs and commonly

ingested compounds such as caffeine, which clusters with altretamine in the network due to its struc-

tural similarity (Summers et al., 2012; Caldwell and Hawksworth, 1973; Clark et al., 1983;
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Colombo et al., 1982). N-demethylases can act on chemically diverse substrates (Wargo, 2017;

Burnet et al., 2000). Given this body of evidence, we propose N-demethylases may demethylate

altretamine partially or completely, creating metabolites that are toxic to patients.

Human gut metagenomic data indicate that Rieske family oxidative N-demethylases are carried

by a small, phylogenetically conserved set of gut taxa, with notable inter-personal variation. That

these enzymes require oxygen may make them more relevant during disruptions to gut homeostasis

when oxygen becomes available, such as colonic crypt hyperplasia caused by injuries to the intestinal

epithelia (Litvak et al., 2018). Finally, we note that N-demethylation in the gut may be relevant for

differences in individual metabolism of numerous other compounds such as the cancer drug tamoxi-

fen, the widely used antihistamine diphenhydramine, and theobromine, a plant alkaloid found in

foods. While is possible that N-demethylation is enzyme independent or that enzymes annotated

with other functions are responsible for this activity, MicrobeFDT provides a clear path forward for

mechanistic studies of N-demethylation in the gut.

Beyond predicting the toxicity or function of gut compounds, MicrobeFDT identifies the larger

substrate pool for enzymes involved in drug metabolism. For example, shared conjugation patterns

may represent a clinically relevant way to group compounds that share microbial enzymatic process-

ing. As an example, compounds inactivated by glucuronidation are susceptible to microbial b-glucu-

ronidase-mediated reactivation. We used MicrobeFDT to identify compounds structurally similar to

the conjugated, detoxified irinotecan metabolite SN-38G and found dietary substrates that may

interact with similar b-glucuronidases that this drug interacts with. Structurally similar compounds

may act competitively – via inhibition of SN-38G turnover by higher priority b-glucuronidase sub-

strates or synergistically – via substrate inducible transcriptional upregulation of b-glucuronidase

enzymes. A person consuming a large amount of the plant-based compound scutellarin as part of a

supplement, for example, might be inadvertently modulating the effects of their cancer therapy.

Outside of drug metabolism, b-glucuronidases mediate deconjugation and enterohepatic circula-

tion of estrogens, impacting the human host total estrogen burden (Shapira et al., 2013;

Kwa et al., 2016). It has been hypothesized that b-glucuronidase deconjugation may result in

greater absorption of estrogens and thus influence the development of estrogen-driven cancers

including breast, ovarian and endometrial cancers (Shapira et al., 2013; Kwa et al., 2016). Our net-

work is useful for developing mechanistic hypotheses targeting how diet and the microbiome jointly

act as moderators of estrogen-driven cancers, and to suggest opportunities for diet-based modula-

tion of total estrogen levels.

An important step towards characterizing the role of the gut microbiome in shaping individual

responses to foods and drugs is identifying how gut microbiome metabolism varies from compound

to compound and how this metabolism relates to inter-personal variation in diet or drug responses

to specific compounds. To tackle this challenge, we add the context of taxonomic diversity to the

predicted impact of microbial on specific targets by quantifying enzyme specific taxonomic domi-

nance and diversity with a novel metric, the ECsD score. This score distinguishes enzymatic activities

carried out by single species or few taxa, such as N-demethylase activity, from those where many

taxa may contribute, such as b-glucuronidase and bile salt hydrolase activity. The ECsD score is a

readout of potential substrate metabolism at the community level that can be linked to inter-per-

sonal variation in gut function and phenotypic outcomes.

The structural similarity network that underlies MicrobeFDT could be improved by using com-

pound atom and bond connectivity information as an additional filtering step for compounds of

interest, for example by using information from the SMARTS molecular pattern matching language

(Chepelev et al., 2012). SMARTS can be used to specify sub-structural patterns in molecules; these

patterns could be added to MicrobeFDT as an additional information source indicating potential

active moieties in compounds.

MicrobeFDT does not predict substrate specificity for microbiome enzymes; available data and

methods are not sufficient to achieve this goal. Enzyme promiscuity also shapes the probability that

two chemically overlapping compounds will be processed by the same enzyme. A future improve-

ment to our resource could extract data from resources like RetroRules (Duigou et al., 2019), which

uses SMARTS strings to define reaction rules, or utilize the Promis server measure of enzyme multi-

functionality (Carbonell and Faulon, 2010) to further support a user’s ranking of hypothesized com-

pound-enzyme interactions.
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It must be noted that the set of diet-derived and xenobiotic compounds that form the basis of

the network is a non-exhaustive representation of the gut chemical landscape. Efforts to characterize

the gut chemical space using metabolomics approaches including mass spectrometry and nuclear

magnetic resonance spectroscopy will play key roles in elucidating a fuller gut chemical landscape

(Vernocchi et al., 2016; Wishart, 2012). MicrobeFDT does not address the issue of compound con-

centrations in the gut, which are vital to assess likely physiological effects. Lastly, MicrobeFDT is lim-

ited to enzymes in KEGG, and does not address the many hypothetical enzyme sequences identified

through metagenomic sequencing. Despite these limitations, MicrobeFDT highlights areas of known

gut chemical space for which our understanding of microbial processing is limited and is a powerful

tool to guide mechanistic investigations into diet-drug-microbiota interactions.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Biological sample
(community
microbiota, feces)

fecal sample other fecal sample obtained
from three healthy
adults

Chemical
compound, drug
(altretamine)

altretamine Sigma Pubchem_ID:329748966;
CAS_No:645-05-6

prepared in DMSO,
0.1 mM final
concentration in
fecal slurry

Other Brain Heart
Infusion broth

Himedia Himedia:M210I

Chemical
compound
(Dimethyl sulfodixe)

DMSO MP Biomedicals MP:191418;
CAS_No:67-68-5

Chemical
compound
(Melamine-triamine-(15N3))

Melamine-triamine-(15N3) Sigma Pubchem:329758619;
CAS_No:287476-11-3

prepared in DMSO,
400 nM final concentration
in analytical sample

MicrobeFDT pipeline
The MicrobeFDT graph database encodes heterogeneous information on the interactions between

compounds and microbial enzymes in the gut chemical landscape, highlighting the following four

relationships across 13,440 nodes (10,822 xenobiotic, diet-derived and human gut endogenous com-

pounds, 2062 microbial enzymes and 525 therapeutic drug use labels) defined from publicly avail-

able data directly or computed: (1) compound-compound substructure similarity; (2) compound-

compound toxicity similarity; (3) microbial enzyme-compound interactions; and (4) drug-indication

associations. The database is implemented in Neo4j (https://neo4j.com/) and can be queried

through the Cypher Query Language. Through graph-based searches users can query the network

based on node or relationship features. MicrobeFDT can be accessed here (Guthrie, 2019).

Publicly available datasets and resources used as inputs for the
network
The SIDER 4.1 side effect resource is a database of approved medicines and their known adverse

reactions (Kuhn et al., 2016). Drugs from this database with pharmacokinetic profiles that involve

entry into the gastrointestinal tract were identified through literature mining and manual curation

and indexed by their PubChem CID identifier (Kim et al., 2016). Drug use annotations were based

on the WHO Anatomical Classification System (Skrbo et al., 2004). FooDB (http://foodb.ca/) (Wish-

art, 2018), a database containing raw food component structures, biological interactions and chemi-

cal properties was the source of food components linked to PubChem CID identifiers. ClassyFire

was used to annotate all xenobiotic and food derived compounds with a shared chemical taxonomy

(Djoumbou Feunang et al., 2016).

To link microbial enzymes to the set of compounds they metabolize we used KEGGREST (v1.14.1)

to retrieve KEGG compound identifiers with links to Enzyme Commission numbers, metabolic
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modules and pathways, and presence in either organisms listed as microbial or Homo sapiens (Ten-

enbaum, 2019). Enzyme abundance data across human metagenomes were determined based on

the total abundance of each enzyme in the healthy participants of the Human Microbiome Project.

This data was extracted from the Integrated Microbial Genomes database (Markowitz et al., 2012).

Enzyme specific dominance scores (ECsD), which is a measure of the number of different species that

carry a specific enzyme, were computed based on species-specific enzyme abundance data from

healthy individuals from the Integrative Human Microbiome Project (Proctor et al., 2014).

Construction and assessment of the drug-food chemical similarity
network
Chemical similarity calculation
To determine the pairwise chemical substructure similarity between all compounds we used the Pub-

Chem 2D molecular fingerprint (Kim et al., 2016). The fingerprint is an 881 dimension binary vector

in which each bit represents a specific element, functional group, ring system or other discrete

chemical entity (Kim et al., 2016). Similarity was defined by the Tanimoto coefficient of the molecu-

lar fingerprint representations present between two compounds (Bajusz et al., 2015).

Network construction
Similarity scores are percentages of substructure overlap between pairs of compounds and have val-

ues between 0 to 1. Similarity scores are filtered such that compound pairs with less than 0.3 sub-

structure similarity were removed. These pairwise similarity scores formed the basis of the

undirected chemical similarity network, where nodes represent compounds and edges represent

substructure similarity score.

Network filtering
To cluster compounds in the network based on substructure similarity we used the Walktrap commu-

nity detection method (Pons and Latapy, 2006) implemented in R/igraph v.1.1.1 (R Development

Core Team, 2016). Within a community, significant similarity scores were defined as those with

Z-scores of 1 standard deviation or greater away from the mean (Baldi and Nasr, 2010).

Assessment of compound substructure-based clustering recapitulation of
chemical ontology
The MicrobeFDT substructure similarity network is defined by the Tanimoto coefficient of the Pub-

Chem 2D molecular fingerprint representations between two compounds (Kim et al., 2016;

Bajusz et al., 2015). To assess how well compound substructure-based clustering recapitulates

chemical ontology we compared network features between the MicrobeFDT substructure similarity

network and randomized network with the same number of nodes, edges and labels. Each com-

pound label includes a ClassyFire (Djoumbou Feunang et al., 2016) schema derived hierarchical set

of chemical descriptors. The chemical similarity network was rendered in Cytoscape using Network-

Randomizer (Martens et al., 2014). Using the Wilcoxon rank-sum test we compared superclass level

chemical descriptors across connected compounds between the real and random network. For the

MicrobeFDT network, we also computed the ratio of compounds pairs with matched Superclass

annotation to unmatched annotations for all pairs with the same substructure score to assess the

relationship between substructure similarity and shared chemical ontology.

Predicting the probability of association of compound pairs both serving as
substrates for an enzyme based on substructure and physiochemical
parameters
Each compound pair was assigned one of two labels, associate or non-associated, based on whether

both compounds are substrates for the same enzyme (associated) or not (non-associated), given

compound-enzyme relationships in the KEGG database (Kanehisa and Goto, 2000). The DataWar-

rior program (Sander et al., 2015) was used to identify the following parameter categories for each

compound: geometry, functional groups, aromaticity, amino acid composition, polarity and hydro-

phobicity. In order to translate compound pair substructure and physiochemical parameters into a
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probability of overlapping metabolism we used a machine learning approach for generating proba-

bility estimates for multi-class classification problems (Zhang et al., 2013; Wu et al., 2004). Briefly,

this approach builds a multi-class prediction model by using pair-wise coupling. We then imple-

mented the prediction model using the probsvm package in R using a one-vs-one decomposition

scheme (Zhang et al., 2013).

Assessing toxicity similarity
Toxicity similarity was computed as described by Campillos and colleagues (Campillos et al., 2008)

with three key steps: (1) extraction and standardization of side effect concepts across drugs of inter-

est; (2) weighting of unique side effect concepts based on frequency of occurrence and correlation

with other side effects; and (3) computation of pair-wise toxicity similarity between drugs based on

weighted side-effect concept values. Briefly, Campillos et al. curated a dictionary of side-effects

based on the Concepts of the Coding Symbols for Thesaurus of Adverse Reaction Terms (COSTART)

ontology (US Food and Drug Administration, 1995). Side-effect information on therapeutic drug

package labels was identified from publicly available sources and searched against this dictionary

such that all unique side effect concepts per drug were based on COSTART ontology. For our analy-

sis we used the side effect labels for therapeutic drugs of interest that were extracted from the Med-

ical Dictionary for Regulatory Activities (Brown et al., 1999), which is an updated replacement of

COSTART, and made publicly available at the download page for SIDER 4.1 which can be found

here.

In Campillos et al., each side effect concept was given a rarity score which is the frequency at

which it is found across all drug side effect lists. To account for co-dependence between side effects

Campillos and colleagues also determined the correlation between all side effects based, using the

Tanimoto score between pairs of side effects. This measure is based on how many drugs share a

given side effect relative to the number of drugs that have either. The resulting matrix was used as

input for the Gerstein-Sonnhammer-Chothia Algorithm (Gerstein et al., 1994), to output a score for

each concept that down weights concepts that are redundant. We used a publicly available imple-

mentation of this algorithm in R available here. Pair-wise toxicity similarity between drugs was com-

puted based on summing the products of weights over all shared side effect concepts between

drug pairs. We fit a linear regression to determine whether there is a linear relationship between

compound pair substructure similarity and toxicity similarity.

Taxonomic signatures of microbial enzymes
For each enzyme, we computed an enzyme commission number-specific dominance (ECsD) score.

This score is an application of the Simpson’s index, which is particularly sensitive to sample evenness

(DeJong, 1975), and describes the dominance and diversity profile of species carrying the enzyme

(Ofaim et al., 2017). The taxa-specific enzyme abundance information is based on data collected as

a part of the integrative Human Microbiome Project (iHMP) (PRJNA306874) (Proctor et al., 2014).

ECsD scores are reported as Simpson index measure (Simpson, 1949) subtracted from one, as

implemented in the phyloseq R package (McMurdie and Holmes, 2013). In this implementation, the

Simpson dominance index per enzyme defined by its enzyme commission number (D(EC)) is com-

puted such that n is number of individuals of each species that carry the enzyme and N is the total

number of individuals of all species that carry the enzyme (1). For better interpretability, the domi-

nance scores are subtracted from 1 (2).

D ECð Þ ¼
S n n� 1ð Þ

N N� 1ð Þ
(1)

ECSD ¼ 1�D ECð Þ (2)

Thus, enzyme functions carried out by small numbers of microbes have values closer to 0 while

functions carried out by taxonomically diverse groups have functions closer to 1.
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Altretamine microbiome turnover validation
Collection and preparation of fecal samples
Fresh fecal samples were provided by three healthy adult men aged 23–30 with no history of antibi-

otics for 6 months prior to the study. The study was approved by the Albert Einstein College of

Medicine Institutional Review Board. Samples were deposited, immediately stored on ice, and proc-

essed within 1 hr. One gram stool from each donor was added to 300 mL BHI supplemented with

0.5% glucose (weight/volume) and homogenized. The final fecal slurry was thus comprised of the

pooled feces of the three donors at 1% w/v.

Altretamine metabolism
Fecal slurry cultures were incubated at 37˚C in the dark under aerobic conditions. Altretamine stock

was prepared in DMSO. Experimental cultures received a final concentration of 100 mM altretamine

in DMSO and were prepared in triplicate. Triplicate heat-killed and denatured cultures were auto-

claved three times on successive days and also received 100 mM altretamine in DMSO after the third

autoclave. Background cultures received fecal slurry and DMSO but no altretamine. To determine

matrix effects of altretamine in the media, a sterile media control was amended with 100 mM altret-

amine in DMSO. Cultures were sampled, immediately snap-frozen in liquid N2 every 24 hr, and

stored at �80˚C until analysis.

Altretamine and metabolite quantification
Samples were thawed, centrifuged, and 100 mL aliquots were added to 900 mL 80% methanol. Mela-

mine-triamine-(15N3) was used as internal standard. Altretamine and metabolites were identified

using LC/MS (Waters Acquity LC system and Waters Xevo TQ MS). Liquid samples were diluted 1:50

in 80% methanol with melamine-triamine-(15N3) as internal standard. Each sample was injected 3

times at 5 mL/injection. Separation was performed on an ACE2 C18 column set to 45˚C with 0.1%

formic acid in 5% methanol (A) and 0.1% formic acid in methanol (B). Elution occurred at 0.35 ml/

min with 100% A for 1 min, followed by a 1.5 min linear gradient from 100% A to 95% B, and finally

100% B for 1 min. The voltage was set to 0.044 kV.

Phylogenetic trees
N-demethylase phylogenetic tree
N-demethylases from Pseudomonas putida CBB5 (ndmABCD) (Summers et al., 2012) and Sphin-

gobium sp. strain YBL2 (pdmAB) (Gu et al., 2013), both containing a Rieske non-heme iron oxygen-

ase component, catalyze the N-demethylation of phenylurea herbicides and purine alkaloids,

respectively; and range in size from 318 to 364 amino acids (Summers et al., 2012; Gu et al., 2013;

Sharma et al., 2018). We clustered bacterial N-demethylase sequences described by Summers

et al., and Tao et al., as well as protein sequences of >= 200 amino acids in length pulled based on

text annotation from the RefSeq database (Pruitt et al., 2005) at 95% identity using the UCLUST

algorithm (Edgar, 2010). The resulting 84 N-demethylase protein sequences served as a protein

database which was mapped against the protein calls of healthy adult participants from the Human

Microbiome Project (HMP) (PRJNA43021) using the UBLAST algorithm (Edgar, 2010) and e-value

cutoff of e-40. N-demethylase hits of 200 amino acids or greater formed the basis of a phylogenetic

tree which was constructed by aligning the protein sequences using MUSCLE with default parame-

ters (Edgar, 2004). Aligned sequences were trimmed at 70% identity and phylogenetic trees were

built with PhyML (Guindon et al., 2010) with 100 bootstrap replicates, a JTT model of substitution,

and otherwise default parameters. The trees were visualized using the packages ggpplot2 (Wick-

ham, 2016) and phyloseq (McMurdie and Holmes, 2013) in R (R Development Core Team, 2016).

Each branch was colored based on the phylum level classification of the protein, marked by similarity

to the experimentally characterized N-demethylase genes ndmABCD and pdmAB and by the nor-

malized number of total hits found across individuals in the HMP. Black circles indicate bootstrap val-

ues of 80/100 or better.
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Bile salt hydrolase phylogenetic tree
We identified bile salt hydrolase protein sequences based on text annotation from the RefSeq data-

base (Pruitt et al., 2005) and developed a curated database of protein sequences that were clus-

tered at 95% identity using the UCLUST algorithm (Edgar, 2010) resulting in 300 bile salt hydrolase

protein sequences with a minimum amino acid length cutoff of 300. Bile salt hydrolase subunits can

range in length up to 518 amino acids in the literature (Breton et al., 2002; Bron et al., 2006;

Schmid and Roth, 1987). Sequence mapping against the HMP (Human et al., 2012), alignment and

tree construction were carried out as described for the N-demethylases with the following exception:

each branch representing a unique bile salt hydrolase sequence was marked by the presence or

absence of reported activity in the literature.
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