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 2 

Abstract 17 

 18 

In complex biological systems, simple individual-level behavioral rules can give rise 19 

to emergent group-level behavior. While collective behavior has been well studied in 20 

cells and larger organisms, the mesoscopic scale is less understood, as it is unclear 21 

which sensory inputs and physical processes matter a priori. Here, we investigate 22 

collective feeding in the roundworm C. elegans at this intermediate scale, using 23 

quantitative phenotyping and agent-based modeling to identify behavioral rules 24 

underlying both aggregation and swarming—a dynamic phenotype only observed at 25 

longer timescales. Using fluorescence multi-worm tracking, we quantify aggregation 26 

in terms of individual dynamics and population-level statistics. Then we use agent-27 

based simulations and approximate Bayesian inference to identify three key 28 

behavioral rules for aggregation: cluster-edge reversals, a density-dependent switch 29 

between crawling speeds, and taxis towards neighboring worms. Our simulations 30 

suggest that swarming is simply driven by local food depletion but otherwise employs 31 

the same behavioral mechanisms as the initial aggregation.  32 

 33 

 34 

 35 

  36 
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Introduction 37 

 38 

Collective behavior has been widely studied in living and non-living systems. While 39 

very different in their details, shared principles have begun to emerge, such as the 40 

importance of alignment for flocking behavior in both theoretical models and birds 41 

(Bialek et al., 2012; Pearce et al., 2014; Reynolds, 1987). Until now, the study of 42 

collective behavior has mainly focused on cells and active particles at the microscale, 43 

controlled by molecule diffusion and direct contact between cells or particles (Köhler 44 

et al., 2011; Palo et al., 2017; Peruani et al., 2012; Starruss et al., 2012), and on 45 

animals at the macroscale, aided by long-range visual cues (Bialek et al., 2012; Katz 46 

et al., 2011; Pearce et al., 2014). Collective behavior at the intermediate mesoscale 47 

is less well-studied, as it is unclear what processes to include a priori. At the 48 

mesoscale, sensory cues and motility may still be limited by the physics of diffusion 49 

and low Reynolds numbers, respectively, yet the inclusion of nervous systems allows 50 

for increased signal processing and a greater behavioral repertoire. Do the rules 51 

governing collective behavior at this intermediate scale resemble those at the micro- 52 

or the macro-scale, some mixture of both, or are new principles required?  53 

 54 

C. elegans collective behavior can contribute to bridging this scale gap. Some strains 55 

of this 1 mm-long roundworm are known to aggregate into groups on food (de Bono 56 

& Bargmann 1998); here we also report an additional dynamic swarming phenotype 57 

that occurs over longer time periods. C. elegans represents an intermediate scale not 58 

only in physical size but also in behavioral complexity—crawling with negligible 59 

inertia, limited to touch and chemical sensing, yet possessing a compact nervous 60 

system with 302 neurons (White et al., 1986) that supports a complex behavioral 61 

repertoire (Hart, 2006; Schwarz et al., 2015). Wild C. elegans form clusters on food 62 

at ambient oxygen concentrations, as do loss-of-function neuropeptide receptor 1 63 

(npr-1) mutants. The laboratory reference strain N2, on the other hand, has a gain-of-64 
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function mutation in the npr-1 gene that suppresses aggregation (de Bono and 65 

Bargmann, 1998), rendering N2 animals solitary feeders. Thus, a small genetic 66 

difference (just two base pairs in one gene for the npr-1(ad609lf) mutant) has a big 67 

effect on the population-level behavioral phenotype. Previous research on collective 68 

feeding has focused primarily on the genetics and neural circuits that govern 69 

aggregation (Bretscher et al., 2008; Busch et al., 2012; Chang et al., 2006; Cheung 70 

et al., 2005; de Bono et al., 2002; de Bono and Bargmann, 1998; Gray et al., 2004; 71 

Jang et al., 2017; Macosko et al., 2009), rather than on a detailed understanding of 72 

the behavior itself. Rogers et al. (2006) is a notable exception and includes an 73 

investigation of the behavioral motifs that might lead to cluster formation including 74 

direction reversals at the edge of clusters. However, we do not know whether these 75 

candidate motifs are sufficient to produce aggregation. We also do not know whether 76 

aggregation at short times and swarming at longer times are distinct behaviors or 77 

different emergent properties of the same underlying phenomenon. 78 

 79 

In this paper, we use fluorescence imaging and multi-worm tracking to examine 80 

individual behavior inside aggregates. We present new and systematic quantification 81 

of the aggregation behavior in hyper-social npr-1(ad609lf) mutants (henceforth 82 

referred to as npr-1 mutants) and hypo-social N2 worms. Next, we draw on the 83 

concept of motility-induced phase transitions to explain aggregation as an emergent 84 

phenomenon by modulating only a few biophysical parameters. Unlike aggregation 85 

driven by attractive forces, in motility-induced phase transitions individuals can also 86 

aggregate simply due to their active movement and non-attractive interactions, such 87 

as volume exclusion (avoidance of direct overlap) (Redner et al., 2013a). For 88 

instance, this concept has contributed understanding to the aggregation of rod-89 

shaped Myxococcus xanthus bacteria, which, similar to C. elegans, also exhibit 90 

reversals during aggregation (Mercier and Mignot, 2016; Peruani et al., 2012; 91 

Starruss et al., 2012). We build an agent-based phenomenological model of 92 
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simplified worm motility and interactions. By mapping out a phase diagram of 93 

behavioral phenotypes, we show that modulating cluster-edge reversals and a 94 

density-dependent switch between crawling speeds are sufficient to produce some 95 

aggregation, but not the compact clusters observed in experiments. We found that 96 

medium-range taxis towards neighboring worms is necessary to tighten clusters and 97 

increase persistence. Finally, combining this model with food depletion gives rise to 98 

swarming over time, suggesting that the same behavioral rules that lead to the initial 99 

formation of aggregates also underlie the dynamic swarming reported here.  100 

 101 

 102 

Results 103 

 104 

Dynamic swarming occurs in social worms at long time scales 105 

 106 

Aggregation has most often been characterized as the fraction of worms inside 107 

clusters, where individual worms can move in and out of clusters. Here we report an 108 

additional dynamic swarming phenotype in aggregating C. elegans that occurs on a 109 

timescale of hours. Here, swarming refers to the collective movement of a coherent 110 

group of worms across a bacterial lawn (Figure 1A, Video 1). Because of the long 111 

timescale, this behavior is not obvious from manual observations of worms on a plate, 112 

but becomes clear in time lapse videos (Figure 1B and 1C, npr-1 panels). Even 113 

though N2 worms do not swarm in our experiments (Figure 1B and 1C, N2 panels), 114 

they can swarm under appropriate conditions, such as when a clonal population has 115 

depleted almost all food (Hodgkin and Barnes, 1991) or on unpalatable 116 

Pseudomonas fluorescens bacterial lawns (personal communication from J. Hodgkin 117 

and G.M. Preston). Thus swarming in C.  elegans does not require loss of npr-1 118 

function in all environments. 119 

 120 
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Dynamic swarming occurs with just 40 npr-1 mutants (Figure 1B, top row), making it 121 

experimentally feasible to study. Usually a single npr-1 aggregate forms on the food 122 

patch and then moves around the lawn in a persistent but not necessarily directed 123 

manner (Figure 1C, left; Figure 1 – figure supplement 1), at a steady speed (Figure 124 

1D). The onset of this collective movement appears to coincide with local food 125 

depletion, and continues until complete food depletion, at which time the cluster 126 

disperses. More than one moving cluster may co-exist, and occasionally a cluster 127 

may disperse and form elsewhere when it crosses its previous path (Figure 1 – figure 128 

supplement 1), presumably due to local food depletion. The observed pattern of npr-129 

1 cluster motion is reminiscent of a self-avoiding, persistent random walk (i.e. not 130 

returning to areas that the worms have previously been where there is no food left). 131 

By contrast, after initially forming transient clusters on the lawn, N2 worms move 132 

radially outwards with no collective movement (Figure 1C, right). 133 

 134 

 135 
Fluorescence imaging and automated animal tracking allows quantification of 136 

dynamics inside and outside of aggregates 137 

 138 

Based on our observation that swarming appears to be driven by food depletion, we 139 

hypothesize the phenomenon may be a dynamic extension of the initial aggregation 140 

that occurs before depletion. To test this idea, we first sought to identify the 141 

mechanisms underlying aggregation.  142 

 143 

The presence of aggregates is clear in bright field images, but it is difficult to track 144 

individual animals in these strongly overlapping groups for quantitative behavioral 145 

analysis. We therefore labeled the pharynx of worms with green fluorescent protein 146 

(GFP) and used fluorescence imaging in order to minimize overlap between animals 147 

(Video 2), making it possible to track most individuals even when they are inside a 148 
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dense cluster (Figure 2A). We also labeled a small number of worms (1-3 animals 149 

out of 40 per experiment) with a red fluorescent protein (RFP)-tagged body wall 150 

muscle marker instead of pharynx-GFP. These RFP-labeled worms were recorded 151 

on a separate channel during simultaneous two-color imaging (Figure 2B), thus 152 

allowing both longer trajectories and the full posture to be obtained in a subset of 153 

animals. We wrote a custom module for Tierpsy Tracker (Javer et al., 2018) to 154 

segment light objects on a dark background and to identify the anterior end of the 155 

marked animals automatically, in order to extract trajectories and skeletons of 156 

multiple worms from our data (Figure 2C).  157 

 158 

Ascarosides and direct adhesion are unlikely to drive different aggregation 159 

phenotypes 160 

 161 

We first considered long-range chemotaxis driven by food or diffusible ascaroside 162 

pheromone signals as a potential behavioral mechanism. Chemotaxis towards food 163 

can likely be ignored as our experiments were performed on thin, even bacterial 164 

lawns, and worms are mostly on food during the aggregation phase of the 165 

experiments (99.7±0.4% for npr-1 and 99.8±0.3% for N2, mean±S.D.). Although 166 

ascarosides are important for processes such as mating and dauer formation in C. 167 

elegans (Srinivasan et al., 2008), it is less clear whether long-range signaling via 168 

pheromones plays a role in aggregation (de Bono et al., 2002; Macosko et al., 2009). 169 

daf-22(m130) mutants do not produce ascarosides, but daf-22;npr-1 double mutants 170 

aggregate similarly to npr-1 single mutants (Figure 3 – figure supplement 1), 171 

consistent with the observation that the hermaphrodite-attractive pheromone icas#3 172 

is attractive to both N2 animals and npr-1 mutants (Srinivasan et al., 2012) and is 173 

thus unlikely to explain the difference in their propensity to aggregate. Moreover, 174 

attraction between moving objects is known to produce aggregation in active matter 175 

systems (Redner et al., 2013a), but it is not known whether this applies to worms. 176 
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Short-range attraction between worms may exist in the form of adhesion mediated 177 

through a liquid film (Gart et al. 2011), but we have no reason to believe this would 178 

differ between npr-1 and N2 strains.  179 

 180 

Reversal rates and speed depend on neighbor density more strongly in npr-1 181 

mutants than in N2  182 

 183 

Having considered long-range food- or ascaroside-mediated attraction and short-184 

range adhesion, we next focused on behavioral responses to nearby neighbors. 185 

While postural changes do not seem to be a main driver of aggregation as principal 186 

component analysis of lone versus in-cluster npr-1 worms revealed similar 187 

amplitudes in the posture modes (Figure 3 – figure supplement 2), we found 188 

experimental evidence for density-dependence of both reversal rates and speed and 189 

that these differ between the two strains we studied.  190 

 191 

Reversals have been previously suggested as a behavior that may enable npr-1 192 

worms to stay in aggregates (Rogers et al., 2006). To avoid cluster definitions based 193 

on thresholding the distance between worms, we quantified individual worm behavior 194 

as a function of local density (Figure 3A) instead. Calculating the reversal rates 195 

relative to that of worms at low densities, we found that npr-1 mutants reverse more 196 

at increased neighbor densities, while N2 animals do not (Figure 3B).  197 

 198 

Next we calculated the speed distributions of individual worms, binned by local 199 

neighbor density. We found that both strains slow down when surrounded by many 200 

other worms, but the shift is more pronounced for npr-1 animals. npr-1 worms move 201 

faster than N2 at low densities, showing a distinct peak at high speeds. As neighbor 202 

density increases, this high speed peak gradually becomes replaced by a peak at 203 

low speeds, so that the overall speed distribution for npr-1 resembles that of N2 at 204 
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very high densities. Thus, npr-1 and N2 animals show different density-dependent 205 

changes in their respective speed profiles (Figure 3C). 206 

 207 

Since the observed transition of the speed profiles could occur due to active 208 

behavioral changes as well as restricted movement in clusters, we also considered 209 

tracks of individual worms. Using body wall muscle-marked worms allowed us to 210 

obtain longer trajectories that could be joined for the duration of an entire video, 211 

including cluster entry and exit events. We compared the speed of these tracks with 212 

visual assessment of when a worm entered or exited a cluster based on the proximity 213 

to pharynx-labeled worms. We found that worms are able to move inside of clusters 214 

and observed that speed changes can occur prior to cluster entry and exit events 215 

(Figure 3D, Video 3 and Video 4). This change of speed is neither purely mechanical 216 

nor a deterministic response to a certain neighbor density, and suggests a 217 

mechanism in which worms probabilistically switch between different speeds. 218 

 219 

Spatial statistics show group-level differences between npr-1 and N2 animals 220 

 221 

The differences in aggregation behavior between npr-1 and N2 are visually striking, 222 

but previous quantification has typically been limited to the fraction of animals in 223 

clusters. Using the tracked positions of pharynx-labeled worms (Figure 4A), we 224 

calculated the pair-correlation function (Figure 4B), commonly used to quantify 225 

aggregation in cellular and physical systems (Gurry et al., 2009). We also computed 226 

a hierarchical clustering of worm positions (Figure 4C), which is calculated from the 227 

same pairwise distances but emphasizes larger scale structure. Using both 228 

measures, we found that as a population, npr-1 animals show quantifiably higher 229 

levels of aggregation than N2, especially at scales up to 1 mm (pair-correlation “S1”, 230 

Figure 4D) and 2 mm (hierarchical clustering “S2”, Figure 4E). We also quantified 231 

aggregation using scalar spatial statistics, namely the average standard deviation 232 
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(“S3”) and kurtosis (“S4”) of the distribution of positions. This confirms that the 233 

positions of npr-1 worms are less spread-out and more heavy-tailed than those of N2 234 

(Figure 4D). 235 

 236 

Agent-based model captures different aggregation phenotypes 237 

 238 

To test whether the individual behavioral differences measured between npr-1 and 239 

N2 worms are sufficient to give rise to the observed differences in aggregation, we 240 

constructed a phenomenological model of worm movement and interactions. The 241 

model is made up of self-propelled agents (Figure 5A), and includes density-242 

dependent interactions motivated by the experimental data, namely reversals at the 243 

edge of a cluster (Figure 5B) and a switch between movement at different speeds 244 

(Figure 5C). As a model of collective behavior this differs from those commonly 245 

considered in the literature, such as the Vicsek model (Vicsek et al., 1995) and its 246 

many related variants (Vicsek and Zafeiris, 2012; Yates et al., 2009). Such models 247 

typically feature attractive forces or align the direction of motion at ranges much 248 

longer than the size of the moving objects, and result in flocking or clustering with 249 

global alignment (Figure 5D), which we do not observe in our experimental data. In 250 

contrast, our model needs to produce dynamic, disordered aggregates (Figure 1B, 251 

Figure 2A and Video 2), and should primarily rely on short-range interactions that are 252 

motivated by behaviors measured in our data.  253 

 254 

The density-dependence of the reversal rate and speed switching is implemented as 255 

follows: The rate of reversals increases linearly with density with slope r’, which is a 256 

free parameter, and is thus given by rrev = r’ ρ. The reversal rate at zero density is 257 

zero as we ignored spontaneous reversals outside of clusters as these were only 258 

rarely observed under our experimental conditions (see Appendix 1 for further 259 

discussion of the model construction). This parameterization of the reversal rate may 260 
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be unbounded, but we can prevent unrealistically high reversal rates for a given 261 

maximum worm number by choosing our prior distribution of the parameter r’. The 262 

rate of slowing down is similarly approximated as a linear function of density, with 263 

free parameter ks’, and is given by kslow = ks0 + ks’ ρ, where ks0 is the slowing rate at 264 

zero-density. The rate of speeding up is given by kfast = kf0 exp[-kf’ ρ], where the 265 

exponential decay is chosen to ensure positivity of the rate, and kf0 is the rate at zero 266 

density. The rates of slowing down and speeding up at zero density (ks0, kf0) were 267 

obtained from published single-worm experimental data (Javer et al., 2018; Yemini et 268 

al., 2013). 269 

 270 

We initially ran a coarse parameter sweep, sampling uniformly in the two-271 

dimensional parameter space associated with the density-dependence of reversals 272 

and speed switching. As a simplifying assumption, the density-dependence of the 273 

speeding-up and slowing-down rates was set equal (k’s = k’f = k’). The remaining 274 

parameters, r’ and k’, were varied to explore the global model behavior. This 275 

demonstrates that our model can capture different aggregation phenotypes from 276 

solitary movement to aggregation (Figure 5E) by varying just two free parameters, 277 

and provides important general insights. Inspection of the model simulations shows 278 

that each behavior alone (just reversals or slowing) does not give the same level of 279 

aggregation as when both parameters are modulated (Figure 5E), so that using both 280 

behavioral components proves important. Quantifying the aggregation and 281 

comparing it to the npr-1 experiment, however, highlights incomplete quantitative 282 

agreement with both the pair correlation function and hierarchical clustering 283 

distribution (Figure 5F). Thus, we reasoned additional interactions may be required to 284 

match the experimentally observed behaviors.  285 

 286 

Adding a medium-range taxis interaction promotes stronger aggregation 287 

 288 
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To explore improvements in clustering, we extended the model by an attractive taxis 289 

interaction. Attraction should intuitively improve clustering, but we knew from our 290 

model exploration that an attractive potential between bodies produces undesirable 291 

cluster shapes (Figure 5D) and reasoned that a long-range interaction may be 292 

unrealistic (Figure 3 – figure supplement 1). Thus, we include taxis towards 293 

neighboring worms and model worm movement as an attractive persistent random 294 

walk. The taxis contribution to a worm’s motile force has an overall strength 295 

controlled by parameter ft, with multiple nearby neighbors contributing cumulatively, 296 

weighted by 1/r, where r is the distance to a neighboring worm. Neighboring worms 297 

beyond a cut-off distance equal to the length of a worm have no contribution. Thus, 298 

this taxis interaction is acting at a natural intermediate length scale of our system 299 

(see Appendix 1 for details). 300 

 301 

The resulting extended model has four free parameters: density-dependent reversals 302 

(r′), speed-switching rates (ks′, kf′) and taxis (ft). To find the parameter combinations 303 

that best describe each strain, as well as the uncertainty in the parameter values, we 304 

used an approximate Bayesian inference approach (see Appendix 1). To increase 305 

the computational efficiency of our inference pipeline, we excluded infeasible regions 306 

of parameter space to reduce the prior distribution of parameters that we need to 307 

sample from (Figure 6 – figure supplement 1) (see Appendix 1). We then selected 308 

the closest matching simulations from about 27,000 simulations for npr-1 and about 309 

13,000 simulations for N2, equally weighting all four summary statistics. Results from 310 

our extended model (Figure 6A, Video 5 and Video 6) show markedly improved 311 

quantitative agreement with the experiments (Figure 6B). The approximated posterior 312 

distributions of the parameters (Figure 6C-D) show the most likely values of the 313 

parameters for each strain, as well as the uncertainty  associated with the individual 314 

and joint marginal parameter distributions. In particular, to achieve npr-1-like 315 

aggregation, the reversal (r’) and taxis (ft) parameters need to be higher than for N2, 316 
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albeit not too high. The density-dependence of the slowing rate (k’s) is only subtly 317 

different between the two strains, while the dependence of the speeding up rate (k’f) 318 

is greater in npr-1, but with broader uncertainty.  319 

 320 

To address whether all three behaviors (reversals, speed changes, and taxis) were 321 

necessary for aggregation we ran additional simulations: starting from the mean of 322 

the posterior distribution for npr-1 (Figure 6C) as a reference, we removed individual 323 

model components by setting the corresponding parameters to zero. These 324 

perturbed simulations show that removing speed switching or taxis from the model 325 

disrupts aggregation, while removing reversals reduces the overall quantitative 326 

agreement with experimental data (Figure 6, figure supplement 2, B-D). In some 327 

cases, removing individual model behaviors also produced correlations of velocity 328 

and orientation between neighbors that are different from what we measure in 329 

experiments (Figure 6 – figure supplement 3). Thus, we conclude that we have 330 

identified sufficient behavioral components for aggregation, and that these are also 331 

necessary to quantitatively match aggregation in npr-1 mutants. 332 

 333 

Searching for evidence of taxis in the experimental tracking data, we calculated the 334 

correlation between worm velocity and the vector towards nearby worms, and found 335 

this correlation to be nearly zero in both experiments and simulations for all distances 336 

up to 2 mm (Figure 6 – figure supplement 3, B1-2), which is larger than the size of a 337 

typical worm cluster. This may not be intuitive, and we suspect the reason is twofold: 338 

a) the taxis effect is only a small influence on the instantaneous direction of the 339 

movement of a worm, compared to persistence and noise; and b) we only tracked 340 

the pharynx in our experiments, and reproduced this restriction in our analysis of 341 

simulations, but the whole body of the worm is likely giving relevant cues to any 342 

chemical or mechanical taxis. Our methodology that enables us to track inside worm 343 

clusters therefore brings with it the caveat that there is unseen worm density that 344 
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affects any potential taxis behavior, but which remains undetectable in our tracking.  345 

Thus, our analysis shows that a taxis behavior similar to our simulations may be 346 

present in experiments, even if it is difficult to detect with correlation analysis. We 347 

compared the other inferred parameters with experimental measurements: The 348 

reversal rate shows a similar increase with density that is greater for npr-1 than N2 349 

(Figure 6 – figure supplement 4B). The speed switching rates could only be 350 

compared indirectly by calculating the ratio of fraction of worms in fast vs. slow 351 

movement in experiments (Figure 6 – figure supplement 4C1) and model simulations 352 

(Figure 6 – figure supplement 4C2). The disagreement may indicate that the 353 

exponential form of kf(ρ) is only a rough approximation. However, aggregation in the 354 

model is not sensitive to speed switching rates, as shown by the broad posterior 355 

distributions for the inferred parameters (Figure 6C-D). 356 

 357 
 358 
Extending the model with food-depletion captures dynamic swarming 359 

 360 

Since we hypothesize that the swarming we observed at longer time scales may be 361 

explained as aggregation under food depletion conditions, we further extended the 362 

model to allow the local depletion of food. Food is initially distributed uniformly, and 363 

becomes depleted locally by worm feeding (see Appendix 1 for details). Absence of 364 

food suppresses the switch to slow speeds, thus causing worms to speed up when 365 

food is locally depleted. As a result, we hypothesize that worm clusters begin to 366 

disperse but reform on nearby food, leading to sweeping.  367 

 368 

Selecting the parameter combination best matching the npr-1 strain (Figure 6) and 369 

an appropriate food depletion rate (chosen such that all food was depleted no faster 370 

than observed in experiments), the resulting simulation produced long-time dynamics 371 

qualitatively representative of the experimentally observed swarming (Figure 7A-B, 372 

Video 7). Worm clusters undergo a persistent but not necessarily directed random 373 
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walk, can disperse and re-form elsewhere, and multiple clusters may co-exist, all of 374 

which we observe experimentally. Tracking the centroid of worms in our simulations, 375 

we find a comparable cluster speed as the median experimental value of 172 μm/min 376 

(Figure 1D) for a range of feeding rates (Figure 7C) (feeding rate is an unknown 377 

parameter as our model only accounts for relative food concentration). Thus, the 378 

model indicates that dynamic swarming of npr-1 aggregates may be explained as an 379 

emergent phenomenon resulting from individual locomotion, and that the same 380 

behavioral mechanisms that produce the initial aggregates, when coupled with local 381 

food depletion, give rise to the observed swarming behavior.  382 

 383 
 384 
Discussion  385 

 386 

We have investigated the mechanisms of aggregation and swarming in C. elegans 387 

collective feeding using quantitative imaging and computational modeling. We show 388 

that while a combination of increased reversals upon leaving aggregates and a 389 

neighbor density-dependent increase in speed switching rates is sufficient to produce 390 

aggregation, the addition of taxis towards neighbors improves the quantitative 391 

agreement between simulations and experiments. Removing any one of the core 392 

behavioral mechanisms (reversals, speed changes, taxis) from our model either 393 

disrupts aggregation or otherwise reduces the quantitative agreement with 394 

experiments (Figure 6, figure supplements 2-3). The proposed taxis might be driven 395 

by a shallow O2 or CO2 gradient created by a worm cluster (discussed further below), 396 

to additional chemical signals unaffected by daf-22 loss of function, or to another 397 

unknown mechanism. By extending the aggregation model to include food depletion, 398 

we show that the same behavioral mechanisms also underlie dynamic swarming in 399 

the hyper-social C. elegans strain, reminiscent of wild fires and other self-avoiding 400 

dynamics.  401 

 402 
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We focused on identifying phenomenological behavioral components giving rise to 403 

aggregation, while remaining agnostic as to the sensory cues causing the behaviors. 404 

The density-dependent interactions could arise from local molecular signaling, or be 405 

mediated through contact-sensing, and the 1/r dependence of the taxis interaction is 406 

compatible with a diffusible, non-degrading factor (such as CO2, or O2 depletion; 407 

dependence would likely be different for a pheromone depending on its degradation 408 

rate). Given that aggregates break up when ambient O2 concentration is reduced to 7% 409 

(Gray et al., 2004), the preferred concentration of npr-1 mutants, the most obvious 410 

candidate for the sensory cue guiding aggregation is O2 (Rogers et al., 2006). A 411 

simple hypothesis would be that oxygen consumption by worms locally lowers O2 412 

concentration to the 5-12% preferred by npr-1 mutants, promoting their aggregation. 413 

To support this, Rogers et al. (2006) report low O2 concentrations inside worm 414 

clusters. However, non-aggregating N2 worms also prefer O2 concentrations lower 415 

than atmospheric (5-15%) (Gray et al., 2004). Furthermore, a strong reduction of 416 

oxygen concentration inside an aggregate to near 7% is unlikely based on reaction-417 

diffusion calculations: the diffusion of oxygen through worm tissue, or their oxygen 418 

consumption, would need to be several orders of magnitude different from estimated 419 

values to create O2 gradients as steep as reported by Rogers et al. (Appendix 2 – 420 

Figure 1). However, as worms have been reported to respond even to small changes 421 

in oxygen concentration (McGrath et al., 2009), aggregation may still be mediated 422 

through a shallower local oxygen gradient.  423 

 424 

In this scenario, high ambient O2 concentration serves as a permissive signal for 425 

aggregation and a shallow oxygen gradient induces worms to stay inside aggregates. 426 

Our agent-based simulations are entirely compatible with this picture. Further 427 

experiments would be required to test the hypothesis that oxygen is playing such a 428 

dual role. One possibility would be to introduce mutations leading to aerobic 429 

metabolism deficiencies into npr-1 mutants. Such mutants would still be able to 430 
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sense ambient oxygen, but are expected to produce an even weaker oxygen 431 

gradient in an aggregate. The resulting phenotype could then be compared 432 

quantitatively to model predictions, e.g. with reduced taxis and/or modified rates of 433 

density-dependent reversal and speed switching. Additionally, one may seek 434 

evidence for the ability of worms to sense a shallow oxygen gradient by repeating the 435 

gas-phase aerotaxis experiment described in Gray et al. (2004), but with a much 436 

smaller gradient (19-21%) in the light of our new calculations, to see if worms can 437 

sense and move towards environments where oxygen levels are only slightly below 438 

ambient concentrations. Further work quantifying the behavior of individual worms at 439 

different oxygen concentrations, such as during oxygen-shift experiments inside flow 440 

chambers where single animals experience acute switches between 21% and 19% 441 

oxygen, may also help to distinguish oxygen as a direct cue or part of the “sensory 442 

triggers that can initiate social behavior by activating chemotaxis or mechanotaxis” 443 

(Gray et al., 2004).  444 

 445 

The model of worm movement and interactions presented here was chosen for a 446 

balance of simplicity and realism, and is not necessarily unique. Our model 447 

comprises a persistent random walk of chain-like worms, which were loosely inspired 448 

by work on bacterial systems (Balagam and Igoshin, 2015). We have adopted 449 

Bayesian parameter inference to capture the uncertainty in our parameter estimates, 450 

and to enable flexible extension to additional experimental data or comparison of 451 

different models in future work. An alternative approach is to be entirely data-driven 452 

in the construction of the model and compute interactions between worms directly 453 

based on their tracked positions at every time step, as has been done in collective 454 

behavior of Myxococcus xanthus (Cotter et al., 2017; Zhang et al., 2018). This 455 

approach may require higher worm numbers and improved tracking, to ensure 456 

comparably large statistical sample sizes with bacterial studies. We have used 457 

experimental data to inform our modeling framework where appropriate (size, shape, 458 
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speed of agents, and reversal and speed change rates at zero density), and verified 459 

that the aggregation outcome is robust and quantitatively similar to experimental 460 

results regardless of the amount of noise in the persistent random walk (Figure 6 –461 

figure supplement 3E-G), or the presence of undulations in agent movement (Figure 462 

6 – figure supplement 3H). We have further verified that aggregation still occurs with 463 

shorter simulated worms (and fewer nodes per worm), given they are long enough to 464 

detect a contact difference between head and tail when exiting a cluster, which is 465 

required to initiate reversals (Figure 6 – figure supplement 5A). Lastly, in the model 466 

presented here, we have allowed for overlap between worms to reflect a degree of 467 

overlap in clusters when worms can crawl over each other. With volume exclusion 468 

our model still produces aggregation, although the clusters are less dense and more  469 

extended (Figure 6 – figure supplement 5B).  470 

 471 

One advantage of using C. elegans to study animal collective behavior is the 472 

opportunity to experimentally control and perturb the system. It should be possible to 473 

experimentally modify the key behavioral parameters identified in this paper with 474 

mutations or acute stimulus delivery in order to test our model. For example, one can 475 

introduce a reversal phenotype with unc-4 mutations, or alter the speed switching 476 

rates with mutations that affect the roaming-dwelling transition. Controlled stimulus 477 

delivery has already been used in previous oxygen-shift experiments. The resultant 478 

experimental outcomes may then be compared to theoretical predictions. Thus, there 479 

are ample opportunities for future studies to further integrate experimental and 480 

theoretical methods in the study of C. elegans collective behavior. 481 

 482 

Despite its extensive study in the lab, it is still uncertain whether aggregation and 483 

swarming have a function in the wild. Aggregation may serve to protect C. elegans 484 

from desiccation or UV radiation associated with the surface environment (Busch and 485 

Olofsson, 2012). C. elegans swarming on unpalatable bacteria may also facilitate 486 
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predation, perhaps through the collective action of secreted molecules that overcome 487 

bacterial defenses (personal communication from J. Hodgkin and G.M. Preston) in a 488 

manner similar to the well-described cooperative predation strategy used by 489 

Myxobacteria xanthus (Muñoz-Dorado et al., 2016; Pérez et al., 2016).  Moreover, 490 

social versus solitary foraging strategies may confer selective advantages in different 491 

food abundance, food quality, and population density environments (de Bono and 492 

Bargmann, 1998; Muhle et al., submitted). The observation that aggregating strains 493 

are less fit in laboratory conditions (Andersen et al., 2014) suggested that social 494 

feeding is not an efficient strategy at least in abundant food conditions. However, the 495 

observed fitness difference between aggregating and non-aggregating strains is 496 

actually dissociable from the feeding strategy in the lab (Zhao et al., 2018), leaving 497 

the question unresolved. Furthermore, in other systems, social feeding can increase 498 

fitness in natural environments via improved food detection and intake (Cvikel et al., 499 

2015; Li et al., 2014; Snijders et al., 2018). It would be time consuming to 500 

experimentally measure the feeding efficiency of different behavioral strategies for a 501 

wide range of food patch sizes, distributions, and qualities. The agent-based model 502 

used in this study presents an opportunity to use a complementary approach to 503 

finding conditions that may favor social feeding. 504 

 505 

C. elegans bridges the gap between the commonly studied micro- and macro-scales, 506 

and finding the behavioral rules underlying this mesoscale system allows us to 507 

consider principles governing collective behavior across scales. Indeed, key 508 

behavioral rules identified here for C. elegans aggregation have been observed at 509 

other scales. Spontaneous reversals have been implicated in bacterial aggregation at 510 

the microscale (Mercier and Mignot, 2016; Starruss et al., 2012; Thutupalli et al., 511 

2015). By contrast, aggregating worms reverse mainly in response to leaving a 512 

cluster rather than spontaneously, thus requiring more complex sensory processing 513 

and behavioral response than seen in bacterial systems. Furthermore, changes in 514 
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movement speed are a common feature in motility-induced phase transitions 515 

(Großmann et al., 2016; Redner et al., 2013b; Velasco et al., 2018). The emergent 516 

phenomena observed in models of interacting particles generally range from 517 

diffusion-limited aggregation to jamming at high volume fractions to flocking of self-518 

propelled rods through volume exclusion (in two-dimensions). In contrast, 519 

aggregation in C. elegans occurs at much lower numbers of objects (tens of worms) 520 

and lower densities (area fraction of 4-6%) than typically studied in this field 521 

(thousands of objects at area fractions of 20-80%), and the density dependence of 522 

motility changes again emphasizes the role of more complex sensing and behavioral 523 

modulations common in macroscale animal groups such as fish shoals (Ward et al., 524 

2011). Thus, collective behavior of C. elegans at the mesoscale indeed draws from 525 

both ends of the size scale and complexity spectrum, linking the physical 526 

mechanisms familiar from microscopic cellular and active matter systems with the 527 

behavioral repertoire of larger multicellular organisms.  528 

 529 

Our approach of decomposing aggregation into component behaviors through 530 

modeling may also have applications in quantitative genetics beyond the scope of 531 

our current study. While hyper-social npr-1 mutants and hypo-social N2 worms show 532 

phenotypic extremes, wild isolates of C. elegans aggregate to different degrees (de 533 

Bono & Bargmann 1998). Previous work has shown that even a very small increase 534 

in the phenotypic dimensionality (from one to two) can reveal independent behavior-535 

modifying loci (Bendesky et al., 2012).  Thus inferring model parameters for data 536 

from multiple wild C. elegans strains would produce behavioral parameterizations 537 

that might serve as a powerful set of traits for finding further behavior-modifying loci.  538 

 539 

 540 

 541 

 542 
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Materials and Methods  557 

Key Resources Table 558 

Resource 
 

Designation 
 

Source or 
reference 
 

Identifiers 
 

Additional information 
 

strain  
(C.elegans) 

N2 Caenorhabditis 
Genetics Centre 

RRID:WB-
STRAIN:N
2 

Laboratory reference strain. 

strain  
(C.elegans) 

DA609 
 

Caenorhabditis 
Genetics Centre 

RRID:WB-
STRAIN:D
A609) 

Genotype: npr-1(ad609)X. 

strain  
(C.elegans) 

OMG2 
 

this paper  Genotype: mIs12[myo-2p::GFP]II; 
npr-1(ad609)X. Originated from 
CB5584 and DA609. 

strain  
(C.elegans) 

OMG10 
 

this paper 
 

 Genotype: mIs12[myo-2p::GFP]II. 
Originated from CB5584; 
outcrossed 6x to CGC N2. 

strain  
(C.elegans) 

OMG19 
 

this paper 
 

 Genotype: rmIs349[myo3p::RFP]; 
npr-1(ad609)X. Originated from 
AM1065 and DA609. 

strain  
(C.elegans) 

OMG24 
 

this paper 
 

 Genotype: rmIs349[myo3p::RFP]. 
Originated from AM1065; 
outcrossed 6x to CGC N2. 

strain  
(C.elegans) 

DR476 
 

Caenorhabditis 
Genetics Centre 

RRID:WB-
STRAIN:D
R476) 

Genotype: daf-22(m130)II. 
 

strain  
(C.elegans) 

AX994 
 

Mario de Bono 
(MRC 
Laboratory of 
Molecular 
Biology) 

 Genotype: daf-22(m130)II; npr-
1(ad609)X.  
 

software Tierpsy 
Tracker (v 
1.3) 

PMID: 3017123
4 

 Software available at 
ver228.github.io/tierpsy-tracker. 

software wormTrackin
gAnalysis 

this paper 
 

 Software available at 
github.com/ljschumacher/wormTrac
kingAnalysis. 

http://doi.org/10.14469/hpc/2232
http://www.ecdf.ed.ac.uk/
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software sworm-
model 

this paper 
 

 Software available at 
github.com/ljschumacher/sworm-
model. 

 559 

Animal maintenance and synchronization  560 

 561 

C. elegans strains used in this study are listed in Key Resources Table above. All 562 

animals were grown on E. coli OP50 at 20°C as mixed-stage cultures and maintained 563 

as described (Brenner, 1974). All animals used in imaging experiments were 564 

synchronized young adults obtained by bleaching gravid hermaphrodites grown on E. 565 

coli OP50 under uncrowded and unstarved conditions, allowing isolated eggs to 566 

hatch and enter L1 diapause on unseeded plates overnight, and re-feeding starved 567 

L1’s for 65-72 hours on OP50.  568 

 569 

Bright field high-number swarming imaging 570 

 571 

The strain used here (Figure 1A and Video 1) is DA609. On imaging day, 572 

synchronized adults were collected and washed in M9 buffer twice before several 573 

hundred animals were transferred to a seeded 90 mm NGM plate using a glass 574 

pipette. After M9 is absorbed into the media, ten-hour time-lapse recordings were 575 

taken with a Dino-Lite camera (AM-7013MT) at room temperature (20°C) using the 576 

DinoCapture 2.0 software (v1.5.3.c) for maximal field of view. Two independent 577 

replicates were performed. 578 

 579 

Bright field standard swarming imaging  580 

Step-by-step protocol is available at dx.doi.org/10.17504/protocols.io.vybe7sn. All 581 

recordings from this dataset are listed in Supplementary Table 2.   582 

 583 

The strains used here (Figure 1B) are DA609 and N2. Prior to collecting the full 584 
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dataset, a single batch of OP50 was grown overnight, diluted to OD600 = 0.75, 585 

aliquoted for use on each imaging day, and stored at 4°C until use. Imaging plates 586 

were 35 mm Petri dishes containing 3.5 mL low peptone (0.013% Difco Bacto) NGM 587 

agar (2% Bio/Agar, BioGene) to limit bacteria growth. A separate batch of plates was 588 

poured exactly seven days before each imaging day, stored at 4°C, and dried at 589 

37°C overnight with the agar side down before imaging. The center of an imaging 590 

plate was seeded with a single 20 μL spot of cold diluted OP50 one to three hours 591 

before imaging. The overnight plate drying step allowed the bacteria to quickly dry 592 

atop the media in order to achieve a more uniform lawn by minimizing the “coffee 593 

ring” effect that would thicken the circular edge of the bacterial lawn. For each 594 

imaging day, synchronized young adults were collected and washed in M9 buffer 595 

twice before 40 animals were transferred to a seeded imaging plate using a glass 596 

pipette. 597 

 598 

Imaging commenced immediately following animal transfer in a liquid drop, on a 599 

custom-built six-camera rig equipped with Dalsa Genie cameras (G2-GM10-T2041). 600 

Seven-hour recordings with red illumination (630 nm LED illumination, CCS Inc.) 601 

were taken at 25 Hz using Gecko software (v2.0.3.1), whilst the rig maintained the 602 

imaging plates at 20°C throughout the recording durations. Images were segmented 603 

in real time by the Gecko software. The recordings were manually truncated post-604 

acquisition to retain aggregation and swarming dynamics only. The start time was 605 

defined as the moment when the liquid dried and the all the worms crawled out from 606 

the initial location of the drop, and the end time was when the food was depleted and 607 

worms dispersed with increased crawling speed. Twelve independent replicates were 608 

performed for each strain.  609 

 610 

Bright field big patch swarming imaging  611 

Step-by-step protocol is available at dx.doi.org/10.17504/protocols.io.vyhe7t6. All 612 
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recordings from this dataset are listed in Supplementary Table 2.   613 

 614 

The experiments here (Figure 1 – figure supplement 1) are identical to those in the 615 

bright field standard swarming imaging, except for two differences. First, the imaging 616 

plates were seeded with a 75 μL spot of diluted OP50 (OD600 = 0.38) and allowed to 617 

inoculate overnight at room temperature before being used for imaging the next day. 618 

Second, recordings were taken over 20 hours instead of seven. Eight independent 619 

replicates were performed for each strain. 620 

 621 

Bright field pheromone imaging  622 

Step-by-step protocol is available at dx.doi.org/10.17504/protocols.io.vyie7ue. All 623 

recordings from this dataset are listed in Supplementary Table 2.   624 

 625 

The strains used here (Figure 3 – figure supplement 1) are DA609, N2, DR476, and 626 

AX994. Bacteria aliquots and imaging plates were prepared as in the bright field 627 

standard swarming imaging assay. For each imaging day, synchronized young adults 628 

were collected and washed in M9 buffer twice before 40 animals were transferred to 629 

a seeded imaging plate using a glass pipette. After M9 was absorbed into the media 630 

following worm transfer in liquid, imaging plates containing the animals were 631 

subjected to a gentle vibration at 600 rpm for 10 s on a Vortex Genie 2 shaker 632 

(Scientific Industries) to disperse animals and synchronize aggregation start across 633 

replicates. Imaging commenced 20 s after the vibration finish, using the same rig set-634 

up as swarming imaging above, except one-hour recordings were taken. Images 635 

were segmented in real time by the Gecko software. At least eight independent 636 

replicates were performed for each strain. Automated animal tracking was performed 637 

post-acquisition using Tierpsy Tracker software (http://ver228.github.io/tierpsy-638 

tracker/, v1.3), which we developed in-house (Javer et al., 2018). Images with were 639 

tracked with customized parameters to create centroid trajectories, 49-point worm 640 
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skeletons, and a battery of features. 641 

 642 

Fluorescence aggregation imaging 643 

Step-by-step protocol is available at dx.doi.org/10.17504/protocols.io.vzje74n. All 644 

recordings from this dataset are listed in Supplementary Table 2.   645 

 646 

The strains used here (Figure 2, Videos 2-4) are OMG2, OMG10, OMG19, and 647 

OMG24. One-color imaging consisted of pharynx-GFP labeled worms only, whereas 648 

two-color imaging also included a small number of body wall muscle-RFP labeled 649 

worms that were recorded simultaneously on a separate channel (thus readily 650 

segmented from the rest of the worms). The latter was necessary to follow 651 

individuals over a long period of time, particularly while inside a cluster, as frequent 652 

pharynx collisions inside clusters lead to lost individual identities and broken 653 

trajectories. For two-color imaging, animals with different fluorescent markers were 654 

mixed in desired proportion (1-3 red animals out of 40 per experiment) during the 655 

washing stage before being transferred together for imaging.  656 

 657 

The data collection paradigm was identical to the bright field pheromone imaging 658 

assay in terms of bacteria aliquots, imaging plate preparation, and vibration 659 

implementation following animal transfer. The difference is that image acquisition 660 

was performed on a DMI6000 inverted microscope (Leica) equipped with a 1.25x PL 661 

Fluotar objective (Leica), a TwinCam LS image splitter (Cairn) with a dichroic cube 662 

(Cairn), and two Zyla 5.5 cameras (Andor) to enable simultaneous green-red imaging 663 

with maximal field of view. One-hour recordings were taken with constant blue (470 664 

nm, 0.8A) and green (cool white, 1.4A) OptoLED illumination (Cairn), and images 665 

were acquired with 100 ms exposure at 9 Hz using Andor Solis software 666 

(v4.29.30005.0). The microscopy room was maintained at 21°C throughout the 667 

recording durations. Ten or more independent replicates were performed for each 668 
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strain. We were able to reproduce stereotyped aggregation dynamics across 669 

replicates under our experimental paradigm (Figure 1 – figure supplement 2). Image 670 

segmentation and automated animal tracking was performed post-acquisition using 671 

Tierpsy Tracker software (v1.3) with customized parameters, to create centroid 672 

trajectories, obtain two-point skeleton from pharynx-labeled individuals and 49-point 673 

midline skeletons from body wall muscle-marked ones, and extract various  674 

features. For body wall muscle-marked animals, trajectories were manually joined 675 

where broken due to tracking errors.  676 

 677 

Fluorescence aggregation tracking data analysis 678 

The code for tracking data analysis is available at 679 

https://github.com/ljschumacher/wormTrackingAnalysis.  680 

 681 

Tracked blobs were filtered for minimum fluorescence intensity and maximum area, 682 

to exclude any larvae and tracking artifacts, respectively, which appeared on the 683 

occasional plate. Local worm densities around each individual were calculated using 684 

k-nearest neighbor density estimation, where the density is k divided by the area of a 685 

circle encompassing the k-th nearest neighbor. We chose 𝑘 = 6 ≈  √𝑁 and verified 686 

based on visual assessment that the overall distribution of local densities changes 687 

very little with increasing k.  688 

 689 

Reversals were detected based on a change of sign of speed from positive to 690 

negative, which was calculated from the dot-product of the skeleton vector (of the 691 

pharynx) and the velocity vector, and smoothed with a moving average over half a 692 

second. We only counted reversals that were at least 50 µm in length, and that 693 

moved at least half a pixel per frame before and after the reversal. Reversal events 694 

thus detected where binned by their local density. For each density bin, reversal rate 695 

was estimated as the number of events divided by the time spent in forward motion 696 

https://github.com/ljschumacher/wormTrackingAnalysis
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for that bin. The variability was estimated using a subsampling bootstrap: the 697 

reversal rate was estimated 100 times, sampling worm-frames with replacement, and 698 

estimating mean and standard deviation.  699 

 700 

Speed profiles were generated by binning the measured speed values for local 701 

density, and then creating a histogram of speed values for each density bin. 702 

 703 

Summary statistics of aggregation, such as pair-correlation and hierarchical 704 

clustering, where calculated as described in Appendix 1. 705 

  706 
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Figure legends 707 
 708 
Figure 1. npr-1 but not N2 worms show swarming behavior over time on thin 709 
bacterial lawn. A) A few hundred npr-1 mutant worms form dense clusters that 710 
move on food over time. Red dashed lines show the food boundary, where area with 711 
food is to the right and food-depleted area is to the left; red arrows show the direction 712 
of cluster movement. B) Forty npr-1 mutant worms also cluster and swarm on food. 713 
Solid circles encompass the same cluster at different time points; dashed circles 714 
show cluster positions prior to the current time point. The same number of N2 worms 715 
do not swarm under our experimental conditions, and instead disperse after initial 716 
transient aggregation. C) Visualization of persistent swarming over time. One frame 717 
was sampled every 30 s over the duration of the videos and binary segmentation 718 
was applied using an intensity threshold to separate worm pixels from the 719 
background. Blobs with areas above a threshold value were plotted as clusters to 720 
show cluster position over time. The same videos as in (B) were used. Dashed 721 
circles show the food boundary. Crosses are cluster centroids at each sample frame. 722 
D) Centroid speed of persistent npr-1 clusters, calculated from centroid positions as 723 
indicated in (C) and smoothed over 10 minutes. Shaded area shows standard 724 
deviation across five replicates. 725 
 726 
Figure 1 – figure supplement 1. npr-1 swarming on a bigger food patch. Forty 727 
npr-1 animals swarm over a big food patch, reminiscent of a persistent random walk. 728 
More than one large moving clusters co-exist towards the end of the video (orange 729 
and yellow), and a cluster (orange) disperses and re-forms elsewhere (orange and 730 
yellow) when it crosses its previous path (blue), presumably due to local food 731 
depletion.  732 

 733 
Figure 1 – figure supplement 2. Stereotyped temporal dynamics.  One-hour 734 
fluorescence recordings of npr-1 animals under our experimental conditions consist 735 
of reproducible temporal dynamics encompassing three phases: transient (animals 736 
move about the lawn and start to form clusters), aggregation (clusters largely remain 737 
stable with individuals entering and exiting), and swarming (worms move across the 738 
lawn in persistent clusters) (see sample Video 2). Percentage of in-cluster worms 739 
remain largely consistent throughout the latter two phases, except that clusters 740 
remain in place during the aggregation phase and become dynamic during the 741 
swarming phase. Error bars represent standard deviation across 13 (npr-1) and 9 742 
(N2) replicates. The average duration of each phase derived from npr-1 experiments 743 
are applied to N2 data to maintain temporal consistency, even though N2 does not 744 
exhibit aggregation or swarming. Subsequent quantitative analyses for both strains 745 
were restricted to using the data from the aggregation (for all but Figure 1D) or 746 
swarming (for Figure 1D) phase, in order to reveal the mechanisms necessary for 747 
producing aggregation or the dynamics of swarming, respectively. 748 

 749 
Figure 2. Fluorescence multi-worm tracking. A) npr-1 mutant and N2 animals 750 
exhibit different social behaviors on food, with the former being hyper-social (top left) 751 
and the latter being hypo-social (top right). Using a pharynx-GFP label (bottom row), 752 
individual animals may be followed inside a cluster. B) In two-color experiments, 753 
worms are either labeled with pharynx-GFP (left) or body wall muscle-RFP (middle). 754 
As the two colors are simultaneously acquired on separate channels, the selected 755 
few RFP-labeled individuals are readily segmented and may be tracked for a long 756 
time, even inside a dense cluster. C) Tierpsy Tracker tracks multiple worms 757 
simultaneously, generating both centroid trajectories (left, image color inverted for 758 
easier visualization; multiple colors show distinct trajectories) and skeletons (middle, 759 
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pharynx-marked animal; right, body wall muscle-marked animal; red dots denote the 760 
head nodes of the skeleton).  761 

 762 
Figure 3. Individual-level behavioral quantification. A) Schematic explaining k-763 
nearest neighbor density estimation. B) Relative rate of reversals as a function of 764 
local density (k-nearest neighbor density estimation with k=6) for npr-1 (blue) and N2 765 
(orange) strains. Lines show means and shaded area shows the standard error 766 
(bootstrap estimate, 100 samples with replacement). C) Distributions of crawling 767 
speeds at different local neighbor densities for both strains. Lines show histograms of 768 
speeds for each density bin, and the color of the line indicates the density (blue is 769 
high, magenta is low). D) Midbody absolute speed for manually annotated npr-1 770 
cluster entry (left, n=28) and exit events (right, n=29). Each event was manually 771 
identified, with time 0 representing the point where the head or tail of a worm starts to 772 
enter (left) or exit (right) an existing cluster. Skeleton xy-coordinates were linearly 773 
interpolated for missing frames for each event, before being used to calculate 774 
midbody speed extending 20 seconds on both sides of time 0 of the event. Speeds 775 
were smoothed over a one-second window. Shading represents standard deviation 776 
across events. Each red line shows the midbody absolute speed of a selected event 777 
that is shown in Video 3 (left) or Video 4 (right).  778 

 779 
Figure 3 – figure supplement 1. Pheromones appear unimportant for aggregation. 780 
npr-1 and N2 animals with pheromones removed by a daf-22 mutation aggregate to 781 
similar levels as their pheromone-intact counterparts. Top row: snapshots of 40 782 
worms from each strain behaving on a thin, uniform lawn. Bottom left: quantification 783 
of cluster area relative to single worm area for each strain; dashed line shows the 784 
cut-off values used to generate the violin plot on the bottom right. Bottom right: 785 
probability of having a relative cluster area above the threshold value (dashed line on 786 
the bottom left). Blob area were extracted as tracking features. For each recording, a 787 
random sample (without replacement) of 500 single worms was used to calculate 788 
single-worm mean area, which was used to normalize multi-worm cluster areas from 789 
that recording. Relative cluster area values for each strain were pooled across 790 
recording replicates, and histograms were created with a bin width of 0.5. 791 
 792 
Figure 3 – figure supplement 2. Shape analysis for lone and in-cluster npr-1 793 
worms. Left two panels: first four eigenworms (Stephens et al., 2008) plotted in real 794 
space for projections of lone worms and in-cluster worms. Right: variance explained 795 
as a function of the number of eigenworms. Eigenworms are based on common 796 
reference (Brown et al., 2013) set for both strains and worm categories. 797 

 798 
Figure 4. Population-level behavioral quantification. A) Positions of npr-1 worms 799 
in an example frame. B) Schematic explaining pair correlation function (S1), which 800 
counts the number of neighbors at a distance r, normalized by the expectation for a 801 
uniform distribution. C) Example dendrogram from which hierarchical clustering 802 
branch length distributions (S2) can be calculated. D) Pair correlation function for npr-803 
1 (blue) and N2 (orange). Lines show mean and shaded area shows standard error 804 
of the mean. E) Hierarchical clustering branch length distributions for npr-1 (blue) 805 
and N2 (orange). Histograms show relative frequency of inter-cluster distances 806 
(single linkage distance in agglomerative hierarchical clustering, equivalent to the 807 
branch lengths in the example dendrogram in (C)). F) Mean standard deviation (S3) 808 
and kurtosis (S4) of the positions of worms, with the mean taken over frames 809 
sampled. 810 
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 811 
Figure 5. Agent-based modeling of emergent behavior. A) Schematic of 812 
individual worm in the agent-based model. Each worm is made up of M nodes (here 813 
M=18), connected by springs to enforce non-extensibility. Each node undergoes self-814 
propelled movement, with the head node (red dot) undergoing a persistent random 815 
walk, and the rest of the nodes follow in the direction of the body. B) Schematic of 816 
simulated reversals upon exiting a cluster. Each worm registers contact at the first 817 
and last 10% of its nodes within a short interaction radius. If contact is registered at 818 
one end but not the other, the worm is leaving a cluster and thus reverses with a 819 
Poisson rate dependent on the local density. C) Schematic of density-dependent 820 
switching between movement speeds. Worms stochastically switch between slow 821 
and fast movement with Poisson rates kslow and kfast, which increase linearly and 822 
decrease exponentially with neighbor density, respectively. D) Snapshots of 823 
simulations with commonly considered aggregation mechanisms, which produce 824 
unrealistic behavior for worm simulations, with flocking and highly aligned clustering. 825 
Arrows indicate the direction of movement of large clusters. E) Phase portrait of 826 
model simulations, showing snapshots from the last 10% of each simulation, for 827 
different values of the two free parameters: density-dependence of the reversal rate 828 
and density-dependence of speed-switching (here kslow = kfast). Blue and orange 829 
panels highlight best fit for npr-1 and N2 data, respectively. F) Summary statistics S1 830 
(pair correlation, top) and S2 (hierarchical clustering, bottom) for the simulation which 831 
most closely matches the experimental data for the npr-1 and N2 strains (blue and 832 
orange panels in (E), respectively). 833 

 834 
Figure 6. Model with taxis captures quantitative aggregation phenotypes. A) 835 
Sample snapshot of the closest matching simulations for npr-1 (top) and N2 (bottom). 836 
B) Summary statistics for npr-1 (orange) and N2 (blue): S1: pair correlation function; 837 
S2: hierarchical clustering distribution; S3: standard deviation of positions; S4: kurtosis 838 
of positions. Solid lines show the closest matching simulations; dashed lines show 839 
sample mean over the posterior distribution; and dotted lines show experimental 840 
means, with error bars showing standard deviation of 13 (npr-1) and 9 (N2) 841 
replicates. C-D) Approximate posterior distribution of parameters for npr-1 (C) and 842 
N2 (D). Diagonal plots show marginal distribution of each parameter, off-diagonals 843 
show pairwise joint distributions. Parameters are: increase in reversal rate with 844 
density, r'; increase in rate to slow down, k's; decrease in rate to speed up, k'f; and 845 
contribution of taxis to motile force, ft. 846 

 847 
Figure 6 – figure supplement 1. Reduced prior distribution used for 848 
approximate Bayesian inference of extended model. Marginal and joint prior 849 
parameter distributions for npr-1 (A) and N2 (B), that have been constructed from a 850 
set of pilot runs excluding any parameter combinations that lead to stable pairs for 851 
either strain, unstable clusters for npr-1, and stable clusters for N2. Remaining 852 
parameter values were used to construct the prior distributions via kernel-density 853 
estimation. See Appendix 1 for details. 854 
 855 

 856 
Figure 6 – figure supplement 2. Core model components, but not noise and 857 
undulations in movement, are necessary for quantitative agreement with 858 
aggregation summary statistics. A) Simulation for parameters equal to mean of 859 
posterior distribution for npr-1 strain (Figure 6C). (A1), Sample snapshot of 860 
simulation; (A2), Pair correlation statistic, averaged over ten simulations (solid line), 861 
and standard error of the mean (error bars), with experimental reference (dotted line, 862 
as in Figure 6B); (A3), Hierarchical clustering distribution, averaged over ten 863 
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simulations (solid line), and standard error of the mean (error bars), with 864 
experimental reference (dotted line, as in Figure 6B); (A4), Combined score for 865 
model agreement with experiment (lower score is better) for summary statistics in 866 
(A1) and (A2), calculated as the difference in the logarithm of the summary statistics 867 
between experiment and simulation (see Appendix 1 for details). B) As in (A) but with 868 
r'=0 (no reversals). C) As in (A) but with worms always moving at the faster speed. D) 869 
As in (A) but with ft=0 (no taxis towards other worms). E) As in (A) but with η=0 (no 870 
directional noise in movement). F) As in (A) but with η=0.005. This  η represents 871 
directional noise 10 times lower than in (A). G) As in (A) but with η=0.08. This η 872 
represents higher noise than in (A), and which roughly corresponds to the velocity 873 
autocorrelation measured for interacting worms in our experiments (Figure 6 – figure 874 
supplement 4A2-3). H) As in (A) but with sinusoidal undulations in the direction of 875 
movement, with a frequency similar to that of npr-1 worms (see Appendix 1 for 876 
details). 877 
 878 

 879 
Figure 6 – figure supplement 3. Analysis of orientational and velocity 880 
correlations in experiments and simulations. A) Orientational correlation 881 
quantifies the alignment of the pharynxes (experiments, A1), or first three nodes 882 
(simulations, A2-4) between pairs of worms a given distance apart. A value of 1 883 
corresponds to parallel alignment, and -1 to anti-parallel alignment. Solid lines show 884 
the average directional correlation and shaded area shows the 95% confidence 885 
interval. (A1), Experimental measurements; (A2), Simulation for parameters equal to 886 
mean of posterior distribution for npr-1 strain (Figure 6C); (A3), As in (A2) but with 887 
ft=0 (no taxis towards other worms); (A4), As in (A2) but with worms always moving 888 
at the faster speed. B) Velocity correlation quantifies the alignment of movement 889 
directions between pairs of worms a given distance apart. A value of 1 corresponds 890 
to worms moving in the same direction, and -1 to worms moving in opposite 891 
directions. Solid lines show the average directional correlation and shaded area 892 
shows the 95% confidence interval. (B1), Experimental measurements; (B2), 893 
Simulation for parameters equal to mean of posterior distribution for npr-1 strain 894 
(Figure 6C); (B3), As in (B2) but with ft=0 (no taxis towards other worms). C) 895 
Correlation between velocity of a worm and the direction to each neighbor was 896 
calculated to quantify the degree of taxis towards other worms. A value of 1 897 
corresponds to worms moving directly towards a neighbor, and -1 to directly moving 898 
away from a neighbor. Solid lines show the average directional correlation and 899 
shaded area shows the 95% confidence interval. (C1), Experimental measurements; 900 
(C2), Simulation for parameters equal to mean of posterior distribution for npr-1 901 
strain (Figure 6C); (C3), As in (C2) but with r'=0 (no reversals). 902 
 903 

 904 
Figure 6 – figure supplement 4. Additional comparison of model parameters 905 
with experimental measurements. A) Velocity autocorrelation. (A1), From 906 
experiments with body wall muscle-tracked single worms on circular food patches; 907 
(A2), From experiments with 40 worms, of which a few were body wall muscle-908 
tracked to allow acquisition of longer trajectories; (A3), From simulated, non-909 
interacting worms undergoing a persistent random walk for different parameter 910 
values of η, the strength of the angular noise. The dashed line shows a value of 0.23, 911 
corresponding approximately to the expected correlation for choosing angles at 912 
random, uniformly distributed between -3/4π and 3/4π, thus representing an almost 913 
complete reorientation with respect to the original direction of motion. Note that this 914 
level is reached after about 15 s for η=0.05 and for single worms (A1), and after 915 
about 8 s for η=0.08 and interacting worms (A2). B) Relative reversal rates at various 916 
local densities from experiments (solid lines and shaded 95% confidence interval, 917 
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same data as in Figure 3B) and from model equations for reversal rates, 918 
parameterized with the mean of posterior distribution (dotted lines). C) Speed 919 
switching rates at various local densities. (C1), Ratio of worms moving at fast (up to 920 
350 μm/s) versus slow (<100 μm/s for npr-1, <50 μm/s for N2) speeds as measured 921 
in experiments; (C2), Ratio of  worms moving at fast versus slow (<100 μm/s for npr-922 
1, <50 μm/s for N2) speeds as measured in simulations with posterior mean 923 
parameters, showing average over ten (npr-1) and eight (N2) simulations, error bars 924 
showing error in the mean. The disagreement may  indicate that the exponential form 925 
of kf(ρ) (see Figure 5C and main text) is only a rough estimate. For (B) and (C), 926 
inferred model parameters were converted to units of worms/mm2. 927 
 928 

 929 
Figure 6 – figure supplement 5. Aggregation model requires minimum length of 930 
simulated worms, and is robust to introducing volume exclusion. A) 931 
Simulations with decreasing length of agents. (A1), Snapshot of simulation with 932 
posterior mean parameter values for npr-1, as in Figure 6 - figure supplement 2A. 933 
Worms have M=18 nodes and a total length of Lw=1.2mm; (A2), Modified model with 934 
M=9 nodes and shorter worms (but same width) still produces aggregation, without 935 
readjusting other parameters; (A3), As in (A2) but with M=6 nodes per worm and 936 
shorter total length; (A4), As in (A2) but with M=5 nodes per worm and shorter total 937 
length; (A5), at M=4 nodes per worm and corresponding length of Lw=0.3211mm, 938 
stable aggregates comprising all worms fail to form. At this worm length, the 939 
interaction radii of head and tail nodes start to overlap, and worms require a 940 
difference in contact between head and tail to initiate reversals in our simulations. B) 941 
Simulations with volume exclusion. (B1), Snapshot of simulation where volume 942 
exclusion is enforced, such that worms cannot overlap (apart from themselves), 943 
without adjusting any other parameters. The number of nodes per worm has been 944 
increased to M=45 to ensure sufficient overlap between nodes within a worm. Pair 945 
correlation function (B2) and hierarchical clustering distribution (B3) show that 946 
aggregate is spread out and less dense compared to experiments (dotted line). Solid 947 
lines show mean over three simulations and error bars show standard deviation. 948 
 949 

 950 
Figure 7. Simulations capture dynamic swarming. A) Snapshots of aggregation 951 
simulation with food depletion. Background color shows relative food concentration 952 
with white indicating high food and black indicating no food. B) Visualization of worm 953 
positions in (A) over time, showing cluster displacement. Note the periodic boundary 954 
conditions. C) Cluster speed at various feeding rates relative to lawn thickness (other 955 
parameters equal to mean of posterior distribution for npr-1). The upward trend is 956 
expected: smaller lawn thickness leads to faster movement as worms run out of food 957 
quicker and need to re-form clusters on nearby food. Cluster speed is calculated the 958 
same way as in Figure 1D; error bars show median absolute deviation over five 959 
simulations. Dashed line indicates experimentally-derived median cluster speed 960 
(from Figure 1D) for comparison.  961 
  962 
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Video Captions 963 

Video 1. Sample video showing npr-1 collective feeding dynamics (bright field 964 

high-number swarming imaging). The video plays at 300x the normal speed. 965 

Video 2. Sample video showing npr-1 collective feeding dynamics 966 

(fluorescence 40 worm aggregation imaging). The video plays at 90x the normal 967 

speed.  968 

Video 3. A single event showing switch from high to low motility state prior to 969 

cluster entry (fluorescence 40 worm aggregation imaging).  The red worm at the 970 

bottom (arrow) decreases speed before entering a cluster. Inset: midbody absolute 971 

speed of that individual with respect to time 0 as the point of the head entering a 972 

cluster; open blue circle shows the current speed matched to the video frame.  973 

Video 4. A single event showing switch from low to high motility state prior to 974 

cluster exit (fluorescence 40 worm aggregation imaging). The red worm 975 

increases speed before exiting a cluster. Inset: midbody absolute speed of that 976 

individual with respect to time 0 as the point of the head exiting a cluster; open blue 977 

circle shows the current speed matched to the video frame. 978 

Video 5. Sample model (with taxis) simulation describing npr-1 mutants. The 979 

video plays at 30x the normal speed. 980 

Video 6. Sample model (with taxis) simulation describing N2. The video plays at 981 

30x the normal speed. 982 

Video 7. Sample swarming simulation describing npr-1 mutants. Background 983 
color shows relative food concentration with white indicating high food and black 984 
indicating no food.The video plays at 30x the normal speed. 985 
  986 
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Appendix 1

1 Agent-based simulations
We aim to create a model of worm locomotion and interaction that recapitulates aggregation and swarm-
ing behavior. Many mechanical models of worm locomotion exist in the literature, but we aim for a
simpler representation of each individual worm, so that computationally inexpensive simulations of tens
to hundreds of worms allow rapid hypothesis exploration and testing.

1.1 SPP worm model
Each agent is represented by M nodes connected linearly by M − 1 segments. Each node moves as a
self-propelled particle with a preferred speed v. At each time-step, the direction of movement is updated
based on phenomenological forces representing active movement, interactions with other worms, and
constrains to ensure the worm does not extend in length or bend excessively. Nodes follow forces in the
over-damped regime, v ∼ F, with periodic boundary conditions.

The code for model simulations is available at github.com/ljschumacher/sworm-model.

1.1.1 Self-propelled movement

The self-propulsion is modeled as a motile force, Ft+1
m1

= v
[
cos(φt+1

1 ), sin(φt+1
1 )

]
, on node 1, i.e., the

head node. Note that for notational convenience we ignore the constant of proportionality, implicitly
writing F = F̃ /γ, where F̃ has units of force and F has units of velocity.

To mimic a worm’s persistent movement with directional changes over time [Salvador et al., 2014],
we add a stochastic contribution to the head node’s movement, given by φt+1

1 = φt1 + ηξ, where φi
is the orientation of node i with respect to the x-axis, η is the noise strength, and ξ is a normally
distributed random variable. The noise is parameterized by analyzing the directional auto-correlation
of single worm simulations, and set so that the autocorrelation after 25s (roughly the time it takes an
npr-1 worm to cross the 8.5mm food patch) is, on average, less than 0.23. This value is equivalent to a
random reorientation between −3π/4 and 3π/4, and thus reflects that over a distance equivalent to the
food patch size, worms should lose all memory of their orientation. For N2 simulations, which move at a
lower speed, the noise strength is scaled by a factor of

√
vnpr−1/vN2, which results in the same condition.

For the nodes following the head node, the direction of movement is given by the tangent vector
towards the next node. For node i, the tangent vector is calculated as si = [(xi−xi+1) + (xi−1−xi)]/2,
i.e., the average between the direction towards the previous node and the direction from the next node.
The motile force on node i is then given by Ft+1

mi
= vsi.

After forces have been applied and the nodes’ positions updated, the headings are updated to reflect
the direction of the displacement for calculating the movement in the next time step.

1.1.2 Undulations

To mimic more worm-like movement (Figure 6 – figure supplement 2H), we impose a sinusoidal contri-
bution to the direction of the head node’s movement. If θ is the direction of movement in the worm’s
reference frame, and φi the orientation of node i with respect to the x-axis, we assume the heading of
the worm internally oscillates with angular frequency ω and amplitude θ0, so that

θ(t) = θ0 sinωt. (1)

This prescribes the change in direction for the head node at every time step, such that

φt+1
1 = φt1 + ∆θt+1 + ηξ = φt1 + θt+1 − θt + ηξ, (2)

where ω = 2π × 0.6Hz, θ0 = π/4, and the mth node’s internal oscillator is phase-shifted by ∆Ψm =
11.76×m/M .

1.1.3 Taxis

To investigate the effect of taxis in our simulations, we treat the movement of the head node as an
attracting walk with respect to other worm’s nodes within an interaction radius Rtaxis [see Hannezo et al.,
2017, SI]. This was implemented as an additional term ftptaxis added to the motile force that affects its
direction as well as its the magnitude (reflecting additive contribution from multiple neighboring worms).

github.com/ljschumacher/sworm-model


The parameter ftaxis controls the strength of taxis per other worm. The taxis force is additionally
weighted by 1/r to reflect that nearby neighbors exert a stronger attraction, i.e. as if mediated by a non-
degrading, diffusible factor, such as oxygen or CO2. The vector ptaxis is the sum of the directions towards
other worms’ nodes within the interaction radius, Rtaxis, so that for worm k, the taxis contribution to
the motile force is

ptaxis,k =
1

M

∑
j

[
δ(rc ≤ rjk ≤ Rtaxis)

rc
rjk
− δ(rjk < rc)

]
xj − xk
|xj − xk|

. (3)

The sum is over all nodes of other worms, and the force is normalized by M to make it independent on
the number of nodes in a worm. To prevent excessive overlap of worms, the taxis force become repulsive
for worms that overlap, hence the negative second term.

1.1.4 Length constraints

To enforce approximately constant length of the worm, each node is connected by non-linear springs of
rest length l0 that resist an extension δl = l − l0, where l is the length of the segment, with opposing
force

Fl = kl l̂
δl

1− ( δll )2
, (4)

which points along the direction of the segment, l̂ = l/l.

1.1.5 Volume exclusion

For supplementary simulations with volume exclusion (Figure 6 – figure supplement 5B), the forces are
modified as follows when two nodes are overlapping: Any two nodes i and j of different objects that are
closer than 2rc exert contact forces onto each other (nodes within the same object can overlap without
contact forces). The total force acting on node i, Fi is projected onto the connecting line between the
nodes, and if this projected force is pointing towards node j (pushing rather than pulling), it is added
to Fj . The contact force of j onto i is calculated mutatis mutandis.

1.1.6 Adhesion

To assess how aggregation is affected by a moderate adhesion (equal to both strains), such as could arise
through liquid film forces [Gart et al., 2011], we implemented a soft-core version of the Lennard-Jones
potential. This gives rise to a force between any two nodes of different worms that is repulsive at short
distances, attractive at intermediate distances, and zero at long distances. The force between two nodes
separated by r < 3.75rc (the cut-off was chosen to limit adhesive force to nearest neighbors) is given by
a soft-core potential of a generalized Lennard-Jones form [Heyes, 2010]:

Fa = 8
εa
r̃

[(σa
r̃

)2

− σa
2r̃

]
, (5)

where r̃ = 2σa/3 + r. The parameter σa = 2rc was chosen so that the force becomes attractive at a
distance greater than the node particle size, the exponent of the attractive term was chosen as −1 to
reflect the 1/r dependence estimated for liquid film tension between two worms [Gart et al., 2011], and
the exponent of the repulsive term was set as −2 to win over the attractive term at short distances (to
ensure volume exclusion). Note that adhesion is not used in any of the results of this work and was only
used to illustrate its unrealistic effects on aggregation (Figure 5D).

1.1.7 Switching between slow and fast movement

Worms stochastically switch between movement at speeds v0 and vs with rates that depend on the local
density of worms surrounding them. In the absence of other worms, the (Poisson) rates are ks0 to slow
down from v0 to vs, and kf0 to speed up from vs to v0. These rates increase and decrease, respectively,
with the number of neighboring worm nodes within ri of any node of the worm, such that

kslow = ks0 + k′sρ, (6)

where the linear dependence is chosen for simplicity, and k′s is a free parameter, and

kfast = kf0 exp [−k′fρ], (7)



where the exponential decay with decay constant k′f was chosen to provide a lower bound of 0 for the
rate. Note that the rate of switching to fast movement is related to the duration of a period of slow
movement via τslow = 1/kfast (for Poisson rates).

The local density ρ is estimated by counting the average number of other worms’ nodes in a radius
ri around each node of the current worm.

ρ =
1

M

M∑
m

N∑
n

M∑
j

Θ(ri − |rm − rnj |), (8)

where |rm − rnj | is the distance from the current node m to node j of worm n, Θ is the Heaviside step
function (such that Θ(x) = 1 if x > 0), and the sum over other worms skips the index of the current
worm.

For simulations with undulations, when a worm has slowed down to vs, the angular frequency of its
internal oscillators slows down accordingly to ωs = ωvs/v0.

1.1.8 Reversals

To model reverse movement, we switch the direction of the nodes for the duration of the reversal, such
that movement originates from the tail and the rest of the body follows. Reversals events are generated
stochastically, with Poisson-rate rrev, which depends on the local density via

rrev = r′ρ, , (9)

where r′ is a free parameter, and ρ is the local density as estimated above. Once a reversal rate has
started, it lasts for trev = 2s, unless otherwise aborted (see Contact-dependent reversal events).

1.1.9 Reversals with undulations

Upon reversals, we have also to reset the phase of the internal oscillator prescribing the undulating
movement of the worm to match its current shape (as the phase may have decoupled from the shape
during movement). Recall that the internal orientation of a node with index i = s/Lw, where s is the
arc-length along the worm, is changing with the node’s internal oscillator according to

θ = θ0 sin

(
ωt− s∆ψ

l

)
,

and the derivative with respect of arc length, s, differentiating towards the head, i.e., decreasing s, gives

−dθ

ds
=

∆ψ

l
θ0 cos

(
ωt− s∆ψ

l

)
.

Both the angle, θ, and the curvature, dθ
ds , are needed to estimate the phase uniquely, using

θ

−dθ
ds

l
∆ψ

= tan

(
ωt− s∆ψ

l

)
,

which we re-arrange to get the phase, i.e., the node’s oscillator’s internal time,

ψ = ωt− s∆ψ

l
= arctan

(
θ

−dθ
ds

l
∆ψ

)
. (10)

We use this expression to set the phase of the head/tail node after a reversal starts/ends, and set the
phase of the rest of the worm according to ψi = ψ − i∆ψ.

1.1.10 Contact-dependent reversal events

The rate of reversal events depends on whether the head and tail are in close proximity with other
worms, being rrev when only the head or tail is in close proximity to another worm, but not both, and
zero otherwise. Head and tail nodes are specified as the first and last 10 percent of the nodes (rounded),
respectively. Contact is registered if any other worm’s nodes are within ri of the head/tail nodes. If the
worm is going forward and the tail is in contact, but the head is not, reversals occur with rate rrev. If
the worm is already reversing, and the tail is not in contact, but the head is, reversals stop with the
same rate. If both or neither head and tail are in contact, no reversals occur (adding reversal rates as
measured for freely moving worms did not qualitatively change the aggregation outcome of simulations).



1.1.11 Adaptive time-step

The time-step of simulations is chosen adaptively to maintain accuracy at higher forces. To achieve this
the time-step scales inversely with the maximum magnitude of forces in the system, dT ∼ dT0/max (Fi).
The precise scaling is chosen so that the node with the highest force acting on it moves no further in one
time-step than 1/2 of the node radius.

1.2 Food depletion
For simulations with food depletion, food is initialized uniformly on a grid of size L/(4rc), where rc is
the node radius. Food concentration is set equal to 100 in arbitrary units. Before worm movement is
calculated, food concentrations are checked. If the food is depleted at the grid-point closest to the head
node of a worm, the worm moves at the faster speed v0, regardless of other interactions (i.e. does not
slow down and speeds up if previously slowed down). After worm movements, food is consumed in each
grid-point by an amount rfeed per worm-head in that grid-point, with a minimum of zero food.

2 Parameter inference

2.1 Inference scheme
We employ approximate Bayesian inference with rejection sampling [Beaumont et al., 2002, van der Vaart
et al., 2016]. We sample from our prior distribution of the parameters (see Reduction to feasible parameter
space) and run simulations for these samples. Similarity to the experimental data is then computed
based on summary statistics (see Summary statistics), and the closest fraction α of the simulations are
chosen. To estimate the posterior distribution from these chosen parameter samples, we construct a
kernel density estimation, with the weight for each sample chosen inversely proportional to the distance
from the experimental data.

2.2 Reduction to feasible parameter space
For the four-parameter model, with density-dependent reversals (r′), speed-switching rates (k′s, k′f) and
taxis interactions (ft), we employ a strategy to exclude unfeasible regions of parameter space before
running long simulations. Our reasoning is that interactions must be such that pairs of worms should
not be stable for long times, and cluster of worms should be stable/unstable for npr-1/N2. We first sample
parameters for pilot simulations from a regular grid, with 10d samples, where d is the dimensionality
of our parameter space. We then run simulations of worms starting as an overlapping pair, and assess
whether they are within 1mm of each other after 1min of simulation (taking the median of 10 repeated
simulations). If their separation is below the threshold, we discard the parameter sample. The remaining
parameter samples are used to run simulations in which worms start out in a cluster (by confining their
initial positions to a circle of 1.8mm radius). These simulations are run for 300s, after which stability of
the cluster is assessed by calculating the radius of gyration of the head-nodes of the worms. If the radius
of gyration is above 3mm (which corresponds approximately to worms being uniformly distributed within
a square of 7.5mm side length), the cluster is deemed not stable and the parameter sample is discarded
for npr-1 simulations, and kept for N2 simulations. Both the pair- and cluster-stability thresholds are
chosen conservatively to include rather than exclude potential parameter samples. Never the less, only
a few percent of the initial parameter space remain as feasible for further inference. The remaining
parameter samples are used to construct a prior distribution via kernel density estimation, i.e., centering
a Gaussian distribution on each sample.

For the N2 parameterization, only pilot runs with ftaxis = 0 were accepted, so we chose to sample this
parameter on a log10-scale for both strains. When constructing the approximate posterior distribution
this change in prior π was taken into account by weighting each sample with the appropriate importance
factor of πnew/πold.

2.3 Summary statistics
We use the following summary statistics to quantify aggregation and compute the similarity between
simulations and the experimental data:



1. The pair-correlation function compares the density of neighbors at a distance r to that expected
under a uniform random distribution [Gurry et al., 2009]:

S1 = g(r) =
A

N(N − 1)

∑N
i

∑N
j 6=i 1ij(r − a < rij ≤ r)
π(r2 − (r − a)2)

, (11)

where rij is the distance between objects i and j, A = L2 is the size of the simulation domain,
chosen to match the estimated are of the food patch in experiments.

2. Hierarchical clustering (as implemented in Matlab’s linkage function) quantifies the structure of
a point pattern through agglomerative clustering. Each frame results in a dendrogram, or clustering
tree. We summarize the distribution of these clustering trees through the overall distribution of
branch lengths, S2.

3. The standard deviation of the positions, σ(x) =
√
σ(x)2 + σ(y)2, is a simple way to quantify the

spread of points x = (x, y), which we average over time to give

S3 = 〈σ(x)〉t. (12)

4. The kurtosis or the sharpness of the distribution of positions,

S4 = 〈Kurt(x)〉t. (13)

To compute these summary statistics, we randomly sample frames from experiments and simulations
such that on average we have one frame every three seconds. To mimic the partial information about a
worm’s position obtained from the pharynx-labelled imaging, we restricted the simulation analysis to the
first 16 percent of the nodes (based on measurements of pharynx size relative to worm body length), from
which centroid positions for each worm were obtained. We also computed the nematic order parameter
[Weitz et al., 2015], but found these to be low (≈ 0.2), and hence not an informative summary statistic
of aggregation in our system.

Note that when calculating summary statistics for simulation outputs, periodic boundary conditions
have to be taken into account. This means calculating any distances r as min(|r|, |L−r|), and furthermore
calculating the mean positions, x̄i, in dimension i (used in S3 and S4) as

x̄i =
L

2π
(atan2(−s̄xi

,−c̄xi
) + π), (14)

where sxi
= sin (xi/(2πL)), cxi

= cos (xi/(2πL)) and atan2 is the four-quadrant inverse tangent.

2.3.1 Distance function

Before combining the summary statistics into a single distance function, we scale them for their overall
magnitude and dimensionality as follows: We take the log-ratio of the summary statistics from ex-
periments and simulations [Barnes et al., 2012] to adjust both for the different scale of bins within
distributions, and the different scales of summary statistics overall, such that each statistic is weighted
approximately equally, irrespective of its average magnitude.

We further note that higher dimensional summary statistics result in larger distance values, even if
the difference in each dimension is equal to that of a lower dimensional statistic. We choose to normalize
for this by dividing the distance by the square root of the dimensionality.

Thus, our distance function for summary statistic Si with dimensionality Di is given by

di = || logSi,obs − logSi,sim||2/
√
Di. (15)

Using log-ratios can cause infinite distances if any of the Si,sim = 0. To avoid this, we cap the
simulation data 0.005, i.e., we set Si,sim = max(Si,sim, 0.005). This limits the penalizing effect of empty
bins and the tails of a distribution on the overall distance function.

2.3.2 Alternative weighting of summary statistics

We explored optimizing the weighting of summary statistics to maximize the distance between our prior
and posterior distribution over the parameters [Harrison and Baker, 2017], but this led to weighting of
the summary statistics (with all the weight concentrated in S2 and S3) which did not match with visual



inspection of the closest matching simulations. In other words, equally weighting all summary statistics
returned simulations that better reflected our intuition for what constitutes a good match, in particular
for the npr-1 parameterization. In the interest of completeness we describe here the method of Harrison
and Baker [2017] applied to our data, as it informed our thinking, even though we did not use the results.

To try and optimize the weighting of our summary statistics, we optimized the Hellinger distance
between our prior and posterior distribution over the parameters [Harrison and Baker, 2017], with weak
regularization (λ = 10−4) of the parameters included in the objective function. Distributions are calcu-
lated using kernel density estimation as described above, and as an optimization procedure we use the
genetic algorithm provided in Matlab’s global optimization toolbox. With the weightings wi for each
summary statistic thus optimized, the overall distance is d =

∑
i widi.

This method of adaptively weighting summary statistics is still sensitive to the choice of statistics.
Our choices are by no means exhaustive, and we chose to focus on statistics commonly used to quantify
aggregation (pair-correlation function and hierarchical clustering) and the shape of distributions (variance
and kurtosis).

To ensure that the same summary statistics are chosen for the parameter inference for either strains,
we jointly optimize the posterior distribution for both strains, by minimizing the objective function
L = −(H1 +H2), where Hi is the Hellinger distance between the prior and the posterior for strain i.

2.4 Kernel density estimation
For plotting the marginal joint distributions between pairs of parameters, we use ksdensity (Matlab,
R2018a). For constructing the higher-dimensional parameter distributions to sample from, we implement
the kernel density estimation using gmdistribution (Matlab, R2018a) with Silverman’s rule of thumb
for the bandwidths.

2.5 Sampling sequence
We first sampled 100,000 samples from our prior, resulting in 11,214 simulations for npr-1 and 1394
simulations for N2 (only a fraction of parameter samples resulted in full simulations because samples
resulting in stable pairs and stable/unstable clusters were rejected for N2/npr-1, see Reduction to feasible
parameter space). To improve the successful sampling rate, we constructed an approximate posterior
distribution from the initial samples, and continued sampling from this posterior distribution, thus
ensuring the samples were concentrated in the appropriate regions of parameter space. This change in the
sampling distribution was accounted for when constructing the final posterior (Figure 6D) distributions
through weighting by the ratio of the initial prior distribution to the proposal distribution (with a small
regularization to avoid division by near-zero weight for outlier samples). In this second round of sampling
we generated 13,341 simulations for N2 and 27,384 samples for npr-1.
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Appendix 2 1 

Figure caption  2 

Figure 1. Oxygen consumption-diffusion calculations predict shallow O2 3 
concentration gradients. A) Plot of feasible oxygen gradients inside worm aggregates. The 4 
oxygen concentration decays with length constant  √𝑫/µ ≈ 𝟏 mm  , with diffusion constant 5 

𝑫 ≈ 𝟐. 𝟏 × 𝟏𝟎−𝟓 
cm𝟐

s
 (in water) and oxygen consumption rate µ ≈ 𝟎. 𝟏𝟒 min−𝟏  (estimated as an 6 

upper bound for 200 pl/min (Shoyama et al., 2009; Suda et al., 2005) at 21% oxygen and 7 
8000 pl worm volume). The thinnest dimension of a cluster is relevant for diffusion, which is 8 
its thickness. We can approximate the cluster geometry either as flat, which results in a 1D 9 
diffusion gradient (solid line), or as hemispherical, which we approximate by spherically 10 
symmetric diffusion in 3D (dashed line). In either case the reaction-diffusion equation 11 
𝝏𝒄

𝝏𝒕
= 𝐃𝛁𝟐𝒄 − µ𝒄   was solved at steady state. B) Gradient of diffusible, non-degrading signal, 12 

e.g. CO2, outside a point source. Without decay, this problem is equivalent to calculating the 13 

potential around a point charge, and the concentration would be 𝒄 =
𝝀

𝟒𝝅𝑫𝒓
, in 3D, where 𝝀 is 14 

the production rate times the volume of a worm, 0.14/min (equal and opposite to the O2 15 
consumption, based on mass conservation). A point source represents the contribution of a 16 
short section of a worm, and the contributions of many worms in an aggregate would 17 
integrate to give an approximately logarithmic gradient of signal outside the aggregate. 18 

 19 
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