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Abstract In complex biological systems, simple individual-level behavioral rules can give rise to

emergent group-level behavior. While collective behavior has been well studied in cells and larger

organisms, the mesoscopic scale is less understood, as it is unclear which sensory inputs and

physical processes matter a priori. Here, we investigate collective feeding in the roundworm C.

elegans at this intermediate scale, using quantitative phenotyping and agent-based modeling to

identify behavioral rules underlying both aggregation and swarming—a dynamic phenotype only

observed at longer timescales. Using fluorescence multi-worm tracking, we quantify aggregation in

terms of individual dynamics and population-level statistics. Then we use agent-based simulations

and approximate Bayesian inference to identify three key behavioral rules for aggregation: cluster-

edge reversals, a density-dependent switch between crawling speeds, and taxis towards

neighboring worms. Our simulations suggest that swarming is simply driven by local food depletion

but otherwise employs the same behavioral mechanisms as the initial aggregation.

DOI: https://doi.org/10.7554/eLife.43318.001

Introduction
Collective behavior has been widely studied in living and non-living systems. While very different in

their details, shared principles have begun to emerge, such as the importance of alignment for flock-

ing behavior in both theoretical models and birds (Bialek et al., 2012; Pearce et al., 2014; Rey-

nolds, 1987). Until now, the study of collective behavior has mainly focused on cells and active

particles at the microscale, controlled by molecule diffusion and direct contact between cells or par-

ticles (Köhler et al., 2011; De Palo et al., 2017; Peruani et al., 2012; Starruß et al., 2012), and on

animals at the macroscale, aided by long-range visual cues (Bialek et al., 2012; Katz et al., 2011;

Pearce et al., 2014). Collective behavior at the intermediate mesoscale is less well-studied, as it is

unclear what processes to include a priori. At the mesoscale, sensory cues and motility may still be

limited by the physics of diffusion and low Reynolds numbers, respectively, yet the inclusion of ner-

vous systems allows for increased signal processing and a greater behavioral repertoire. Do the rules

governing collective behavior at this intermediate scale resemble those at the micro- or the macro-

scale, some mixture of both, or are new principles required?

C. elegans collective behavior can contribute to bridging this scale gap. Some strains of this 1

mm-long roundworm are known to aggregate into groups on food (de Bono and Bargmann, 1998);

here we also report an additional dynamic swarming phenotype that occurs over longer time peri-

ods. C. elegans represents an intermediate scale not only in physical size but also in behavioral com-

plexity—crawling with negligible inertia, limited to touch and chemical sensing, yet possessing a

compact nervous system with 302 neurons (White et al., 1986) that supports a complex behavioral

repertoire (Hart, 2006; Schwarz et al., 2015). Wild C. elegans form clusters on food at ambient
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oxygen concentrations, as do loss-of-function neuropeptide receptor 1 (npr-1) mutants. The labora-

tory reference strain N2, on the other hand, has a gain-of-function mutation in the npr-1 gene that

suppresses aggregation (de Bono and Bargmann, 1998), rendering N2 animals solitary feeders.

Thus, a small genetic difference (just two base pairs in one gene for the npr-1(ad609lf) mutant) has a

big effect on the population-level behavioral phenotype. Previous research on collective feeding has

focused primarily on the genetics and neural circuits that govern aggregation (Bretscher et al.,

2008; Busch et al., 2012; Chang et al., 2006; Cheung et al., 2005; de Bono et al., 2002; de Bono

and Bargmann, 1998; Gray et al., 2004; Jang et al., 2017; Macosko et al., 2009), rather than on a

detailed understanding of the behavior itself. Rogers et al. (2006) is a notable exception and

includes an investigation of the behavioral motifs that might lead to cluster formation including

direction reversals at the edge of clusters. However, we do not know whether these candidate motifs

are sufficient to produce aggregation. We also do not know whether aggregation at short times and

swarming at longer times are distinct behaviors or different emergent properties of the same under-

lying phenomenon.

In this paper, we use fluorescence imaging and multi-worm tracking to examine individual behav-

ior inside aggregates. We present new and systematic quantification of the aggregation behavior in

hyper-social npr-1(ad609lf) mutants (henceforth referred to as npr-1 mutants) and hypo-social N2

worms. Next, we draw on the concept of motility-induced phase transitions to explain aggregation

as an emergent phenomenon by modulating only a few biophysical parameters. Unlike aggregation

driven by attractive forces, in motility-induced phase transitions individuals can also aggregate sim-

ply due to their active movement and non-attractive interactions, such as volume exclusion (avoid-

ance of direct overlap) (Redner et al., 2013a). For instance, this concept has contributed

understanding to the aggregation of rod-shaped Myxococcus xanthus bacteria, which, similar to C.

elegans, also exhibit reversals during aggregation (Mercier and Mignot, 2016; Peruani et al.,

2012; Starruß et al., 2012). We build an agent-based phenomenological model of simplified worm

motility and interactions. By mapping out a phase diagram of behavioral phenotypes, we show that

eLife digest Anyone who has watched a flock of birds maneuver through the sky has probably

wondered how so many animals coordinate their movements. Often, these seemingly complex

group behaviors can be explained by a few simple rules that govern the behavior of the individuals

in the group. For example, if each bird flies and reacts to its neighbors in a certain way, the whole

flock’s flight pattern results from these individual choices.

Computer simulations can help researchers to test how individual behaviors contribute to

coordinated group movements. Ding, Schumacher et al. have now used a simulation to uncover the

rules that control the behavior of small worms called Caenorhabditis elegans, which form large

groups while feeding on bacteria.

To gather the data needed to form the computer model, Ding, Schumacher et al. genetically

engineered C. elegans worms to produce fluorescent proteins. The fluorescence allows the

movements of the worms to be monitored automatically in time-lapse movies made from a series of

microscope images. The movies show that worm clusters move together over a patch of food,

consuming it as they go. As the food disappears, the whole worm cluster moves to a new area in

search of more food.

The computer simulation that Ding, Schumacher et al. developed to recreate how the clusters

move revealed that individual worms in the group interact according to three rules. Firstly, worms

slow down when they have more neighbors. Secondly, when a worm leaves its cluster, it will reverse

to rejoin the group. And finally, worms will move towards areas with more neighbors.

It is still not known why the C. elegans worms form clusters, but understanding how the

individuals in the group interact could help future studies to uncover this reason. Many other

organisms benefit from forming similar groups, from single celled bacteria to animals such as birds

and fish. The results presented by Ding, Schumacher et al. will therefore help researchers to

consider whether there are universal rules that control group behavior.

DOI: https://doi.org/10.7554/eLife.43318.002
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modulating cluster-edge reversals and a density-dependent switch between crawling speeds are suf-

ficient to produce some aggregation, but not the compact clusters observed in experiments. We

found that medium-range taxis towards neighboring worms is necessary to tighten clusters and

increase persistence. Finally, combining this model with food depletion gives rise to swarming over

time, suggesting that the same behavioral rules that lead to the initial formation of aggregates also

underlie the dynamic swarming reported here.

Results

Dynamic swarming occurs in social worms at long time scales
Aggregation has most often been characterized as the fraction of worms inside clusters, where indi-

vidual worms can move in and out of clusters. Here we report an additional dynamic swarming phe-

notype in aggregating C. elegans that occurs on a timescale of hours. Here, swarming refers to the

collective movement of a coherent group of worms across a bacterial lawn (Figure 1A, Video 1).

Because of the long timescale, this behavior is not obvious from manual observations of worms on a

plate, but becomes clear in time lapse videos (Figure 1B and C, npr-1 panels). Even though N2

worms do not swarm in our experiments (Figure 1B and C, N2 panels), they can swarm under appro-

priate conditions, such as when a clonal population has depleted almost all food (Hodgkin and

Barnes, 1991) or on unpalatable Pseudomonas fluorescens bacterial lawns (personal communication

from J. Hodgkin and G.M. Preston). Thus swarming in C. elegans does not require loss of npr-1 func-

tion in all environments.

Dynamic swarming occurs with just 40 npr-1 mutants (Figure 1B, top row), making it experimen-

tally feasible to study. Usually a single npr-1 aggregate forms on the food patch and then moves

around the lawn in a persistent but not necessarily directed manner (Figure 1C, left; Figure 1—fig-

ure supplement 1), at a steady speed (Figure 1D). The onset of this collective movement appears

to coincide with local food depletion, and continues until complete food depletion, at which time

the cluster disperses. More than one moving cluster may co-exist, and occasionally a cluster may dis-

perse and form elsewhere when it crosses its previous path (Figure 1—figure supplement 1), pre-

sumably due to local food depletion. The observed pattern of npr-1 cluster motion is reminiscent of

a self-avoiding, persistent random walk (i.e. not returning to areas that the worms have previously

been where there is no food left). By contrast, after initially forming transient clusters on the lawn,

N2 worms move radially outwards with no collective movement (Figure 1C, right).

Fluorescence imaging and automated animal tracking allows
quantification of dynamics inside and outside of aggregates
Based on our observation that swarming appears to be driven by food depletion, we hypothesize

the phenomenon may be a dynamic extension of the initial aggregation that occurs before deple-

tion. To test this idea, we first sought to identify the mechanisms underlying aggregation.

The presence of aggregates is clear in bright field images, but it is difficult to track individual ani-

mals in these strongly overlapping groups for quantitative behavioral analysis. We therefore labeled

the pharynx of worms with green fluorescent protein (GFP) and used fluorescence imaging in order

to minimize overlap between animals (Video 2), making it possible to track most individuals even

when they are inside a dense cluster (Figure 2A). We also labeled a small number of worms (1–3 ani-

mals out of 40 per experiment) with a red fluorescent protein (RFP)-tagged body wall muscle marker

instead of pharynx-GFP. These RFP-labeled worms were recorded on a separate channel during

simultaneous two-color imaging (Figure 2B), thus allowing both longer trajectories and the full pos-

ture to be obtained in a subset of animals. We wrote a custom module for Tierpsy Tracker

(Javer et al., 2018) to segment light objects on a dark background and to identify the anterior end

of the marked animals automatically, in order to extract trajectories and skeletons of multiple worms

from our data (Figure 2C).

Ascarosides and direct adhesion are unlikely to drive different
aggregation phenotypes
We first considered long-range chemotaxis driven by food or diffusible ascaroside pheromone sig-

nals as a potential behavioral mechanism. Chemotaxis towards food can likely be ignored as our
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Figure 1. npr-1 but not N2 worms show swarming behavior over time on thin bacterial lawn. (A) A few hundred npr-1 mutant worms form dense

clusters that move on food over time. Red dashed lines show the food boundary, where area with food is to the right and food-depleted area is to the

left; red arrows show the direction of cluster movement. (B) Forty npr-1 mutant worms also cluster and swarm on food. Solid circles encompass the

same cluster at different time points; dashed circles show cluster positions prior to the current time point. The same number of N2 worms do not

swarm under our experimental conditions, and instead disperse after initial transient aggregation. (C) Visualization of persistent swarming over time.

One frame was sampled every 30 s over the duration of the videos and binary segmentation was applied using an intensity threshold to separate worm

pixels from the background. Blobs with areas above a threshold value were plotted as clusters to show cluster position over time. The same videos as in

(B) were used. Dashed circles show the food boundary. Crosses are cluster centroids at each sample frame. (D) Centroid speed of persistent npr-1

clusters, calculated from centroid positions as indicated in (C) and smoothed over 10 min. Shaded area shows standard deviation across five replicates.

Figure 1 continued on next page
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experiments were performed on thin, even bacterial lawns, and worms are mostly on food during

the aggregation phase of the experiments (99.7 ± 0.4% for npr-1 and 99.8 ± 0.3% for N2, mean ±S.

D.). Although ascarosides are important for processes such as mating and dauer formation in C. ele-

gans (Srinivasan et al., 2008), it is less clear whether long-range signaling via pheromones plays a

role in aggregation (de Bono et al., 2002; Macosko et al., 2009). daf-22(m130) mutants do not pro-

duce ascarosides, but daf-22;npr-1 double mutants aggregate similarly to npr-1 single mutants (Fig-

ure 3—figure supplement 1), consistent with the observation that the hermaphrodite-attractive

pheromone icas#3 is attractive to both N2 animals and npr-1 mutants (Srinivasan et al., 2012) and

is thus unlikely to explain the difference in their propensity to aggregate. Moreover, attraction

between moving objects is known to produce aggregation in active matter systems (Redner et al.,

2013a), but it is not known whether this applies to worms. Short-range attraction between worms

may exist in the form of adhesion mediated through a liquid film (Gart et al., 2011), but we have no

reason to believe this would differ between npr-1 and N2 strains.

Reversal rates and speed depend on neighbor density more strongly in
npr-1 mutants than in N2
Having considered long-range food- or ascaroside-mediated attraction and short-range adhesion,

we next focused on behavioral responses to nearby neighbors. While postural changes do not seem

to be a main driver of aggregation as principal component analysis of lone versus in-cluster npr-1

worms revealed similar amplitudes in the posture modes (Figure 3—figure supplement 2), we

found experimental evidence for density-dependence of both reversal rates and speed and that

these differ between the two strains we studied.

Reversals have been previously suggested as a behavior that may enable npr-1 worms to stay in

aggregates (Rogers et al., 2006). To avoid cluster definitions based on thresholding the distance

between worms, we quantified individual worm

behavior as a function of local density

(Figure 3A) instead. Calculating the reversal

rates relative to that of worms at low densities,

we found that npr-1 mutants reverse more at

increased neighbor densities, while N2 animals

do not (Figure 3B).

Next we calculated the speed distributions of

individual worms, binned by local neighbor den-

sity. We found that both strains slow down when

surrounded by many other worms, but the shift

is more pronounced for npr-1 animals. npr-1

worms move faster than N2 at low densities,

showing a distinct peak at high speeds. As

neighbor density increases, this high speed peak

gradually becomes replaced by a peak at low

speeds, so that the overall speed distribution for

npr-1 resembles that of N2 at very high densi-

ties. Thus, npr-1 and N2 animals show different

density-dependent changes in their respective

speed profiles (Figure 3C).

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.43318.003

The following figure supplements are available for figure 1:

Figure supplement 1. npr-1 swarming on a bigger food patch.

DOI: https://doi.org/10.7554/eLife.43318.004

Figure supplement 2. Stereotyped temporal dynamics.

DOI: https://doi.org/10.7554/eLife.43318.005

Video 1. Sample video showing npr-1 collective

feeding dynamics (bright field high-number swarming

imaging). The video plays at 300x the normal speed.

DOI: https://doi.org/10.7554/eLife.43318.006
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Since the observed transition of the speed

profiles could occur due to active behavioral

changes as well as restricted movement in clus-

ters, we also considered tracks of individual

worms. Using body wall muscle-marked worms

allowed us to obtain longer trajectories that

could be joined for the duration of an entire

video, including cluster entry and exit events.

We compared the speed of these tracks with

visual assessment of when a worm entered or

exited a cluster based on the proximity to phar-

ynx-labeled worms. We found that worms are

able to move inside of clusters and observed

that speed changes can occur prior to cluster

entry and exit events (Figure 3D, Video 3 and

Video 4). This change of speed is neither purely

mechanical nor a deterministic response to a cer-

tain neighbor density, and suggests a mecha-

nism in which worms probabilistically switch

between different speeds.

Spatial statistics show group-level
differences between npr-1 and N2 animals
The differences in aggregation behavior between npr-1 and N2 are visually striking, but previous

quantification has typically been limited to the fraction of animals in clusters. Using the tracked posi-

tions of pharynx-labeled worms (Figure 4A), we calculated the pair-correlation function (Figure 4B),

commonly used to quantify aggregation in cellular and physical systems (Gurry et al., 2009). We

Video 2. Sample video showing npr-1 collective

feeding dynamics (fluorescence 40 worm aggregation

imaging). The video plays at 90x the normal speed.

DOI: https://doi.org/10.7554/eLife.43318.008
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Figure 2. Fluorescence multi-worm tracking. (A) npr-1 mutant and N2 animals exhibit different social behaviors on food, with the former being hyper-

social (top left) and the latter being hypo-social (top right). Using a pharynx-GFP label (bottom row), individual animals may be followed inside a cluster.

(B) In two-color experiments, worms are either labeled with pharynx-GFP (left) or body wall muscle-RFP (middle). As the two colors are simultaneously

acquired on separate channels, the selected few RFP-labeled individuals are readily segmented and may be tracked for a long time, even inside a

dense cluster. (C) Tierpsy Tracker tracks multiple worms simultaneously, generating both centroid trajectories (left, image color inverted for easier

visualization; multiple colors show distinct trajectories) and skeletons (middle, pharynx-marked animal; right, body wall muscle-marked animal; red dots

denote the head nodes of the skeleton).

DOI: https://doi.org/10.7554/eLife.43318.007
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Figure 3. Individual-level behavioral quantification. (A) Schematic explaining k-nearest neighbor density estimation. (B) Relative rate of reversals as a

function of local density (k-nearest neighbor density estimation with k = 6) for npr-1 (blue) and N2 (orange) strains. Lines show means and shaded area

shows the standard error (bootstrap estimate, 100 samples with replacement). (C) Distributions of crawling speeds at different local neighbor densities

for both strains. Lines show histograms of speeds for each density bin, and the color of the line indicates the density (blue is high, magenta is low). (D)

Figure 3 continued on next page
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also computed a hierarchical clustering of worm positions (Figure 4C), which is calculated from the

same pairwise distances but emphasizes larger scale structure. Using both measures, we found that

as a population, npr-1 animals show quantifiably higher levels of aggregation than N2, especially at

scales up to 1 mm (pair-correlation ‘S1’, Figure 4D) and 2 mm (hierarchical clustering ‘S2’,

Figure 4E). We also quantified aggregation using scalar spatial statistics, namely the average stan-

dard deviation (‘S3’) and kurtosis (‘S4’) of the distribution of positions. This confirms that the posi-

tions of npr-1 worms are less spread-out and more heavy-tailed than those of N2 (Figure 4D).

Agent-based model captures different aggregation phenotypes
To test whether the individual behavioral differences measured between npr-1 and N2 worms are

sufficient to give rise to the observed differences in aggregation, we constructed a phenomenologi-

cal model of worm movement and interactions. The model is made up of self-propelled agents

(Figure 5A), and includes density-dependent interactions motivated by the experimental data,

namely reversals at the edge of a cluster (Figure 5B) and a switch between movement at different

speeds (Figure 5C). As a model of collective behavior this differs from those commonly considered

in the literature, such as the Vicsek model (Vicsek et al., 1995) and its many related variants

(Vicsek and Zafeiris, 2012; Yates et al., 2011). Such models typically feature attractive forces or

align the direction of motion at ranges much longer than the size of the moving objects, and result

in flocking or clustering with global alignment (Figure 5D), which we do not observe in our experi-

mental data. In contrast, our model needs to produce dynamic, disordered aggregates (Figure 1B,

Figure 2A and Video 2), and should primarily rely on short-range interactions that are motivated by

behaviors measured in our data.

The density-dependence of the reversal rate

and speed switching is implemented as follows:

The rate of reversals increases linearly with den-

sity with slope r’, which is a free parameter, and

is thus given by rrev = r’ �. The reversal rate at

zero density is zero as we ignored spontaneous

reversals outside of clusters as these were only

rarely observed under our experimental condi-

tions (see Appendix 1 for further discussion of

the model construction). This parameterization

of the reversal rate may be unbounded, but we

can prevent unrealistically high reversal rates for

a given maximum worm number by choosing our

prior distribution of the parameter r’. The rate of

slowing down is similarly approximated as a lin-

ear function of density, with free parameter ks’,

and is given by kslow = ks0+ks’ �, where ks0 is the

slowing rate at zero-density. The rate of speed-

ing up is given by kfast = kf0 exp[-kf’ �], where the

exponential decay is chosen to ensure positivity

Figure 3 continued

Midbody absolute speed for manually annotated npr-1 cluster entry (left, n = 28) and exit events (right, n = 29). Each event was manually identified, with

time 0 representing the point where the head or tail of a worm starts to enter (left) or exit (right) an existing cluster. Skeleton xy-coordinates were

linearly interpolated for missing frames for each event, before being used to calculate midbody speed extending 20 s on both sides of time 0 of the

event. Speeds were smoothed over a one-second window. Shading represents standard deviation across events. Each red line shows the midbody

absolute speed of a selected event that is shown in Video 3 (left) or Video 4 (right).

DOI: https://doi.org/10.7554/eLife.43318.009

The following figure supplements are available for figure 3:

Figure supplement 1. Pheromones appear unimportant for aggregation.

DOI: https://doi.org/10.7554/eLife.43318.010

Figure supplement 2. Shape analysis for lone and in-cluster npr-1 worms.

DOI: https://doi.org/10.7554/eLife.43318.011

Video 3. A single event showing switch from high to

low motility state prior to cluster entry (fluorescence 40

worm aggregation imaging). The red worm at the

bottom (arrow) decreases speed before entering a

cluster. Inset: midbody absolute speed of that

individual with respect to time 0 as the point of the

head entering a cluster; open blue circle shows the

current speed matched to the video frame.

DOI: https://doi.org/10.7554/eLife.43318.012
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of the rate, and kf0 is the rate at zero density.

The rates of slowing down and speeding up at

zero density (ks0, kf0) were obtained from pub-

lished single-worm experimental data

(Javer et al., 2018; Yemini et al., 2013).

We initially ran a coarse parameter sweep,

sampling uniformly in the two-dimensional

parameter space associated with the density-

dependence of reversals and speed switching.

As a simplifying assumption, the density-depen-

dence of the speeding-up and slowing-down

rates was set equal (k’s = k’f = k’). The remaining

parameters, r’ and k’, were varied to explore the

global model behavior. This demonstrates that

our model can capture different aggregation

phenotypes from solitary movement to aggrega-

tion (Figure 5E) by varying just two free parame-

ters, and provides important general insights.

Inspection of the model simulations shows that

each behavior alone (just reversals or slowing)

does not give the same level of aggregation as when both parameters are modulated (Figure 5E),

so that using both behavioral components proves important. Quantifying the aggregation and com-

paring it to the npr-1 experiment, however, highlights incomplete quantitative agreement with both

the pair correlation function and hierarchical clustering distribution (Figure 5F). Thus, we reasoned

additional interactions may be required to match the experimentally observed behaviors.

Adding a medium-range taxis interaction promotes stronger
aggregation
To explore improvements in clustering, we extended the model by an attractive taxis interaction.

Attraction should intuitively improve clustering, but we knew from our model exploration that an

attractive potential between bodies produces undesirable cluster shapes (Figure 5D) and reasoned

that a long-range interaction may be unrealistic (Figure 3—figure supplement 1). Thus, we include

taxis towards neighboring worms and model worm movement as an attractive persistent random

walk. The taxis contribution to a worm’s motile force has an overall strength controlled by parameter

ft, with multiple nearby neighbors contributing cumulatively, weighted by 1/r, where r is the distance

to a neighboring worm. Neighboring worms beyond a cut-off distance equal to the length of a

worm have no contribution. Thus, this taxis interaction is acting at a natural intermediate length scale

of our system (see Appendix 1 for details).

The resulting extended model has four free parameters: density-dependent reversals (r0), speed-

switching rates (ks
0, kf

0) and taxis (ft). To find the parameter combinations that best describe each

strain, as well as the uncertainty in the parameter values, we used an approximate Bayesian inference

approach (see Appendix 1). To increase the computational efficiency of our inference pipeline, we

excluded infeasible regions of parameter space to reduce the prior distribution of parameters that

we need to sample from (Figure 6—figure supplement 1) (see Appendix 1). We then selected the

closest matching simulations from about 27,000 simulations for npr-1 and about 13,000 simulations

for N2, equally weighting all four summary statistics. Results from our extended model (Figure 6A,

Video 5 and Video 6) show markedly improved quantitative agreement with the experiments

(Figure 6B). The approximated posterior distributions of the parameters (Figure 6C–D) show the

most likely values of the parameters for each strain, as well as the uncertainty associated with the

individual and joint marginal parameter distributions. In particular, to achieve npr-1-like aggregation,

the reversal (r’) and taxis (ft) parameters need to be higher than for N2, albeit not too high. The den-

sity-dependence of the slowing rate (k’s) is only subtly different between the two strains, while the

dependence of the speeding up rate (k’f) is greater in npr-1, but with broader uncertainty.

To address whether all three behaviors (reversals, speed changes, and taxis) were necessary for

aggregation we ran additional simulations: starting from the mean of the posterior distribution for

npr-1 (Figure 6C) as a reference, we removed individual model components by setting the

Video 4. A single event showing switch from low to

high motility state prior to cluster exit (fluorescence 40

worm aggregation imaging). The red worm increases

speed before exiting a cluster. Inset: midbody absolute

speed of that individual with respect to time 0 as the

point of the head exiting a cluster; open blue circle

shows the current speed matched to the video frame.
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Figure 4. Population-level behavioral quantification. (A) Positions of npr-1 worms in an example frame. (B) Schematic explaining pair correlation

function (S1), which counts the number of neighbors at a distance r, normalized by the expectation for a uniform distribution. (C) Example dendrogram

from which hierarchical clustering branch length distributions (S2) can be calculated. (D) Pair correlation function for npr-1 (blue) and N2 (orange). Lines

show mean and shaded area shows standard error of the mean. (E) Hierarchical clustering branch length distributions for npr-1 (blue) and N2 (orange).

Figure 4 continued on next page
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corresponding parameters to zero. These perturbed simulations show that removing speed switch-

ing or taxis from the model disrupts aggregation, while removing reversals reduces the overall quan-

titative agreement with experimental data (Figure 6—figure supplement 2, B–D). In some cases,

removing individual model behaviors also produced correlations of velocity and orientation between

neighbors that are different from what we measure in experiments (Figure 6—figure supplement

3). Thus, we conclude that we have identified sufficient behavioral components for aggregation, and

that these are also necessary to quantitatively match aggregation in npr-1 mutants.

Searching for evidence of taxis in the experimental tracking data, we calculated the correlation

between worm velocity and the vector towards nearby worms, and found this correlation to be

nearly zero in both experiments and simulations for all distances up to 2 mm (Figure 6—figure sup-

plement 3B1–2), which is larger than the size of a typical worm cluster. This may not be intuitive,

and we suspect the reason is twofold: (a) the taxis effect is only a small influence on the instanta-

neous direction of the movement of a worm, compared to persistence and noise; and (b) we only

tracked the pharynx in our experiments, and reproduced this restriction in our analysis of simula-

tions, but the whole body of the worm is likely giving relevant cues to any chemical or mechanical

taxis. Our methodology that enables us to track inside worm clusters therefore brings with it the

caveat that there is unseen worm density that affects any potential taxis behavior, but which remains

undetectable in our tracking. Thus, our analysis shows that a taxis behavior similar to our simulations

may be present in experiments, even if it is difficult to detect with correlation analysis. We compared

the other inferred parameters with experimental measurements: The reversal rate shows a similar

increase with density that is greater for npr-1 than N2 (Figure 6—figure supplement 4B). The speed

switching rates could only be compared indirectly by calculating the ratio of fraction of worms in fast

vs. slow movement in experiments (Figure 6—figure supplement 4C1) and model simulations (Fig-

ure 6—figure supplement 4C2). The disagreement may indicate that the exponential form of kf(�) is

only a rough approximation. However, aggregation in the model is not sensitive to speed switching

rates, as shown by the broad posterior distributions for the inferred parameters (Figure 6C–D).

Extending the model with food-depletion captures dynamic swarming
Since we hypothesize that the swarming we observed at longer time scales may be explained as

aggregation under food depletion conditions, we further extended the model to allow the local

depletion of food. Food is initially distributed uniformly, and becomes depleted locally by worm

feeding (see Appendix 1 for details). Absence of food suppresses the switch to slow speeds, thus

causing worms to speed up when food is locally depleted. As a result, we hypothesize that worm

clusters begin to disperse but reform on nearby food, leading to sweeping.

Selecting the parameter combination best matching the npr-1 strain (Figure 6) and an appropri-

ate food depletion rate (chosen such that all food was depleted no faster than observed in experi-

ments), the resulting simulation produced long-time dynamics qualitatively representative of the

experimentally observed swarming (Figure 7A–B, Video 7). Worm clusters undergo a persistent but

not necessarily directed random walk, can disperse and re-form elsewhere, and multiple clusters

may co-exist, all of which we observe experimentally. Tracking the centroid of worms in our simula-

tions, we find a comparable cluster speed as the median experimental value of 172 mm/min

(Figure 1D) for a range of feeding rates (Figure 7C) (feeding rate is an unknown parameter as our

model only accounts for relative food concentration). Thus, the model indicates that dynamic swarm-

ing of npr-1 aggregates may be explained as an emergent phenomenon resulting from individual

locomotion, and that the same behavioral mechanisms that produce the initial aggregates, when

coupled with local food depletion, give rise to the observed swarming behavior.

Figure 4 continued

Histograms show relative frequency of inter-cluster distances (single linkage distance in agglomerative hierarchical clustering, equivalent to the branch

lengths in the example dendrogram in (C)). (F) Mean standard deviation (S3) and kurtosis (S4) of the positions of worms, with the mean taken over

frames sampled.
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Figure 5. Agent-based modeling of emergent behavior. (A) Schematic of individual worm in the agent-based model. Each worm is made up of M

nodes (here M = 18), connected by springs to enforce non-extensibility. Each node undergoes self-propelled movement, with the head node (red dot)

undergoing a persistent random walk, and the rest of the nodes follow in the direction of the body. (B) Schematic of simulated reversals upon exiting a

cluster. Each worm registers contact at the first and last 10% of its nodes within a short interaction radius. If contact is registered at one end but not the

Figure 5 continued on next page

Ding et al. eLife 2019;8:e43318. DOI: https://doi.org/10.7554/eLife.43318 12 of 32

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.43318


Discussion
We have investigated the mechanisms of aggregation and swarming in C. elegans collective feeding

using quantitative imaging and computational modeling. We show that while a combination of

increased reversals upon leaving aggregates and a neighbor density-dependent increase in speed

switching rates is sufficient to produce aggregation, the addition of taxis towards neighbors

improves the quantitative agreement between simulations and experiments. Removing any one of

the core behavioral mechanisms (reversals, speed changes, taxis) from our model either disrupts

aggregation or otherwise reduces the quantitative agreement with experiments (Figure 6—figure

supplement 2–3). The proposed taxis might be driven by a shallow O2 or CO2 gradient created by a

worm cluster (discussed further below), to additional chemical signals unaffected by daf-22 loss of

function, or to another unknown mechanism. By extending the aggregation model to include food

depletion, we show that the same behavioral mechanisms also underlie dynamic swarming in the

hyper-social C. elegans strain, reminiscent of wild fires and other self-avoiding dynamics.

We focused on identifying phenomenological behavioral components giving rise to aggregation,

while remaining agnostic as to the sensory cues causing the behaviors. The density-dependent inter-

actions could arise from local molecular signaling, or be mediated through contact-sensing, and the

1/r dependence of the taxis interaction is compatible with a diffusible, non-degrading factor (such as

CO2, or O2 depletion; dependence would likely be different for a pheromone depending on its deg-

radation rate). Given that aggregates break up when ambient O2 concentration is reduced to 7%

(Gray et al., 2004), the preferred concentration of npr-1 mutants, the most obvious candidate for

the sensory cue guiding aggregation is O2 (Rogers et al., 2006). A simple hypothesis would be that

oxygen consumption by worms locally lowers O2 concentration to the 5–12% preferred by npr-1

mutants, promoting their aggregation. To support this, Rogers et al. (2006) report low O2 concen-

trations inside worm clusters. However, non-aggregating N2 worms also prefer O2 concentrations

lower than atmospheric (5–15%) (Gray et al., 2004). Furthermore, a strong reduction of oxygen con-

centration inside an aggregate to near 7% is unlikely based on reaction-diffusion calculations: the dif-

fusion of oxygen through worm tissue, or their oxygen consumption, would need to be several

orders of magnitude different from estimated values to create O2 gradients as steep as reported by

Rogers et al. (Appendix 2—figure 1). However, as worms have been reported to respond even to

small changes in oxygen concentration (McGrath et al., 2009), aggregation may still be mediated

through a shallower local oxygen gradient.

In this scenario, high ambient O2 concentration serves as a permissive signal for aggregation and

a shallow oxygen gradient induces worms to stay inside aggregates. Our agent-based simulations

are entirely compatible with this picture. Further experiments would be required to test the hypothe-

sis that oxygen is playing such a dual role. One possibility would be to introduce mutations leading

to aerobic metabolism deficiencies into npr-1 mutants. Such mutants would still be able to sense

ambient oxygen, but are expected to produce an even weaker oxygen gradient in an aggregate.

The resulting phenotype could then be compared quantitatively to model predictions, for example

with reduced taxis and/or modified rates of density-dependent reversal and speed switching. Addi-

tionally, one may seek evidence for the ability of worms to sense a shallow oxygen gradient by

repeating the gas-phase aerotaxis experiment described in Gray et al. (2004), but with a much

smaller gradient (19–21%) in the light of our new calculations, to see if worms can sense and move

towards environments where oxygen levels are only slightly below ambient concentrations. Further

Figure 5 continued

other, the worm is leaving a cluster and thus reverses with a Poisson rate dependent on the local density. (C) Schematic of density-dependent switching

between movement speeds. Worms stochastically switch between slow and fast movement with Poisson rates kslow and kfast, which increase linearly and

decrease exponentially with neighbor density, respectively. (D) Snapshots of simulations with commonly considered aggregation mechanisms, which

produce unrealistic behavior for worm simulations, with flocking and highly aligned clustering. Arrows indicate the direction of movement of large

clusters. (E) Phase portrait of model simulations, showing snapshots from the last 10% of each simulation, for different values of the two free

parameters: density-dependence of the reversal rate and density-dependence of speed-switching (here kslow = kfast). Blue and orange panels highlight

best fit for npr-1 and N2 data, respectively. (F) Summary statistics S1 (pair correlation, top) and S2 (hierarchical clustering, bottom) for the simulation

which most closely matches the experimental data for the npr-1 and N2 strains (blue and orange panels in (E), respectively).
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Figure 6. Model with taxis captures quantitative aggregation phenotypes. (A) Sample snapshot of the closest matching simulations for npr-1 (top) and

N2 (bottom). (B) Summary statistics for npr-1 (orange) and N2 (blue): S1: pair correlation function; S2: hierarchical clustering distribution; S3: standard

deviation of positions; S4: kurtosis of positions. Solid lines show the closest matching simulations; dashed lines show sample mean over the posterior

distribution; and dotted lines show experimental means, with error bars showing standard deviation of 13 (npr-1) and 9 (N2) replicates. (C–D)

Approximate posterior distribution of parameters for npr-1 (C) and N2 (D). Diagonal plots show marginal distribution of each parameter, off-diagonals

show pairwise joint distributions. Parameters are: increase in reversal rate with density, r’; increase in rate to slow down, k’s; decrease in rate to speed

up, k’f; and contribution of taxis to motile force, ft.

DOI: https://doi.org/10.7554/eLife.43318.016

The following figure supplements are available for figure 6:

Figure supplement 1. Reduced prior distribution used for approximate Bayesian inference of extended model.

DOI: https://doi.org/10.7554/eLife.43318.017

Figure supplement 2. Core model components, but not noise and undulations in movement, are necessary for quantitative agreement with

aggregation summary statistics.
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work quantifying the behavior of individual worms at different oxygen concentrations, such as during

oxygen-shift experiments inside flow chambers where single animals experience acute switches

between 21% and 19% oxygen, may also help to distinguish oxygen as a direct cue or part of the

‘sensory triggers that can initiate social behavior by activating chemotaxis or mechanotaxis’

(Gray et al., 2004).

The model of worm movement and interactions presented here was chosen for a balance of sim-

plicity and realism, and is not necessarily unique. Our model comprises a persistent random walk of

chain-like worms, which were loosely inspired by work on bacterial systems (Balagam and Igoshin,

2015). We have adopted Bayesian parameter inference to capture the uncertainty in our parameter

estimates, and to enable flexible extension to additional experimental data or comparison of differ-

ent models in future work. An alternative approach is to be entirely data-driven in the construction

of the model and compute interactions between worms directly based on their tracked positions at

every time step, as has been done in collective behavior of Myxococcus xanthus (Cotter et al.,

2017; Zhang et al., 2018). This approach may require higher worm numbers and improved tracking,

to ensure comparably large statistical sample sizes with bacterial studies. We have used experimen-

tal data to inform our modeling framework where appropriate (size, shape, speed of agents, and

reversal and speed change rates at zero density), and verified that the aggregation outcome is

robust and quantitatively similar to experimental results regardless of the amount of noise in the per-

sistent random walk (Figure 6—figure supplement 2E–G), or the presence of undulations in agent

movement (Figure 6—figure supplement 2H). We have further verified that aggregation still occurs

with shorter simulated worms (and fewer nodes per worm), given they are long enough to detect a

contact difference between head and tail when exiting a cluster, which is required to initiate rever-

sals (Figure 6—figure supplement 5A). Lastly,

in the model presented here, we have allowed

for overlap between worms to reflect a degree

of overlap in clusters when worms can crawl over

each other. With volume exclusion our model

still produces aggregation, although the clusters

are less dense and more extended (Figure 6—

figure supplement 5B).

One advantage of using C. elegans to study

animal collective behavior is the opportunity to

experimentally control and perturb the system. It

should be possible to experimentally modify the

key behavioral parameters identified in this

paper with mutations or acute stimulus delivery

in order to test our model. For example, one can

introduce a reversal phenotype with unc-4 muta-

tions, or alter the speed switching rates with

mutations that affect the roaming-dwelling tran-

sition. Controlled stimulus delivery has already

been used in previous oxygen-shift experiments.

The resultant experimental outcomes may then

be compared to theoretical predictions. Thus,

there are ample opportunities for future studies

to further integrate experimental and theoretical

Figure 6 continued

DOI: https://doi.org/10.7554/eLife.43318.018

Figure supplement 3. Analysis of orientational and velocity correlations in experiments and simulations.

DOI: https://doi.org/10.7554/eLife.43318.019

Figure supplement 4. Additional comparison of model parameters with experimental measurements.

DOI: https://doi.org/10.7554/eLife.43318.020

Figure supplement 5. Aggregation model requires minimum length of simulated worms, and is robust to introducing volume exclusion.

DOI: https://doi.org/10.7554/eLife.43318.021

Video 5. Sample model (with taxis) simulation

describing npr-1 mutants. The video plays at 30x the

normal speed.

DOI: https://doi.org/10.7554/eLife.43318.022
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methods in the study of C. elegans collective

behavior.

Despite its extensive study in the lab, it is still

uncertain whether aggregation and swarming

have a function in the wild. Aggregation may

serve to protect C. elegans from desiccation or

UV radiation associated with the surface environ-

ment (Busch and Olofsson, 2012). C. elegans

swarming on unpalatable bacteria may also facili-

tate predation, perhaps through the collective

action of secreted molecules that overcome bac-

terial defenses (personal communication from J.

Hodgkin and G.M. Preston) in a manner similar

to the well-described cooperative predation

strategy used by Myxobacteria xanthus (Muñoz-

Dorado et al., 2016; Pérez et al., 2016). More-

over, social versus solitary foraging strategies

may confer selective advantages in different

food abundance, food quality, and population

density environments (de Bono and Bargmann,

1998). The observation that aggregating strains

are less fit in laboratory conditions

(Andersen et al., 2014) suggested that social

feeding is not an efficient strategy at least in

abundant food conditions. However, the observed fitness difference between aggregating and non-

aggregating strains is actually dissociable from the feeding strategy in the lab (Zhao et al., 2018),

leaving the question unresolved. Furthermore, in other systems, social feeding can increase fitness in

natural environments via improved food detection and intake (Cvikel et al., 2015; Li et al., 2014;

Snijders et al., 2018). It would be time consuming to experimentally measure the feeding efficiency

of different behavioral strategies for a wide range of food patch sizes, distributions, and qualities.

The agent-based model used in this study presents an opportunity to use a complementary

approach to finding conditions that may favor social feeding.

C. elegans bridges the gap between the commonly studied micro- and macro-scales, and finding

the behavioral rules underlying this mesoscale system allows us to consider principles governing col-

lective behavior across scales. Indeed, key behavioral rules identified here for C. elegans aggrega-

tion have been observed at other scales. Spontaneous reversals have been implicated in bacterial

aggregation at the microscale (Mercier and Mignot, 2016; Starruß et al., 2012; Thutupalli et al.,

2015). By contrast, aggregating worms reverse mainly in response to leaving a cluster rather than

spontaneously, thus requiring more complex sensory processing and behavioral response than seen

in bacterial systems. Furthermore, changes in movement speed are a common feature in motility-

induced phase transitions (Großmann et al., 2016; Redner et al., 2013b; Abaurrea Velasco et al.,

2018). The emergent phenomena observed in models of interacting particles generally range from

diffusion-limited aggregation to jamming at high volume fractions to flocking of self-propelled rods

through volume exclusion (in two-dimensions). In contrast, aggregation in C. elegans occurs at much

lower numbers of objects (tens of worms) and lower densities (area fraction of 4–6%) than typically

studied in this field (thousands of objects at area fractions of 20–80%), and the density dependence

of motility changes again emphasizes the role of more complex sensing and behavioral modulations

common in macroscale animal groups such as fish shoals (Ward et al., 2011). Thus, collective behav-

ior of C. elegans at the mesoscale indeed draws from both ends of the size scale and complexity

spectrum, linking the physical mechanisms familiar from microscopic cellular and active matter sys-

tems with the behavioral repertoire of larger multicellular organisms.

Our approach of decomposing aggregation into component behaviors through modeling may

also have applications in quantitative genetics beyond the scope of our current study. While hyper-

social npr-1 mutants and hypo-social N2 worms show phenotypic extremes, wild isolates of C. ele-

gans aggregate to different degrees (de Bono and Bargmann, 1998). Previous work has shown that

even a very small increase in the phenotypic dimensionality (from one to two) can reveal

Video 6. Sample model (with taxis) simulation

describing N2. The video plays at 30x the normal

speed.
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independent behavior-modifying loci (Bendesky et al., 2012). Thus inferring model parameters for

data from multiple wild C. elegans strains would produce behavioral parameterizations that might

serve as a powerful set of traits for finding further behavior-modifying loci.

Materials and methods

Key resources table

Resource Designation Source or reference Identifiers
Additional
information

Strain
(C. elegans)

N2 Caenorhabditis
Genetics Centre

RRID:WB-STRAIN:N2 Laboratory
reference strain.

Continued on next page
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Figure 7. Simulations capture dynamic swarming. (A) Snapshots of aggregation simulation with food depletion. Background color shows relative food

concentration with white indicating high food and black indicating no food. (B) Visualization of worm positions in (A) over time, showing cluster

displacement. Note the periodic boundary conditions. (C) Cluster speed at various feeding rates relative to lawn thickness (other parameters equal to

mean of posterior distribution for npr-1). The upward trend is expected: smaller lawn thickness leads to faster movement as worms run out of food

quicker and need to re-form clusters on nearby food. Cluster speed is calculated the same way as in Figure 1D; error bars show median absolute

deviation over five simulations. Dashed line indicates experimentally-derived median cluster speed (from Figure 1D) for comparison.
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Continued

Resource Designation Source or reference Identifiers
Additional
information

Strain
(C. elegans)

DA609 Caenorhabditis
Genetics Centre

RRID:WB-STRAIN:DA609 Genotype:
npr-1(ad609)X.

Strain
(C. elegans)

OMG2 this paper Genotype: mIs12
[myo-2p::GFP]II;
npr-1(ad609)X.
Originated from
CB5584 and DA609.

Strain
(C. elegans)

OMG10 this paper Genotype: mIs12
[myo-2p::GFP]II.
Originated from
CB5584;
outcrossed 6x
to CGC N2.

Strain
(C. elegans)

OMG19 this paper Genotype: rmIs349
[myo3p::RFP];
npr-1(ad609)X.
Originated from
AM1065 and DA609.

Strain
(C. elegans)

OMG24 this paper Genotype: rmIs349
[myo3p::RFP].
Originated from
AM1065;
outcrossed 6x
to CGC N2.

Strain
(C. elegans)

DR476 Caenorhabditis
Genetics Centre

RRID:WB-STRAIN:DR476 Genotype: daf-22(m130)II.

Strain
(C. elegans)

AX994 Mario de Bono
(MRC Laboratory of
Molecular Biology)

Genotype: daf-22
(m130)II;
npr-1(ad609)X.

Software Tierpsy
Tracker (v 1.3)

Javer et al., 2018 Software available
at ver228.
github.io/tierpsy-
tracker.

Software wormTracking
Analysis

this paper Software available
at
github.com/ljschumacher/wormTrackingAnalysis.

Software sworm-model this paper Software available
at
github.com/ljschumacher/sworm-model.

Animal maintenance and synchronization
C. elegans strains used in this study are listed in Key Resources Table above. All animals were grown

on E. coli OP50 at 20˚C as mixed-stage cultures and maintained as described (Brenner, 1974). All

animals used in imaging experiments were synchronized young adults obtained by bleaching gravid

hermaphrodites grown on E. coli OP50 under uncrowded and unstarved conditions, allowing iso-

lated eggs to hatch and enter L1 diapause on unseeded plates overnight, and re-feeding starved

L1’s for 65–72 hr on OP50.

Bright field high-number swarming imaging
The strain used here (Figure 1A and Video 1) is DA609. On imaging day, synchronized adults were

collected and washed in M9 buffer twice before several hundred animals were transferred to a

seeded 90 mm NGM plate using a glass pipette. After M9 is absorbed into the media, ten-hour

time-lapse recordings were taken with a Dino-Lite camera (AM-7013MT) at room temperature (20˚C)

using the DinoCapture 2.0 software (v1.5.3.c) for maximal field of view. Two independent replicates

were performed.
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Bright field standard swarming imaging
Step-by-step protocol is available at dx.doi.org/10.17504/protocols.io.vybe7sn. All recordings from

this dataset are listed in Supplementary file 2.

The strains used here (Figure 1B) are DA609 and N2. Prior to collecting the full dataset, a single

batch of OP50 was grown overnight, diluted to OD600 = 0.75, aliquoted for use on each imaging

day, and stored at 4˚C until use. Imaging plates were 35 mm Petri dishes containing 3.5 mL low pep-

tone (0.013% Difco Bacto) NGM agar (2% Bio/Agar, BioGene) to limit bacteria growth. A separate

batch of plates was poured exactly seven days before each imaging day, stored at 4˚C, and dried at

37˚C overnight with the agar side down before imaging. The center of an imaging plate was seeded

with a single 20 mL spot of cold diluted OP50 one to three hours before imaging. The overnight

plate drying step allowed the bacteria to quickly dry atop the media in order to achieve a more uni-

form lawn by minimizing the ‘coffee ring’ effect that would thicken the circular edge of the bacterial

lawn. For each imaging day, synchronized young adults were collected and washed in M9 buffer

twice before 40 animals were transferred to a seeded imaging plate using a glass pipette.

Imaging commenced immediately following animal transfer in a liquid drop, on a custom-built six-

camera rig equipped with Dalsa Genie cameras (G2-GM10-T2041). Seven-hour recordings with red

illumination (630 nm LED illumination, CCS Inc) were taken at 25 Hz using Gecko software (v2.0.3.1),

whilst the rig maintained the imaging plates at 20˚C throughout the recording durations. Images

were segmented in real time by the Gecko software. The recordings were manually truncated post-

acquisition to retain aggregation and swarming dynamics only. The start time was defined as the

moment when the liquid dried and the all the worms crawled out from the initial location of the

drop, and the end time was when the food was depleted and worms dispersed with increased crawl-

ing speed. Twelve independent replicates were performed for each strain.

Bright field big patch swarming imaging
Step-by-step protocol is available at dx.doi.org/10.17504/protocols.io.vyhe7t6. All recordings from

this dataset are listed in Supplementary file 2.

The experiments here (Figure 1—figure supplement 1) are identical to those in the bright field

standard swarming imaging, except for two differences. First, the imaging plates were seeded with

a 75 mL spot of diluted OP50 (OD600 = 0.38) and allowed to inoculate overnight at room tempera-

ture before being used for imaging the next day.

Second, recordings were taken over 20 hr instead

of seven. Eight independent replicates were per-

formed for each strain.

Bright field pheromone imaging
Step-by-step protocol is available at dx.doi.org/

10.17504/protocols.io.vyie7ue. All recordings

from this dataset are listed in Supplementary file

2.

The strains used here (Figure 3—figure sup-

plement 1) are DA609, N2, DR476, and AX994.

Bacteria aliquots and imaging plates were pre-

pared as in the bright field standard swarming

imaging assay. For each imaging day, synchro-

nized young adults were collected and washed in

M9 buffer twice before 40 animals were trans-

ferred to a seeded imaging plate using a glass

pipette. After M9 was absorbed into the media

following worm transfer in liquid, imaging plates

containing the animals were subjected to a gen-

tle vibration at 600 rpm for 10 s on a Vortex

Genie two shaker (Scientific Industries) to dis-

perse animals and synchronize aggregation start

across replicates. Imaging commenced 20 s after

Video 7. Sample swarming simulation describing npr-1

mutants. Background color shows relative food

concentration with white indicating high food and

black indicating no food.The video plays at 30x the

normal speed.

DOI: https://doi.org/10.7554/eLife.43318.025
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the vibration finish, using the same rig set-up as swarming imaging above, except one-hour record-

ings were taken. Images were segmented in real time by the Gecko software. At least eight indepen-

dent replicates were performed for each strain. Automated animal tracking was performed post-

acquisition using Tierpsy Tracker software (http://ver228.github.io/tierpsy-tracker/, v1.3), which we

developed in-house (Javer et al., 2018). Images with were tracked with customized parameters to

create centroid trajectories, 49-point worm skeletons, and a battery of features.

Fluorescence aggregation imaging
Step-by-step protocol is available at dx.doi.org/10.17504/protocols.io.vzje74n. All recordings from

this dataset are listed in Supplementary file 2.

The strains used here (Figure 2, Videos 2–4) are OMG2, OMG10, OMG19, and OMG24. One-

color imaging consisted of pharynx-GFP labeled worms only, whereas two-color imaging also

included a small number of body wall muscle-RFP labeled worms that were recorded simultaneously

on a separate channel (thus readily segmented from the rest of the worms). The latter was necessary

to follow individuals over a long period of time, particularly while inside a cluster, as frequent phar-

ynx collisions inside clusters lead to lost individual identities and broken trajectories. For two-color

imaging, animals with different fluorescent markers were mixed in desired proportion (1–3 red ani-

mals out of 40 per experiment) during the washing stage before being transferred together for

imaging.

The data collection paradigm was identical to the bright field pheromone imaging assay in terms

of bacteria aliquots, imaging plate preparation, and vibration implementation following animal trans-

fer. The difference is that image acquisition was performed on a DMI6000 inverted microscope

(Leica) equipped with a 1.25x PL Fluotar objective (Leica), a TwinCam LS image splitter (Cairn) with a

dichroic cube (Cairn), and two Zyla 5.5 cameras (Andor) to enable simultaneous green-red imaging

with maximal field of view. One-hour recordings were taken with constant blue (470 nm, 0.8A) and

green (cool white, 1.4A) OptoLED illumination (Cairn), and images were acquired with 100 ms expo-

sure at 9 Hz using Andor Solis software (v4.29.30005.0). The microscopy room was maintained at 21˚

C throughout the recording durations. Ten or more independent replicates were performed for each

strain. We were able to reproduce stereotyped aggregation dynamics across replicates under our

experimental paradigm (Figure 1—figure supplement 2). Image segmentation and automated ani-

mal tracking was performed post-acquisition using Tierpsy Tracker software (v1.3) with customized

parameters, to create centroid trajectories, obtain two-point skeleton from pharynx-labeled individu-

als and 49-point midline skeletons from body wall muscle-marked ones, and extract various features.

For body wall muscle-marked animals, trajectories were manually joined where broken due to track-

ing errors.

Fluorescence aggregation tracking data analysis
The code for tracking data analysis is available at https://github.com/ljschumacher/

wormTrackingAnalysis (Schumacher et al., 2019; copy archived at https://github.com/elifesciences-

publications/wormTrackingAnalysis).

Tracked blobs were filtered for minimum fluorescence intensity and maximum area, to exclude

any larvae and tracking artifacts, respectively, which appeared on the occasional plate. Local worm

densities around each individual were calculated using k-nearest neighbor density estimation, where

the density is k divided by the area of a circle encompassing the k-th nearest neighbor. We chose

k ¼ 6»
ffiffiffiffi

N
p

and verified based on visual assessment that the overall distribution of local densities

changes very little with increasing k.

Reversals were detected based on a change of sign of speed from positive to negative, which

was calculated from the dot-product of the skeleton vector (of the pharynx) and the velocity vector,

and smoothed with a moving average over half a second. We only counted reversals that were at

least 50 mm in length, and that moved at least half a pixel per frame before and after the reversal.

Reversal events thus detected where binned by their local density. For each density bin, reversal rate

was estimated as the number of events divided by the time spent in forward motion for that bin.

The variability was estimated using a subsampling bootstrap: the reversal rate was estimated 100

times, sampling worm-frames with replacement, and estimating mean and standard deviation.
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Speed profiles were generated by binning the measured speed values for local density, and then

creating a histogram of speed values for each density bin.

Summary statistics of aggregation, such as pair-correlation and hierarchical clustering, where cal-

culated as described in Appendix 1.
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Data availability

All data generated and analysed during this study is deposited on the Open Worm Movement Data-

base community page (https://zenodo.org/communities/open-worm-movement-database/). Each

recording has a separate DOI, which can be found in Supplementary file 2. The code for model simu-

lations is available at https://github.com/ljschumacher/sworm-model (copy archived at https://

github.com/elifesciences-publications/sworm-model).
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Pérez J, Moraleda-Muñoz A, Marcos-Torres FJ, Muñoz-Dorado J. 2016. Bacterial predation: 75 years and
counting!. Environmental Microbiology 18:766–779. DOI: https://doi.org/10.1111/1462-2920.13171,
PMID: 26663201

Peruani F, Starruss J, Jakovljevic V, Søgaard-Andersen L, Deutsch A, Bär M. 2012. Collective motion and
nonequilibrium cluster formation in colonies of gliding bacteria. Physical Review Letters 108:098102.
DOI: https://doi.org/10.1103/PhysRevLett.108.098102, PMID: 22463670

Redner GS, Baskaran A, Hagan MF. 2013a. Reentrant phase behavior in active colloids with attraction. Physical
Review E 88:012305. DOI: https://doi.org/10.1103/PhysRevE.88.012305

Redner GS, Hagan MF, Baskaran A. 2013b. Structure and dynamics of a Phase-Separating active colloidal fluid.
Physical Review Letters 110:1–5. DOI: https://doi.org/10.1103/PhysRevLett.110.055701

Reynolds CW. 1987. Flocks, herds and schools: A distributed behavioral model. ACM SIGGRAPH Computer
Graphics 21:25–34. DOI: https://doi.org/10.1145/37402.37406

Rogers C, Persson A, Cheung B, de Bono M. 2006. Behavioral motifs and neural pathways coordinating O2
responses and aggregation in C. elegans. Current Biology 16:649–659. DOI: https://doi.org/10.1016/j.cub.
2006.03.023, PMID: 16581509

Salvador LCM, Bartumeus F, Levin SA, Ryu WS. 2014. Mechanistic analysis of the search behaviour of
caenorhabditis elegans. Journal of the Royal Society Interface 11:20131092. DOI: https://doi.org/10.1098/rsif.
2013.1092

Schumacher LJ. 2019. sworm-model. GitHub. 1e7ae42. https://github.com/ljschumacher/sworm-model
Schumacher L, Ding SS, Veleslavov I. 2019. wormTrackingAnalysis. 220d1e3. GitHub. https://github.com/
ljschumacher/wormTrackingAnalysis

Ding et al. eLife 2019;8:e43318. DOI: https://doi.org/10.7554/eLife.43318 23 of 32

Research article Physics of Living Systems

https://doi.org/10.1039/c0sm01236j
https://doi.org/10.1038/nature02714
https://doi.org/10.1038/nature02714
http://www.ncbi.nlm.nih.gov/pubmed/15220933
https://doi.org/10.1103/PhysRevE.94.050602
http://www.ncbi.nlm.nih.gov/pubmed/27967147
https://doi.org/10.1371/journal.pone.0006148
http://www.ncbi.nlm.nih.gov/pubmed/19587789
https://doi.org/10.1016/j.cell.2017.08.026
http://www.ncbi.nlm.nih.gov/pubmed/28938116
https://arxiv.org/abs/1703.02341
https://doi.org/10.1895/wormbook.1.87.1
https://doi.org/10.1063/1.3319510
http://www.ncbi.nlm.nih.gov/pubmed/20151748
https://doi.org/10.1098/rspb.1991.0119
http://www.ncbi.nlm.nih.gov/pubmed/1684664
https://doi.org/10.1073/pnas.1621274114
https://doi.org/10.1073/pnas.1621274114
http://www.ncbi.nlm.nih.gov/pubmed/28143932
https://doi.org/10.1038/s41592-018-0112-1
http://www.ncbi.nlm.nih.gov/pubmed/30171234
https://doi.org/10.1073/pnas.1107583108
http://www.ncbi.nlm.nih.gov/pubmed/21795604
https://doi.org/10.1371/journal.pone.0023798
http://www.ncbi.nlm.nih.gov/pubmed/21887321
https://doi.org/10.1073/pnas.1407083111
http://www.ncbi.nlm.nih.gov/pubmed/24912159
https://doi.org/10.1038/nature07886
https://doi.org/10.1038/nature07886
http://www.ncbi.nlm.nih.gov/pubmed/19349961
https://doi.org/10.1016/j.neuron.2009.02.012
http://www.ncbi.nlm.nih.gov/pubmed/19285466
https://doi.org/10.1016/j.mib.2016.08.009
http://www.ncbi.nlm.nih.gov/pubmed/27648756
https://doi.org/10.3389/fmicb.2016.00781
https://doi.org/10.3389/fmicb.2016.00781
http://www.ncbi.nlm.nih.gov/pubmed/27303375
https://doi.org/10.1073/pnas.1402202111
http://www.ncbi.nlm.nih.gov/pubmed/25002501
https://doi.org/10.1111/1462-2920.13171
http://www.ncbi.nlm.nih.gov/pubmed/26663201
https://doi.org/10.1103/PhysRevLett.108.098102
http://www.ncbi.nlm.nih.gov/pubmed/22463670
https://doi.org/10.1103/PhysRevE.88.012305
https://doi.org/10.1103/PhysRevLett.110.055701
https://doi.org/10.1145/37402.37406
https://doi.org/10.1016/j.cub.2006.03.023
https://doi.org/10.1016/j.cub.2006.03.023
http://www.ncbi.nlm.nih.gov/pubmed/16581509
https://doi.org/10.1098/rsif.2013.1092
https://doi.org/10.1098/rsif.2013.1092
https://github.com/ljschumacher/sworm-model
https://github.com/ljschumacher/wormTrackingAnalysis
https://github.com/ljschumacher/wormTrackingAnalysis
https://doi.org/10.7554/eLife.43318


Schwarz RF, Branicky R, Grundy LJ, Schafer WR, Brown AE. 2015. Changes in postural syntax characterize
sensory modulation and natural variation of C. elegans locomotion. PLOS Computational Biology 11:e1004322.
DOI: https://doi.org/10.1371/journal.pcbi.1004322, PMID: 26295152

Shoyama T, Shimizu Y, Suda H. 2009. Decline in oxygen consumption correlates with lifespan in long-lived and
short-lived mutants of caenorhabditis elegans. Experimental Gerontology 44:784–791. DOI: https://doi.org/10.
1016/j.exger.2009.09.006, PMID: 19808088

Snijders L, Kurvers R, Krause S, Ramnarine IW, Krause J. 2018. Individual- and population-level drivers of
consistent foraging success across environments. Nature Ecology & Evolution 2:1610–1618. DOI: https://doi.
org/10.1038/s41559-018-0658-4, PMID: 30177801

Srinivasan J, Kaplan F, Ajredini R, Zachariah C, Alborn HT, Teal PE, Malik RU, Edison AS, Sternberg PW,
Schroeder FC. 2008. A blend of small molecules regulates both mating and development in Caenorhabditis
elegans. Nature 454:1115–1118. DOI: https://doi.org/10.1038/nature07168, PMID: 18650807

Srinivasan J, von Reuss SH, Bose N, Zaslaver A, Mahanti P, Ho MC, O’Doherty OG, Edison AS, Sternberg PW,
Schroeder FC. 2012. A modular library of small molecule signals regulates social behaviors in Caenorhabditis
elegans. PLOS Biology 10:e1001237. DOI: https://doi.org/10.1371/journal.pbio.1001237, PMID: 22253572

Starruß J, Peruani F, Jakovljevic V, Søgaard-Andersen L, Deutsch A, Bär M. 2012. Pattern-formation mechanisms
in motility mutants of Myxococcus xanthus. Interface Focus 2:774–785. DOI: https://doi.org/10.1098/rsfs.2012.
0034, PMID: 24312730

Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS. 2008. Dimensionality and dynamics in the behavior of C.
elegans. PLOS Computational Biology 4:e1000028. DOI: https://doi.org/10.1371/journal.pcbi.1000028,
PMID: 18389066

Suda H, Shouyama T, Yasuda K, Ishii N. 2005. Direct measurement of oxygen consumption rate on the nematode
caenorhabditis elegans by using an optical technique. Biochemical and Biophysical Research Communications
330:839–843. DOI: https://doi.org/10.1016/j.bbrc.2005.03.050, PMID: 15809072

Thutupalli S, Sun M, Bunyak F, Palaniappan K, Shaevitz JW. 2015. Directional reversals enable Myxococcus
xanthus cells to produce collective one-dimensional streams during fruiting-body formation. Journal of The
Royal Society Interface 12:20150049. DOI: https://doi.org/10.1098/rsif.2015.0049, PMID: 26246416

van der Vaart E, Johnston ASA, Sibly RM. 2016. Predicting how many animals will be where: How to build,
calibrate and evaluate individual-based models. Ecological Modelling 326:113–123. DOI: https://doi.org/10.
1016/j.ecolmodel.2015.08.012
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Appendix 1

DOI: https://doi.org/10.7554/eLife.43318.029

1 Agent-based simulations
We aim to create a model of worm locomotion and interaction that recapitulates aggregation

and swarming behavior. Many mechanical models of worm locomotion exist in the literature,

but we aim for a simpler representation of each individual worm, so that computationally

inexpensive simulations of tens to hundreds of worms allow rapid hypothesis exploration and

testing.

1.1 SPP worm model
Each agent is represented by M nodes connected linearly by M � 1 segments. Each node

moves as a self-propelled particle with a preferred speed v. At each time-step, the direction of

movement is updated based on phenomenological forces representing active movement,

interactions with other worms, and constrains to ensure the worm does not extend in length or

bend excessively. Nodes follow forces in the over-damped regime, v~F, with periodic

boundary conditions.

The code for model simulations is available at github.com/ljschumacher/sworm-

model (Schumacher, 2019; copy archived at https://github.com/elifesciences-publications/

sworm-model).

1.1.1 Self-propelled movement
The self-propulsion is modeled as a motile force, Ftþ1

m1
¼ v cosðftþ1

1
Þ; sinðftþ1

1
Þ

� �

, on node 1,

that is the head node. Note that for notational convenience we ignore the constant of

proportionality, implicitly writing F ¼ ~F=g, where ~F has units of force and F has units of

velocity.

To mimic a worm’s persistent movement with directional changes over time

(Salvador et al., 2014), we add a stochastic contribution to the head node’s movement, given

by ftþ1

1
¼ ft

1
þ h�, where fi is the orientation of node i with respect to the x-axis, h is the

noise strength, and � is a normally distributed random variable. The noise is parameterized by

analyzing the directional auto-correlation of single worm simulations, and set so that the

autocorrelation after 25 s (roughly the time it takes an npr-1 worm to cross the 8.5 mm food

patch) is, on average, less than 0.23. This value is equivalent to a random reorientation

between �3p=4 and 3p=4, and thus reflects that over a distance equivalent to the food patch

size, worms should lose all memory of their orientation. For N2 simulations, which move at a

lower speed, the noise strength is scaled by a factor of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vnpr�1=vN2

p

, which results in the same

condition.

For the nodes following the head node, the direction of movement is given by the tangent

vector towards the next node. For node i, the tangent vector is calculated as

si ¼ ½ðxi � xiþ1Þ þ ðxi�1 � xiÞ�=2, that is the average between the direction towards the

previous node and the direction from the next node. The motile force on node i is then given

by Ftþ1

mi
¼ vsi.

After forces have been applied and the nodes’ positions updated, the headings are

updated to reflect the direction of the displacement for calculating the movement in the next

time step.

1.1.2 Undulations
To mimic more worm-like movement (Figure 6—figure supplement 2H), we impose a

sinusoidal contribution to the direction of the head node’s movement. If � is the direction of

movement in the worm’s reference frame, and fi the orientation of node i with respect to the

x-axis, we assume the heading of the worm internally oscillates with angular frequency ! and

amplitude �0, so that
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�ðtÞ ¼ �0 sin!t: (1)

This prescribes the change in direction for the head node at every time step, such that

ftþ1

1
¼ft

1
þD�tþ1 þh�¼ft

1
þ �tþ1 � �t þh�; (2)

where ! ¼ 2p � 0:6Hz, �0 ¼ p=4, and the mth node’s internal oscillator is phase-shifted by

D	m ¼ 11:76� m=M.

1.1.3 Taxis
To investigate the effect of taxis in our simulations, we treat the movement of the head node

as an attracting walk with respect to other worm’s nodes within an interaction radius Rtaxis (see

Hannezo et al., 2017, SI). This was implemented as an additional term ftptaxis added to the

motile force that affects its direction as well as its the magnitude (reflecting additive

contribution from multiple neighboring worms). The parameter ftaxis controls the strength of

taxis per other worm. The taxis force is additionally weighted by 1=r to reflect that nearby

neighbors exert a stronger attraction, that is as if mediated by a non-degrading, diffusible

factor, such as oxygen or CO2. The vector ptaxis is the sum of the directions towards other

worms’ nodes within the interaction radius, Rtaxis, so that for worm k, the taxis contribution to

the motile force is

ptaxis;k ¼
1

M

X

j

dðrc � rjk � RtaxisÞ
rc

rjk
� dðrjk<rcÞ

� �

xj �xk

jxj �xkj
: (3)

The sum is over all nodes of other worms, and the force is normalized by M to make it

independent on the number of nodes in a worm. To prevent excessive overlap of worms, the

taxis force become repulsive for worms that overlap, hence the negative second term.

1.1.4 Length constraints
To enforce approximately constant length of the worm, each node is connected by non-linear

springs of rest length l0 that resist an extension dl ¼ l� l0, where l is the length of the

segment, with opposing force

Fl ¼ kl̂l
dl

1�ðdl
l
Þ2
; (4)

which points along the direction of the segment, l̂ ¼ l=l.

1.1.5 Volume exclusion
For supplementary simulations with volume exclusion (Figure 6—figure supplement 5B), the

forces are modified as follows when two nodes are overlapping: Any two nodes i and j of

different objects that are closer than 2rc exert contact forces onto each other (nodes within the

same object can overlap without contact forces). The total force acting on node i, Fi is

projected onto the connecting line between the nodes, and if this projected force is pointing

towards node j (pushing rather than pulling), it is added to Fj. The contact force of j onto i is

calculated mutatis mutandis.

1.1.6 Adhesion
To assess how aggregation is affected by a moderate adhesion (equal to both strains), such as

could arise through liquid film forces (Gart et al., 2011), we implemented a soft-core version

of the Lennard-Jones potential. This gives rise to a force between any two nodes of different

worms that is repulsive at short distances, attractive at intermediate distances, and zero at

long distances. The force between two nodes separated by r<3:75rc (the cut-off was chosen to

limit adhesive force to nearest neighbors) is given by a soft-core potential of a generalized

Lennard-Jones form (Heyes, 2010):
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Fa ¼ 8
�a
~r

sa

~r

� �2

�sa

2~r

� �

; (5)

where ~r ¼ 2sa=3þ r. The parameter sa ¼ 2rc was chosen so that the force becomes attractive

at a distance greater than the node particle size, the exponent of the attractive term was

chosen as -1 to reflect the 1=r dependence estimated for liquid film tension between two

worms (Gart et al., 2011), and the exponent of the repulsive term was set as -2 to win over

the attractive term at short distances (to ensure volume exclusion). Note that adhesion is not

used in any of the results of this work and was only used to illustrate its unrealistic effects on

aggregation (Figure 5D).

1.1.7 Switching between slow and fast movement
Worms stochastically switch between movement at speeds v0 and vs with rates that depend on

the local density of worms surrounding them. In the absence of other worms, the (Poisson)

rates are ks0 to slow down from v0 to vs, and kf0 to speed up from vs to v0. These rates increase

and decrease, respectively, with the number of neighboring worm nodes within ri of any node

of the worm, such that

kslow ¼ ks0þ k0s�; (6)

where the linear dependence is chosen for simplicity, and k0s is a free parameter, and

kfast ¼ kf0 exp �k0f�
� �

; (7)

where the exponential decay with decay constant k0f was chosen to provide a lower bound of 0

for the rate. Note that the rate of switching to fast movement is related to the duration of a

period of slow movement via tslow ¼ 1=kfast (for Poisson rates).

The local density � is estimated by counting the average number of other worms’ nodes in

a radius ri around each node of the current worm.

�¼ 1

M

X

M

m

X

N

n

X

M

j

Qðri�jrm� rnjjÞ; (8)

where jrm � rnjj is the distance from the current node m to node j of worm n, Q is the Heaviside

step function (such that QðxÞ ¼ 1 if x>0), and the sum over other worms skips the index of the

current worm.

For simulations with undulations, when a worm has slowed down to vs, the angular

frequency of its internal oscillators slows down accordingly to !s ¼ !vs=v0.

1.1.8 Reversals
To model reverse movement, we switch the direction of the nodes for the duration of the

reversal, such that movement originates from the tail and the rest of the body follows.

Reversals events are generated stochastically, with Poisson-rate rrev, which depends on the

local density via

rrev ¼ r0�; ; (9)

where r0 is a free parameter, and � is the local density as estimated above. Once a reversal

rate has started, it lasts for trev ¼ 2s, unless otherwise aborted (see Contact-dependent

reversal events).

1.1.9 Reversals with undulations
Upon reversals, we have also to reset the phase of the internal oscillator prescribing the

undulating movement of the worm to match its current shape (as the phase may have

decoupled from the shape during movement). Recall that the internal orientation of a node

with index i ¼ s=Lw, where s is the arc-length along the worm, is changing with the node’s

internal oscillator according to
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�¼ �0 sin !t� s
D 

l

� �

;

and the derivative with respect of arc length, s, differentiating towards the head, that

is decreasing s, gives

�d�

ds
¼ D 

l
�0 cos !t� s

D 

l

� �

:

Both the angle, �, and the curvature, d�
ds
, are needed to estimate the phase uniquely, using

�

�d�
ds

l
D 

¼ tan !t� s
D 

l

� �

;

which we re-arrange to get the phase, that is the node’s oscillator’s internal time,

 ¼ !t� s
D 

l
¼ arctan

�

�d�
ds

l
D 

 !

: (10)

We use this expression to set the phase of the head/tail node after a reversal starts/ends,

and set the phase of the rest of the worm according to  i ¼  � iD .

1.1.10 Contact-dependent reversal events
The rate of reversal events depends on whether the head and tail are in close proximity with

other worms, being rrev when only the head or tail is in close proximity to another worm, but

not both, and zero otherwise. Head and tail nodes are specified as the first and last 10 percent

of the nodes (rounded), respectively. Contact is registered if any other worm’s nodes are

within ri of the head/tail nodes. If the worm is going forward and the tail is in contact, but the

head is not, reversals occur with rate rrev. If the worm is already reversing, and the tail is not in

contact, but the head is, reversals stop with the same rate. If both or neither head and tail are

in contact, no reversals occur (adding reversal rates as measured for freely moving worms did

not qualitatively change the aggregation outcome of simulations).

1.1.11 Adaptive time-step
The time-step of simulations is chosen adaptively to maintain accuracy at higher forces. To

achieve this the time-step scales inversely with the maximum magnitude of forces in the

system, dT ~dT0=max ðFiÞ. The precise scaling is chosen so that the node with the highest

force acting on it moves no further in one time-step than 1=2 of the node radius.

1.2 Food depletion
For simulations with food depletion, food is initialized uniformly on a grid of size L=ð4rcÞ,
where rc is the node radius. Food concentration is set equal to 100 in arbitrary units. Before

worm movement is calculated, food concentrations are checked. If the food is depleted at the

grid-point closest to the head node of a worm, the worm moves at the faster speed v0,

regardless of other interactions (i.e. does not slow down and speeds up if previously slowed

down). After worm movements, food is consumed in each grid-point by an amount rfeed per

worm-head in that grid-point, with a minimum of zero food.

2 Parameter inference

2.1 Inference scheme
We employ approximate Bayesian inference with rejection sampling (Beaumont et al., 2002;

van der Vaart et al., 2016). We sample from our prior distribution of the parameters (see

Reduction to feasible parameter space) and run simulations for these samples. Similarity to the

experimental data is then computed based on summary statistics (see Summary statistics), and

the closest fraction a of the simulations are chosen. To estimate the posterior distribution from

Ding et al. eLife 2019;8:e43318. DOI: https://doi.org/10.7554/eLife.43318 28 of 32

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.43318


these chosen parameter samples, we construct a kernel density estimation, with the weight for

each sample chosen inversely proportional to the distance from the experimental data.

2.2 Reduction to feasible parameter space
For the four-parameter model, with density-dependent reversals (r0), speed-switching rates

(k0s; k
0
f ) and taxis interactions (ft), we employ a strategy to exclude unfeasible regions of

parameter space before running long simulations. Our reasoning is that interactions must be

such that pairs of worms should not be stable for long times, and cluster of worms should be

stable/unstable for npr-1/N2. We first sample parameters for pilot simulations from a regular

grid, with 10
d samples, where d is the dimensionality of our parameter space. We then run

simulations of worms starting as an overlapping pair, and assess whether they are within 1 mm

of each other after 1 min of simulation (taking the median of 10 repeated simulations). If their

separation is below the threshold, we discard the parameter sample. The remaining parameter

samples are used to run simulations in which worms start out in a cluster (by confining their

initial positions to a circle of 1.8 mm radius). These simulations are run for 300 s, after which

stability of the cluster is assessed by calculating the radius of gyration of the head-nodes of

the worms. If the radius of gyration is above 3 mm (which corresponds approximately to

worms being uniformly distributed within a square of 7.5 mm side length), the cluster is

deemed not stable and the parameter sample is discarded for npr-1 simulations, and kept for

N2 simulations. Both the pair- and cluster-stability thresholds are chosen conservatively to

include rather than exclude potential parameter samples. Never the less, only a few percent of

the initial parameter space remain as feasible for further inference. The remaining parameter

samples are used to construct a prior distribution via kernel density estimation, that is

centering a Gaussian distribution on each sample.

For the N2 parameterization, only pilot runs with ftaxis ¼ 0 were accepted, so we chose to

sample this parameter on a log10-scale for both strains. When constructing the approximate

posterior distribution this change in prior p was taken into account by weighting each sample

with the appropriate importance factor of pnew=pold.

2.3 Summary statistics
We use the following summary statistics to quantify aggregation and compute the similarity

between simulations and the experimental data:

1. The pair-correlation function compares the density of neighbors at a distance r to that

expected under a uniform random distribution (Gurry et al., 2009):

S1 ¼ gðrÞ ¼ A

NðN� 1Þ

PN
i

PN
j 6¼i1ijðr� a<rij � rÞ

pðr2 �ðr� aÞ2Þ
; (11)

where rij is the distance between objects i and j, A ¼ L2 is the size of the simulation domain,

chosen to match the estimated are of the food patch in experiments.

2. Hierarchical clustering (as implemented in Matlab’s linkage function) quantifies the structure

of a point pattern through agglomerative clustering. Each frame results in a dendrogram, or

clustering tree. We summarize the distribution of these clustering trees through the overall

distribution of branch lengths, S2.

3. The standard deviation of the positions, sðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sðxÞ2 þ sðyÞ2
q

, is a simple way to quantify

the spread of points x ¼ ðx; yÞ, which we average over time to give

S3 ¼ hsðxÞit: (12)

4. The kurtosis or the sharpness of the distribution of positions,

S4 ¼ hKurtðxÞit: (13)

Ding et al. eLife 2019;8:e43318. DOI: https://doi.org/10.7554/eLife.43318 29 of 32

Research article Physics of Living Systems

https://doi.org/10.7554/eLife.43318


To compute these summary statistics, we randomly sample frames from experiments and

simulations such that on average we have one frame every three seconds. To mimic the partial

information about a worm’s position obtained from the pharynx-labelled imaging, we

restricted the simulation analysis to the first 16 percent of the nodes (based on measurements

of pharynx size relative to worm body length), from which centroid positions for each worm

were obtained. We also computed the nematic order parameter (Weitz et al., 2015), but

found these to be low ( » 0:2) for both strains, and hence not an informative summary statistic

of aggregation in our system.

Note that when calculating summary statistics for simulation outputs, periodic boundary

conditions have to be taken into account. This means calculating any distances r as

minðjrj; jL� rjÞ, and furthermore calculating the mean positions, �xi, in dimension i (used in S3

and S4) as

�xi ¼
L

2p
ðatan2ð��sxi ;��cxiÞþpÞ; (14)

where sxi ¼ sin ðxi=ð2pLÞÞ, cxi ¼ cos ðxi=ð2pLÞÞ and atan2 is the four-quadrant inverse tangent.

2.3.1 Distance function
Before combining the summary statistics into a single distance function, we scale them for

their overall magnitude and dimensionality as follows: We take the log-ratio of the summary

statistics from experiments and simulations (Barnes et al., 2012) to adjust both for the

different scale of bins within distributions, and the different scales of summary statistics

overall, such that each statistic is weighted approximately equally, irrespective of its average

magnitude.

We further note that higher dimensional summary statistics result in larger distance values,

even if the difference in each dimension is equal to that of a lower dimensional statistic. We

choose to normalize for this by dividing the distance by the square root of the dimensionality.

Thus, our distance function for summary statistic Si with dimensionality Di is given by

di ¼ jj logSi;obs� logSi;simjj2=
ffiffiffiffiffi

Di

p
: (15)

Using log-ratios can cause infinite distances if any of the Si;sim ¼ 0. To avoid this, we cap the

simulation data 0.005, that is we set Si;sim ¼ maxðSi;sim; 0:005Þ. This limits the penalizing effect

of empty bins and the tails of a distribution on the overall distance function.

2.3.2 Alternative weighting of summary statistics
We explored optimizing the weighting of summary statistics to maximize the distance

between our prior and posterior distribution over the parameters (Harrison and Baker, 2017),

but this led to weighting of the summary statistics (with all the weight concentrated in S2 and

S3) which did not match with visual inspection of the closest matching simulations. In other

words, equally weighting all summary statistics returned simulations that better reflected our

intuition for what constitutes a good match, in particular for the npr-1 parameterization. In the

interest of completeness we describe here the method of Harrison and Baker (2017) applied

to our data, as it informed our thinking, even though we did not use the results.

To try and optimize the weighting of our summary statistics, we optimized the Hellinger

distance between our prior and posterior distribution over the parameters (Harrison and

Baker, 2017), with weak regularization (l ¼ 10
�4) of the parameters included in the objective

function. Distributions are calculated using kernel density estimation as described above, and

as an optimization procedure we use the genetic algorithm provided in Matlab’s global

optimization toolbox. With the weightings wi for each summary statistic thus optimized, the

overall distance is d ¼Pi widi.

This method of adaptively weighting summary statistics is still sensitive to the choice of

statistics. Our choices are by no means exhaustive, and we chose to focus on statistics

commonly used to quantify aggregation (pair-correlation function and hierarchical clustering)

and the shape of distributions (variance and kurtosis).
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To ensure that the same summary statistics are chosen for the parameter inference for

either strains, we jointly optimize the posterior distribution for both strains, by minimizing the

objective function L ¼ �ðH1 þ H2Þ, where Hi is the Hellinger distance between the prior and

the posterior for strain i.

2.4 Kernel density estimation
For plotting the marginal joint distributions between pairs of parameters, we use ksdensity

(Matlab, R2018a). For constructing the higher-dimensional parameter distributions to sample

from, we implement the kernel density estimation using gmdistribution (Matlab, R2018a)

with Silverman’s rule of thumb for the bandwidths.

2.5 Sampling sequence
We first sampled 100,000 samples from our prior, resulting in 11,214 simulations for npr-1 and

1394 simulations for N2 (only a fraction of parameter samples resulted in full simulations

because samples resulting in stable pairs and stable/unstable clusters were rejected for N2/

npr-1, see Reduction to feasible parameter space). To improve the successful sampling rate,

we constructed an approximate posterior distribution from the initial samples, and continued

sampling from this posterior distribution, thus ensuring the samples were concentrated in the

appropriate regions of parameter space. This change in the sampling distribution was

accounted for when constructing the final posterior (Figure 6D) distributions through

weighting by the ratio of the initial prior distribution to the proposal distribution (with a small

regularization to avoid division by near-zero weight for outlier samples). In this second round

of sampling we generated 13,341 simulations for N2 and 27,384 samples for npr-1.
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Appendix 2
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Appendix 2—figure 1. Oxygen consumption-diffusion calculations predict shallow O2 concen-

tration gradients. (A) Plot of feasible oxygen gradients inside worm aggregates. The oxygen

concentration decays with length constant
ffiffiffiffiffiffiffiffiffiffi

D=�
p

» 1mm, with diffusion constant

D »2:1� 10�5 cm2

s
(in water) and oxygen consumption rate � »0:14min�1 (estimated as an

upper bound for 200 pl/min [Shoyama et al., 2009; Suda et al., 2005] at 21% oxygen and

8000 pl worm volume). The thinnest dimension of a cluster is relevant for diffusion, which is its

thickness. We can approximate the cluster geometry either as flat, which results in a 1D

diffusion gradient (solid line), or as hemispherical, which we approximate by spherically

symmetric diffusion in 3D (dashed line). In either case the reaction-diffusion equation qc
qt
¼

DD2c� �c was solved at steady state. (B) Gradient of diffusible, non-degrading signal, qt for

example CO2, outside a point source. Without decay, this problem is equivalent to calculating

the l potential around a point charge, and the concentration would be c ¼ l
4pDr

, in 3D, where l

is the production rate times the volume of a worm, 0.14/min (equal and opposite to the O2

consumption, based on mass conservation). A point source represents the contribution of a

short section of a worm, and the contributions of many worms in an aggregate would

integrate to give an approximately logarithmic gradient of signal outside the aggregate.

DOI: https://doi.org/10.7554/eLife.43318.031
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