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Abstract Assembly of microtubule-associated protein tau into filamentous inclusions underlies a

range of neurodegenerative diseases. Tau filaments adopt different conformations in Alzheimer’s

and Pick’s diseases. Here, we used cryo- and immuno- electron microscopy to characterise

filaments that were assembled from recombinant full-length human tau with four (2N4R) or three

(2N3R) microtubule-binding repeats in the presence of heparin. 2N4R tau assembles into multiple

types of filaments, and the structures of three types reveal similar ‘kinked hairpin’ folds, in which

the second and third repeats pack against each other. 2N3R tau filaments are structurally

homogeneous, and adopt a dimeric core, where the third repeats of two tau molecules pack in a

parallel manner. The heparin-induced tau filaments differ from those of Alzheimer’s or Pick’s

disease, which have larger cores with different repeat compositions. Our results illustrate the

structural versatility of amyloid filaments, and raise questions about the relevance of in vitro

assembly.

DOI: https://doi.org/10.7554/eLife.43584.001

Introduction
The ordered assembly of tau protein into amyloid filaments defines a number of neurodegenerative

diseases, also known as tauopathies; they are the most common proteinopathies of the human ner-

vous system (Goedert et al., 2017). The physiological function of tau is to promote the assembly,

and possibly stability, of microtubules. Free tau is intrinsically disordered, but the microtubule-bind-

ing repeats (R1-4) and some adjoining sequences adopt structure when bound to microtubules (Al-

Bassam et al., 2002; Kellogg et al., 2018).

Six tau isoforms ranging from 352 to 441 amino acids are expressed in adult human brain from a

single MAPT gene (Goedert et al., 1989). They differ by the presence or absence of inserts of 29 or

58 amino acids (encoded by exons 2 and 3, with exon three being only transcribed in conjunction

with exon 2) in the N-terminal half, and the inclusion, or not, of the second 31 amino acid microtu-

bule-binding repeat (R2), encoded by exon 10, in the C-terminal half. Inclusion of exon 10 results in

the production of three isoforms with four repeats (4R) and its exclusion in a further three isoforms

with three repeats (3R). The repeats comprise residues 244–368 of tau, in the numbering of the 441

amino acid isoform (2N4R tau).

Tau filaments in some neurodegenerative diseases have different isoform compositions

(Goedert et al., 2017). For example, a mixture of all six isoforms is present in the tau filaments of

Alzheimer’s disease (AD), but in progressive supranuclear palsy (PSP) tau filaments are made of 4R

tau, whereas the filaments of Pick’s disease (PiD) are made of 3R tau. The repeats make up the fila-

ment cores, with the remainder of tau forming the fuzzy coat (Wischik et al., 1988).

The determination of the cryo-EM structures of tau filaments from the brains of individuals with

AD (Falcon et al., 2018a; Fitzpatrick et al., 2017) and PiD (Falcon et al., 2018b) revealed the
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atomic structures of their cores. In AD, two types of filaments are observed: paired helical filaments

(PHFs) and straight filaments (SFs) (Crowther, 1991). PHFs and SFs are ultrastructural polymorphs,

because they consist of two identical protofilaments with a C-shaped core, but differ in the interfa-

ces between protofilaments. The core is made of amino acids 273/304–380, comprising the car-

boxyl-terminal parts of R1 and R2, all of R3 and R4, as well as part of the C-terminal domain. This is

consistent with the presence of all six tau isoforms in AD filaments (Goedert et al., 1992).

In PiD, narrow and wide filaments (NPFs and WPFs) are seen. NPFs are made of a single protofila-

ment with an elongated J-shaped core comprising amino acids 254–378 of 3R tau. WPFs are made

of two NPFs. The presence of the C-terminal region of R1 (residues 254–274) in the core of NPFs

and WPFs explains why only 3R tau is present in PiD filaments. The markedly different structures of

the protofilament cores from AD and PiD established the existence of distinct molecular conformers

of aggregated tau in different human tauopathies.

Several methods have been used for the in vitro study of tau filaments. Initial work showed that

the repeat region of tau formed filaments (Crowther et al., 1992; Wille et al., 1992). Full-length tau

assembled upon addition of polyanionic molecules, such as RNA (Kampers et al., 1996), polygluta-

mate (Friedhoff et al., 1998) and fatty acids (Wilson and Binder, 1997) in micellar form

(Chirita et al., 2003). Prior to the above, heparin and other sulphated glycosaminoglycans had been

shown to induce bulk assembly of recombinant full-length tau into filaments (Goedert et al., 1996;

Pérez et al., 1996). This led to a conformational change from a mostly random coil to a b-sheet

structure in a region of the repeats containing hexapeptide motifs necessary for assembly

(Berriman et al., 2003; Hasegawa et al., 1997; von Bergen et al., 2000; von Bergen et al., 2001).

Heparin was subsequently used in many studies, including those aimed at understanding the effects

of MAPT mutations on filament assembly (Arrasate et al., 1999; Goedert et al., 1999), and at iden-

tifying tau aggregation inhibitors (Nacharaju et al., 1999; Pickhardt et al., 2005; Taniguchi et al.,

2005).

Although low-resolution, negative stain EM images have often been used to claim that heparin-

induced tau filaments resemble those from human brain, an increasing number of studies has sug-

gested that structural differences may exist between them, as outlined below. Tau filaments assem-

bled from human recombinant 0N4R P301S tau and heparin had a reduced seeding activity when

compared with that of sarkosyl-insoluble tau from the brains of mice transgenic for human 0N4R

P301S tau (Falcon et al., 2015). Additional experiments showed that the conformational properties

of the seed determined the properties of the seeded aggregates. Negative-stain EM, circular dichro-

ism and chemical denaturation revealed differences between tau filaments that were seeded from

AD-derived brain extracts and those that were assembled from recombinant tau using heparin

(Morozova et al., 2013). Moreover, R2 and R3 are ordered in heparin-induced filaments of 4R tau

(Li et al., 2002; Mukrasch et al., 2005; Sibille et al., 2006), whereas only R3 is ordered in 3R tau fil-

aments (Andronesi et al., 2008; Daebel et al., 2012). This is in agreement with site-directed spin

labelling combined with electron paramagnetic resonance spectroscopy, which showed that 3R and

4R heparin-induced tau filaments are different, but share a highly ordered structure in R3

(Siddiqua and Margittai, 2010). Double electron-electron resonance (DEER) spectroscopy has sug-

gested that the structures of heparin-induced recombinant tau filaments are different from those of

AD (Fichou et al., 2018).

Here, we used cryo-EM to determine the structures of heparin-induced filaments assembled from

recombinant full-length 4R tau (2N4R, 441 amino acid isoform) and the corresponding 3R isoform

(2N3R, 410 amino acid isoform) to resolutions sufficient for de novo atomic modelling. Immuno-EM

confirmed which microtubule-binding repeats were in the ordered cores. Our results show that hep-

arin-induced 2N4R filaments consist of a mixture of at least four different conformations, whereas

heparin-induced 2N3R filaments mainly adopt a single conformation. All four resolved structures are

different from those of the tau filaments in AD and PiD. These findings indicate that tau filament

structures are even more versatile than previously thought, and illustrate how EM can be used to

compare the structures of tau filaments from model systems with those formed in disease.
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Results

Comparative morphology of heparin-induced 2N4R and 2N3R tau
filaments
For 2N4R tau, we distinguished at least four different types of filaments in raw cryo-EM micrographs

and in 2D class averages, (Figure 1A). We named the two most common types snake (~45%) and

twister (~30%). Snake filaments have a crossover distance of 650 Å and vary in width between 40

and 100 Å. They display a sigmoidal curvature pattern, with deviations of up to 70 Å from a hypo-

thetical straight line through their centre. Twister filaments have an almost constant width of 80 Å,

and a crossover distance that is approximately two times shorter (~250 Å) than that of the snake fila-

ments. We called the least common types of filaments hose (~20%) and jagged (~5%). Hose fila-

ments display a sigmoidal curvature pattern that is less regular and has much wider curves

compared to snake filaments, and hose filaments often appear to stop twisting. Jagged filaments

are straighter than snake filaments, and are named after their somewhat rugged appearance around

the edges, with filament widths ranging from 50 to 90 Å. They have a crossover distance of approxi-

mately 450 Å. In some micrographs, we observed filaments that change from one type into another

(Figure 1—figure supplement 1). We observed the following transitions: twister to snake; twister to

jagged; hose to snake and hose to jagged. Similar changes were also observed for tau filaments

from AD brains and PiD brains, where a continuous filament could transition from a PHF to a SF, and

from a NPF to a WPF, respectively (Crowther, 1991; Falcon et al., 2018b).

A B

Hose

Twister

Snake

Jagged

3R

Twister Jagged

Hose Snake

3R

Figure 1. Different types of heparin-induced tau filaments. (A) Cryo-EM image of heparin-induced 2N4R tau filaments. (B) Cryo-EM image of heparin-

induced 2N3R tau filaments. 2D class averages of each filament type are shown as insets. Scale bars, 50 nm.

DOI: https://doi.org/10.7554/eLife.43584.002

The following figure supplements are available for figure 1:

Figure supplement 1. Heparin-induced tau filaments can change from one type into another.

DOI: https://doi.org/10.7554/eLife.43584.003

Figure supplement 2. Cryo-EM image of heparin-induced filaments assembled from a mixture of 2N4R and 2N3R tau.

DOI: https://doi.org/10.7554/eLife.43584.004
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Reference-free 2D class averaging of manually selected data sets for the four types confirmed the

differences between them (Figure 1A-inset). For snake, twister and jagged filaments, 3D reconstruc-

tions led to maps with separated b-strands along the helical axis, which allowed for de novo atomic

modelling (see below). However, 3D reconstruction failed for hose filaments, possibly because of a

large degree of bending and an apparent lack of twisting in many segments.

Heparin-induced 2N3R tau filaments were more homogeneous than their 2N4R counterparts

(Figure 1B): almost all filaments displayed a minor sigmoidal curvature pattern, with a crossover dis-

tance of 800 Å, and widths varying from 50 to 120 Å. Only 2% of filaments appeared to be wider (up

to 160 Å). Reference-free 2D class averaging of the resulting data set confirmed the original obser-

vation that 2N3R tau filaments were different from the four 2N4R tau filament types (Figure 1B-

inset). 3D reconstruction of the narrow 2N3R filaments led to a map with separated b-strands along

the helical axis and sufficient resolution for de novo atomic modelling (see below).

Since tau filaments of AD consist of a mixture of 3R and 4R isoforms, we also performed heparin-

induced in vitro assembly with equimolar amounts of 2N4R and 2N3R tau. A mixture of the same

five filament types described above was observed (Figure 1—figure supplement 2). Although no

co-assemblies with different morphologies were present, we cannot exclude the possibility that fila-

ments with a mixed composition can adopt the same morphologies as observed for the homoge-

neous samples.

Cryo-EM structure of 2N4R tau snake filaments
Of all heparin-induced tau filaments, the best helical reconstruction was obtained for the snake. The

structure has a helical twist of �1.26˚, an overall resolution of 3.3 Å, and a clear separation of b-

strands along the helical axis (Figure 2; Figure 2—figure supplement 1). A pronounced offset of

the centre of the ordered core from the helical axis explains the sigmoidal appearance of the fila-

ments in projection (Figure 2B). The map allowed unambiguous de novo atomic modelling (Figure 2,

Methods). The ordered core of the snake filament comprises residues 272–330, i.e. the last three res-

idues of R1, all of R2 and most of R3 (Figure 2A). In the core, there are six b-strands, three from R2:

b1 (274–280), b2 (282–291) and b3 (295–298), and three from R3: b4 (305–310), b5 (313–321) and b6

(327–330). Four of these strands form two stacks of cross-b, with b1 packing against b5 and b2

against b4. Both interfaces have mixed compositions of polar and hydrophobic groups (Figure 2C,

D).

Both cross-b stacks are connected at an angle by short arcs, shaping the overall structure into a

kinked hairpin (Figure 2E,F). The angle between b4 and b5 is 69˚ (Figure 7C), as measured from the

coordinates of the Ca atoms of their first and last residues in the plane perpendicular to the helical

axis. The inner corner of the kink is formed by K281 and L282, with both residues pointing towards

the inside of the core; the outer corner is formed by Y310 and K311, both of which point outwards.

A broad, hammerhead-like arc, harbouring b3, connects b2 to b4. Weaker density, which is still suffi-

ciently well-defined for unambiguous tracing of the main chain, suggests that this arc is more flexible

than the rest of the core. The 290KCGSKD295 motif, which adopts a very similar conformation to the

homologous 353KIGSLD358 and 259KIGSTE263 motifs in the tau filament structures from AD and PiD,

respectively (Falcon et al., 2018b; Fitzpatrick et al., 2017), connects b2 and b3. On the other side

of the hammerhead arc, the 301PGGG304 motif forms part of a turn that connects b3 and b4. The

hammerhead arc represents a new type of chain direction reversal in tau filaments, different from

the triangular b-helix of the Alzheimer fold (Fitzpatrick et al., 2017), and the tighter U-turns of the

Pick fold (Falcon et al., 2018b). The other end of the kinked hairpin is capped by the 322CGSLG326

motif, which brings C-terminal glycine 326 into close contact with N-terminal glycines 272 and 273.

It is followed by a short C-terminal b-strand (b6), which is exposed to solvent on both sides, reminis-

cent of the C-terminus of the Pick fold (Falcon et al., 2018b).

In the core of snake filaments, there are 12 positively charged amino acids (9 lysines and three his-

tidines), but only three negatively charged residues (all aspartates). The aspartates appear to form

salt bridges: D283 to K280 on the inside corner of the kink; D295 to K290 inside the hammerhead

arc; and D314 to K281 in the cross-b interfaces of b5 and b1. Most of the positively charged side-

chains are exposed on the filament surface, where they face diffuse external densities (Figure 2B,

indicated by yellow arrows), presumably corresponding to negatively charged groups of heparin. In

addition, there is a significant external density covering a large exposed hydrophobic patch on the

filament surface, formed by V306, I308 and Y310 (Figure 2B, indicated by a pink arrow).
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Figure 2. Cryo-EM structure of 2N4R tau snake filaments. (A) b-strands and loop regions in the filaments are shown in different colours below the

primary sequence of the microtubule-binding repeats (R1–R4). (B) Central slice of the 3D map. The position of the helical axis is indicated by a red

cross, extra densities close to outward-facing lysines by yellow arrows, and extra density in front of the hydrophobic patches by a pink arrow. (C) Cryo-

EM density with the atomic model. The sharpened, high-resolution map is in blue, and an unsharpened, 4.0 Å low-pass filtered map in grey. (D)

Schematic view of the snake filament. (E) Rendered view of secondary structure elements in three successive rungs. (F) As in E, but in a view

perpendicular to the helical axis.

DOI: https://doi.org/10.7554/eLife.43584.005

The following figure supplement is available for figure 2:

Figure supplement 1. Fourier shell correlation curves and side views of the 3D reconstruction of 2N4R tau snake filaments.

DOI: https://doi.org/10.7554/eLife.43584.006

Zhang et al. eLife 2019;8:e43584. DOI: https://doi.org/10.7554/eLife.43584 5 of 24

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.43584.005
https://doi.org/10.7554/eLife.43584.006
https://doi.org/10.7554/eLife.43584


Cryo-EM structure of 2N4R tau twister filaments
The twister filament reconstruction, with an overall resolution of 3.3 Å and a helical twist of �3.38˚,
also allowed de novo atomic modelling (Figure 3; Figure 3—figure supplement 1). The ordered

core of the twister filament is smaller than that of the snake filament, and is positioned much closer

to the helical axis (Figure 3B). The ordered core comprises only residues 274–321 (Figure 3A), i.e.

the last residue of R1, all of R2 and half of R3. As in the snake filament, these are organised into a

kinked hairpin structure of two cross-b stacks connected by a hammerhead arc (Figure 3C,D). In the

core, there are four b-strands, two from R2: b1 (274–284) and b2 (286–291), and two from R3: b3

(305–310) and b4 (313–321). The twister shares secondary structure with the snake for the ordered

part of R3, with Y310 and K311 forming the outer corner of the kink, which is more bent (with an

angle between b3 and b4 of 72˚) (Figure 7C) than in the snake. In contrast, on the R2 side of the hair-

pin, the inner corner of the kink is formed by S285 and N286, extending b1 and shortening b2, com-

pared to the snake filament. The change of R2 secondary structure in the twister filament reverses

the interior/exterior orientations of four residues: the polar side-chains of D283 and S285 point
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Figure 3. Cryo-EM structure of 2N4R tau twister filaments. (A) b-strands and loop regions in the filaments are shown in different colours below the

primary sequence of the microtubule-binding repeats (R1–R4). (B) Central slice of the 3D map. The position of the helical axis is indicated by a red

cross, extra densities close to the outward-facing lysines by yellow arrows, and extra density in front of the hydrophobic patches by pink arrows. (C)

Cryo-EM density with the atomic model. The sharpened, high-resolution map is in blue, and an unsharpened, 4.0 Å low-pass filtered map in grey. (D)

Schematic view of the twister filament. (E) Rendered view of secondary structure elements in three successive rungs. (F) As in E, but in a view

perpendicular to the helical axis.

DOI: https://doi.org/10.7554/eLife.43584.007

The following figure supplement is available for figure 3:

Figure supplement 1. Fourier shell correlation curves and side views of the 3D reconstruction of 2N4R tau twister filaments.

DOI: https://doi.org/10.7554/eLife.43584.008
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towards the inside of the core, whereas hydrophobic residues L282 and L284 point outwards. This

results in the twister filament core having a more polar interior, and a more hydrophobic exterior

than that of the snake. It also results in a repacking of both cross-b interfaces. Again, the density of

the residues that form the hammerhead arc is weaker than that of the rest of the structure. The lower

quality of the map in this region led to ambiguity in how the strands on opposite sides of the core

connected to each other (Figure 3E,F). Therefore, we chose not to build an atomic model of resi-

dues 293–303 in this part of the structure.

Cryo-EM structure of 2N4R tau jagged filaments
At 3.5 Å, the overall resolution for the jagged filament structure was lower than for the other two 4R

filament types and the side-chain densities were resolved less well than for snake and twister fila-

ments. Still, aided by the models for the other 4R tau filament structures, the map was of sufficient

quality to propose an atomic model (Figure 4; Figure 4—figure supplement 1). The helical twist of

�2.03˚ for the jagged structure falls between those of the snake and twister filaments (Table 1); the

offset of the centre of the packing unit from the helical axis also lies in-between (Figure 4B). The

extent of the ordered core, comprising residues 274–321, is almost identical to that of twister fila-

ment (Figure 4A). There are three b-strands, b1 (274–290), b2 (305–310) and b3 (313–321). Again,

the structure is characterised by an overall kink, which, with an angle of 52˚ between b2 and b3 (Fig-

ure 7C), is the least pronounced of the three 4R tau filament structures (Figure 4C,D).

As in the other two types, the ordered part of R3 shares the same secondary structure, with Y310

and K311 forming the outer corner of the kink. However, unlike in the snake and twister filaments,

there is no inner corner of the kink. Instead, one long, slightly bent b-strand extends from residues

274–290. Compared to the snake filament, the pair of adjacent lysine residues changes to interior/

exterior orientations. The K280 side-chain points towards the inside of the core and makes a salt

bridge with D314, whereas the K281 side-chain points outwards, and forms a salt bridge with D283.

The strand residues on the N-terminal side of K280 have also their orientations reversed, and form a

new cross-b interface with the b3 strand of R3. In contrast, the C-terminal half of this strand (residues

282–290) forms essentially the same cross-b interface with the b2 strand of R3, as in snake filaments.

A hammerhead arc connecting these two strands may be similar to that in the snake. As in the other

4R tau filament structures, its density is weaker than that of the rest of the core, suggesting

increased flexibility. The density of the whole arc was not good enough for model building, resulting

in the omission of residues 291–303 from the atomic model, and ambiguity in how the strands on

opposite sides of the core connected to each other (Figure 4E,F).

Cryo-EM structure of 2N3R tau filaments
At an overall resolution of 3.7 Å, and with clear separation of b-strands along the helical axis, cryo-

EM reconstruction of the 2N3R tau filaments allowed unambiguous de novo atomic modelling (Fig-

ure 5; Figure 5—figure supplement 1). With a helical twist of �1.05˚, the 3R filament twists less

than any of its 4R counterparts (Table 1). Again, an offset of the centre of the packing unit from the

helical axis explains the sigmoidal patterns observed in projection (Figure 5B). The structure is strik-

ingly different from those of the 2N4R tau filaments. Whereas all three 4R filaments contain a single

molecule of tau per rung in the b-sheet, the 3R filament core contains two tau molecules on each

rung. There exists no exact symmetry between the two molecules, which are arranged in a parallel

cross-b packing (Figure 5E,F). In one molecule, residues 274–330 are ordered; in the other, residues

272–330 are ordered, i.e. the structured core comprises only the last residues of R1, and most of the

residues of R3 (this being a 3R tau isoform, residues 275–305 of R2 are not present). At the N-termi-

nal end of the two molecules, residues 274–310 form the first parallel b-strands (b1). The two tyro-

sines at the end of these strands point towards each other, which marks the beginning of a wider

gap between the two molecules, which comprises in each K311, P312 and a small b-strand formed

by residues 313–315 (b2). After that, the b-strands comprising residues 317–325 (b3) of both mole-

cules come close together, to engage in tight and interdigitating cross-b packing, provided by the

side-chains of S320, C322, S324 and the backbone of G326. At the C-terminal end of the ordered

core of each tau molecule, residues 328–330 form a b-strand that faces away. It is equivalent to the

C-terminal strand of the snake filaments, and likewise is exposed to solvent on both sides.

Zhang et al. eLife 2019;8:e43584. DOI: https://doi.org/10.7554/eLife.43584 7 of 24

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.43584


Immuno-EM supports the atomic models
In previous studies, we used immuno-EM to confirm which microtubule-binding repeats form part of

the ordered core of tau filaments from AD and PiD brains (Falcon et al., 2018a; Falcon et al.,

2018b; Fitzpatrick et al., 2017). Epitopes of repeat-specific, anti-tau antibodies that are buried in

the cores of tau filaments are not accessible, while epitopes located in the fuzzy coat are labelled.

Moreover, pronase removes the fuzzy coat, which abolishes this positive labelling. We applied the

same methods to corroborate the cryo-EM structures of heparin-induced filaments of 2N4R and

2N3R tau (Figure 6). We used antibodies specific for residues 1–16 at the N-terminus (BR133); 244–

257 in R1 (BR136); 275–291 in R2 (Anti4R); 323–335 in R3 (BR135); 354–369 in R4 (TauC4); and 428–
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DOI: https://doi.org/10.7554/eLife.43584.009

The following figure supplement is available for figure 4:

Figure supplement 1. Fourier shell correlation curves and side views of the 3D reconstruction of 2N4R tau jagged filaments.

DOI: https://doi.org/10.7554/eLife.43584.010
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441 at the C-terminus (BR134). All antibodies labelled bands on Western blots of recombinant pro-

teins (Figure 6—figure supplement 1).

As expected, heparin-induced 2N4R and 2N3R tau filaments were labelled by BR133 and BR134

before, but not after, pronase treatment. Similarly, BR136 and TauC4 decorated 2N4R and 2N3R fil-

aments before, but not after, pronase treatment. By contrast, Anti4R and BR135 did not decorate

2N4R tau filaments, either before or after pronase treatment. BR135 also failed to decorate 2N3R

tau filaments. This suggests that the N- and C-termini of tau, as well as the N-terminus of R1 and the

C-terminus of R4 are in the fuzzy coat of all heparin-induced filaments, whereas R2 and R3 in 2N4R,

and R3 in 2N3R tau filaments are in their ordered cores. These findings are consistent with the tau

sequences observed in the core structures of 2N4R and 2N3R filaments.

Table 1. Cryo-EM structure determination and model statistics

4 R-s 4 R-t 4 R-j 3R

Data collection and processing

Microscope Polara Polara Polara Titan Krios

Voltage (kV) 300 300 300 300

Detector Falcon-III Falcon-III Falcon-III K2 (post-GIF)

Electron exposure (e–/Å2) 50 50 50 50

Defocus range (mm) �1.7 to
�2.8

�1.7 to
�2.8

�1.7 to
�2.8

�0.8 to �2.2

Pixel size (Å) 1.38 1.38 1.38 1.04

Initial particle images (no.) 303,754 187,555 44,456 788,359

Final particle images (no.) 52,441 141,461 35,695 149,909

Map resolution (Å) 3.3 3.3 3.5 3.7

Helical rise (Å) 4.70 4.70 4.70 4.70

Helical twist (˚) �1.26 �3.38 �2.03 �1.05

Refinement

Map sharpening B factor (Å2) �41.26 �58.51 �33.2 �95.9

Model composition
Non-hydrogen atoms
Protein residues 1302 846 816 1218

177 111 105 162

R.m.s. deviations
Bond lengths (Å)
Bond angles (˚)

0.0094 0.0102 0.0099 0.0209

0.9007 1.0727 1.1342 1.0457

Validation
MolProbity score
Clashscore
Poor rotamers (%)

1.56 1.92 1.13 1.65

1.49 7.3 1.74 4.78

1.96 0 0 0

Ramachandran plot
Favored (%)
Allowed (%)
Disallowed (%)

92.98 90.91 96.77 94.0

100 100 100 98.0

0 0 0 2

EMPIAR 10243 10243 10243 10242

EMDB 4563 4564 4565 4566

PDB 6QJH 6QJM 6QJP 6QJQ

DOI: https://doi.org/10.7554/eLife.43584.011
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Discussion
Heparin-induced filaments of 2N4R tau are polymorphic, adopting at least four different conforma-

tions. Cryo-EM structures of three of these conformations reveal a common, kinked hairpin fold, with

differences in kink, helical twist and offset distance of the ordered core from the helical axis. A 20˚
variation of the kink angle between the shared R3 b-strands 305–310 and 313–321 (from 52˚ to 72˚)
(Figure 7) may result from the optimisation of their cross-b packing interfaces with different R2 coun-

terparts, and requires only minor adjustments of local backbone conformations of the 310YKP312

turn. Both helical twist and offset distance from the helical axis may result from the optimisation of

local interactions within and between the constituent b-sheets. For example, the larger helical twist
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filament. (E) Rendered view of the secondary structure elements in three successive rungs. (F) As in E, but in a view perpendicular to the helical axis.

DOI: https://doi.org/10.7554/eLife.43584.012

The following figure supplement is available for figure 5:

Figure supplement 1. Fourier shell correlation curves and side views of the 3D reconstruction of 2N3R tau filaments.

DOI: https://doi.org/10.7554/eLife.43584.013
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Figure 6. Immuno-EM of heparin-induced 2N4R and 2N3R tau filaments. (A) Schematic of 2N4R tau with

N-terminal inserts (N1 and N2) and microtubule-binding repeats (R1, R2, R3, R4) highlighted. The epitopes of

antibodies BR133 (residues 1–16), BR136 (244-257), Anti4R (275-291), BR135 (323-335), TauC4 (354–369) and BR134

(428-441) are underlined. (B) Representative immuno-EM images with antibodies BR133, BR136, Anti4R, BR135,

TauC4, and BR134 of heparin-induced 2N4R and 2N3R tau filaments without (-) and with pronase (+) treatment.

Scale bar, 100 nm. (C) Table summarising the results from B, and comparison with the immuno-EM results of AD

and PiD. Tick marks indicate antibody decoration of filaments; crosses indicate absence of decoration. The four

boxes where the human diseases differ from the in vitro heparin-induced filaments are highlighted in blue.

DOI: https://doi.org/10.7554/eLife.43584.014

The following figure supplement is available for figure 6:

Figure supplement 1. Western blots.

DOI: https://doi.org/10.7554/eLife.43584.015
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DOI: https://doi.org/10.7554/eLife.43584.016

Zhang et al. eLife 2019;8:e43584. DOI: https://doi.org/10.7554/eLife.43584 12 of 24

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.43584.016
https://doi.org/10.7554/eLife.43584


in twister filaments could be due to their cross-b interfaces containing more polar groups. The inte-

rior packing of such groups requires the formation of hydrogen bonds. This may impose additional

constraints on the mutual orientations of the opposite b-sheets, resulting in a larger packing angle

between b-sheets, and thereby a larger helical twist.

The common, kinked hairpin fold among the three 2N4R structures may explain why 2N4R tau fil-

aments can transition from one type into another. The observation that hose filaments, whose struc-

ture we could not determine, transition into snake and jagged filaments, suggests that they may

adopt a similar, kinked hairpin conformation. Apparently, the energetic cost of the mismatch in b-

sheet-forming hydrogen bonds is not large enough to preclude transitions from one filament type

into another. These transitions are relatively rare, with only 15 observed transitions in 717 images.

Nevertheless, the possibility of transitions occurring may complicate the interpretation of amyloid

seeding experiments, which often assume replication of the seed conformation (Jarrett and Lans-

bury, 1993).

Heparin-induced filaments of 2N3R tau are less polymorphic than their 2N4R counterparts; 98%

of all 3R filaments adopt a conformation where the ordered core comprises the third repeats of two

parallel tau molecules. The presence of three b-strand breaking proline residues in the N-terminal

region of R1 (244QTAPVPMPDL253) may explain why 2N3R tau does not form kinked hairpin-like

structures, similar to the 2N4R tau filament types.

The structures of heparin-induced tau filaments explain a range of observations from biochemical

and biophysical studies of filaments assembled in vitro that were inconsistent with the structures of

tau filaments from AD and PiD. Limited proteolysis experiments (Pérez et al., 2001; Santa-

Marı́a et al., 2006; von Bergen et al., 2000; von Bergen et al., 2006) indicated that both R2 and

R3 become ordered in heparin-induced 4R tau filaments, whereas only R3 becomes ordered in 3R fil-

aments. This agrees well with the ordered cores in the heparin-induced structures, but is inconsistent

with the AD and PiD structures, which extend at least until F378. It is also incompatible with a widely

used model system for in vitro tau aggregation, which uses the 4R-containing K18 fragment, com-

prising residues 244–372, and its 3R counterpart K19 (Gustke et al., 1994). Whereas K18 and K19

were at least six residues too short to adopt the same structures as those of tau filaments from AD

and PiD, the ordered cores of the heparin-induced tau structures lie within the K18 and K19

sequences.

Assembly studies in vitro have shown that b-sheet formation in the first six residues of R2

(275VQIINK280) and/or the first six residues of R3 (306VQIVYK311) is important for filament formation

of 4R tau (Li and Lee, 2006; von Bergen et al., 2000; von Bergen et al., 2001). In 3R tau, which

lacks R2, only the hexapeptide at the beginning of R3 is present. Deletion of either hexapeptide

motif reduces tau assembly, but only 306VQIVYK311 is necessary for filament formation

(Ganguly et al., 2015; Li and Lee, 2006). It is present in the cores of all tau filaments from human

brain whose high-resolution structures have been determined (Falcon et al., 2018b;

Fitzpatrick et al., 2017). However, it packs with different residues in the different structures. In hep-

arin-induced 3R tau filaments, 306VQIVYK311 packs with itself, reminiscent of the homotypic interac-

tions seen in microcrystals (Sawaya et al., 2007). By contrast, in heparin-induced 4R tau filaments,

this motif does not run throughout as a contiguous b-strand, but terminates with the conserved kink

between Y310 and K311. Hexapeptide 275VQIINK280 of R2 is located in the fuzzy coat of AD fila-

ments, but it is found in the cores of heparin-induced 4R tau filaments, where it forms a contiguous

b-strand. It has been reported that VQIVYK inhibitors can block heparin-induced assembly of 3R, but

not 4R, tau. Conversely, VQIINK inhibitors blocked heparin-induced assembly of 4R tau

(Seidler et al., 2018). Our structures of heparin-induced 3R and 4R tau filaments are consistent with

these findings.

Heparin-induced K19 tau filaments seed the assembly of both K19 and K18 tau monomers,

whereas K18 filaments only seed assembly of K18 monomers (Dinkel et al., 2011; Siddiqua et al.,

2012). Our structures, using 2N3R and 2N4R tau, provide an explanation for these observations.

The 3R structure comprises mainly residues from R3, which is present in both 3R and 4R tau. If one

were to incorporate a 4R tau molecule into the 3R dimer structure, only K274 would be replaced by

S305. As K274 points outwards, at the edge of the ordered core, the energetic cost compared to

incorporating a 3R tau molecule would be small. The reverse is not true. The 4R structure comprises

the whole of R2. Therefore, incorporation of a 3R tau molecule in the 4R filament would implicate

positioning R1 onto R2. Because half of the residues in R1 and R2 are different, including the three
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additional prolines mentioned above, this would come at a higher energetic cost. By contrast, a

recent study (Weismiller et al., 2018) has reported that sonicated filaments assembled from 2N4R

human tau can seed assembly of monomeric 0N3R tau. It remains to be seen what the structures of

those filaments are.

Nuclear magnetic resonance (NMR) studies of full-length tau and K18/K19 tau fragments indi-

cated that R2 and R3 become ordered in heparin-induced 4R tau filaments (Mukrasch et al., 2005;

Sibille et al., 2006), whereas only R3 becomes ordered in heparin-induced 3R tau filaments

(Andronesi et al., 2008; Daebel et al., 2012; Xiang et al., 2017). A combination of hydrogen/deu-

terium exchange NMR, X-ray fibre diffraction and solid-state NMR showed that R3 peptides assem-

ble into amyloids with two parallel R3 molecules, and with similar secondary structure elements as in

our 2N3R structure (Stöhr et al., 2017). Moreover, in solid-state NMR experiments of heparin-

induced filaments of K19, residues 321–324 exhibited two sets of resonances (Daebel et al., 2012),

which is in agreement with our 2N3R structure. These residues engage in close interdigitating pack-

ing between b-strands of the opposing molecules, which includes the side-chains of S320, C322,

S324 and the backbone of G326. Phosphates on S320 and S324 are incompatible with this structure,

explaining why phosphorylation of these residues inhibits the heparin-induced assembly of 3R tau

(Schneider et al., 1999).

Solid-state NMR also identified an intermolecular disulphide-bond between C322 residues in K19

filaments that were formed under oxidising conditions (Daebel et al., 2012). Under reducing condi-

tions, filaments were still observed to form, albeit more slowly. Keeping tau in an oxidizing environ-

ment inhibits 4R filament formation, presumably through the formation of intermolecular disulphide

bonds between C291 and C322. However, 3R tau readily formed filaments in an oxidizing environ-

ment, and filament formation was impaired under reducing conditions or when C322 was replaced

with alanine (Barghorn and Mandelkow, 2002; Schweers et al., 1995; Wille et al., 1992). Whereas

the AD and PiD structures did not explain the role of disulphide bond formation in tau aggregation,

C322 residues in different molecules of the 3R dimer are within disulphide bonding distance of each

other. Although we prepared our filaments under reducing conditions, it is likely that formation of a

disulphide bond between those cysteine residues will facilitate the formation of similar filaments

under oxidising conditions.

Tau is a soluble protein, and its bulk assembly requires polyanionic co-factors, such as heparin

(Goedert et al., 1996; Pérez et al., 1996). Although our maps do not resolve heparin molecules

with enough detail to build an atomic model, they do provide hints about the possible roles of hepa-

rin in filament formation. All four maps show fuzzy densities adjacent to lysines that point outwards

from the filament cores. The positive charges of the lysines on many identical rungs of the cross-b

helix need to be neutralised in order to form a stable filament. We hypothesize that this is a function

of heparin; it may also cross-link tau molecules through their repeats (Ramachandran and Udgaon-

kar, 2011). Heparin is a polymer of a variably sulphated, repeating disaccharide unit. Whereas sul-

phation contributes negative charges, the disaccharide parts of the molecule can participate in both

polar and non-polar interactions. This may explain the presence of a second type of fuzzy density,

next to hydrophobic patches on the outside of the ordered cores of heparin-induced tau filaments

(pink arrows in Figures 2B, 3B, 4B and 5B). A model of charge compensation and possible transient

incorporation of heparin into tau filaments is consistent with observations from nuclear magnetic res-

onance (NMR) (Sibille et al., 2006; von Bergen et al., 2006).

Perhaps the most important question is what the heparin-induced tau structures can teach us

about filament formation in neurodegenerative diseases. Although the overall fold of heparin-

induced filaments is different from the Alzheimer and Pick folds, there are also similarities between

them. As in diseases, heparin-induced tau filaments are made of identical rungs of tau molecules

that form cross-b structures by parallel stacking of identical b-strands along the helical axis. Perpen-

dicular to the helical axis, the b-strands are interspersed with short loop regions, and all tau filament

structures observed thus far share a common pattern of b-strand formation. The different folds

mainly arise from differences in the loop regions, which result in packing otherwise similar b-strands

against each other in different cross-b arrangements. It could still be that residues in R2 of filaments

from tauopathies with 4R-only inclusions, like PSP, which are yet to be solved, may turn out to adopt

a conformation that is similar to that of the heparin-induced 4R tau filaments. Mutations in this

region, i.e. P301L, P301S and P301T, cause hereditary frontotemporal dementia with parkinsonism

linked to chromosome 17 (FTDP-17T) (Bugiani et al., 1999; Hutton et al., 1998; Lladó et al., 2007;
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Poorkaj et al., 1998). Mutations P301L and P301S were found to accelerate heparin-induced tau

aggregation (Barghorn et al., 2000; Goedert et al., 1999). As proline residues interrupt hydrogen

bond interactions across the rungs, the position of P301 in the partially disordered hammerhead arc

may cause its disordered structure. This could explain why replacing this proline with leucine or ser-

ine facilitates filament formation by stabilising the local structure.

A striking difference between the heparin-induced tau structures and those from diseases is in

the charge distribution on the outward-facing residues. Whereas both Alzheimer and Pick folds con-

tain stretches of outward-facing residues with alternating positive and negative charges, the hepa-

rin-induced structures are more positively charged. This difference mainly arises from the presence

of more negative residues in R4, which is part of the Alzheimer and Pick folds, but which is disor-

dered in the heparin-induced structures. We hypothesize that by neutralising positive charges on the

filaments, the negative charges in heparin allow the formation of in vitro structures that would not

be stable in the brain.

However, the Alzheimer and Pick folds still contain outward-facing residues for which a positive

charge is not compensated by a close-by, negatively charged residue. Therefore, cofactors or post-

translational modifications of tau may be required for filament formation in the brain. For example,

acetylation of lysines could reduce positive charges on the filaments. Alternatively, polyanionic mole-

cules in neurons could perform a similar role as heparin. In multiple cases of AD, filament structures

showed similar fuzzy densities in front of lysines, reminiscent of those attributed to heparin in the

structures described here (Falcon et al., 2018a). We previously hypothesized that neutralising, nega-

tive charges could also be provided by residues in the fuzzy coat (Fitzpatrick et al., 2017). In partic-

ular, we highlighted 7EFE9, which is part of the structural epitope of Alz50 and MC-1 antibodies

(Jicha et al., 1997). It could be that these residues also play a role in stabilizing heparin-induced tau

filaments (Bibow et al., 2011).

Our results demonstrate that a single protein, in this case tau, can adopt many different amyloid

conformations. Whereas similar residues form b-strands among the different structures, the turns

and loops between the b-strands, as well as the side-chain interactions between opposing b-sheets,

are very versatile. This leads to highly variable cross-b packings and helical parameters. Moreover,

the observation that in vitro assembly may yield filaments that are different from those found in

human neurodegenerative diseases calls for caution when interpreting structures from in vitro sys-

tems. The structural versatility we observe for tau filaments may also occur for other assemblies. For

example, negative stain EM imaging revealed differences between filaments extracted from tissues

with systemic amyloidosis and those of the same proteins assembled in vitro (Annamalai et al.,

2017). It therefore remains to be shown if the in vitro assembled amyloid structures of, for example,

amyloid-b (Gremer et al., 2017) and a-synuclein (Guerrero-Ferreira et al., 2018; Li et al.,

2018a; Li et al., 2018b) are the same as those in human brain. Therefore, atomic structures of fila-

ments extracted from human tissues are eagerly awaited for more proteins and diseases. Discover-

ing what drives the formation of different types of amyloid filaments in different diseases will be

crucial for our understanding of, and possibly, our ability to intervene in disease.

Materials and methods

Key resources table

Reagent type
(species)or resource Designation Source or reference Identifiers Additional information

Recombinant DNA Plasmid:
pRK172-2N4R

PMID:
2124967; 8849730;
9407097

NCBI Reference
Sequence:
NM_005910.5

Plasmid can be
provided upon reasonable
request.

Recombinant DNA Plasmid:
pRK172-2N3R

PMID: 2124967 NCBI Reference
Sequence:
NM_001203252.1

Plasmid can be provided
upon reasonable request.

Strain, strainback
ground (E. coli)

BL21 (DE3) Agilent Technologies 200131

Chemical
compound, drug

Heparin Sigma-Aldrich H4784

Continued on next page
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Continued

Reagent type
(species)or resource Designation Source or reference Identifiers Additional information

Chemical
compound, drug

Chymostatin Sigma-Aldrich C7268 Protease inhibitor

Antibody BR133 (Anti-
N- terminus of tau
proteins, Rabbit
polyclonal)

In house
PMID: 28678775;
30158706

WB dilution: 1:4000
EM dilution: 1:50

Antibody BR134 (Anti-
C- terminus of tau
proteins, Rabbit
polyclonal)

In house
PMID: 28678775;
30158706

WB dilution: 1:4000
EM dilution: 1:50

Antibody BR136 (Anti-R1 of tau
proteins, Rabbit
polyclonal)

In house
PMID: 30158706;
30276465

WB dilution: 1:4000
EM dilution: 1:50

Antibody Anti-4R (Anti-R2 of
2N4R tau protein,
Rabbit polyclonal)

Cosmo Bio
PMID: 28678775;
30158706; 30276465

CACTIP4RTP01 WB dilution: 1:2000
EM dilution: 1:50

Antibody BR135 (Anti-R3 of tau
proteins, Rabbit
polyclonal)

In house
PMID: 28678775;
30158706; 30276465

WB dilution: 1:4000
EM dilution: 1:50

Antibody TauC4 (Anti-R4 of tau
proteins, Rabbit
polyclonal)

Masato Hasegawa
PMID: 28678775;
30158706; 30276465

WB dilution: 1:2000
EM dilution: 1:50

Software, algorithm RELION PMID: 30412051 RRID:SCR_016274

Software, algorithm COOT PMID: 20383002 RRID:SCR_014222

Software, algorithm REFMAC PMID: 15299926 RRID:SCR_014225

Software, algorithm PHENIX PMID: 20124702 RRID:SCR_014224

WB: Western Blot; EM: Electron microscopy.

Tau expression and purification
Tau was expressed and purified as described (Bugiani et al., 1999; Hasegawa et al., 1998), with

some modifications. The cDNAs coding for human 2N4R and 2N3R tau were cloned into pRK172,

which was transformed into Escherichia coli BL21 (DE3). Cells were cultured in 2xTY medium supple-

mented with 5 mM MgCl2 and 100 mg/l ampicillin at 37˚C until an OD600 of 0.8, when expression

was induced by addition of 0.4 mM isopropyl-1-thio-b-D-galactopyranoside. After 3 hr, cells were

collected by centrifugation, resuspended in buffer A (50 mM MES pH6.5, 50 mM NaCl, 10 mM

EDTA, 5 mM MgCl2, 5 mM TCEP, 0.1 mM AEBSF, 0.03 mM Chymostatin supplemented with cOm-

plete EDTA-free Protease Inhibitor Cocktail (Roche)) and lysed by ultrasonication (Sonics VCX-750

Vibra Cell Ultra Sonic Processor, 3 min of working time, 3 s on, 6 s off, at 40% amplitude). After incu-

bation with 40 mg/ml DNAse (Sigma) and 10 mg/ml RNAse (Sigma) for 5 min, the lysates were centri-

fuged at 15,000 � g for 30 min at 4˚C. Supernatants were loaded onto a Hitrap CaptoS column (GE

Healthcare) and eluted with a 50–500 mM NaCl gradient. Peak fractions were analysed by Tris-Gly-

cine SDS-PAGE (4–20%) and stained with Coomassie brilliant blue R250 (Fisher Chemical). The puri-

fied fractions were pooled and precipitated with 38% ammonium sulphate. The pellets were

resuspended in buffer B (PBS plus 5 mM TCEP, 0.1 mM AEBSF, 0.015 mM Chymostatin supple-

mented with cOmplete EDTA-free Protease Inhibitor Cocktail) and centrifuged at 100,000 � g at

4˚C for 1 hr. The supernatants were loaded onto a pre-equilibrated HiLoad 16/60 Superdex 200 col-

umn (GE Healthcare) with buffer B and eluted at a flow rate of 1 ml/min. Fractions were pooled and

concentrated to 3.0 mg/ml. Aliquots of purified protein were snap-frozen and stored at �20˚C.

Heparin-induced filament assembly of tau
Tau proteins (3.0 mg/ml) were incubated with heparin (400 mg/ml, 6–30 kDa, Sigma) in 30 mM

MOPS, pH 7.2, 1 mM AEBSF; and 4 mM TCEP at 37˚C for 3 days, as described (Goedert et al.,

1996). The molar ratio of tau:heparin was approximately 4:1.
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Electron cryo-microscopy
Before making cryo-grids, the heparin-induced assembly reactions were centrifuged at 100,000 g for

30 min at 4˚C. The resulting pellets were resuspended in 20 mM Tris, pH 7.4, 100 mM NaCl. Pro-

nase-treated tau filaments (3 ml, at 2.0 mg/ml) were applied to glow-discharged holey carbon grids

(Quantifoil Au R1.2/1.3, 300 mesh), blotted with filter paper and plunge-frozen in liquid ethane using

an FEI Vitrobot Mark IV. For 2N4R filaments, imaging was performed on an FEI Tecnai G2 Polara

microscope operating at 300 kV using a Falcon III detector prototype in integrating mode. A total of

717 movies of 30 frames was recorded during 1.0 s exposures, at a pixel size of 1.38 Å on the speci-

men, and a total dose of approximately 48 e/Å2. Defocus values ranged from �1.7 to �2.8 mm. For

2N3R filaments, imaging was performed on a Gatan K2-Summit detector in counting mode, using an

FEI Titan Krios at 300 kV. A GIF-quantum energy filter (Gatan) was used with a slit width of 20 eV to

remove inelastically scattered electrons. A total of 2051 movies of 44 frames was recorded during 11

s exposures, at a pixel size of 1.04 Å on the specimen, and a total dose of 50 electrons per Å2. Defo-

cus values ranged from �0.8 to �2.2 mm. Further details are presented in Table 1.

Helical reconstruction for the 2N4R filaments
Movie frames were gain-corrected, aligned, dose weighted and then summed into a single micro-

graph using MOTIONCOR2 (Zheng et al., 2017). Aligned, non-dose-weighted micrographs were

used to estimate the contrast transfer function (CTF) using CTFFIND4.1 (Rohou and Grigorieff,

2015). All subsequent image-processing steps were performed using helical reconstruction methods

in RELION 3.0 (He and Scheres, 2017; Scheres, 2012; Zivanov et al., 2018). Each of the four types

of filaments was selected manually in the micrographs, and the resulting data sets were processed

independently.

For snake filaments, 303,754 segments were extracted with an inter-box distance of 14 A˚ and a

box size of 600 pixels. Initial reference-free 2D classification was performed with images that were

down-scaled to 128 pixels to speed up calculations. Segments contributing to suboptimal 2D class

averages were discarded. Assuming a helical rise of 4.7 A˚, a helical twist of �1.4˚ was estimated

from the crossover distance of filaments in the micrographs. Using these parameters, an initial 3D

reference was reconstructed from the 2D class averages de novo. We then re-extracted the selected

segments without down-scaling them, and with a smaller box size of 256 pixels. Using these seg-

ments and the de novo initial model low-pass filtered to 20 A˚, we performed two rounds of 3D clas-

sification with six classes, each time selecting the segments contributing to the best 3D class for

subsequent 3D auto-refinement with optimisation of helical twist and rise. A final 3D auto-refinement

of 52,441 selected segments converged onto a helical twist of �1.26˚. The helical rise was kept fixed

at 4.70 Å. The corresponding reconstruction was sharpened with a B-factor of �41.26 Å2 (Table 1),

using the standard post-processing procedure in RELION. For model building, helical symmetry was

imposed on the post-processed map using the RELION helix toolbox (He and Scheres, 2017). The

overall resolution of the final map was estimated as 3.3 Å from Fourier shell correlations at 0.143

between the two independently refined half-maps, using phase-randomization to correct for convo-

lution effects of a generous, soft-edged solvent mask (Chen et al., 2013). Local resolution estimates

were obtained using the same phase-randomization procedure, but with a soft spherical mask that

was moved over the entire map.

Twister and jagged filaments were processed in a similar manner. Twister segments were initially

extracted in 800 pixel boxes that were downsized to 128 pixels for reference-free 2D class averag-

ing. 4R-jagged segments were extracted in 600 pixel boxes and down-scaled to 256 pixels. The ini-

tial estimates for the helical twist, as estimated from crossover distances in the micrographs, were

�3.5˚ for twister and �2.1˚ for jagged filaments. These values were again used for de novo calcula-

tion of initial 3D models from the 2D class averages. For both data sets, final segments were

extracted in boxes of 256 pixels without down-scaling, and 3D classification was used to select the

best segments. CTF refinement and Bayesian polishing in RELION-3.0 were used in an attempt to

further increase the signal-to-noise ratio in the segments (Zivanov et al., 2018). Detailed parameters

for both data sets are reported in Table 1.

For hose filaments, 124,458 segments were extracted using a box size of 1200 pixels, and down-

scaled to 384 pixels to speed up 2D classification. Similar to the other 4R filament types, de novo ini-

tial model generation was attempted from the reference-free 2D class averages. However, possibly
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due to the large degree of bending and an apparent lack of twist in many filaments, all 3D recon-

struction attempts failed.

Helical reconstruction for the 2N3R filaments
Processing of the 2N3R dataset was similar to the 2N4R dataset, but CTF parameters were esti-

mated using Gctf (Zhang, 2016) instead of CTFFIND4.1, and 788,359 segments were selected using

automated picking procedures for helices in RELION-3.0 (He and Scheres, 2017). Segments were

initially extracted with a box size of 800 pixels and down-scaled to 256 pixels for reference-free 2D

class averaging. Two types of 2D class averages were observed, corresponding to narrow and wide

filaments. We only proceeded with the narrow filaments, as they comprised 98% of the segments.

An initial helical twist of �1.1˚ was estimated from the crossover distance of filaments in micro-

graphs, and used for de novo 3D initial model calculation from the 2D class averages. Parameters

for the final reconstruction are given in Table 1.

Model building and refinement
Atomic models were built de novo in the maps with imposed helical symmetry using COOT

(Emsley et al., 2010). Model building was started from a distinctive feature of the 3R filament: a

cross-b packing with a very short distance between the b-sheets that can only be achieved for resi-

dues with small or no side chains at the interface. In the tau sequence, there is only one segment

that could form a b-strand with four sufficiently small, inwards facing residues, 320SKCGSLG326 from

R3, making this sequence assignment unambiguous. Extension of the sequence towards the N- and

C-terminal regions, by manually adding amino acids in COOT, confirmed this assignment with other

distinctive residues, like the large aromatic side chains of Y310, matching their clear densities. The

assignment of lysine side-chains on the filament surface brought their e-amino groups close to the

observed external diffuse densities, presumably corresponding to the sulphate groups of heparin.

This observation then also allowed ready identification of lysine residues in the 4R tau filament struc-

tures. The clear densities of the di-lysine 317KVTSK321 motifs, combined with good densities for other

bulky side chains like Y310, provided the starting point for complete sequence assignment.

The four structures are devoid of strong handedness, and, at the reported resolutions, it is not

possible to determine their absolute hand based on densities for carbonyl groups of the main chain.

For the snake filaments, we assumed the same handedness for the 290KCGSKD295 motif as we

observed for the homologous 353KIGSLD358 motif in the tau filament structures from AD

(Fitzpatrick et al., 2017). This corresponded to a negative twist angle, similar to that observed for

AD filaments. The direction of twist of the other three structures was then kept the same as for the

snake filaments. Initial manual model building was followed by targeted real-space refinement in

COOT. The model was then translated to give a stack of three consecutive monomers to preserve

nearest-neighbour interactions for the middle chain in subsequent refinements using a combination

of rigid-body fitting in COOT and Fourier-space refinement in REFMAC (Murshudov et al., 1997).

Because most residues adopted a b-strand conformation, hydrogen-bond restraints were imposed

to preserve a parallel, in-register hydrogen-bonding pattern in earlier stages of Fourier-space refine-

ments. Local symmetry restraints were imposed to keep all b-strand rungs identical. Side-chain

clashes were detected using MOLPROBITY (Chen et al., 2010), and corrected by iterative cycles of

real-space refinement in COOT and Fourier-space refinement in REFMAC and PHENIX

(Adams et al., 2010). For each refined structure, separate model refinements were performed

against a single half-map, and the resulting model was compared to the other half-map to confirm

the absence of overfitting. The final models were stable in refinements without additional restraints.

Statistics for the final models are shown in Table 1.

Immunolabelling
Western blotting and immuno-EM were carried out as described (Falcon et al., 2018b;

Fitzpatrick et al., 2017; Goedert et al., 1992). For immuno-EM, pronase treatment was performed

by incubating filaments with 0.4 mg/ml pronase (Sigma) for 1 hr at 21˚C. Blocking used PBS and

0.5% BSA. Primary and secondary antibodies were used at 1:50 and 1:20, respectively.
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Data availability

EM maps have been submitted to EMDB, under codes 4563, 4564, 4565 and 4566. Atomic models

have been submitted to PDB under codes 6QJH, 6QJM, 6QJP and 6QJQ. Raw EM images have

been submitted to EMPIAR under codes 10242 and 10243.

The following datasets were generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Wenjuan Zhang,
Benjamin Falcon,
Alexey G Murzin,
Juan Fan, R Anthony
Crowther, Michel
Goedert

2019 Cryo-EM reconstruction of heparin-
induced 2N4R tau snake filaments

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
4563

Electron Microscopy
Data Bank, EMD-4563

Wenjuan Zhang,
Benjamin Falcon,
Alexey G Murzin,
Juan Fan, R Anthony
Crowther, Michel
Goedert, Sjors HW
Scheres

2019 Cryo-EM reconstruction of heparin-
induced 2N3R tau filaments

https://www.ebi.ac.uk/
pdbe/emdb/empiar/en-
try/10242

EMPIAR, 10242

Wenjuan Zhang,
Benjamin Falcon,
Alexey G Murzin,
Juan Fan, R Anthony
Crowther, Michel
Goedert, Sjors HW
Scheres

2019 Cryo-EM reconstruction of heparin-
induced 2N4R tau twister filaments

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
4564

Electron Microscopy
Data Bank, EMD-
4564

Wenjuan Zhang,
Benjamin Falcon,
Alexey G Murzin,
Juan Fan, R Anthony
Crowther, Michel
Goedert, Sjors HW
Scheres

2019 Cryo-EM reconstruction of heparin-
induced 2N4R tau jagged filaments

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
4565

Electron Microscopy
Data Bank, EMD-
4565

Wenjuan Zhang,
Benjamin Falcon,
Alexey G Murzin,
Juan Fan, R Anthony
Crowther, Michel
Goedert, Sjors HW
Scheres

2019 Cryo-EM reconstruction of heparin-
induced 2N3R tau filaments

https://www.ebi.ac.uk/
pdbe/entry/emdb/EMD-
4566

Electron Microscopy
Data Bank, EMD-
4566

Wenjuan Zhang,
Benjamin Falcon,
Alexey G Murzin,
Juan Fan, R Anthony
Crowther, Michel
Goedert, Sjors HW
Scheres

2019 Cryo-EM structure of heparin-
induced 2N4R tau snake filaments

https://www.rcsb.org/
structure/6QJH

RCSB Protein Data
Bank, 6QJH

Wenjuan Zhang,
Benjamin Falcon,
Alexey G Murzin,
Juan Fan, R Anthony
Crowther, Michel
Goedert, Sjors HW
Scheres

2019 Cryo-EM structure of heparin-
induced 2N4R tau twister filaments

https://www.rcsb.org/
structure/6QJM

RCSB Protein Data
Bank, 6QJM

Wenjuan Zhang 2019 Cryo-EM structure of heparin-
induced 2N4R tau jagged filaments

https://www.rcsb.org/
structure/6QJP

RCSB Protein Data
Bank, 6QJP

Wenjuan Zhang, 2019 Cryo-EM structure of heparin- https://www.rcsb.org/ RCSB Protein Data
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