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Abstract Warning signals displayed by defended prey are mimicked by both mutualistic

(Müllerian) and parasitic (Batesian) species. Yet mimicry is often imperfect: why does selection not

improve mimicry? Predators create selection on warning signals, so predator psychology is crucial

to understanding mimicry. We conducted experiments where humans acted as predators in a

virtual ecosystem to ask how prey diversity affects the way that predators categorize prey

phenotypes as profitable or unprofitable. The phenotypic diversity of prey communities strongly

affected predator categorization. Higher diversity increased the likelihood that predators would

use a ‘key’ trait to form broad categories, even if it meant committing errors. Broad categorization

favors the evolution of mimicry. Both species richness and evenness contributed significantly to this

effect. This lets us view the behavioral and evolutionary processes leading to mimicry in light of

classical community ecology. Broad categorization by receivers is also likely to affect other forms of

signaling.

DOI: https://doi.org/10.7554/eLife.43965.001

Introduction
Signals between species can evolve whenever selection favors both the evolution of a signal display

by a ‘sender’ species, and a response by a ‘receiver’ species (Bradbury and Vehrencamp, 2011;

Maynard Smith and Harper, 2003). However, signal evolution is mediated not only by economics,

but also by the psychology of receivers (Endler and Basolo, 1998; Guilford and Dawkins, 1993;

Rowe, 2013; Ryan et al., 1990). In ecological communities, animals are faced with a diverse panoply

of stimuli. How they categorize stimuli as worth responding to or ignoring will influence when and

how signals evolve. Here, we explore how signal evolution is affected by the set of stimuli present in

communities of different levels of complexity.

Warning signals are one of the best studied examples of interspecific communication – they

advertise prey defenses to potential predators, reducing negative interactions for both predator and

prey (Wallace, 1867). Mimicry occurs when warning signals coevolve among multiple prey species.

Mimics can vary in their resemblance to models, with low fidelity (‘imperfect’) mimics representing

something of a paradox (Cuthill and TD, 1993; Dittrich et al., 1993; Kikuchi and Pfennig, 2013;

Sherratt and Peet-Paré, 2017). Understanding variation in the extent of mimicry is a problem that

spans evolution, ecology, and cognitive psychology (Guilford and Dawkins, 1993; Mallet, 2001;

Rowe, 2013; Ruxton et al., 2018), since selection on mimetic resemblance is mediated by the way

that predators categorize prey as profitable or unprofitable (Beatty et al., 2004; Gamberale-

Stille et al., 2012; Getty, 1985; Ihalainen et al., 2012; Kazemi et al., 2014; Kikuchi and Sherratt,

2015; Oaten et al., 1975; Sherratt, 2002; Sherratt and Peet-Paré, 2017; Speed and Ruxton,

2010).

The diversity of a community affects predator decisions about prey. For example, in

an experiment with artificial prey, diversity affected how predators made decisions in response to
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warning signals that varied within a single, continuous dimension (Ihalainen et al., 2012). However,

warning signals are often multicomponent, that is to say, complex – they consist of many different

traits in concert (Bradbury and Vehrencamp, 2011; Hebets and Papaj, 2005; Maynard Smith and

Harper, 2003). Indeed, genetic studies of mimicry complexes have revealed discrete variation

among multiple mimetic traits (Clarke and Sheppard, 1963; Jiggins, 2017; Kunte, 2009;

Dasmahapatra et al., 2012). Consequently, mimetic precision depends not only on how predators

generalize within traits, but also on which traits they evaluate, and how they combine them to form

higher-level categories. We use the terms ‘categorization’ and ‘generalization’ in the sense that cate-

gorization behavior results from using generalizations to make decisions (Seger and Peterson,

2013).

The use of ‘key’ traits is one simple way to classify prey (Balogh and Leimar, 2005; Beatty et al.,

2004; Gamberale-Stille et al., 2012) – for example, using the rule ‘avoid yellow prey’ would mean

that a predator would have to focus on the key trait of color (Figure 1A). However, the advantage

of using key traits or any other form of categorization depends on the community in which these

decisions are made (Beatty et al., 2004; Ihalainen et al., 2012; Lindström et al., 2004). In this

study we examined the effects of communities on categorization, showing that different components

of diversity have critical effects on which decision rules are used, and thus selection on mimetic

signals.

Results and discussion
The simplest, most widely studied component of diversity is species richness, the number of species

found in a community (Magurran, 1988). It might be difficult for predators to identify and remember

the properties of individual prey types in rich communities with a large variety of prey. Predators

could be limited by memory capacity (Beatty et al., 2004; MacDougall and Dawkins, 1998), or by

the substantial risks of sampling unfamiliar species of prey, some of which might be highly unprofit-

able to attack (Cohen et al., 2007; Houston et al., 2012; Sherratt and Peet-Paré, 2017). If preda-

tors do not remember the characteristics of each discrete prey type but instead use rules (such as

avoid yellow), then they could reduce the difficulty of deciding what to eat in a rich community.

Therefore, it has been hypothesized that, as richness increases, predators will be more likely to use a

key trait to make decisions (Beatty et al., 2004; Wilson et al., 2013). Indeed, Beatty et al. (2004)

found that predators could use a key trait to make decisions in diverse communities; however, in

their experiment, if predators did not use the key trait, no discrimination was possible at all. To

make strong inference that increased richness causes predators to use a key trait for decisions, it

helps to include the choice to use either the key trait, or a specific, reliable trait that has more values

(by values, we mean unique states or versions). This way, it is possible to determine if predators

would actually switch their behavior if they did not have to.

We designed virtual prey communities where predators could either use a completely reliable

trait that had many (2-8) different values to perfectly classify prey as ’good’ or ’bad’, or simplify deci-

sion-making by using an unreliable key trait (binary, with only two values) at the price of committing

more errors (Figure 1A). In our virtual communities, prey always had two traits (color and shape –

which one was reliable and which one was unreliable was randomized). Both traits were discrete,

meaning that they could take on different values that did not grade continuously into one another. If

the predator learned to identify good prey based on values of the reliable trait R, it could forage

without errors. That is to say P(good|Rþ

i
) = 1, where + indicates that the value Ri is positively corre-

lated with profitability (for example, circle is always good in Figure 1A). The unreliable trait U was

binary, having values of U+ and U- (for example, prey each have one of two colors in Figure 1A).

This binary trait only predicted whether an individual was ’good’ with a probability of 0.78 (i.e. P

(good|U+) = 0.78). When only two values of each trait existed in the community (e.g. circle vs. star

and blue vs. yellow; Experiment 1 in Figure 1A), the same number of individuals could be classified

using either shape or color. However, using the unreliable trait (e.g. color) would carry the cost of

committing more errors. Cognitive psychology experiments suggest that in this situation, the reliable

trait will be used to the exclusion of the unreliable one due to a phenomenon called the relative

validity effect (Hall et al., 1977; Wagner et al., 1968). In the relative validity effect, when an animal

can learn to associate two cues with an outcome, it will learn to use the one that is more reliable

(valid).
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Experiment 1 2 3 4 5

unreliable trait richness 2 2 2 2 2

unreliable trait evenness 1 1 1 1 1

reliable trait richness 2 4 8 4 8

reliable trait evenness 1 1 ~1 0.85 0.53
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B

Figure 1. Design and results of Experiments 1 - 5. (A) Properties of the experimental prey communities used in this study, with examples. All

communities had a 1:1 ratio of ‘good’ prey to ‘bad’ prey. A reliable trait allowed perfect discrimination. The richness and evenness of its values varied

between experiments. An unreliable trait that did not vary between experiments yielded less accurate discrimination. The exact distribution of prey in

each community is given below its richness and evenness statistics, with numbers to indicate the abundance of each prey. As drawn here, shape is the

reliable trait (e.g. circle = good, star = bad), whereas color is the unreliable trait (blue = good 78% of the time, yellow = bad 78% of the time). Red

boxes indicate the focal prey that were compared across experiments in panels B and C (their actual colors and shapes differed among treatments). (B)

Total discrimination subjects exhibited towards focal prey, that is the summed influence of both reliable and unreliable traits. (C) Subjects’ relative use

of the reliable trait compared with the unreliable trait for discrimination, that is the difference between the effect of reliable and unreliable traits. The

y-axis indicates the difference in the ability of the reliable trait to predict behavior compared to the unreliable trait. In (B) and (C), estimates are

grouped using the Bonferroni correction for multiple pairwise comparisons, and 95% confidence intervals are shown. See Methods for details on

interpreting log-odds.

DOI: https://doi.org/10.7554/eLife.43965.002

The following source data and figure supplements are available for figure 1:

Source data 1. Data used to generate Figure 1 and its supplements.

DOI: https://doi.org/10.7554/eLife.43965.005

Figure supplement 1. Tabulated attack rates for prey of different types.

DOI: https://doi.org/10.7554/eLife.43965.003

Figure supplement 2. Tabulated attack rates for prey of different types.

DOI: https://doi.org/10.7554/eLife.43965.004

Kikuchi et al. eLife 2019;8:e43965. DOI: https://doi.org/10.7554/eLife.43965 3 of 13

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.43965.002
https://doi.org/10.7554/eLife.43965.005
https://doi.org/10.7554/eLife.43965.003
https://doi.org/10.7554/eLife.43965.004
https://doi.org/10.7554/eLife.43965


We recruited undergraduate student volunteers to serve as predators on our virtual prey commu-

nities. Each subject learned to forage on a grid of 36 prey during a training trial where they were

allowed to attack up to 18 of the prey, and received feedback on whether each was ‘good’ or ‘bad’

to eat in the form of a smiley face with a chirp or an X with a gong sound. Their ‘life bar’ would also

rise or fall accordingly (subjects lost twice as much life for attacking ‘bad’ prey than they gained for

eating ‘good’ prey). After subjects finished the training trial, they took a test trial where they could

choose as many prey as they liked, but received no feedback (Figure 2). The test trial served two

purposes: 1) it allowed us to measure subjects’ categorization behavior without changing it by pro-

viding feedback, and 2) because the test trial was always the same, it allowed us to compare sub-

jects’ categorization behavior after foraging in different training communities. Subjects participated

in five experiments presented in random order (Figure 2; Figure 2—figure supplement 1). In Exper-

iment 1, our control to see if the relative validity effect held with our design, we found that the reli-

able trait was used almost exclusively (Supplementary file 1).

We tested three mutually exclusive hypotheses for how predators will classify their prey as its

phenotypic richness increases. Predators had to choose how much to rely on the key trait U at the

price of committing some errors, or the completely reliable trait R at the price of learning about and

memorizing multiple values. The first hypothesis was that they should select the former when the

price of information (e.g. memory, costs of exploration) limits the profitability of using the reliable

trait, so that as richness increases, they should use the unreliable trait to a greater degree (e.g. use

color more and begin to ignore shape as the richness of shapes increases; Figure 3A). The second

hypothesis was that if the relative validity effect were an invariant aspect of predator psychology,

then predators should persist in using the reliable trait across different levels of richness (e.g., learn

all of the shapes across Experiments 1–3, always ignoring color; Figure 3B). Indeed, associative

learning experiments on the relative validity effect do not show a difference in which trait is used as

the number of its values increases – that is, subjects always use the most reliable trait (Baetu et al.,

2005; Murphy et al., 2001). However, the number of trait values in these experiments has been

low. A third hypothesis is that at high levels of richness, predators may not be able to parse all of

the information that they are confronted with and will guess randomly with respect to the reliable

and unreliable traits (Figure 3C).

To test these hypotheses, we performed two experiments (2 and 3) that had higher richnesses

than Experiment 1. Subjects used the reliable and/or unreliable traits to make decisions in all experi-

ments (Figure 1B), which allowed us to reject the hypothesis that they would not use either trait at

high diversities. In Experiment 2, where there were four values of the reliable trait (two associated

with profitability, two with unprofitability), subjects decreased their use of the reliable trait
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all bad prey

predator dies
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feedback

max 18 prey

feedback
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Figure 2. General experimental procedures. Subjects were randomly assigned to one of four different treatments within each of five experiments.

Between treatments, colors and shapes were shuffled with respect to ‘good’ and ‘bad’ prey to prevent subjects from generalizing across experiments.

DOI: https://doi.org/10.7554/eLife.43965.006

The following figure supplement is available for figure 2:

Figure supplement 1. All experimental treatments used in this study.

DOI: https://doi.org/10.7554/eLife.43965.007
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significantly (Figure 1C). In Experiment 3, where there were eight values of the reliable trait, subjects

again significantly decreased their use of the reliable trait - in fact, they used the unreliable trait

more (Figure 1C). These results allow us to reject the hypothesis that the relative validity effect is

constant across levels of richness. Instead, they support the hypothesis that species-rich communities

carry a high price of information, either in memory constraints or the risks of acquiring information,

which increases predators’ tendency to use the simpler (binary) yet unreliable trait in decision-mak-

ing. This is strong evidence supporting the hypothesis that in rich communities, mimicry could evolve

easily on the basis of key features that predators use for identification (Beatty et al., 2004). It also

supports important theoretical models of how mimicry evolves that depend upon key features

(Balogh et al., 2010; Balogh and Leimar, 2005; Gamberale-Stille et al., 2012). Furthermore, this

result is critical to the stability of warning signals that are parasitized by Batesian mimics because it

implies that predators will not immediately switch to using more reliable traits simply because they

are available. High species richness could still favor broad categorization.

The other component of community diversity is species evenness, or relative abundance (Magur-

ran, 1988; Tuomisto, 2012). In every community, some species are common, while other species

are rare. This ‘overrepresentation’ of some species and underrepresentation of others reduces the

effective number of species in the community (i.e., lower evenness means effectively fewer species;

Jost, 2010). Consequently, it is reasonable to hypothesize that unevenness will decrease predators’

use of the key trait to form categories, reversing the effect of increasing richness. In fact, prior work

has shown that both higher frequencies of profitable, non-mimetic prey and lower frequencies of

Batesian mimics relaxes selection on mimicry (Finkbeiner et al., 2018; Harper and Pfennig, 2007;

Iserbyt et al., 2011; Lindström et al., 2004; Lindström et al., 1997; Pfennig et al., 2001). Here,

we ask more generally about the effects of evenness per se, where there is a distribution of relative

abundance within both profitable and unprofitable prey.

In uneven communities, rarer prey types will be less important food resources. This led us to test

the hypothesis that unevenness will decrease predators’ tendency to categorize prey using an
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Figure 3. Graphical predictions of hypotheses described in the text. (A) The relative use of the reliable trait will decrease if increased prey richness

causes predators to prefer the unreliable trait. (B) If the relative validity effect is robust to changes in richness, predators will always use the reliable trait.

(C) If predators cannot process all of the information available in diverse communities, they will guess randomly. (D) If the reduced effective richness of

prey in uneven communities reduces the costs of information, then use of the reliable trait will increase.

DOI: https://doi.org/10.7554/eLife.43965.008
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unreliable key trait. It predicts that in uneven communities, predators will use the reliable trait more

than in an evenly distributed community with the same phenotypic richness (Figure 3D).

To test this hypothesis, we conducted two experiments with uneven communities. Experiment

4 featured the same eight phenotypes as Experiment 2, and Experiment 5 involved the precisely the

same shapes and colors as Experiment 3, but in Experiments 4 and 5, one of the focal ‘good’ values

and one of the focal ‘bad’ values of prey were much more abundant than the others. The reliable

trait was used to a significantly greater degree in Experiment 5 compared to Experiment 3, as

evinced by their placement in different post-hoc groupings (Figure 1C). However, we observed no

difference in the use of the reliable trait between Experiments 2 and 4 (Figure 1C).

The hypothesis was rejected; unevenness increased subjects’ use of the reliable trait, but only at

high levels of richness. We attribute this outcome to a simple cause. In both Experiments 4 and 5,

where communities were uneven, predators mainly distinguished between the most abundant profit-

able value of the reliable trait, and all others. In other words, predators mainly attacked prey with

the most abundant ’good’ value, and categorized the other values as not worth attacking. Effec-

tively, the most abundant, good, reliable value became a preferred alternative prey. In support of

this interpretation, a model that included two different values for ’good’ prey and two different val-

ues for ’bad’ prey within the reliable trait R fit significantly better than one that lumped ’good’ values

together, and ’bad’ values together (likelihood ratio test, �2

24
¼ 70:1, P < 0.001). Predators attacked

the abundant good prey much more than any other kind of prey in Experiment 5 and exhibited this

behavior to a lesser degree in Experiment 4 (Figure 1—figure supplement 1).

Results from the uneven communities contrast with the pattern from Experiments 1–3, which

shows increasing reliance on the unreliable trait with increasing richness. We suggest that the

unevenness of a prey community will be negatively correlated with predators’ reliance upon key

traits to form categories. This may make mimicry less likely to evolve in uneven communities. Fur-

thermore, it connects evenness, a fundamental parameter of community ecology, to the concept of

alternative prey from mimicry theory: when one species of profitable, non-mimetic prey is relatively

abundant, selection on other, rarer prey to evolve mimicry will be relaxed (Getty, 1985; Hol-

ling, 1965; Ihalainen et al., 2012; Kokko et al., 2003; Lindström et al., 2004).

Very few studies from natural systems have collated the data that would be required to measure

the relationship between community diversity and signaling systems. Wilson et al. (2013) argued

that a negative relationship between mimetic precision and community diversity stems from

increased generalization by predators in more diverse communities of velvet ants. Additionally, in

experimentally manipulated communities of flowering plants, increased color diversity tended to

increase visitation rates by pollinating insects (Fornoff et al., 2017). It would be interesting to know

if this occurred because individual pollinators relied on coarser phenotypic categories in richer

communities.

Our hypotheses might also be applicable to subsets of communities. Particularly, specialist preda-

tors might experience smaller prey communities than generalist predators, and specialist pollinators

might visit fewer species of flowers than generalist pollinators. For example, different mimicry rings

of Heliconius butterflies are segregated by microhabitat (Elias et al., 2008), and exposed to differ-

ent suites of predators as a consequence; predation favors precise mimics within their preferred

microhabitats (Willmott et al., 2017). Habitat specialization could reduce the size of the community

about which a particular bird must learn, allowing them to select for precise mimicry (or none at all)

because coarse categorization based on key traits would not occur.

Theoretical models suggest that other ecological conditions than those we explored here can

also affect the number of traits that predators use to make decisions. Under some circumstances

when the costs of attacking ‘bad’ prey are in a particular balance with the benefits of attacking

‘good’ prey, trusting only the most reliable trait may be most adaptive (Rubi and Stephens, 2016).

Yet changing the cost:benefit ratio or underlying frequency of good prey can favor using multiple

traits, or using no trait at all (Sherratt and Holen, 2018).

Conclusions
Both prey richness and evenness affected predator categorization behavior. The result that richness

will favor mimicry because predators use a key trait in categorization, even at the cost of decisional
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accuracy, was not anticipated by literature on associative learning. Generally, our results show that

ecological diversity predicts both the origins and maintenance of mimicry.

Our results are relevant to problems in signal evolution beyond defensive mimicry, for all commu-

nication systems evolve within the context of communities. Floral phenotypes have long been

remarked to appear similar to one another, presumably to signal to shared pollinators

(Ollerton et al., 2009; Schaefer and Ruxton, 2010; Schaefer and Ruxton, 2009; Shrestha et al.,

2013). It follows from our study that in richer communities, flowers could benefit from sharing key

traits that allow pollinators to categorize them together. Likewise, other signals between species

such as pursuit deterrence (Caro, 1995), mobbing calls (Magrath et al., 2015), herbivore-induced

plant volatiles (Schuman and Baldwin, 2016), and ripening fruit (Willson and Whelan, 1990) may

also evolve to share key traits in rich, even communities. Very few studies have collated the data that

would be required to measure the relationship between community context and signaling systems.

Yet clearly, communities have the potential to produce striking effects on signal evolution.

Materials and methods

Experiments
Human volunteers can readily be recruited to participate in short computer games that are

completely harmless and yield large quantities of data. Experiments of similar design performed by

other animals and humans have yielded qualitatively similar results (Alatalo and Mappes, 1996 vs.

Beatty et al., 2005; Cuthill et al., 2005 vs. Fraser et al., 2007; Kazemi et al., 2014 vs.

Sherratt et al., 2015), although humans often learn faster. A major exception to this is XOR tasks

(also called correlated features tasks), where no single dimension is helpful for categorization, but

their combinations are. Humans rank XOR tasks as easier than several other kinds of tasks, but other

primates rank them as more difficult (Smith et al., 2004). Differences between humans and non-

humans in this task are thought to be mediated by language (Smith et al., 2011). Importantly, our

experiments did not include XOR tasks, so human behavior is more likely to be representative of

non-human species.

We designed a computer game in Psychtoolbox-3 for Matlab R2017b where subjects were asked

to hunt for artificial prey (Brainard, 1997; Kleiner et al., 2007). The general format of the game was

presented to subjects during the pre-training trial, which only occurred once at the very beginning

of the game. Subjects saw a grid of 36 prey that constituted a prey community. They were told that

they could sample as many as 18 of those prey (half), or terminate sampling prematurely. However,

in the pretraining trial they did not have the option to stop sampling early. This forced them to par-

ticipate long enough to understand the basics. When they attacked a ‘bad’ prey, it was immediately

covered with an X while a gong noise played and the screen froze for two seconds. In addition, a life

bar on the side of the screen would decrease. If subjects attacked a ‘good’ prey, it would be cov-

ered with a smiley face while a chirp sounded, no time penalty occurred, and the life bar immedi-

ately increased. The amount of life lost from attacking ‘bad’ prey was twice that gained from

attacking ‘good’ prey, but the life bar did not change over time unless subjects attacked, that is they

had no penalty for moving slowly or quickly. In the pretraining trial, all prey were ‘bad’, and the sub-

ject’s life bar was set low to start so that they would die after attacking four prey. When they died, a

lonesome whistle sounded and the screen froze for two seconds. We arranged the pretraining trial

in this way so that all subjects would begin the experiments from the same starting point, and be

more likely to pay attention to avoiding ‘bad’ prey in addition to finding ‘good’ prey.

Once subjects had completed pretraining, they were told that they would now proceed to the

real game, which was the first experimental training trial. Subjects were randomly assigned to an

experiment, and within that experiment, randomly assigned to a treatment. Treatments were

designed so that within each experiment, shape would be the reliable trait in two treatments, and

color the reliable trait in the other two. Which colors and shapes were associated with ‘good’ and

‘bad’ prey were permuted within the treatments in which they were the reliable trait. The full array

of treatments is presented in Figure 2—figure supplement 1. Subjects began the game with their

life bars at half full so that they could encounter eight ‘bad’ prey in a row before dying. This was

intended to give them motivation to forage yet made it unlikely that they would actually ‘die’. If they

did die, the training trial ended, but the flow of the game did not otherwise change.

Kikuchi et al. eLife 2019;8:e43965. DOI: https://doi.org/10.7554/eLife.43965 7 of 13

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.43965


Once subjects completed the training trial, they were told that they had the opportunity to play a

bonus round (the test trial) to increase their score. They were told that they could attack as many

prey as they liked in the bonus round, but that they could stop whenever they wanted to. They were

also told that they would receive absolutely no feedback until the bonus round was over. We

designed the test trial without feedback so that subjects would not continue to learn (and hence

change the categories they had formed) during the test trial. The prey in the test trial were always

the same no matter what experimental treatment subjects experienced. These test prey always

included prey with four values of the reliable trait (two good, two bad). After subjects finished the

test trial, they were told their total score across both rounds. This was calculated as the sum of all

‘good’ prey attacked less all ‘bad’ prey attacked, but subjects were not informed of this formula –

the only purpose of telling them these scores was to keep them motivated in both the training and

test trials. By making it difficult to tell exactly how the score was calculated, though, we encouraged

them to focus on their life bar during training trials, which continued to fluctuate with a cost:benefit

ratio of 2:1 for bad:good prey.

Subjects experienced each of the five experiments in random order, taking the test trial immedi-

ately after completing each one (Figure 2). The only exceptions to this were a few subjects that com-

pleted fewer than five experiments to improve the balance of our design. A pseudo-random design

might have made this unnecessary, but we did not want to unintentionally induce any bias in the

order in which treatments were presented.

When subjects had completed all five experiments and the respective test trials, they were asked

to take a color blindness test (Ishihara plates 6, 8, 13, and 23). This did not constitute a medically

professional diagnosis of color blindness, so they were not informed of their results, but any subject

failing the test was excluded from the final dataset. In total, we recruited 45 volunteers who passed

this basic test from the Carleton University Student Union in Ottawa, Canada.

Data analysis
We designed our analysis of the test trial to answer the question of how well the reliable trait pre-

dicted subjects’ behavior in each experiment, relative to the unreliable trait. This was critical to test-

ing the predictions of the first two hypotheses about species richness (Figure 3A & B), and the

hypothesis about evenness (Figure 3D).

There were three steps to this analysis: the first was to find, in each experiment, the estimated

effects of the reliable and unreliable traits on subjects’ decisions to attack or reject prey. We esti-

mated these effects with a statistical model of subjects’ decisions. Second, we found the difference

between the effects of the reliable and unreliable traits in each experiment. Third, we performed

pairwise comparisons of these differences between experiments. This required finding the differen-

ces of differences. Both of these difference calculations used parameter estimates that we obtained

from the statistical model. We describe our methods below, and also refer readers to the RMark-

down in Supplementary file 1.

It is necessary to understand the structure of the data. We analyzed subjects’ attacks on focal

prey, defined as the four most abundant prey present in the training trial (e.g. red boxes in

Figure 1A). The focal prey were also always present in the test trial. The test trial included some trait

values that were not present in the training – we eliminated them from analysis. To describe the

effects of the reliable trait, which differed in its number of values between experiments, we recoded

the values of the focal prey according to whether they were associated with profitability or unprofita-

bilty during training. That is to say, we combined R
þ

i
and R

�

i
into just two values, R+ and R-. Taking

an example from Figure 1A, circle and cross in Experiments 2 – 5 were recoded as ’G’, and star and

triangle were recoded as ’B’. The end result of recoding was that the reliable and unreliable traits

could be analyzed as factors with only two values, making them both binary (Supplementary file 1).

This made their relative contributions easy to compare by simply looking at their effect sizes once

they had been centered and incorporated into a suitable statistical model (Schielzeth, 2010).

We fit a model that was designed to find the effects of the reliable and unreliable traits and their

standard errors, rather than to fit our data as well as possible. To do this, we fit the model without

an intercept, and without main effects of the reliable trait and unreliable trait. This violates the princi-

ple of marginality, but our aim was not to test hypotheses with the model. Excluding the intercept

and two main effects allowed us to directly find the effects of interest, instead of having to perform

additional calculations (Schielzeth, 2010). We took into account potential confounding variables in
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constructing our model, however, as they could affect estimates of the effects. Therefore, we

included interactions with order, once it had been centered. Centering causes the estimates of

lower-order terms to be made at the mean value of a variable, so that lower-order terms can be

interpreted independently of interactions (Schielzeth, 2010). We also included subject identity as a

main effect to control for variation among individuals (models that included it as a random effect did

not converge). In R pseudocode, the model that we fit is shown below, with the specific quantities of

interest in bold:

glm((attacked, not attacked) ~ 0 + experiment + subject ID + unreliable trait:

experiment + reliable trait:experiment + unreliable trait:experiment:order +

reliable trait:experiment:order

with a logit link function. All data are available in Figure 1—source data 1.

The model provided the estimates of the effects of the reliable and unreliable traits in each exper-

iment, with standard errors. We used these estimates to find their differences. The difference was

appropriate because log-odds were the units for effect size estimates from the model (since it was

fit with a logit link). Log-odds are an ideal metric of trait importance to decision-making because

they are easily converted into the odds of attack for different kinds of prey. If bR1 is the log-odds

estimate for P(attack|R+) – P(attack|R-) and bU1 is the log-odds estimate for P(attack|U+) – P(attack|U-)

in Experiment 1, then exp(bR1-bU1) gives the relative difference odds of attack due to the reliable

trait compared to the unreliable trait in Experiment 1. For example, in Experiment 1 the effect size

of the ’good’ value of the reliable trait is 3.36, and the corresponding estimate for the unreliable trait

is 0.24. This means R+ prey have e3.36 = 28.8 times the odds of attack compared with prey that

are R-, but U+ prey only suffer an increase in odds of attack of e0.24 = 1.27 compared to U- prey.

Finding their difference as 3.36 – 0.24 = 3.12 means that in Experiment 1, R+ prey have e3.12 = 22.6

times the attack risk of U+ prey.

A function to find the difference in the effect of the reliable and unreliable traits in each experi-

ment is simple subtraction (e.g., R1-U1). However, finding the standard errors of the difference is

more complicated. The delta method is one way of approximating the standard error of a function

of estimated effects (Bolker, 2008). To implement the delta method, we used the function deltaMe-

thod from the ’car’ package in R 3.4.4 (see Supplementary file 1; Fox et al., 2018). This completed

the first difference calculation.

We again used the delta method to perform pairwise comparisons between the relative impor-

tance of traits between experiments, using a Bonferroni correction for multiple comparisons. This

allowed us to answer our question of how the use of the reliable versus unreliable traits changed

across experiments. The statistical significance of our results depended on whether or not numeri-

cally calculated confidence intervals for the difference between estimates included zero or not, which

is displayed in the groupings in Figure 1B and C.

We repeated the operations described above to find the difference of the sums of the effects of

both traits, which is a way of describing the total discrimination of subjects in an experiment. We did

this to test the prediction that high species richness results in random guessing (Figure 3C).

Finally, we tested the prediction that in uneven communities, predators would focus on the most

abundant good prey. We modeled subjects’ attack decisions just as we did above, but instead of

using combined ‘good’ and ‘bad’ values of the reliable trait, we used the original focal prey values,

for example circle, cross, star, triangle. Thus, there were up to two ‘good’ and two ‘bad’ values of

the reliable trait. We used the likelihood ratio test to compare this model to the one we fit above. A

significant difference in model fit would mean that subjects treated different values of good and/or

bad prey differently, which is the qualitative pattern we observed in Experiments 4 and 5 (Figure 1—

figure supplement 2). Note that although both models violated marginality, this does not matter

for the comparison of fit that we performed between them.
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