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Abstract 10 

Appropriate generalization of learned responses to new situations is vital for adaptive behavior. 11 

We provide a circuit-level account of generalization in the electrosensory lobe (ELL) of weakly 12 

electric mormyrid fish.  Much is already known in this system about a form of learning in which 13 

motor corollary discharge signals cancel responses to the uninformative input evoked by the 14 

fish’s own electric pulses.   However, for this cancellation to be useful under natural 15 

circumstances, it must generalize accurately across behavioral regimes, specifically different 16 

electric pulse rates. We show that such generalization indeed occurs in ELL neurons, and 17 

develop a circuit-level model explaining how this may be achieved.  The mechanism involves 18 

regularized synaptic plasticity and an approximate matching of the temporal dynamics of motor 19 

corollary discharge and electrosensory inputs.  Recordings of motor corollary discharge signals 20 

in mossy fibers and granule cells provide direct evidence for such matching.  21 

 22 

Introduction 23 

A learned response that is adaptive only in the precise context in which it was learned is of 24 

limited value in the real world. Though cellular and synaptic underpinnings of learning have 25 

been elucidated in many systems, less is known about the mechanisms that allow learning to 26 

generalize appropriately to conditions different from those in which the learning originally took 27 

place (Censor 2013; Fahle 2005; Poggio and Bizzi 2004).  We address the question of 28 

generalization of learned responses in the passive electrosensory system of weakly electric 29 

mormyrid fish.  These fish, like a number of other aquatic animals, possess a specialized class of 30 

electroreceptors on their skin that are sensitive to the minute, low-frequency electrical fields 31 

emitted by other animals in the water, such as their invertebrate prey  (Engelmann et al. 2010; 32 
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Enikolopov, Abbott, and Sawtell 2018; von der Emde and Bleckmann 1998).  However, the 33 

detection and processing of such signals is complicated by the fact that mormyrid fish also emit 34 

their own pulsed electric fields, known as electric organ discharges (EODs).  Though EODs are 35 

used for sensing nearby objects through active electrolocation as well as for communication with 36 

conspecifics (processes mediated by separate classes of electroreceptors), they also strongly 37 

activate the receptors subserving passive electrolocation, inducing a ringing pattern of activation 38 

that persists for ~200 ms (Bell and Russell 1978).  If left uncancelled, these responses to the 39 

fish’s own EOD could impede the detection and processing of behaviorally-relevant signals such 40 

as prey (Enikolopov, Abbott, and Sawtell 2018). 41 

Past work has suggested that this problem is solved in ELL neurons through the 42 

integration of electrosensory input and corollary signals (CD) related to the motor command to 43 

discharge the electric organ (Bell, Finger, and Russell 1981).  CD signals are conveyed to ELL 44 

neurons by granule cells, similar to the granule cells of the cerebellum (Bell, Han, and Sawtell 45 

2008).  Anti-Hebbian plasticity at synapses between granule cells and ELL neurons generates 46 

negative images that serve to cancel the effects of the EOD on ELL output (Bell 1981; Bell et al. 47 

1993; Bell et al. 1997) (Figure 1A). However, all past studies of negative image formation and 48 

sensory cancellation were restricted to periods when fish emitted EOD commands at low, regular 49 

rates (~5 Hz).  Although this pattern is typical of paralyzed preparations, the fish’s actual 50 

electromotor behavior is far more dynamic. For example, in freely behaving fish it is common to 51 

observe prolonged periods of discharge at low rates (1-5 Hz), while resting or hiding, followed 52 

by abrupt transitions to much higher rates (up to 60 Hz) when foraging for prey or exploring a 53 

novel object (Figure 1B; (Hofmann et al. 2014; Moller, Serrier, and Bowling 1989; Schwarz and 54 

von der Emde 2001; Toerring and Moller 1984). 55 

During such transitions, negative images learned during low-frequency resting periods 56 

should generalize to higher EOD rates. If they do not, passive electrolocation would be degraded 57 

at precisely the moment when it would seemingly be most needed.  Furthermore, this 58 

generalization must be accurate because, at high frequencies, the ringing sensory receptor 59 

responses to EODs overlap and, if uncancelled, would continuously interfere with the detection 60 

of external stimuli such as prey.  Using microstimulation of the EOD motor command pathway 61 

to control EOD rate, we show that, indeed, sensory cancellation in ELL output neurons 62 
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generalizes across EOD rates. In theory, such generalization is expected if electrosensory and 63 

corollary discharge responses at high rates were simply the linear sum of the responses at low 64 

rates. We show that this is not the case and, instead, identify two key features that, when added 65 

to existing models of sensory cancellation in ELL, account for generalization.  The first is 66 

regularization of synaptic plasticity between granule cells and ELL neurons to prevent 67 

overfitting, which is closely related to machine learning approaches to generalization. The 68 

second feature, which we support directly by recordings from granule cells and their mossy fiber 69 

inputs, involves an approximate matching between the EOD rate-dependence of corollary 70 

discharge and electrosensory inputs to ELL neurons.  71 

 72 

Results 73 

 74 

Sensory cancellation in ELL output cells generalizes from low to high EOD rates 75 

We first tested whether sensory cancellation in ELL output cells generalizes across different 76 

EOD rates.  As in past studies, we used a preparation in which the EOD is blocked by a paralytic, 77 

but in which fish are alert and continue to generate the motor commands that normally evoke 78 

EODs. The electric field normally generated by the EOD is mimicked experimentally. This 79 

preparation permits study of the responses to motor corollary discharge inputs triggered by the 80 

EOD command (by turning off the mimic), the sensory response to the artificially produced EOD 81 

mimic (by generating the mimic in the absence of an EOD command), and the response to EOD 82 

mimics paired with the EOD command. The paired condition replicates the natural situation in 83 

which the EOD command evokes an EOD pulse and both electrosensory and corollary discharge 84 

pathways are engaged together.   85 

 Past studies have shown that the response to locally delivered EOD mimics triggered by 86 

the EOD command are cancelled if mimics are paired with commands in this way over ~15 87 

minutes. For this reason, we will use the term "learning" to refer to extended periods when EOD 88 

mimics are triggered by, and hence paired with, commands. Turning the mimic off after learning 89 

reveals that the response to the command alone resembles a negative image of the response to the 90 

mimic in the absence of a command (Bell 1981, 1982). As discussed in the Introduction, a 91 

limitation of past studies is that cancellation and negative images were only studied at the low 92 

EOD command rates (~5 Hz) typical of the paralyzed preparation. We overcame this limitation 93 
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by using microstimulation of the electromotor command pathway (see Materials and methods) 94 

to control the timing and rate of EOD commands (von der Emde et al. 2000). Using this 95 

approach, we could achieve almost perfect control over the timing of EOD commands at rates up 96 

to 50 or 60 Hz. 97 

 Extracellular single-unit recordings were made from output cells in the region of the ELL 98 

dedicated to passive electrosensory processing—the ventrolateral zone (VLZ). These output 99 

neurons are classified into two types, known as E and I cells, according to the polarity of their 100 

response to electrosensory stimuli (Bell 1981, 1982).  To avoid firing-rate rectification, which 101 

complicates quantitative measurements of sensory cancellation, we adjusted the polarity of the 102 

EOD mimic to evoke excitatory responses in both E and I cells (see Materials and Methods). 103 

Consistent with previous findings (Bell 1982; Enikolopov, Abbott, and Sawtell 2018), no 104 

obvious differences in plasticity were observed between E and I cells and responses were pooled.     105 

 To test generalization, we paired evoked commands with EOD mimics at a single 106 

constant rate (10 Hz) for a 10-20 minute learning period (by which time significant cancellation 107 

had occurred; Figure 2A, top row) and then probed responses to EOD mimics paired across a 108 

range of rates (10, 40, and 60 Hz or 10, 30, and 50 Hz).  Responses after learning are reduced 109 

across rates even though learning occurred at only the lowest rate, consistent with generalization 110 

of cancellation (Figure 2A, bottom row, solid lines). An additional set of experiments were 111 

performed to provide a benchmark for evaluating the quality of generalization. In this case, the 112 

EOD mimic was paired for the same duration but this time learning took place at all the different 113 

frequencies that were subsequently tested for cancellation (10, 40, and 60 Hz or 10, 30, and 50 114 

Hz; Figure 2B). In this scenario, for which no generalization is required, we expect the system to 115 

achieve the best level of cancellation across all rates that can be achieved on the timescale of 116 

these experiments. The degree of cancellation, measured as the residual power in the response 117 

after learning divided by the power before learning, was comparable in the two sets of 118 

experiments (Figure 2C, D), indicating excellent generalization. 119 

Past studies have shown that cancellation of predictable electrosensory responses is due 120 

to the generation and subtraction of negative images (Bell 1981, 1982). Several observations 121 

suggest that the cancellation observed in Figure 2 is likewise due to the formation of negative 122 

images. First, cancellation is unlikely to be due to adaptation of peripheral receptors or neuronal 123 
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fatigue as we routinely probed responses to the EOD mimic delivered independently of the 124 

command both before and after learning (Figure 2A, bottom, dashed lines). Reductions in the 125 

response to the mimic alone were never observed. Second, in a subset of experiments we probed 126 

responses to the command alone across EOD rates after learning only at a low rate.  Changes in 127 

the response to the command alone resembled a negative image of the response to the mimic 128 

sequence (Figure 2-figure supplement 1).  129 

 130 

Regularized synaptic plasticity partially explains generalization 131 

To gain insights into the mechanisms that support generalization, we adapted a previously 132 

developed model of negative image formation and sensory cancellation in the ELL (Kennedy et 133 

al. 2014). The model ELL neuron receives two classes of inputs. The first is a non-plastic 134 

electrosensory input that we simulated by using the recorded response of an ELL output cell to 135 

an EOD mimic sequence. This corresponds anatomically to the input onto the basilar dendrites of 136 

ELL neurons from interneurons in the deep layers of ELL receiving somatotopic input from 137 

ampullary electroreceptor afferents (Meek, Grant, and Bell 1999). The second class of inputs 138 

consists of a set of ~20,000 model granule cell responses conveying corollary discharge signals 139 

related to the EOD command. This corresponds anatomically to excitatory granule cell-parallel 140 

fiber synapses onto the apical dendrites of ELL neurons. The model is simplified in that it does 141 

not differentiate between two distinct classes of ELL neurons: output cells and medium ganglion 142 

(MG) cells (see Discussion). Granule cells are modeled as integrate-and-fire units receiving 143 

inputs generated from recorded responses of mossy fibers and unipolar brush cells (the main 144 

excitatory inputs to granule cells) to isolated EOD commands (>200 ms intervals between 145 

commands (Kennedy et al. 2014).  This granule cell model is one component of the full model; 146 

the other is a mathematical description of the plasticity of synapses from granule cells to ELL 147 

neurons (Bell et al. 1997; Han, Grant, and Bell 2000).  The anti-Hebbian spike timing-dependent 148 

plasticity rule used in the model includes a regularization mechanism to prevent excessively 149 

large synaptic weights.  Regularization consists of having the synaptic weights decay 150 

exponentially toward a baseline value with a time constant of 1000 s, in addition to their 151 

modification due to anti-Hebbian plasticity.  We refer to this version of the plasticity rule as 152 

minimally regularized (see Materials and Methods). 153 
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 To explore mechanisms of generalization using this model, we first needed to extend its 154 

granule cell component to simulate high EOD command rates.  To do this, initially, we made 155 

simple assumptions about how the previously recorded mossy fibers and unipolar brush cells 156 

would respond at higher command rates (see Materials and Methods).  For example, the most 157 

common class of mossy fiber inputs, known as early, fire a precisely-timed burst of spikes 158 

(duration ~12 ms) at a short delay after each EOD command. To create early mossy fibers 159 

responses to command sequences at different EOD rates, we simply repeated the same burst 160 

pattern and timing for each command in the sequence (see Materials and Methods for 161 

assumptions used for other response types; Figure 3-figure supplement 1).  Later, we will replace 162 

these initial assumptions with results derived from experimental measurements of the true EOD-163 

rate dependence of mossy fiber and other inputs. We refer to the granule cell model without 164 

these later modifications as the original model. 165 

Using the original model with minimal regularization, we first simulated the 166 

generalization experiment in which the system is repeatedly exposed to 10 Hz sequences of 167 

EODs for learning and cancellation and then tested at various rates. In agreement with the 168 

experimental results, plasticity in the model gradually reduces ELL neuron responses to the 169 

EOD, and cancellation is accurate when it is subsequently tested at 10 Hz (Figure 3A, lower 170 

left). However, in contrast to the experimental results, the model exhibits a dramatic over-171 

cancellation when tested at higher EOD rates (Figure 3A, lower right). To determine whether this 172 

resulted from a failure of learning or generalization, we simulated the experiments in which the 173 

system was trained at all the rates at which it is tested. Under these conditions, the model ELL 174 

neuron learns to cancel sensory responses at all the rates tested (Figure 3B, lower panels). This 175 

indicates that the model can learn to cancel at different EOD rates but fails to generalize low-176 

frequency learning to high EOD rates.   177 

Cancellation performance is comparable between model and data when generalization is 178 

not required because training is at both 10 Hz and 60 Hz (Figure 3C, data and minimal 179 

regularization).  Interestingly, when learning is only at 10 Hz, cancelation at 10 Hz is actually 180 

better in the minimally regularized model than in the data (Figure 3D, data and minimal 181 

regularization). This is consistent with overfitting, a feature that is expected to limit 182 

generalization. Indeed, when generalization is required, real neurons outperform the minimally 183 

regularized model by a large margin (Figure 3E, data and minimal regularization). These results 184 
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show that: (1) our current understanding of ELL circuitry cannot explain the ability of the system 185 

to cancel the sensory consequences of EOD sequences in a manner that generalizes from low to 186 

high rates and (2) this is not due to an inability of the model system to cancel across rates but is 187 

specifically a failure of generalization.  188 

One strategy for improving generalization that is commonly used in machine learning is 189 

regularization (Bishop 2006). To enhance regularization, we decreased the decay time constant 190 

for the synaptic weights from 1000 s to 10 s. We also changed the value toward which the 191 

weights decay from zero to a non-zero baseline (see Materials and Methods). The utility of this 192 

latter change will be discussed in a later section.  We refer to this modified plasticity rule as fully 193 

regularized.  194 

When training is performed at both 10 Hz and 60 Hz, cancellation in the fully regularized 195 

model is similar to the data and to the minimally regularized model (Figure 3C).  When trained 196 

only at 10 Hz, the fully regularized model matches the data better than the minimally regularized 197 

model, presumably by avoiding overfitting (Figure 3D). Consistent with this, the fully 198 

regularized model exhibits substantially improved generalization across rates compared to the 199 

minimal regularization (Figure 3E, minimal and full regularization).  However, the fully 200 

regularized model still fails to match the generalization performance seen in the data (Figure 3E, 201 

data and full regularization).  These results suggest that the original model is subject to 202 

overfitting and that regularization provides a partial solution, but additional mechanisms are 203 

required to match the data. We reasoned that this failure likely reflects the inadequacy of the 204 

assumptions we made about how granule cells respond to high-rate EOD commands. 205 

 206 

Rate dependence of granule cell corollary discharge responses in vivo 207 

 208 

The corollary discharge responses of granule cells provide the “raw material” from which 209 

negative images are sculpted via synaptic plasticity, and hence they are critical for sensory 210 

cancellation. Although the granule cell corollary discharge responses used in our model are 211 

based on an extensive set of recordings, all of the data was collected in the context of isolated 212 

EOD commands (Kennedy et al. 2014). As mentioned above, we modeled cancellation at high 213 

rates based on assumptions about how mossy fiber inputs to granule cells respond at high 214 

command rates.  The failure of our original model to match the generalization performance seen 215 
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in the data, even with full regularization, may indicate that these assumptions are incorrect.   To 216 

test this, we used whole-cell recordings to characterize corollary discharge responses across 217 

EOD rates for 28 granule cells (see Materials and Methods).  218 

Most recorded granule cells (21 of 28) exhibited a prominent (~8 mV), short-latency 219 

(~2.5 ms) depolarization in response to spontaneously emitted EOD commands. Previous studies 220 

have shown that this response type, known as “early”, is due to mossy fiber input originating 221 

from a specific midbrain nucleus that relays electric corollary discharge information (Bell, 222 

Libouban, and Szabo 1983). Command-locked hyperpolarizations, indicative of inhibition, were 223 

rarely observed, also consistent with past studies. After characterizing responses to spontaneous 224 

commands, microstimulation of the electromotor command pathway was used to evoke trains of 225 

25 commands at rates of 10-60 Hz (for clarity, only responses to low and high rates are shown in 226 

the figures). As can be seen in the example traces in Figure 4A, command-evoked 227 

depolarizations show little or no temporal summation at high command rates, with some cells 228 

even exhibiting a relatively hyperpolarized membrane potential at high versus low rates (not 229 

shown). Additional examples are shown in Figure 4-figure supplement 1. The responses of 230 

recorded granule cells contrast with those of the original model, which show pronounced 231 

summation and membrane potential depolarization at high rates (Figure 4-figure supplement 2, 232 

Figure 5B).  233 

To quantify the failure of our original granule cell model, we computed the average 234 

percentage increase in membrane voltage from 10 Hz to 60 Hz for both recorded and model 235 

granule cells (Figure 4C) and the average slope of the line best fit to the membrane voltage of 236 

each cell across a 60 Hz train of EOD commands (Figure 4D).  For the model cells, we generated 237 

a distribution by drawing 1000 sets of 28 cells from our model population (matching the 28 238 

recorded cells) and used this to compute both a distribution and a p-value. In each histogram the 239 

vertical dashed line shows the value calculated for the set of recorded granule cells. Whereas 240 

recorded granule cells showed very little change in their average membrane potential at high 241 

command rates, model cells increased their membrane potential substantially (Figure 4C). 242 

Recorded granule cells have, on average, a negative slope in their membrane potential across 60 243 

Hz trains, whereas model cells have positive sloping membrane potentials (Figure 4D), 244 

consistent with greater summation in the model versus the recorded granule cells. Clearly the 245 
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original granule cell model provides a poor description of actual granule cell responses at high 246 

EOD command rates. 247 

The shortcomings of the granule cell model we have been using could arise from a 248 

mismatch of the model to the biophysical properties of real granule cells, or it could be the result 249 

of poorly describing their mossy-fiber and unipolar-brush-cell inputs.  To differentiate between 250 

these possibilities, we modeled granule cell responses using the same integrate-and-fire 251 

description we have been using, but we replaced the computed input to the model cells with 252 

experimentally measured inputs.  For each granule cell, we fit integrate-and-fire model 253 

parameters and, at the same time, inferred its excitatory inputs from the recorded membrane 254 

potential. This process was relatively straightforward given that granule cells exhibit large 255 

EPSPs, low noise, and receive just a few inputs  (Kennedy et al. 2014; Requarth, Kaifosh, and 256 

Sawtell 2014; Sawtell 2010) (see Materials and methods). We found that the original integrate-257 

and-fire model did a good job of fitting the data provided that we used inputs inferred from data, 258 

not the inputs computed in the original model (Figure 4E shows the data and model fit for an 259 

example cell, also see Figure 4-figure supplement 1). We tried a number of augmented models, 260 

including features such as synaptic depression, inhibition and conductance-based soma and 261 

synapses, but these did not substantially improve the fit compared to the basic current-based 262 

integrate-and-fire model with purely excitatory input. This analysis suggested that the failure of 263 

the original model (Figure 3) to generalize may indeed lie in its failure to accurately represent the 264 

EOD-rate dependence of mossy fiber and unipolar brush cell inputs.   265 

To address this problem, we recorded from mossy fiber axons, unipolar brush cells, and 266 

Golgi cells. Criteria for distinguishing between these different elements in neural recordings 267 

have been established previously (Bell, Grant, and Serrier 1992; Kennedy et al. 2014; Sawtell 268 

2010).  In particular, changes in mossy fiber inputs to granule cells across different EOD rates 269 

were measured by recording directly from early mossy fiber axons within the granule cell layer 270 

as well as from their neurons of origin in the midbrain paratrigeminal command associated 271 

nucleus.  Consistent with past observations, early mossy fibers fire extremely precise bursts of 272 

spikes following after EOD command. After the successive commands in a 10 Hz train they fire 273 

exactly the same burst of spikes (Figure 4F, top), but on the second command of a 40 Hz or 60 274 

Hz train they drop one or more spikes (Figure 4F, middle and bottom). The result of this 275 



 

10 

 

dropping out is that the average number of mossy fiber spikes fired per command decreases with 276 

increasing command rate (Figure 4G).   277 

An additional effect observed at high command rates was a decrease in the rate of tonic 278 

input, i.e. EPSPs not time-locked to the EOD command (Figure 4H).  Such tonic inputs were 279 

observed in 19 of 28 granule cells, the second most common after the early inputs described 280 

above. Command-rate dependent decreases in tonic firing were also observed in recordings from 281 

putative mossy fibers and unipolar brush cells (Figure 4-figure supplement 3).  Similar command 282 

rate-dependent responses were found in another previously defined functional class of granule 283 

cell input known as pause inputs that are believed to correspond to unipolar brush cells (Kennedy 284 

et al. 2014).  Pause inputs, which fire tonically but exhibit a sharply-timed pause in firing 285 

following each EOD command, decrease their firing significantly at higher command rates, often 286 

ceasing to fire completely (Figure 4-figure supplement 4). Finally, we found that Golgi cells, 287 

inhibitory interneurons that synapse onto granule cells, markedly increase their firing with 288 

increasing EOD command rate (Figure 4-figure supplement 5). Thus, command rate-dependent 289 

Golgi inhibition could also contribute to reducing the effect of temporal summation of excitatory 290 

inputs in granule cells.   291 

 292 
 293 

Model granule cells with rate-dependent command inputs match recorded granule cells  294 

As described above, excitatory inputs to granule cells exhibit EOD command-rate dependencies 295 

that are more complex than those assumed in our original model.  To determine whether such 296 

effects could help to explain generalization in ELL output neurons, we incorporated features of 297 

the recorded mossy fibers into a revised model.  Specifically, we introduced the rate-dependent 298 

dropping out of early mossy fiber spikes and the reduction in tonic mossy fiber firing into the 299 

model. The measured rate-dependence of pause mossy fibers was similar to what was assumed in 300 

the original model, so no modification was necessary for them.  Golgi cells were not considered 301 

further because we felt that too little is currently known about the details of Golgi inhibition onto 302 

granule cells to incorporate them into the model.   303 

We characterized the effects of these changes by simulating populations of granule cells 304 

with and without command rate-dependent inputs.  At low command rates model granule cells 305 

from the two populations show similar responses (Figure 5A). However, at high command rates 306 

the two populations differ.  Granule cells in the revised model no longer exhibit the increased 307 
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depolarization at high versus low rates that was observed in the original model granule cells 308 

(Figure 5B). Examining the statistics we used previously to characterize EOD-rate dependencies 309 

in granule cell responses reveals that the inclusion of realistic assumptions regarding mossy fiber 310 

inputs dramatically changes the overall character of the granule cell responses in the revised 311 

model. The result is model granule cell responses that are clearly more consistent with the 312 

subthreshold responses recorded in granule cells across EOD rates (Figure 5C,D).  313 

 314 

The revised model with full regularization matches the generalization performance of ELL 315 

output neurons 316 

Finally, we sought to determine whether the revised model granule cell model, combined with 317 

fully regularized synaptic plasticity, can explain generalization in ELL output cells.  We again 318 

simulated the generalization experiment where the system learns with 10 Hz sequences of EODs  319 

and cancellation performance is subsequently probed at different EOD rates (Figure 6A).  The 320 

revised model with full regularization shows cancellation across rates that generalizes at a level 321 

comparable to the recorded ELL neurons (Figure 6A,C,D).  To understand the roles of both 322 

regularization and EOD rate dependencies, we compared results obtained using the revised 323 

model granule cell population (with rate-dependent input) but with the minimally regularized 324 

synaptic plasticity rule. In this case, model ELL neurons trained only at 10 Hz exhibited over-325 

cancellation at high EOD rates (Figure 6B).  Hence the more realistic mossy fiber-granule cell 326 

model, on its own, is also insufficient to explain generalization (Figure 6B,C,D).  327 

 Further examination of the model suggests a hypothesis regarding how regularized 328 

synaptic plasticity and rate-dependent mossy fiber inputs work together to support 329 

generalization. The form of regularized synaptic plasticity we have used involves a decay of each  330 

synaptic weight toward a constant non-zero value. Increasing the strength of this regularization 331 

decreases the variance of the learned weights because synaptic weights from different granule 332 

cells are constrained to be similar to this value and hence to one another (Figure 6-figure 333 

supplement 1). This means that, with strong regularization, the learned negative image is 334 

constrained to be approximately proportional to the mean response of the granule cell population. 335 

This average shape is, in turn, affected strongly by the rate-dependence of inputs to granule cells. 336 

As we have shown, in the absence of realistic mossy fiber rate-dependencies the mean model 337 
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granule cell response has an increasing profile across a 60 Hz train, whereas, with the actual 338 

mossy fiber EOD rate dependence, the mean granule cell response has a decreasing profile.    339 

Notably, the sensory responses of ELL neurons to high rate trains of EOD mimics (prior 340 

to cancellation) also exhibit a decreasing profile (Figure 2A, Figure 6-figure supplement 2). To 341 

determine the origin of such responses, we performed a separate set of extracellular recordings 342 

from ampullary electroreceptor afferents (the source of electrosensory input to ELL neurons). 343 

Ampullary afferent firing rate also exhibited a decreasing profile at high EOD rates (Figure 6E, 344 

Figure 6-figure supplement 3).  Responses of ampullary afferents to isolated EOD pulses consist 345 

of a firing rate increase followed by a reduction below baseline and in some cases additional 346 

smaller waves of increased and decreased firing resembling a damped oscillation (Figure 6-347 

figure supplement 3D)(Bell and Russell 1978).  Estimating the impulse response of an ampullary 348 

afferent from its average response to a single EOD mimic and then convolving this impulse 349 

response with a sequence of EOD mimics yielded a reasonable approximation to the observed 350 

responses (Figure 6-figure supplement 3A, red lines). Hence the decaying profile of the sensory 351 

response to high-rate sequences of EODs as well as the inhibitory rebound at the end of such 352 

sequences are expected features of a linear system with an impulse response resembling a 353 

damped oscillation.  354 

In summary, these results suggest that generalization across EOD discharge rates may be 355 

achieved in the ELL by combining two features: (1) a form of plasticity that encourages low 356 

variance in learned weights, forcing the negative image to be close to the mean granule cell 357 

response and (2) mossy fiber rate dependencies that ensure that the mean granule cell corollary 358 

discharge response has a shape that approximates the sensory signal to be cancelled. Together, 359 

these two features may allow accurate negative images to be generated across a wide range of 360 

EOD rates for which no previous learning has taken place. 361 

 362 

Discussion 363 

Functional significance of generalization in the ELL 364 

Past work on negative image formation and sensory cancellation in mormyrid fish has been 365 

restricted to one particular behavioral regime, namely, periods when EOD rates are low and 366 

regular. However, the rate and timing of EODs are under voluntary control and vary widely 367 
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during both electrocommunication and active electrolocation (Hofmann et al. 2014; Moller, 368 

Serrier, and Bowling 1989; Schwarz and von der Emde 2001; Toerring and Moller 1984).  This 369 

suggests that negative images learned over periods of minutes or hours at low EOD rates (e.g. 370 

while the fish is inactive) must generalize when the fish transitions to a high EOD rate (e.g. 371 

during foraging, fleeing, exploring a novel object, or interacting with a conspecific).  If 372 

generalization did not occur in such instances, the passive electrosensory system would be 373 

vulnerable to self-generated interference during the periods when it would be needed the most.  374 

Behavioral studies suggest that multiple senses (including both the passive and active 375 

electrosensory systems) are used in concert to detect prey (von der Emde and Bleckmann 1998).  376 

In light of these considerations, our observation that the cancellation performance of ELL 377 

neurons generalizes accurately supports and substantially extends the ethological relevance of 378 

negative images for passive electrolocation in mormyrid fish.  A caveat is that our study focused 379 

on generalization in only one specific set of circumstances, i.e. an abrupt transition from low to 380 

high rates.  Although this allowed us to focus on in-depth analysis of the mechanisms of 381 

generalization, numerous important questions remain about generalization and its importance for 382 

sensory cancellation in the mormyrid ELL.  For example, whether negative images generalize 383 

from high to low rates and the effectiveness of generalization in the context of natural EOD 384 

interval patterns. 385 

Because it is impossible to experience every relevant case during learning, our results are 386 

likely relevant to a number of other behavioral contexts and brain structures in which the 387 

cancellation of self-generated sensory inputs is known to occur.  Negative images have been 388 

described in the active electrosensory system of mormyrid as well as gymnotid fish where they 389 

serve to cancel the effects of movements of the fish’s body as well as spatially redundant 390 

electrosensory signals resulting from interactions with conspecifics (Bastian 1996; Requarth, 391 

Kaifosh, and Sawtell 2014; Requarth and Sawtell 2014).  Movements of the tail, for example, 392 

generate reafference by changing the position of the electric organ (located in the tail) relative to 393 

electroreceptors on the head and body. In the passive electrosensory system of elasmobranchs 394 

(the group that includes sharks and skates), negative images cancel the effects of swimming 395 

movements and respiration (Bodznick, Montgomery, and Carey 1999). Cancellation of self-396 

generated inputs has also been described in related cerebellum-like structures associated with the 397 

mechanosensory lateral line system in fish and the auditory system in mice (Montgomery and 398 



 

14 

 

Bodznick 1994; Singla et al. 2017).   In all of these cases, generalization is expected to be vital in 399 

assuring that negative images remain accurate across different behavioral and/or environmental 400 

contexts.      401 

  402 

Mechanisms of generalization 403 

Using a combined experimental and theoretical approach we identified two features that, when 404 

added to existing models of ELL, were sufficient to explain how negative images learned at one 405 

rate generalize to another. The first element was that synaptic plasticity from granule cells to 406 

ELL neurons be appropriately regularized. Regularization of learned parameters is ubiquitous in 407 

machine learning as a technique to prevent overfitting, or the learning of parameters that fit the 408 

idiosyncrasies and noise present in training data and therefore do not generalize well to new data 409 

(Bishop 2006). Consistent with this, in an ELL model lacking regularization we found that ELL 410 

neurons could learn negative images at low EOD rates, however, cancellation at high (untrained) 411 

rates was poor.  Although we do not have direct evidence for such regularization of synaptic 412 

plasticity in ELL, we note that there are a number of candidate mechanisms described in other 413 

systems. For example bounded synaptic strengths (Amit and Fusi 1992), discrete synaptic 414 

weights (O'Connor, Wittenberg, and Wang 2005; Petersen et al. 1998), synaptic scaling 415 

(Turrigiano 2008), coupling of synaptic changes between nearby synapses (Engert and 416 

Bonhoeffer 1997), synaptic competition (Miller 1996), and various sources of noise (Basalyga 417 

and Salinas 2006), could all act as forms of regularization even if they are simply due to 418 

constraints on the system or have additional purposes. In our model we found that a constant 419 

decay of the strength of each synapse towards a baseline value worked best. This rule has the 420 

appealing property of being implementable locally at each synapse. However, our rule does 421 

require an explicit setting for the regularization decay rate. This parameter could itself be learned 422 

over a longer timescale, which would be a form of meta-plasticity (Abraham and Bear 1996) or 423 

meta-learning (Doya 2002).  To our knowledge, little is currently known in any biological 424 

system regarding whether and how synaptic plasticity is regularized or about whether such 425 

regularization plays a role in generalization.  Addressing these questions is an interesting 426 

challenge for future research that may be aided by emerging methods for directly visualizing 427 

morphology, activity, and synaptic proteins at the level of dendrites and spines (Roth, Zhang, and 428 
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Huganir 2017).          429 

 The second feature we identified as important for generalization is an approximate 430 

matching between the EOD rate dependence of electrosensory inputs to ELL output neurons and 431 

the rate dependence of the summed corollary discharge input that an output cell receives via the 432 

granule cells.  In vivo recordings from ampullary electroreceptor afferents, ELL output neurons, 433 

mossy fibers, and granule cells provided direct evidence for such matching.  The temporal 434 

dynamics of granule cell corollary discharge responses across EOD rates are, on average, much 435 

more similar to those of electroreceptor afferents than expected based on past recordings and 436 

modeling of granule cell responses to isolated EOD commands.   This matching appears to be 437 

achieved via a variety of previously unknown EOD command rate dependencies in the inputs to 438 

granule cells.  So-called early mossy fibers are known from previous studies to fire a highly-439 

stereotyped burst of action potentials following each EOD command (Bell, Grant, and Serrier 440 

1992).  We found that the number of spikes in such bursts declines progressively with increases 441 

in the command rate.  The multiple spikes in the burst seem redundant in the context of isolated 442 

EODs. Why would multiple spikes be needed to signal the time of occurrence of an EOD 443 

command? The present work suggests that rate-dependent grading of such bursts conveys 444 

information that is important for generalization.  445 

We mainly focused on the command rate-dependence of so-called early mossy fiber 446 

inputs because these inputs are by far the most frequently encountered in our blind recordings. 447 

However, the command-rate dependence of less common elements such as unipolar brush cells 448 

and Golgi cells was also qualitatively consistent with the proposed matching.  Determining the 449 

relative importance for generalization of these different sources of command-rate dependence 450 

(i.e. mossy fibers, unipolar brush cells, and Golgi cells) is difficult given that we lack methods 451 

for selectively targeting them for recordings or manipulations. We also cannot rule out the 452 

importance for generalization of other circuit elements not studied here and for which we lack 453 

sufficient physiological data under conditions of different EOD rates. Our model (like all past 454 

models of the mormyrid ELL) does not distinguish between two distinct classes of ELL neurons: 455 

glutamatergic output cells versus GABAergic MG cells which inhibit output cells.  MG cells 456 

occupy an analogous position in the circuitry of the mormryid ELL as Purkinje cells in the 457 

teleost cerebellum and cartwheel cells in the dorsal cochlear nucleus (Bell 2002; Bell, Han, and 458 

Sawtell 2008). Importantly, both MG and output cells integrate electrosensory and corollary 459 
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discharge input and both exhibit anti-Hebbian plasticity (Bell, Caputi, and Grant 1997; Bell et al. 460 

1993; Meek et al. 1996; Mohr, Roberts, and Bell 2003). However, it is presently unknown, even 461 

in the context of low EOD rates, how MG cells contribute to sensory cancellation and negative 462 

image formation.  Our model also omits molecular layer interneurons, similar to those found in 463 

the cerebellar cortex, and does not distinguish between E- and I-type output cells. Constructing a 464 

more complete and realistic model that includes these additional features is a major focus of 465 

ongoing experimental and theoretical studies of the mormyrid ELL. 466 

Generalization of negative images could be accomplished quite simply if both 467 

electrosensory and corollary discharge signals had a linear dependence on EOD rate. Responses 468 

of ampullary electroreceptor afferents, indeed, appear to exhibit a roughly linear dependence on 469 

EOD rate (Figure 6-figure supplement 3).  However, recordings from granule cells in mormyrid 470 

fish (Kennedy et al. 2014; Requarth, Kaifosh, and Sawtell 2014; Sawtell 2010), as well as studies 471 

of cerebellar granule cells in mammals (Barmack and Yakhnitsa 2008; Chabrol et al. 2015; 472 

Chadderton, Margrie, and Hausser 2004; Ruigrok, Hensbroek, and Simpson 2011), suggest that 473 

granule cells exhibit markedly nonlinear properties, including prominent rectification and burst 474 

firing.  In our initial modeling we found that even when electrosensory and mossy fiber inputs 475 

both varied approximately linearly with EOD rate and inputs were summed linearly by model 476 

granule cells, the model failed to match the generalization performance seen in real ELL 477 

neurons. One reason for its failure is the nonlinearity introduced by the firing rate threshold of 478 

the granule cells.  Whenever a threshold is applied, portions of a signal that are subthreshold at 479 

low repetition rates can become supra-threshold at higher rates due to temporal summation, 480 

resulting in nonlinear responses (Figure 4-figure supplement 2).  Rather than linearizing the 481 

granule cell population response, the EOD rate dependencies we found in mossy fiber inputs to 482 

granule cells actually introduce additional nonlinearities on top of the threshold linearity. It is the 483 

summed effect of these nonlinearities across the granule cell population that guarantees that an 484 

approximate negative image is always available in the scaled mean of the population activity. 485 

This may be a useful principle employed by other neural systems - encoding of approximate 486 

solutions across contexts in a robust manner, in this case through a simple average population 487 

activity, allowing flexible learning while maintaining information that supports generalization.  488 

 489 
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Connections to generalization in other systems 490 

The issue of generalization has been explored in the gymnotid ELL in the context of cancellation 491 

of spatially redundant electrosensory signals, such as those generated by tail movements or 492 

conspecifics (Bol et al. 2011; Mejias et al. 2013).  Such cancellation is similar to that in the 493 

mormyrid ELL in that it is mediated by anti-Hebbian plasticity at synapses between granule cells 494 

and ELL neurons (Harvey-Girard, Lewis, and Maler 2010). However, cancellation in the 495 

gymnotid ELL is driven by proprioception or electrosensory feedback to granule cells rather than 496 

by corollary discharge (Bastian, Chacron, and Maler 2004; Chacron, Maler, and Bastian 2005). 497 

In vivo recordings from ELL neurons in gymnotids demonstrated that cancellation remains 498 

accurate over a wide range of stimulus contrasts (as might be produced by conspecifics at 499 

different distances) (Mejias et al. 2013). Modeling was used to show how learning at one 500 

contrast could generalize to higher or lower contrasts, despite numerous nonlinearities in the 501 

system. Interestingly, features of the model identified to be important for such generalization are 502 

related to those described here for the mormyrid ELL, including granule cell response properties 503 

and a slow decay in parallel fiber synaptic strength (Mejias et al. 2013; Lewis and Maler 2004), 504 

which can be considered a form of regularization. Although responses of granule cells have not 505 

yet been measured in vivo in gymnotids, several lines of evidence suggest that they are important 506 

in relation to the specificity and generalization of learning in the gymnotid ELL (Bol et al. 2011; 507 

Mejias et al. 2013).   508 

A role for cerebellar granule cells in generalization has been suggested based on studies 509 

of motor learning.  Adaptation of the vestibulo-ocular reflex (VOR) shows various patterns of 510 

generalization and specificity when training and testing are carried out at different head rotation 511 

frequencies or static head tilts (Boyden, Katoh, and Raymond 2004).  Under some experimental 512 

conditions, VOR learning has been shown to be quite specific to the training context (Baker, 513 

Wickland, and Peterson 1987; Yakushin, Raphan, and Cohen 2000).  Such specificity can be 514 

explained by models in which learning is mediated by changes in granule cell inputs conveying 515 

highly-specific representations of the training context--for example, granule cells that fire for 516 

specific combination of head rotation and head tilt.  Such hypotheses have not been directly 517 

tested in the context of the VOR or other forms of motor learning, however, numerous lines of 518 

evidence support the existence of highly-selective granule cell representations of this sort 519 



 

18 

 

(Chabrol et al. 2015; Huang et al. 2013; Ishikawa, Shimuta, and Hausser 2015; Sawtell 2010).  520 

Generalization of VOR learning is also observed under some circumstances, for example when 521 

training at a high head rotation frequency and testing on a lower frequency (Boyden, Katoh, and 522 

Raymond 2004). Broader tuning in granule cells could underlie generalization in such cases. 523 

Studies of generalization of VOR learning may be informed by recent characterizations of the 524 

statistics of vestibular input during natural behavior in primates and rodents (Carriot et al. 2014, 525 

2017).    526 

It has been suggested that patterns of generalization in human motor learning, such as 527 

adaptation to force fields in reaching, can be explained by the tuning of a set of basis elements 528 

(Donchin, Francis, and Shadmehr 2003; Ghahramani, Wolpert, and Jordan 1996; Shadmehr and 529 

Mussa-Ivaldi 1994).  Given their large numbers and known plasticity, granule cells are a natural 530 

candidate for such elements, though direct evidence is lacking.  To our knowledge, the present 531 

study is the first to directly relate responses of granule cells recorded during a learning task to 532 

generalization. 533 

 534 

Materials and Methods 535 

Experimental Preparation 536 

All experiments performed in this study adhere to the American Physiological Society’s Guiding 537 

Principles in the Care and Use of Animals and were approved by the Columbia University 538 

Institutional Animal Care and Use Committee, protocol AAAW4462. Mormyrid fish (7-12 cm in 539 

length) of the species Gnathonemus petersii were used in these experiments.  Surgical procedures 540 

to expose the brain for recording were identical to those described previously (Bell 1982; 541 

Enikolopov, Abbott, and Sawtell 2018; Sawtell 2010). Gallamine triethiodide (Flaxedil) was 542 

given at the end of the surgery (∼20 𝜇g / cm of body length) and the anesthetic (MS:222, 543 

1:25,000) was removed. Aerated water was passed over the fish’s gills for respiration.  Paralysis 544 

blocks the effect of electromotoneurons on the electric organ, preventing the EOD, but the motor 545 

command signal that would normally elicit an EOD continues to be emitted spontaneously at 546 

rates of 2-5 Hz.  The timing of the EOD motor command can be measured precisely allowing the 547 

central effects of corollary discharge inputs to be observed in isolation from the electrosensory 548 

input that would normally result from the EOD.  In a few experiments, recordings from 549 

electroreceptor afferents were performed in unparalyzed fish anesthetized with metomidate 550 

which leaves the fish’s EOD intact (Engelmann et al. 2006).  551 

  552 
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EOD command stimulation 553 

We controlled the EOD motor command rate by targeting a concentric bipolar stimulating 554 

electrode (FHC, Bowdoin, ME) to the axon tract connecting the precommand nucleus to the 555 

EOD command nucleus, located near the ventral surface of the brainstem. The electrode was 556 

inserted at the midline through the corpus cerebellum just anterior to ELL (angled 22 degrees 557 

caudally in the sagittal plane) and lowered into the brain using a hydraulic manipulator until 558 

commands could be evoked by a strong stimulus (0.2 ms duration; 50 𝜇A). The depth of the 559 

electrode was then fine-tuned until commands could be reliably evoked at short latencies by 560 

single pulses using minimal current (typically 5-15 𝜇A).  In most cases, such stimulation gave 561 

near perfect control over the timing of the EOD command. Occasionally, stimulation failed to 562 

evoke a command during high rate trains or the fish discharged spontaneously during a low rate 563 

train. However, these errors were easy to detect and were sufficiently infrequent that they were 564 

deemed negligible. Finally, microstimulation-evoked corollary discharge responses were 565 

indistinguishable from those evoked by the fish’s spontaneous commands at the level of field 566 

potentials, mossy fibers, and granule cells.  567 

 568 

Electrophysiology 569 

The EOD motor command signal was recorded with an electrode placed over the electric organ. 570 

The command signal is the synchronized volley of electromotoneurons that would normally elicit 571 

an EOD in the absence of neuromuscular blockade.  The command signal lasts about 3 ms and 572 

consists of a small negative wave followed by three larger biphasic waves. The latencies of 573 

central corollary discharge or command-evoked responses were measured with respect to the 574 

negative peak of the first large biphasic wave in the command signal.    575 

 Extracellular recordings from the ventrolateral zone of ELL were made with glass 576 

microelectrodes filled with 2M NaCl (8-30 MΩ). Consistent with previous studies, ampullary 577 

afferents were encountered in the deeper layers of ELL (medial in our penetrations) and were 578 

characterized by highly regular spontaneous firing at ~50 Hz, the absence of any response to the 579 

EOD motor command, an excitatory responses to a stomach negative EOD mimic pulse (0.2-2 580 

ms duration), and strong responses to small (<1 𝜇A), long duration (10-100 ms) electrosensory 581 

stimuli. Output cells were encountered in more superficial layers (on penetrations slightly lateral 582 

to those in which afferents were encountered) and were characterized by much lower and more 583 

irregular firing rates than ampullary afferents. E-cells showed increased firing in responses to a 584 

stomach negative EOD mimic pulse, while I-cells showed decreased firing.  None of the E- or I-585 

cells included in our analysis exhibited two distinct action potential waveforms, the hallmark of 586 

the other major cell type of in VLZ, the medium ganglion cells (Bell, Caputi, and Grant 1997; 587 

Bell et al. 1993). Hence these recordings are presumed to be from the efferent neurons of ELL. 588 

 Extracellular recordings from mossy fibers in EGp and in the paratrigeminal command-589 

associated nucleus were made using glass microelectrodes filled with 2M NaCl (40-100 M𝛺). 590 

For in vivo whole-cell recordings from EGp neurons patch electrodes (9-15 M𝛺) were filled with 591 

an internal solution containing, in mM: K-gluconate (122); KCl (7); HEPES (10); Na2GTP (0.4); 592 

MgATP (4); EGTA (0.5), and 0.5%  biocytin (pH 7.2, 280-290 mOsm).  No correction was made 593 
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for liquid junction potentials.  Only cells with stable membrane potentials more hyperpolarized 594 

than -50 mV and access resistance < 100 M𝛺 were analyzed.  Membrane potentials were filtered 595 

at 3-10 kHz and digitized at 20 kHz (CED power1401 hardware and Spike2 software; Cambridge 596 

Electronics Design, Cambridge, UK).    597 

 598 

Pairing Experiments 599 

Cancellation and negative image formation was tested in E- and I-cells by pairing EOD 600 

commands with an EOD mimic pulse (0.2-2 ms wide square pulses; 1-5 𝜇A) delivered at the 601 

delay at which the EOD would normally occur (4.5 ms after the EOD command). This delay was 602 

fixed and independent of command rate in our experiments.  This is assumed to be the case under 603 

natural conditions as well, although to our knowledge, this has never been directly shown.  EOD 604 

mimics were delivered using a dipole electrode positioned < 2 mm from the skin within the 605 

unit’s receptive field.  These methods are the same as those used previously to characterize 606 

negative images and sensory cancellation in the context of low command rates. In I cells, the 607 

EOD mimic often drove the firing rate to zero, making it difficult to quantify cancellation. To 608 

avoid this firing rate rectification, we reversed the EOD mimic polarity when recording from I 609 

cells, such that they responded with excitation instead of inhibition.  This response reversal is 610 

due to known properties of ampullary electroreceptor afferents, which increase (or decrease) 611 

firing above (or below) their baseline rate for stimuli that make the pore of the receptor positive 612 

(or negative) with respect to the basal face within the body. Past studies have commonly used 613 

this approach to demonstrate the specificity of negative image formation in the VLZ by 614 

performing multiple pairing in the same neuron using opposite stimulus polarities (Bell 1981, 615 

1982; Enikolopov, Abbott, and Sawtell 2018).  Negative images are invariably observed for both 616 

stimulus polarities in such experiments, i.e. responses to the corollary discharge alone after 617 

pairing are opposite in sign to the response to the stimulus during pairing. Systematic differences 618 

between negative images and cancellation in E versus I cells or for mimics of opposite polarities 619 

have never been noted, justifying this approach to avoid rectification.    620 

 Two types of pairing experiments were conducted. For the first type, pairing was 621 

performed across a range of rates (10, 40, and 60 Hz or 10, 30, and 50 Hz). Cancellation was 622 

assessed by comparing responses early and late during pairing which lasted 10-20 minutes.  623 

Negative images were assessed in a subset of cells by comparing responses to the command 624 

alone across rates before versus after pairing. Responses to identical trains of electrosensory 625 

stimuli presented independent of the command were also tested for each cell.  In some cases, 626 

multiple pairings were conducted in the same cell after allowing 10-15 minutes for recovery 627 

from the effects of prior pairing. The second type of experiment was the same as described above 628 

except that pairing was only conducted at 10 Hz. Cancellation was assessed in these experiments 629 

by briefly (60-100 sec) probing responses at all three rates before and immediately after pairing 630 

at 10 Hz.   631 

 632 

Linear model of electroreceptor sequence responses 633 
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To test whether electroreceptor afferent responses to EOD sequences could be approximated as 634 

linear, we estimated the impulse response kernel, 𝐾(𝑡), of each recorded unit from its response 635 

to an isolated EOD mimic. We first computed the average firing rate evoked by isolated EOD 636 

mimics (those separated by at least 150 ms). We treated this as an estimate of the impulse 637 

response of the recorded unit. To compute the predicted linear response, 𝐿(𝑡), we convolved this 638 

kernel with a series of delta functions centered on the times of the EOD mimics: 639 

𝐿(𝑡) = 𝛴𝑖𝐾(𝑡) ∗ 𝛿(𝑡𝑖 − 𝑡) 

where 𝑡𝑖 are the times of the EOD commands in the sequence. 640 

 641 

Quantification of cancellation and generalization 642 

To quantify cancellation and generalization, the degree of cancellation, 𝐶, was measured as the 643 

ratio of the total variance of the response to a sequence starting at time 𝑡𝑠𝑡𝑎𝑟𝑡 and ending at time 644 

𝑡end, to an EOD command plus mimic sequence post pairing, 𝑟post(𝑡), to that pre pairing, 645 

𝑟pre(𝑡): 646 

𝐶 =
∫

𝑡start

𝑡end (𝑟post(𝑡) − ⟨𝑟post⟩)
2

𝑑𝑡

∫
𝑡start

𝑡end (𝑟pre(𝑡) − ⟨𝑟pre⟩)
2

𝑑𝑡
 

 647 

Modeling granule cells 648 

Our general approach to modeling granule cells follows that used previously (Kennedy et al. 649 

2014). We generate model granule cell populations by random mixing of mossy fiber inputs, as 650 

described below. To extend this model to the case of different EOD command rates we also 651 

directly fit integrate-and-fire models to recordings of real granule cell responses, inferring the 652 

mossy fiber inputs at the same time. We then use information about rate dependencies in these 653 

mossy fiber inputs gleaned from this fitting procedure as well as from direct recordings of mossy 654 

fibers to show that rate-dependent changes in the inputs to granule cells can account for their 655 

responses to EOD command sequences. This information was then used to update the granule 656 

cell population model. The following sections describe these different modeling steps in more 657 

detail. 658 

Fitting granule cell voltage responses to EOD command sequences 659 

When fitting models to real granule cell data we first removed stimulus artifacts caused by 660 

electromotor command nucleus stimulation as well as any spikes using a simple threshold on the 661 

gradient of the membrane voltage. We found that a gradient threshold of 1.8 mV/ms worked 662 

well. We used multiple methods and models to fit a set of 28 intracellularly recorded granule cell 663 

responses to EOD command sequences from 10 to 60 Hz. The basic model was an integrate-and-664 

fire model with current based synapses. The parameters of the model were the membrane time 665 

constant, the leak potential, and synaptic parameters. Each cell could receive two inputs. Each 666 
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input had the following parameters, a fast and a slow time constant, and a fast and a slow weight. 667 

This accounts for the fact that granule cell EPSPs often show a combination of fast and slow 668 

components. We allowed two inputs to permit both command-associated inputs and command-669 

independent tonic inputs. The response of a model granule cell was given by 670 

𝜏m
𝑑𝑉

𝑑𝑡
= 𝐸𝑙 − 𝑉 + 𝛴𝑖,𝑗𝐸𝑖(𝑡)𝛿(𝑡 − 𝑡𝑖𝑗) , 671 

where 𝑡𝑖𝑗 is the time of the 𝑗-th spike of the 𝑖-th input and the synaptic kernels for each input are 672 

given by 673 

 𝐸𝑖(𝑡) =
1

𝜏𝑖
fast 𝑤𝑖

fast𝑒
−

𝑡

𝜏𝑖
fast

+
1

𝜏𝑖
slow 𝑤𝑖

slow𝑒
−

𝑡

𝜏𝑖
slow

 .                                       (1) 674 

To fit granule cell models, we further needed to estimate the times of input spikes for each cell. 675 

We used multiple methods to make this input inference, all of which gave similar results. The 676 

first method was a wavelet-based detection method. We computed the continuous wavelet 677 

transform of the membrane voltage at 16 scales from 800 to 2000 Hz, using the MATLAB 678 

Wavelet Toolbox. We searched for times where the wavelet transform exhibited peaks at 679 

multiple scales and considered these times putative input spike times. We then combined peak 680 

locations into single putative input times if they were closer than 0.5 ms together. We then 681 

visually validated all of the data by checking if the input times detected by this procedure 682 

corresponded to clear upticks in the membrane voltage. We made corrections when it appeared 683 

an EPSP had occurred and then used both the corrected and uncorrected input times when fitting 684 

models and compared results. The qualitative results described in the main text did not depend 685 

on the input details at this level of accuracy. We used two different methods for estimating the 686 

parameters of granule cell models. Our results did not depend on which method was used. The 687 

first method was to use the putative input times we found, assume these were the actual input 688 

times to the granule cells, and then use least squares minimization to find the optimal parameters 689 

of the granule cell model, given these input times. The second method was to use these putative 690 

input times as an initialization for an MCMC method which then generated joint samples from 691 

the posterior distribution of granule cell model parameters and input times. We initialized the 692 

input times based on those found by the wavelet method. We then used Gibbs sampling to 693 

sample model parameters after a burn-in of 500 sweeps. Approximate sampling of input times 694 

was achieved by allowing the following moves: an input spike could be jittered around its 695 

current location, an input spike could be removed, and an input spike could be added. We placed 696 

priors on the total number of spikes based on the estimated number detected by the wavelet 697 

method to prevent the addition of many extra spikes. We also placed hard bounds on the 698 

parameters so that synaptic weights were always positive. 699 

Basic granule cell model 700 

As in previous work (Kennedy et al. 2014), we generated populations of model granule cells 701 

from a random mixing procedure based on the following assumptions. Each cell receives input 702 

from classes early (E), medium (M), late (L), pause (P) or tonic (T). (i) Each granule cell has 703 

three sites for mossy fiber synaptic inputs. (ii) The probabilities of a given input being of E, M, 704 
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L, P and T type are given by 𝑃𝑒, 𝑃𝑚, 𝑃𝑙, 𝑃𝑝and 𝑃𝑡, with 𝑃𝑒 + 𝑃𝑚 + 𝑃𝑙 + 𝑃𝑝 + 𝑃𝑡 ≤ 1. (iii) The 705 

type of input received at one mossy fiber-granule cell synapse is independent of that received at 706 

any other synapse. We used input type probabilities as calculated previously based on fits to 707 

individual granule cells (Kennedy et al. 2014). 708 

 We introduced two sources of variability. We included trial to trial variability in the peak 709 

height of recorded single EPSPs from a normal distribution with 𝜎 = 0.224 mV; during 710 

simulation of model granule cells, we sampled this distribution for each mossy fiber spike. Some 711 

granule cells further receive tonic mossy fiber inputs in addition to corollary discharge inputs. 712 

These inputs fire at high rates, independent of the EOD command. We included tonic input as 713 

previously, based on 72 tonic mossy fiber recordings.  714 

 For each model granule cell we randomly determined whether each potential connection 715 

to that model cell received early (𝑃𝑒 = 0.425), medium (𝑃𝑚 = 0.075), late (𝑃𝑙 = 0.05), pause 716 

(𝑃𝑝 = 0.05), tonic (𝑃𝑡 = 0.157) or no input (𝑃𝑛 = 0.243), as in previous work. We then chose a 717 

particular mossy fiber response of the previously-determined class as the source of that input; we 718 

assumed that a connection is equally likely to be from any of the mossy fibers within a given 719 

class. These steps constitute the basic procedure for modeling populations of granule cells. The 720 

mossy fiber recordings we use to generate granule cells were based on responses to single EOD 721 

commands. To model the responses of these cells to EOD command sequences we needed to 722 

choose a method for predicting the responses of each mossy fiber to sequences of EOD 723 

commands. The following sections describe how this was achieved. 724 

 In the model granule cells we used synapses with fast and slow components. We used the 725 

same synapse model described above when fitting responses of real granule cells. The synaptic 726 

dynamics were described by equation 1. When generating model granule cell populations we had 727 

to choose values for the four parameters 𝜏𝑓𝑎𝑠𝑡, 𝑤𝑖
𝑓𝑎𝑠𝑡

, 𝜏𝑠𝑙𝑜𝑤, and 𝑤𝑖
𝑠𝑙𝑜𝑤. These were chosen by 728 

fitting Gamma distributions to the values of these parameters obtained by fitting the granule cell 729 

model to granule cell data as described above. We then drew parameters randomly from these 730 

distributions for each model granule cell we generated. Parameters were the same for each input 731 

to a given granule cell, and the values of the four parameters were assumed to be independent. 732 

 733 

Model granule cell responses to EOD command sequences 734 

To generate responses of model granule cells to EOD command sequences we needed to model 735 

the responses of each mossy fiber to that same sequence. We did not have a sufficiently large set 736 

of mossy fiber recordings from each class in response to EOD sequences at different rates to 737 

simply use these recordings directly as inputs to model granule cells. Instead we made simple 738 

models of how each of our previously recorded mossy fibers (whose responses only to isolated 739 

EOD commands we had recorded) would respond to EOD command sequences, based on actual 740 

responses to command sequences recorded from mossy fibers and UBCs in the present study. 741 

We considered two different models, referred to in the main text as the original model and the 742 

revised model. Medium, late and pause inputs were treated identically in the two models. Early 743 

and tonic inputs differed. For medium inputs we simply assumed that the set of spikes fired after 744 

each EOD command was the same, no matter where that command came in a sequence. This 745 

meant that spikes due to one command could overlap with spikes from subsequent commands, 746 

which we allowed, although we checked that this did not result in unrealistic firing rates of 747 
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medium mossy fibers. Late inputs are characterized by a delay in firing after a command 748 

followed by a period of spiking. To model the response of a late mossy fiber to EOD command 749 

sequences we assumed that the firing delays accumulated if they overlapped. This amounts to 750 

computing the spiking response of a late mossy fiber to an EOD command sequence by starting 751 

at the first command in the sequence and proceeding through the sequence, allowing the delay in 752 

firing following a command to prevent spikes that would otherwise have been caused by the 753 

previous command. For pause mossy fibers we estimated the length of the pause in tonic firing 754 

induced by each command. To create the response of the fiber to an EOD command sequence we 755 

drew randomly from the empirical inter-spike interval of the fiber and populated the period of 756 

the sequence with spikes. We then deleted spikes occurring within the estimated pause period 757 

after any EOD command in the sequence. This naturally gave rise to cessation of firing at high 758 

EOD command frequencies, due to accumulation of pausing. Similar responses at high command 759 

rates were observed in recorded pause mossy fibers. 760 

 761 

Early and tonic mossy fiber are treated differently in the two models 762 

The key differences between the original and revised models were in the way we treated early 763 

mossy fiber inputs and tonic mossy fiber inputs. Recordings from early mossy fibers as well as 764 

mossy fiber inputs inferred from granule cell recordings showed that early mossy fibers tend to 765 

fire progressively fewer spikes per EOD command during high-frequency command sequences 766 

and that tonic mossy fibers also tend to fire at a progressively lower rate during high frequency 767 

EOD sequences. The original model does not take these new findings into account, whereas the 768 

revised model does. In the original model we assume that early mossy fibers fire the exact same 769 

burst of spikes (known from recorded responses to single EOD commands) after each command 770 

in a sequence and we create tonic mossy fiber spike trains in response to EOD command 771 

sequences by sampling from estimated inter-spike interval distributions for each recorded tonic 772 

mossy fiber. In the revised model, the fraction of spikes fired by each early mossy fiber 773 

following each EOD command, compared to the number fired after an isolated EOD command, 774 

was a function of recent EOD command history. The fraction f relaxed to 1 with a characteristic 775 

timescale (80 ms) and is reduced by a factor  𝛼 = 0.72 following each EOD command: 776 

𝜏𝑓

𝑑𝑓

𝑑𝑡
= 1 − 𝑓 

and 𝑓 → 𝛼𝑓 after each EOD command. These parameters were chosen to approximately match 777 

the dropping observed in recorded responses of early mossy fibers to EOD command sequences. 778 

In the revised model we modified the responses of tonic mossy fibers by removing a number of 779 

spikes from the spike train based on the recent EOD command rate (computed over the last 100 780 

ms). The decrease in tonic firing was again based on recorded tonic mossy fiber responses to 781 

EOD sequences. Tonic firing rates were decreased linearly from their maximum rate at an EOD 782 

command frequency of 10 Hz to 0.6 times their maximum rate at an EOD command frequency 783 

of 60 Hz. 784 

 785 

Additional granule-cell responses types 786 
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Not all granule cells from the revised model population behaved in the same way.  For example, 787 

a minority of cells, specifically those receiving previously described medium mossy fiber inputs 788 

active at intermediate delays, integrate and fire more spikes at high EOD command rates. Only 2 789 

of the 28 recorded granule cells received a medium input, consistent with the small proportion of 790 

medium inputs found previously (Kennedy et al. 2014). One of these cells, indeed, exhibited 791 

prominent summation and increased spiking at high rates. However, given the small proportion 792 

of medium inputs, a much larger number of actual granule cells would have to be recorded to 793 

determine whether such response types are a consistent feature of real granule cells.  794 

 795 

Synaptic plasticity 796 

 797 

As in previous work we modeled the membrane potential of ELL neurons, 𝑉(𝑡), as a passive, 798 

current-based leaky unit receiving excitatory input from 20,000 model granule cells 𝑟𝑖(𝑡) and 799 

sensory input 𝑠(𝑡), with anti-Hebbian spike-timing dependent plasticity at granule cell-ELL 800 

neuron synapses with weights 𝑤𝑖, and EPSP kernel 𝐸 fit to recorded granule cell-evoked EPSPs 801 

(Kennedy et al. 2014). As discussed above, we adjusted the polarity of the sensory stimulus such 802 

that excitation was evoked in both E and I cells. Hence, no distinction was made in the model 803 

between E and I cells. The granule cell-ELL neuron learning rule has the form 𝛥+ − 𝛥−𝐿0(𝑡) 804 

where 𝑡 = 𝑡postspike − 𝑡prespike and 𝐿𝑜(𝑡) determines the time dependence of associative 805 

depression. Theoretical analysis has shown that the negative images are guaranteed to be stable 806 

when 𝐿0 = 𝐸, where 𝐸 is the EPSP from granule cells to the ELL neuron (Roberts and Bell 807 

2000). The timescale of 𝐸 agrees with learning rules fit to experimental data, thus we set 𝐿0 = 𝐸. 808 

We further included a regularization term as mentioned in the main text. This regularization is 809 

equivalent to a constant decay of each synaptic weight toward a baseline value that is the same 810 

for all synapses. Using this approach, the rate of change of 𝑤𝑖 is equal to 𝛥+∫ 𝑟𝑖(𝑡)𝑑𝑡 −811 

𝛥−∫ 𝑉(𝑡)(𝐸 ∗ 𝑟𝑖)(𝑡)𝑑𝑡 − 𝜆(𝑤𝑖 − 𝑤𝑐), where the integral is over the period of the EOD 812 

command sequence being paired. The regularization constant  𝜆 sets the time constant, 
1

𝜆
, for the 813 

decay of synaptic weights to the baseline value 𝑤𝑐. The values of 𝜆 and 𝑤𝑐 chosen here were 814 

selected by hand in order to match the experimental data. The model introduces these two 815 

parameters as a minimal extension of our previous model which can account for the experimental 816 

results. See the Discussion for thoughts about how these parameters might be set in the 817 

biological system.  818 

 819 

We used  
1

𝜆
= 10𝑠 in the case of full regularization and 

1

𝜆
= 1000𝑠 for minimal regularization. 820 

The value used with full regularization was chosen to bring the overall performance of the model 821 

when generalizing as close to that found in the data without compromising cancellation at 10 Hz 822 

to the point where the model could not cancel as well as the data. The value used with minimal 823 

regularization was chosen to prevent unrealistically large weights from being learned. We chose 824 

the value of 𝑤𝑐 depending on the ELL neuron being modeled so that the mean model granule cell 825 
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response scaled by 𝑤𝑐 was approximately equal to the negative of the sensory input to the ELL 826 

neuron, that is such that 𝑤𝑐⟨𝑟𝑖(𝑡)⟩ ≈ −𝑠(𝑡).  𝛥+ and 𝛥− were taken from previous work, where 827 

they were fit to negative images recorded experimentally (Kennedy et al. 2014).  828 

 829 

Figure Legends 830 

 831 

Figure 1. Cancelling the effects of the EOD under natural conditions requires 832 

generalization.  833 

A Schematic of ELL circuit elements responsible for cancellation of self-generated 834 

electrosensory responses. Granule cell corollary discharge responses form a temporal basis (blue 835 

trace at left) that is shaped by an anti-Hebbian spike-timing dependent synaptic plasticity rule 836 

into a negative image of the predictable sensory response to an EOD (blue trace at right). Signals 837 

related to the EOD (orange traces, left and right), along with behaviorally relevant stimuli that 838 

the system is meant to detect (not shown), are conveyed by afferent fibers (orange) originating 839 

from electroreceptors on the skin. Question mark indicates the process of sensory cancellation 840 

being studied. B A sequence of inter-EOD intervals recorded in a freely swimming mormyrid 841 

fish, adapted with permission from (Toerring and Moller 1984). Note the wide range of 842 

discharge rates and abrupt transition from lower, irregular rates to a high regular rate (arrow). 843 

Such transitions highlight the need for negative images to generalize across different EOD rate 844 

regimes.  845 

 846 

Figure 2. Sensory cancellation in ELL output cells generalizes from low to high EOD rates. 847 

A Top, pre-learning response of an ELL output cell to a sequence of mimics triggered by EOD 848 

commands at 10 Hz. Shaded box indicates the learning condition. Empty dashed box indicates 849 

that no learning was performed at 60 Hz in this series of experiments. Red ticks show the times 850 

of EOD commands and black ticks show the times of EOD mimics. Bottom, response of the 851 

same cell after learning at 10 Hz. Dashed line is the response of the cell to the EOD mimic 852 

presented independent of the command after learning. Note, the response to the mimic is largely 853 

cancelled at both 10 and 60 Hz even though learning occurred only at 10 Hz.  Responses were 854 

also probed at 40 Hz in this cell with similar results (not shown). Scale bar is 1 s. B Top, pre-855 

learning responses of an ELL output cell to paired EOD command and mimic sequences at 10 856 

and 60 Hz. Shaded boxes indicate that learning took place at both 10 Hz and 60 Hz. Bottom, the 857 

response of the same cell after learning. Learning was also conducted at 40 Hz in this cell with 858 

similar results (not shown). C Degree of cancellation at each rate for learning only at 10 Hz, 859 

expressed as the ratio of the power of the residual response after learning to the power of the pre-860 

learning response (n = 17, median residual power ratios are 0.34, 0.48, 0.63 at 10, 40, and 60 Hz 861 

respectively). D Degree of cancellation at each rate when learning and testing were at the same 862 

frequencies of 10, 40, and 60 Hz, expressed as in C (n = 12, median residual power ratios are 863 

0.36, 0.49, 0.61 at 10, 40, and 60 Hz respectively).  864 

 865 

Figure 3. Regularization of synaptic plasticity improves but does not fully account for 866 

generalization A Top, pre-learning response of a model ELL neuron to paired EOD command 867 

and mimic sequences delivered at 10 Hz. Shaded box indicates the learning condition. Red ticks 868 

show the times of EOD commands and black ticks show the times of EOD mimics. Bottom, 869 
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response of the model cell after learning. The response to the mimic is largely cancelled at 10 Hz 870 

but is dramatically over-cancelled at 60 Hz.  B Top, pre-learning response of a model ELL 871 

neuron to paired EOD command and mimic sequences at 10 and 60 Hz. Shaded boxes indicate 872 

the learning conditions. Bottom, response after learning. The response is largely cancelled at 873 

both 10 and 60 Hz. C Degree of cancellation at 10 Hz and 60 Hz for model and real cells across 874 

rates when training occurred at both rates. D Degree of cancellation at 10 Hz for real cells and 875 

model cells, with full and minimal regularization, when learning was only at 10 Hz. E Degree of 876 

cancellation at 60 Hz for real and model cells, with full and minimal regularization, when 877 

learning was only at 10 Hz.  878 

 879 

Figure 4: Command rate-dependence of granule cells and their mossy fiber inputs  880 

A Membrane potential of a granule cell in response to a 60 Hz sequence of 25 EOD commands, 881 

with stimulus artifacts removed. Red ticks show the times of EOD commands.  B The response 882 

to a single command at 10 Hz along with the time at which a subsequent command would occur 883 

at a rate of 60 Hz (red arrow). Bottom trace is the electromotoneuron volley recorded near the 884 

electric organ. Same cell as in A. C Distribution of median percentage increase in maximum 885 

membrane voltage from 10 Hz to 60 Hz command rates across n = 28 model granule cells. 886 

Dashed line shows the experimental value of 0.006 (p = 0.03). D Distribution of median slope of 887 

membrane voltage in response to a 60 Hz sequence for model granule cells, dashed line shows 888 

value from the data, -0.43 mV/s (p < 0.002). E Initial portion of the response of the granule cell 889 

shown in panel A. Black lines are data with stimulus artifacts removed, blue dashed line shows a 890 

fit using a model granule cell with input spike times inferred from the recorded membrane 891 

voltage. F Example traces from an early mossy fiber recorded extracellularly in the granular 892 

layer. Responses to 25 commands in a 10 Hz (top), 40 Hz (middle), or 60 Hz (bottom) sequence 893 

are overlaid. Note the “dropping” of spikes in the burst at high rates. Bottom trace is the 894 

electromotoneuron volley recorded near the electric organ. G Average number of spikes fired per 895 

EOD command by early mossy fibers (gray, n = 9). Symbols show the mean ± S.D. H Average 896 

firing rate across all inferred tonic mossy fiber inputs to granule cells across EOD command 897 

frequencies (mean ± SEM, n = 19). 898 

 899 

Figure 5: Model granule cells with rate-dependent command inputs match recorded 900 

granule cells  901 

A-D Dark versus light blue indicates model cell response with and without rate-dependent inputs 902 

matched to the data. A Response of a model granule cell to two EODs in a 10 Hz command 903 

sequence. Note that the cell responds very similarly at this rate with either set of inputs. B 904 

Response of the same model cell as in A, but for a sequence of EOD commands at 60 Hz. Note 905 

the qualitatively distinct responses with and without input rate-dependencies at this higher rate. 906 

C-D Distributions of two response statistics for new and old models, dashed lines show the value 907 

found in real granule cells.  C Median percentage increase in membrane voltage from 10 to 60 908 

Hz (for old model p = 0.03, for new model p = 0.72). D Median membrane potential slope across 909 

a 60 Hz train of EOD commands (for old model p < 0.002, for new model p = 0.81).  910 

 911 

Figure 6: A revised ELL model accounts for generalization in ELL neurons In all panels 912 

dashed blue traces are the sensory response to be cancelled and solid blue traces are the response 913 

to the paired EOD command plus mimic sequences. Learning occurs only at 10 Hz as indicated 914 
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by grey boxes. Red ticks show the times of EOD commands and black ticks show the times of 915 

EOD mimics. A Top, pre-learning response of a revised model output cell with full 916 

regularization to paired EOD command and mimic sequences delivered at 10 Hz. Bottom, 917 

response of the same cell after learning. Note, the response to the mimic is largely cancelled at 918 

both 10 and 60 Hz. B Top, pre-learning response of a revised model output cell with minimal 919 

regularization to paired EOD command and mimic sequences delivered at 10 Hz. Bottom, 920 

response of the same cell after learning. Note, the response to the mimic is largely cancelled at 921 

10 Hz but is now over-cancelled at 60 Hz. C Level of cancellation achieved at 10 Hz across 922 

different model and real ELL cells is similar (p = 0.72 for minimally regularized model versus 923 

data; p = 0.62 for fully-regularized model versus data, Wilcoxon signed rank test). D Similar to 924 

C but showing the level of cancellation achieved at 60 Hz ,(p < 0.001 for minimally regularized 925 

model versus data; p = 0.38 for fully-regularized model versus data, Wilcoxon signed rank test). 926 

E Dark blue, mean spiking response of model granule cells with input rate dependencies; grey, 927 

mean response of electroreceptor afferents, both at 60 Hz EOD rate.  Note the similarity in 928 

shape. 929 

 930 

Figure 2-figure supplement 1: ELL neurons form negative images that generalize across 931 

EOD rates  932 

A Top, responses of an ELL output cell at 10, 40, and 60 Hz, after pairing only at 10 Hz. Blue 933 

shows the response to the mimic alone, black shows the response to the command alone after 934 

pairing. Responses in the latter period are due to corollary discharge inputs and resemble an 935 

approximate negative image of the response to the mimic across rates, despite pairing being 936 

conducted only at 10 Hz. Periods of high firing evoked by the command alone (red arrows) 937 

correspond to periods of low firing induced by the EOD mimic.   Bottom, responses of the same 938 

cell after pairing with an opposite-polarity mimic at 10 Hz. Purple shows the response to the 939 

mimic alone, black shows the response to the command alone. Note that the corollary discharge 940 

response has completely changed (compare black trace in top panel), generalizing appropriately, 941 

despite pairing with the new stimulus only at 10 Hz. B Similar to A but for a different cell, this 942 

time paired at all rates.  943 

 944 

Figure 3-figure supplement 1: A Schematic of the spiking response of a late mossy fiber 945 

evoked by an isolated EOD command. The response consists of a delay followed by a period of 946 

spikes, as shown. B Schematic of the modeled response of the same mossy fiber to a sequence of 947 

two EOD commands. The pattern of delay and spiking is copied after each EOD command, but 948 

the delay following each EOD command erases any spikes caused by the previous command that 949 

fall within the delay period following the current command, as shown. 950 
 951 

Figure 4-figure supplement 1: Example recorded granule cells receiving early input 952 

Membrane voltage of two granule cells receiving early mossy fiber input (i.-ii.) in response to a 953 

60 Hz sequence of EOD commands, with stimulus artifacts removed. An action potential at ~300 954 

ms in i is truncated. Red ticks show the times of EOD commands. Black lines are data. Blue lines 955 

show model fits. Expanded traces reveal a decrement over time in the number of inflections 956 

(bumps) on the depolarizing responses for successive commands at high rates, indicative of early 957 

mossy fiber input spikes dropping out. Arrow indicates a rare case in which a microstimulation 958 

pulse failed to evoke a command. 959 

 960 
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Figure 4-figure supplement 2: Granule cells in the original model fire nonlinearly and this 961 

nonlinearity is greater for cells with slower inputs A i.-v. Example model granule cells 962 

showing the response to EOD sequences at three different rates (10, 40, 60 Hz), colored lines. 963 

Grey lines show the predicted response if each cell were linear. B EPSPs for the model cells in 964 

A, showing that there is significant variability in real and model granule cell EPSP time 965 

constants and that cells with longer EPSP time constants fire more nonlinearly due to greater 966 

temporal summation. 967 

 968 

Figure 4-figure supplement 3: Tonic mossy fibers decrease their firing rate at high EOD 969 

command rates In all panels, vertical red lines show EOD command times. A Example 970 

membrane voltage (four trials overlaid) of a putative unipolar brush cell exhibiting command 971 

rate-dependent inhibition of tonic firing in response to command sequences from 10-60  Hz. B 972 

Example membrane voltage of a granule cell receiving tonic mossy fiber input (black lines show 973 

times of inferred input spikes) in response to EOD command sequences from 10-60 Hz.  974 

 975 

Figure 4-figure supplement 4: Pause mossy fibers cease firing at high command rates i.-iii. 976 

Show the firing rate of three example pause mossy fibers in response to a single EOD command 977 

(left), a 10 Hz sequence of 25 EOD commands (center), and a 60 Hz sequence of 25 EOD 978 

commands (right). Pause mossy fibers show tonic firing with a pause in response to a single 979 

EOD command, and at higher EOD command rates cease firing altogether (n = 6).  980 

 981 

Figure 4-figure supplement 5: Golgi cells increase their firing rate with increasing EOD 982 

command rate A Membrane voltage of an example Golgi cell in response to EOD command 983 

sequences from 10-60 Hz. Spikes are truncated. Red vertical lines show times of EOD 984 

commands. B Firing rates increase as a function of EOD command in Golgi cells (P < 0.001, 985 

linear regression t-test, n = 3). 986 

 987 

Figure 6-figure supplement 1: Stronger regularization of synaptic plasticity restricts 988 

negative images to be proportional to the mean granule cell response and decreases 989 

variance in synaptic weights A Overlap between negative image and average model granule 990 

cell activity across a 25 EOD command sequence at 60 Hz, as a function of the strength of 991 

regularization of synaptic plasticity (see Materials and Methods). B Variance of the final set of 992 

model synaptic weights from granule cells to the model ELL neuron, after pairing, as a function 993 

of the strength of regularization of synaptic plasticity.  994 

 995 

Figure 6-figure supplement 2: Rate-dependence of ELL output cell responses to the EOD A 996 

Firing rate of three (i.-iii.) ELL output cells to EOD mimics delivered at 10, 40, and 60 Hz. 997 

Vertical ticks above the data indicate times of electrosensory stimuli. Black lines are data and red 998 

lines are the expected response assuming the response is a linear sum of individual EOD 999 

responses (see Materials and Methods). Note the decreasing response profile at high rates. B 1000 

Rate of decay of ELL output cell firing rate across a 25 mimic sequence as a function of mimic 1001 

frequency (n=22). C Mean ELL output cell firing rate across a 25 mimic sequence as a function 1002 

of mimic frequency (n=22). 1003 

 1004 

Figure 6-figure supplement 3: Rate-dependence of ampullary afferent responses to the 1005 

EOD A Firing rate of an electroreceptor afferent to EOD mimics delivered at 10 Hz (left) and 60 1006 
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Hz (right). Vertical ticks above data indicate times of electrosensory stimuli. Black lines are data 1007 

and red lines are the expected response assuming the response is a linear sum of individual EOD 1008 

responses (see Materials and Methods). Note the decreasing response profile at high rates. B 1009 

Rate of decay of electroreceptor afferent firing rate across a 25 mimic sequence as a function of 1010 

mimic frequency (n=12). C Mean electroreceptor afferent firing rate across a 25 mimic sequence 1011 

as a function of mimic frequency (n=12).  D Example (average) impulse response of the 1012 

electrosensory afferent shown in A to an isolated EOD, with both positive (green) and negative 1013 

(red) lobes. 1014 
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