
*For correspondence:

frechter@mrc-lmb.cam.ac.uk (SF);

jefferis@mrc-lmb.cam.ac.uk (GJ)

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 33

Received: 20 December 2018

Accepted: 12 April 2019

Published: 21 May 2019

Reviewing editor: K

VijayRaghavan, National Centre

for Biological Sciences, Tata

Institute of Fundamental

Research, India

Copyright Frechter et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Functional and anatomical specificity in a
higher olfactory centre
Shahar Frechter1*, Alexander Shakeel Bates1, Sina Tootoonian1,2,3,
Michael-John Dolan1,4, James Manton1, Arian Rokkum Jamasb5, Johannes Kohl1,
Davi Bock4, Gregory Jefferis1,5*

1Neurobiology Division, MRC Laboratory of Molecular Biology, Cambridge, United
Kingdom; 2Department of Neuroscience, Physiology and Pharmacology, University
College London, London, United Kingdom; 3Neurophysiology of Behaviour
Laboratory, The Francis Crick Institute, London, United Kingdom; 4Janelia Research
Campus, Howard Hughes Medical Institute, Chevy Chase, United States;
5Department of Zoology, University of Cambridge, Cambridge, United Kingdom

Abstract Most sensory systems are organized into parallel neuronal pathways that process

distinct aspects of incoming stimuli. In the insect olfactory system, second order projection neurons

target both the mushroom body, required for learning, and the lateral horn (LH), proposed to

mediate innate olfactory behavior. Mushroom body neurons form a sparse olfactory population

code, which is not stereotyped across animals. In contrast, odor coding in the LH remains poorly

understood. We combine genetic driver lines, anatomical and functional criteria to show that the

Drosophila LH has ~1400 neurons and >165 cell types. Genetically labeled LHNs have stereotyped

odor responses across animals and on average respond to three times more odors than single

projection neurons. LHNs are better odor categorizers than projection neurons, likely due to

stereotyped pooling of related inputs. Our results reveal some of the principles by which a higher

processing area can extract innate behavioral significance from sensory stimuli.

DOI: https://doi.org/10.7554/eLife.44590.001

Introduction
In thinking about the transition from stimulus through perception to behavior, chemosensory sys-

tems have become increasingly studied due to their relatively shallow architecture: just two synapses

separate the sensory periphery from neurons that are believed to form memories or instruct behav-

ior (Wilson and Mainen, 2006; Masse et al., 2009). However, there are many shared organizational

features with other sensory systems : for example, integration of information originating from dis-

tinct sensory receptors, and multiple levels of parallel and hierarchical processing. It is therefore pos-

sible that detailed studies of chemosensory systems may reveal general principles relevant to

neurons that are considerably deeper in other sensory modalities. This study uses single cell neuro-

anatomy and genetically targeted in vivo electrophysiology to addresses two principal questions in

the context of the Drosophila melanogaster olfactory system. First, can a higher olfactory center

encode odors in a stereotyped way? More specifically, are there distinct cell types with reproducible

odor responses across animals? Second, what is the nature of the population code in a higher olfac-

tory area linked to innate behavior? How might the code relate to the behavioral requirements of

the animal and how does it differ from neurons underlying learned responses?

The olfactory systems of mammals and insects have many similarities, including the presence of

glomerular units in the first olfactory processing center. Second order neurons then make divergent

projections onto multiple higher olfactory centers. For example in both flies and mice there are sep-

arate projections to areas proposed to be specialized for memory formation (mushroom body and
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piriform cortex, respectively) and unlearned olfactory behaviors (lateral horn and e.g. cortical amyg-

dala) (Heimbeck et al., 2001; Jefferis et al., 2007; Sosulski et al., 2011; Root et al., 2014). In

insects in general and Drosophila melanogaster in particular, the anatomical and functional logic of

odor coding in the mushroom body (MB) and its relationship to olfactory learning has been inten-

sively studied. About 150 projection neurons (PNs) relay information to the input zone of the MB,

the calyx, where they form synapses with the dendrites of ~2000 Kenyon cells, the intrinsic neurons

of the MB (reviewed in Masse et al., 2009). There is limited spatial stereotypy in these projections

(Jefferis et al., 2002; Wong et al., 2002; Tanaka et al., 2004; Jefferis et al., 2007; Lin et al.,

2007) and each KC receives input from an apparently random sample of ~6 PNs (Caron et al.,

2013). KC axons form a parallel fibre system intersected by the dendrites of 35 MB output neurons

(Aso et al., 2014a); it is proposed that memories are stored by synaptic depression at these synap-

ses. KC odor responses are very sparse (Perez-Orive et al., 2002; Turner et al., 2008), which is pro-

posed to minimize interference between different memories, but do not appear stereotyped across

animals (Murthy et al., 2008, but see Wang et al., 2004). Random PN-KC connectivity is consistent

with the idea that KC responses acquire meaning through associative learning rather than having

any intrinsic valence. In mice, pyramidal cells of the piriform cortex also integrate coincident inputs

from different glomeruli (Miyamichi et al., 2011; Davison and Ehlers, 2011), but as in the MB the

available evidence suggests that this integration is not stereotyped from animal to animal

(Stettler and Axel, 2009; Choi et al., 2011).

In contrast to extensive studies of the MB, there is much more limited information concerning

anatomy and function of the lateral horn (LH); this is also true for higher olfactory centers of the

mammalian brain that have been hypothesized to serve a similar functional role such as the cortical

amygdala. Studies examining the axonal arbors of PNs showed that these have more stereotyped

projections in the LH than in the MB (Marin et al., 2002; Wong et al., 2002; Tanaka et al., 2004;

Jefferis et al., 2007). Since at least three classes of LH neurons (LHNs) appeared to have dendrites

in stereotyped locations (Tanaka et al., 2004; Jefferis et al., 2007), it was hypothesized that these

neurons have stereotyped odor responses that are conserved from animal to animal. The first studies

of odor responses of LHNs focussed on pheromone responses of neurons suspected to be sexually

dimorphic in number or anatomy owing to their expression of the fruitless gene (Ruta et al., 2010;

Kohl et al., 2013). Kohl et al. (2013) characterized three neuronal clusters showing that they

responded in a sex- and class-specific manner and ranged from narrowly tuned pheromone-special-

ists to more broadly responsive neurons.

Pheromone responsive second order neurons project axons to a specialized subregion of the LH

(Seki et al., 2005; Jefferis et al., 2007) and the extent to which pheromone responsive LHNs are

typical of the whole LH has been questioned by other studies. In particular (Gupta and Stopfer,

2012) recorded from a random sample of neurons in the locust LH, reporting that all LHNs were

extremely broadly tuned and without finding evidence of neurons with repeated odor profiles; they

eventually concluded that generalist LHNs are unlikely to be stereotyped encoders of innate behav-

ior. Fişek and Wilson (2014) carried out the first electrophysiological recordings of non-pheromone

LH neurons in Drosophila. They recorded from two genetically identified cell types with reproducible

response patterns: one LHN class responded to 1 out of 8 tested odorants, the other responded to

all odorants. Although these results suggested that generalist LHNs can also have stereotyped odor

responses, the limited number of neurons investigated precluded general conclusions about LH

odor coding. Studies of analogous regions in the mammalian brain are even more challenging, but

recent recordings by Lurilli and Datta (2017) from the cortical amygdala found no evidence for

response stereotypy or encoding of the behavioral valence or chemical category of odors.

We have taken a stepwise approach to understanding the organizational and functional logic of

the LH. We first reasoned that it was essential to characterize its cellular composition and to develop

approaches for reproducible access to different cell populations. We achieved this by screening and

annotating genetic driver lines, hierarchically classifying single cell morphologies, and using whole

brain electron microscopy (EM) data to place rigorous bounds on total cell numbers, which turn out

to be much greater than anticipated.

We then used genetically targeted single cell electrophysiology and anatomy to reveal principles

of odor coding in genetically defined cell populations, finding that LHNs typically respond to more

odors but with fewer spikes than their PN input. Since we found that LHNs show stereotyped odor

responses across animals, we carried out a detailed analysis of neuronal cell types. We show that
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functional and morphological criteria can both be used to define cell type and that they are highly

consistent. We then show that LHNs are better odor categorizers than their PN inputs, providing

one justification for their distinct coding properties. Finally we use EM data to measure direct con-

vergence of different olfactory channels onto both local and output neurons of the LH, providing an

anatomical substrate for the response broadening. Taken together these results reveal some of the

logic by which the nervous system can map sensory responses onto behaviorally relevant categories

encoded in a population of stereotyped cell types in a higher brain area.

Results

Key anatomical features of the lateral horn
Our key goal in this study was to understand the coding principles of third order neurons underlying

innate olfactory behaviors. Nevertheless it is hard to understand the functional properties of a brain

area without a basic understanding of the number and variety of constituents neurons. We used a

wide variety of experimental/analytic approaches to obtain a comprehensive overview of the func-

tional anatomy of the LH. We now present the observations most relevant to odor coding, organized

hierarchically. We present further details in Materials and methods and online supplements including

accompanying 3D data (jefferislab.org/si/lhlibrary).

Neuropil volume is indicative of the energetic investment in particular sensory information

(Sterling and Laughlin, 2015), and strongly correlated with length of neuronal cable and synapse

numbers (e.g. Schlegel et al., 2017). We find that the volume of the LH is 70% of the volume of the

whole MB. However many LHNs extend axons beyond the LH; we estimate that the total volume of

LHN arbors is therefore actually (40%) greater than the MB. This large investment in neuropil volume

argues for the significance of the LH in sensory processing, whereas the literature currently contains

13 fold more studies of the Drosophila MB than LH (Materials and methods section Neuropil

Volumes).

The number of neurons in a brain area is a key determinant of neuronal coding. A classic EM

study cutting the MB’s parallel axon tract counted 2200 Kenyon cells (Technau and Heisenberg,

1982), while comprehensive genetic driver lines contain up to 2000 KCs (Aso et al., 2009). However

the number of LHNs has remained undefined, since there is no single tract to cross-section, nor any

driver line labelling all LHNs. In the locust, (Gupta and Stopfer, 2012) estimated that there are

fewer LHNs than PNs. We combined light level image data with whole brain electron microscopy

(EM) (Zheng et al., 2018) to address this question. Our anatomical screen (see below) identified 31

primary neurite tracts entering the LH (Figure 1B and Table 1); a random EM tracing procedure tar-

geting 17 of the largest tracts yielded an estimate of 1410 LHNs (90% CI 1368–1454, see Experimen-

tal Procedures). Each tract consists predominantly of either output or local neurons giving an

estimate of about 580 LH local neurons (LHLNs, 40%) and 830 LH output neurons (LHONs, 60%).

These results show that LHONs are much more numerous than second order input PNs and within a

factor of 2 of the number of third order MB Kenyon cells. The large number of KCs enables sparse

odor coding, which is proposed to avoid synaptic interference during memory formation (reviewed

by Masse et al., 2009). Why should the LH also contain so many neurons?

Driver lines and hierarchical naming system for LHNs
Transgenic driver lines are the standard approach to label and manipulate neurons in Drosophila

(Venken et al., 2011). Given the large number of LHNs, it seemed essential to identify lines target-

ing subpopulations to test our hypothesis that LHNs are stereotyped odor encoders. When we

began our studies, the only relevant lines came from Tanaka et al. (2004), who identified four driv-

ers labeling distinct populations of LHNs from a screen of ~4,000 GAL4 lines. We carried out an

enhancer trap Split-GAL4 screen (Luan et al., 2006), eventually selecting 234 lines containing LHNs

from 2769 screened (see Experimental Procedures for details). These lines gave us access to the

majority of known classes of LHNs and were used for most functional studies in this paper. However

they were rarely cell type-specific, making them less suitable for behavioral experiments.

In addition to the previous absence of genetic reagents, LHNs are morphologically extremely

diverse and do not innervate discrete glomeruli or compartments (Laissue et al., 1999;

Tanaka et al., 2008; Aso et al., 2014a). For all these reasons, there was no prior system to name
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Figure 1 continued on next page
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and classify different LHNs. We devised a hierarchical naming system with three levels of increasing

anatomical detail to disambiguate neurons (Figure 1F and G): (1) primary neurite tract: the tract

containing fibers connecting the soma to the rest of the neuron, (2) anatomy group: neurons sharing

a common axon tract and broadly similar arborizations in the LH and target areas, (3) cell type: the

finest level revealed by reproducible differences in precise axonal or dendritic arborization patterns.

We use single cell data to illustrate these three levels for three closely related cell types (PV5a1,

PV5b1, PV5b2) (Figure 1G, see Materials and methods for details). This system was key to successful

genetic screening as well as planning and reporting functional experiments.

Figure 1 continued

LHON = blue, LHLN = green). The vast majority of genetic driver lines labeled only a few LH anatomy groups. NB these data are also available as a

supplementary spreadsheet. (F) Anterior (left) and posterior (right) views of the different LHN primary neurite tracts demonstrating the broad origin of

LHNs. Grey dashed arrow indicates the order of increasing tract numbers for ventral PNTs (Lower arrow) and dorsal PNTs (above). The entry point into

the brain rather than soma location was the point of reference for naming tracts. (G) Upper panels, cartoons summarizing the logic of the LHN naming

system, lower panels, the PV5 primary neurite as an example. Note this includes only 3 out of 24 cell types in PV5. For each cell type one cell is

highlighted (thick lines).

DOI: https://doi.org/10.7554/eLife.44590.002

The following figure supplement is available for figure 1:

Figure supplement 1. Summary of anatomical and functional screen.

DOI: https://doi.org/10.7554/eLife.44590.003

Table 1. LHN tracts characterized in electron microscopy data.

Tracts match the Primary Neurite Tract nomenclature defined in Figure 1. Type indicates whether

the tract contains output or local neurons or a mix of both. Profiles indicates the total number of pro-

files within the tract. Est:LHNs indicates the sampling based estimate for the number of LHNs in the

tract. Range gives a 90% confidence interval.

Tract Type Profiles Est. LHNs Range Recorded

AV4 LHLN>>LHON 324 252 244–259 Yes

PV4 LHLN>LHON 158 155 152–158 Yes

PV2 LHLN>>LHON 193 92 81–102 Yes

PD3 LHLN 75 59 43–75

PD4 LHLN 88 22 10–33

–LHLNs– 838 578 555–602

AV3 LHON>LHLN 144 140 140

PD2 LHON 193 128 128 Yes

PV5 LHON 127 119 119 Yes

AD1 LHON 286 116 102–130 Yes

AV6 LHON 323 106 96–115 Yes

AV2 LHON>>LHLN 98 63 49–77 Yes

AD3 LHON 59 59 59

AV7 LHON 141 48 25–70

AV1 LHON 33 25 25

AV5 LHON 108 17 7–27

PV3 LHON 52 12 0–25

AD2 LHON 52 0 0

–LHONs– 1616 832 797–868

–Total– 2454 1411 1368–1454

DOI: https://doi.org/10.7554/eLife.44590.004
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Building on our initial screen, we also annotated (Figure 1D) the widely used FlyLight (often

referred to as GMR lines, Jenett et al., 2012) and Vienna Tiles libraries (VT lines, Tirian and Dick-

son, 2017). These lines are now very widely used in Drosophila neurobiology, in part because co-

registered 3D image data are publicly available (e.g. through virtualflybrain.org Milyaev et al.,

2012; Manton et al., 2014). The vast majority of genetic driver lines labeled only a few LH anatomy

groups (mean of 3.8) while just 21/422 lines contained more than 8; we did not find any lines specific

to multiple LHN anatomy groups without labelling other neurons in the central brain (Figure 1D and

E). Similarly, none of the primary neurite tracts proved LH specific, although some were highly LH

enriched (Figure 1B). This demonstrates how hard it is to obtain LH selective lines that label most or

even a large portion of the LHNs. At the conclusion of our screen we had identified 69 distinct LHN

anatomy groups – that is, neurons with substantially different axonal tracts/arborisation patterns –

each of which was consistently labeled by a subset of driver lines. This cellular and genetic diversity

significantly exceeded our initial expectations and represented an almost order of magnitude

increase over prior studies. It also contrasts very strongly with the seven genetically defined Kenyon

cell types comprising the third order neurons of the mushroom body (Aso et al., 2014a).

This second screen of GMR/VT lines provides a link between our LHN classification and experi-

mentally valuable resources including further driver lines and co-registered 3D image data (see

Materials and methods). Indeed, building on these annotations we went on to prepare a large collec-

tion of highly specific intersectional Split-GAL4 lines selectively targeting specific LH cell types; this

facilitates many experiments including behavioral analysis for which our first generation split-GAL4

reagents were less suitable (see Dolan et al., 2019, sister manuscript).

Single cell anatomy of the lateral horn
The results presented so far provide principled estimates of the number of LHNs, identify genetic

reagents for their study and develop a hierarchical nomenclature classification system. The final part

of our neuroanatomical groundwork was to carry out a large scale single cell analysis of the LH in

order to gain an initial understanding of the variety of cell types that it contains.

Given our new estimate that there are ~1400 neurons LHNs, what is the anatomical and functional

diversity amongst this large number of neurons? To address this, we co-registered FlyCircuit neurons

(Chiang et al., 2011) and neurons recorded during this study, segmenting each neuron into pre-

dicted axonal and dendritic domains (Figure 2, see Materials and methods). We created an online

3D atlas of 1619 LHNs as well as 1258 LH input neurons. We first reviewed LH inputs (Figure 2A).

The principal uniglomerular olfactory inputs to the LH have been well-studied but we found 26 new

classes including many non-olfactory inputs (see Figure 2—figure supplement 1A and Materials

and methods for details). Multiglomerular olfactory neurons, and presumptive thermosensory, hygro-

sensory, and mechanosensory neurons were all concentrated in a ventromedial domain of the LH

(Figure 2B), emphasizing that the LH is a multimodal structure.

To classify LHNs, i.e. neurons with presumptive dendrites in the LH, we assigned neurons to anat-

omy groups and cell types (Figure 1G) using NBLAST clustering (Costa et al., 2016), followed by

a close manual review of within and across cell type stereotypy in fine branching patterns (Figure 2—

figure supplement 1B). We found that there is no unique statistical definition (i.e. single cut height

for NBLAST clustering) that is appropriate for all LH cell types (Figure 2—figure supplement 1B’),

even when these anatomical cell type can be validated by other cellular properties (see below). Nev-

ertheless for those cell types with more than one neuron, NBLAST identified the

correct, manually ascribed cell type ~80% of the time (Figure 2—figure supplement 1E).

We identified a total of 261 LHN cell types divided into 34 local cell types (LHLNs) with arbors

restricted to the LH and 227 LHON cell types with axons beyond the LH. Most cell types originate

from the tracts identified by EM as containing the largest number of LHNs (Table 1). LHLNs are

associated with about half the number of tracts as LHONs (i.e. 5 vs 12 major EM tracts, Table 1).

Similarly the AV4 and PV4 tracts account for 73% of the estimated 580 local neurons, whereas it

takes 5 LHON tracts to reach this proportion.

LHONs are more anatomically diverse, originating from 29/31 tracts as well as having a wide

range of axonal projections. Some LHNs clearly had dendrites in multiple neuropils. We therefore

focussed on a set of 134 core LHON cell types with >50% their dendrites within the LH (Figure 2—

figure supplement 1F; see Materials and methods for details). These LHONs project to a wide array

of target areas (Figure 2E). The superior protocerebral neuropils (SLP, SMP and SIP) are the most
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Overview of our annotated LHN skeleton library showing all skeletons with LH arbors, core LHN cell types (see Figure 2—figure supplement 1) and

those neurons reconstructed after electrophysiological recording in the present study. Neurons colored by anatomy group. (D) Visualization of single

Figure 2 continued on next page
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extensively innervated; they are the location of ‘convergence zones’ where direct olfactory output

from the LH may be integrated with learned olfactory information from the mushroom body

(Aso et al., 2014a). The ventrolateral protocerebrum (AVLP, PVLP) is the next major target; this area

also receives extensive input from visual projection neurons originating in the optic lobes (e.g.

Panser et al., 2016) and is innervated by dendrites of descending neurons, including at least two

now known to be downstream of LHONs (Huoviala et al., 2018). Some LHONs also have both axo-

nal and dendritic domains in the LH. We noticed that few cell types project to the contralateral hemi-

sphere, perhaps because most olfactory projection neurons in the adult fly already receive

information from both antennae.

The most studied projections to the LH are GH146-GAL4 positive, excitatory uniglomerular pro-

jection neurons from the antennal lobe (AL) that run through the medial antennal lobe tract (mALT).

3D atlases of these uniglomerular PNs have been constructed previously based on co-registration

and annotation of single cell data (Jefferis et al., 2007; Costa et al., 2016). Nevertheless, there are

numerous additional inputs to the LH. We annotated LH input neurons from FlyCircuit and divided

them into 41 different groups based on the axon tract they use to reach the LH and their pattern of

dendritic arborization (Figure 2—figure supplement 1A-B), which we used as a proxy for the modal-

ity of the sensory information they encode. We extended the naming system of Tanaka et al.

(2012a) to include 26 types not previously identified (see Materials and methods). Tanaka et al.

(2012a) have described five mALT types, three mediolateral antennal lobe tract (mlALT) types, three

lateral antennal lobe tract (lALT) types, and three transverse antennal lobe tract (tALT) PN types that

project to the LH from the AL. PNs taking any tract can have uniglomerular, multiglomerular or non-

glomerular dendritic arborisation in the AL, sampling broadly or sparsely from the available odor

channels. Unlike Tanaka et al. (2012a), but as has been observed in the larva (Berck et al., 2016),

we find that some of these mALT olfactory projections do not arborize in the MB calyx (data not

shown). GABAergic olfactory input is known to be supplied via PNs traversing the mlALT

(Wilson and Laurent, 2005; Okada et al., 2009), whereas the majority of projections through the

mALT and lALT are thought to be cholinergic (Tanaka et al., 2012a). We were not able to find a few

PN types that had been described in the literature to project to the LH, including AL-MBDL

(Tanaka et al., 2012a).

Input distribution is not uniform within the LH. Excitatory uniglomerular and inhibitory GABAergic

PNs project widely but spare a ventromedial stripe of the LH, which is the focus of multiglomerular

olfactory neurons and other sensory inputs; this same arborization pattern is shared by two neuro-

modulatory neurons releasing octopamine (Busch et al., 2009) and serotonin (Roy et al., 2007). In

contrast, excitatory multiglomerular projection neurons are heavily concentrated in the ventromedial

LH, where their arbors intermingle with PNs from thermosensory and hygrosensory glomeruli

(Frank et al., 2015; Frank et al., 2017); in addition undescribed projection neurons from the Wedge

neuropil may carry mechanosensory wind input (Yorozu et al., 2009; Patella and Wilson, 2018).

Gustatory projection neurons also innervate this domain, although these are concentrated in an

anterior-medial domain adjacent to the LH (see also Kim et al., 2017). In conclusion, the ventral LH

receives multimodal input and likely to be involved in multimodal integration while the remainder is

predominantly olfactory. Due to sampling biases in the FlyCircuit dataset, it is very likely that some

cell types are over-represented, while others may be missing altogether. It has been reported from

Figure 2 continued

exemplars for all cell types for which we have >=3 skeletons in the library, or from which we made electrophysiological recordings in this study. Output

neurons in blue, local neurons in green. (E) Bar chart showing, for each target neuropil, the total axonal cable length contributed by all core LHONs

(calculated as sum of mean for each identified cell type). Brains plots show in major (> 3 mm axonal cable) and minor (1–3 mm) targets of LHONs. Brain

neuropil according to Ito et al. (2014); mALT, medial antennal lobe tract, tALT, transverse antennal lobe tract, mlALT, medio-lateral antennal lobe

tract, lALT, lateral antennal lobe tract.

DOI: https://doi.org/10.7554/eLife.44590.005

The following figure supplements are available for figure 2:

Figure supplement 1. Summary of neuron skeleton data for LHNs and PNs.

DOI: https://doi.org/10.7554/eLife.44590.006

Figure supplement 2. Local vs. Output AV4 and PV4 clusters.

DOI: https://doi.org/10.7554/eLife.44590.007
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electron microscopy that the mALT contains ~288, the mlALT 88–100 and the tALT ~60 fibers from

the vicinity of the AL (Tanaka et al., 2012b).

In order to enable more effective exploration of these data, we have prepared a number of down-

loadable data and source code resources (see Online resources). These include a 3D enabled web

application at jefferislab.org/si/lhlibrary which also links to the highly selective split-GAL4 reagents

described in our (Dolan et al., 2019) sister manuscript as well as cross-referencing 26 LHN cell types

recently characterized by Jeanne et al. (2018).

Odor responses of lateral horn neurons
The neuroanatomical groundwork that we have just summarized includes a huge amount of detail

that will be relevant for many circuit studies. However as we turn our attention to olfactory coding

one question, one major question stands out. Why are there so many LHN cell types? To answer this

question we began by defining the odor response properties of LHNs and comparing them with

their presynaptic partners, the PNs. We also hoped to contrast LHN responses with those of MB

Kenyon cells, the other main class of third order olfactory neuron.

With genetic driver lines in hand we were able to carry out targeted recordings from LHNs (Fig-

ure 3). Given that these cells had unknown response properties and our previous experience was

that calcium signals in LHN somata are not a sensitive measure of LHN firing, we carried out in vivo

whole cell patch clamp recordings as we have previously described (Kohl et al., 2013). We recorded

587 cells of which 410 (242 LHONs, 84 LHLNs, and 84 identified PNs) reached the criteria for inclu-

sion in our population analysis (see Experimental Procedures). Comparing basic electrophysiological

parameters across different groups, both LHONs and LHLNs generally have a much higher input

resistance and lower cell capacitance than PNs (Figure 4D and Figure 3—figure supplement 1D);

this suggests that the energetic costs of individual spikes will be lower in LHONs than PNs.

We selected an odor set designed to excite many different olfactory channels (Hallem and Carl-

son, 2006; Münch and Galizia, 2016) that included diverse chemical groups including acetates,

alcohols, organic acids, aldehydes, ketones, amines and phenyls (Figure 4B). Our core odor set con-

sisted of 36 odors although up to 53 odors were used for some cells in the study. LHONs generally

showed little spiking in the absence of odor with a mean firing rate of 0.1 Hz. In contrast PNs

showed a higher mean baseline firing rate of 1.4 Hz (Figure 3 and Figure 4C) consistent with previ-

ous reports (e.g. Wilson et al., 2004; Jeanne and Wilson, 2015). The baseline firing rate of LHLNs

was intermediate with a firing rate of 1 Hz. Odor responses were reliable for all three groups and it

was rare for a cell to respond to one odor presentation without responding to the other presenta-

tions of the same odor (Figure 4H). Cell averaged single trial response reliability was slightly higher

for LHONs. This probably reflects the higher baseline firing rate of PNs since when we considered

only stronger responses, reliability for all groups approached 100% (Figure 3—figure supplement

1E).

If we consider every single odor presentation, the mean firing rate was similar across PNs, LHLNs,

and LHONs (4.4–5.2 Hz). However PNs (and LHLNs) responded to fewer odors then LHONs: 12% of

odors elicited a significant PN response compared to 35% for LHONs (Figure 4B,E; see Materials

and methods for definition of a significant response). Consistent with this, PN responses were

sparser than LHONs (Figure 4F,G). If we consider significant excitatory odor responses only, we see

that when an LHON responds to an odor, it does so with a lower firing rate: 21 Hz for PNs and 14

Hz for LHONs (Figure 4C).

In conclusion, LHONs are on average 10x quieter than PNs at baseline, show significant responses

to 3x more odors, but have lower evoked firing rates, consequently firing a similar total number of

spikes.

Defining functional cell types
Our recordings indicated that cells fall into distinct groups based on their odor tuning profile (Fig-

ure 5). For example, morphologically similar neurons belonging to the same anatomy group could

be subdivided by their odor-evoked responses. Close inspection revealed subtle morphological dif-

ferences between these subgroups (Figure 5B,E). However when looking over the entire cell reper-

toire it was evident that although we used a large odor set, many cells that were anatomically
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Figure 3. Comparing odor responses of second and third order olfactory neurons. Raster plots for two PNs (red), five LHLNs (green), and seven LHONs

(blue). Each odor was presented 4 times to each cell with a 250 ms valve opening starting 500 ms after recording (red bar). For each odor the voltage

response of the four trials was averaged (continuous line) while rasters show the spiking response for each presentation. Note the progressive reduction

Figure 3 continued on next page
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completely distinct, had rather similar odor responses that we could not reliably separate by auto-

mated analysis (Figure 5C,F).

Although it would have been desirable to assign a functional cell type based solely on odor

response data, the factors that we have just outlined made this impossible in practice. We therefore

used a two stage process. The first stage was to use coarse anatomical features (primary neurite and

axon tract) to separate the cells into anatomy groups. The second stage then divided cells within an

anatomy group based on their odor response properties (Figure 5A). This finest level of classifica-

tion into distinct cell types therefore depended solely on their functional properties. This classifica-

tion was initially carried out manually and identified 64 functional cell types, of which 59 contain two

or more exemplars and 42 contain 3 or more.

While some functional cell types had low variability in odor responses and were clearly segre-

gated, others were less easily classified. In particular, we regularly observed that the common odor

response profile of cells that we eventually assigned to the same functional cell type, was masked by

differences in response magnitude or threshold (Figure 5D). This variability may originate from dif-

ferences in the number or strength of inputs to that cell type within or across animals. Given that we

recorded from one cell per animal, we cannot exclude variation due to experimental factors (e.g.

small differences in fly position or orientation, quality of recording and general state of the fly) that

may affect the response strength. However we did not find any consistent relationship between cell-

recording parameters (cell capacitance, membrane resistance and pipette resistance) and the

strength of the response, suggesting that this is not an artifact of recording conditions (Figure 3—

figure supplement 1). Furthermore recent analysis (Figure 6of Dolan et al., 2018) of new whole

brain EM data (Zheng et al., 2018) suggests that within one animal, LHNs of the same cell type can

receive varied numbers of PN inputs that could well account for the observed response differences.

This is also consistent with the recent observations of Jeanne et al. (2018) who found that LHNs

originating from the same GAL4 line showed similar but not identical profiles of PN input as revealed

by optogenetic mapping; however that study did not attempt to formalize cell type definitions and

therefore did not conclude whether this variability was associated with distinct cell types or varia-

tions in the inputs within a cell type.

Finally, we would also like to emphasize that a requirement of co-clustering of LHNs by odor

response alone is actually very stringent. PNs are generally assumed to be highly stereotyped odor

responders, but we found that many PNs were not perfectly clustered using the approach of cutting

a dendrogram formed by clustering odor responses. This was also true for earlier results of

Murthy et al. (2008) (obtained with 7 cell types and 12 odors vs 22 cell types and 36 odors).

Fine scale anatomical clustering confirms LHN classification
We next wanted to compare and cross-validate our manual classification into functional cell types

with automated clustering. We were specifically concerned with the finest level of classification (i.e.

cell type) and whether odor tuning differences (among cells with similar coarse anatomy) or fine ana-

tomical differences would individually be sufficient to define a cell type. We selected all the func-

tional cell types for which we had more then three filled, traced and co-registered cells (122 out of a

total of 141; 42 cell types) and began by dividing them into six pools based on their primary neurite

tract. We then carried out automated clustering based either on odor response profile (Figure 6A)

or NBLAST clustering of neuronal morphology. Automated clustering of each of these pools reliably

identified our manually defined physiology classes with a median Adjusted Rand Index for anatomy

of 0.64 and 0.60 for odor response data (Figure 7B). This result demonstrates that the manual classi-

fication strategy in of the previous section is well-grounded. It also strongly supports the

Figure 3 continued

in baseline firing rate and sparseness between PNs and LHLNs, and LHONs. Odors abbreviated on the left can be identified from a supplementary

spreadsheet.

DOI: https://doi.org/10.7554/eLife.44590.008

The following figure supplement is available for figure 3:

Figure supplement 1. Cell Physiolgical Parameters.

DOI: https://doi.org/10.7554/eLife.44590.009
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Figure 4. Population summaries of second and third order olfactory neurons. (A) Diagram of time windows used when identifying significant spiking

responses (see Materials and methods). (B) Matrix showing significant spiking responses of PNs, LHLNs, and LHONs (colors match Figure 3) to different

odors. A black and white matrix shows the chemical groups of the different odors (see supplementary spreadsheet). (C) Comparing firing rates of PNs,

LHLNs, and LHONs. Baseline firing rate (baseline), firing rate in the response window (all responses), and firing rate in the response window for

Figure 4 continued on next page

Frechter et al. eLife 2019;8:e44590. DOI: https://doi.org/10.7554/eLife.44590 12 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.44590


interpretation that our functional cell types are bona fide cell types since they can be independently

defined by both anatomical and functional properties.

We also carried out the same cluster analysis across the whole dataset that is without dividing the

neurons into six pools (black dots in Figure 7B to D). Although NBLAST anatomical clustering con-

tinued to perform well (Adjusted Rand Index, ARI = 0.74), hierarchical clustering of odor response

data performed considerably worse (ARI = 0.38) albeit still above the chance level of ARI = 0

(Figure 7B). This lower performance results from the confusion of cells with rather similar response

properties but very different morphology (Figure 7—figure supplement 1B).

In three cases, neither automated clustering by odor response or NBLAST clustering could reli-

ably separate similar cell types defined during our manual classification. We carefully scrutinized the

odor responses and morphology of the relevant cells (Figure 7—figure supplement 1. In two of

these cases, we eventually decided to merge closely related cell types. In the third case, we con-

cluded that our initial manual classification was correct. This resulted in a set of consensus cell types

based on all the information at our disposal. We then reran our automated clustering across the

whole dataset. While the performance of our anatomical clustering improved somewhat, the func-

tional clustering continued to perform poorly (Figure 7C). For this set of consensus cell types we

find the percent of correct classification by physiology or anatomy (Figure 7D) as 86% and 66%,

respectively, when considering all cell types in a single pool. Finally we show a hierarchical NBLAST

clustering for all cell types in Figure 7E, showing excellent agreement between the automated ana-

tomical clustering and manually defined functional cell types.

In conclusion these results demonstrate the existence of 33 cell types in the LH with stereotyped

odor responses and neuronal morphology across animals. They also strongly support the idea that

the >165 LHN cell types that we have defined based on anatomical criteria alone will also show ste-

reotyped odor responses across animals.

LHONs sample odor space in a non homogeneous manner
The odor response cross-correlation heatmaps presented in Figure 6B–D are noticeably different for

PNs, LHLNs, and LHONs. First, the mean correlation across cells is significantly higher for LHONs

than for PNs or LHLNs. Second, the LHON heatmap shows considerable off-diagonal correlation

structure that is largely absent from the PN and LHLN heatmaps. These two differences are obvi-

ously not independent – the higher overall correlation across LHONs may also result in more neurons

with overlapping odor response profiles. It is important to understand the nature and origin of these

differences between second order PNs and third order LHONs since the correlation structure of

odor responses across each neuronal population will have a significant impact on its odor coding

capacity.

One trivial explanation for the high cross-correlation between LHON responses in (Figure 6B) is

that we are repeatedly sampling a small number of cell types many times. Having defined and vali-

dated LHN cell types in the previous two sections, we can set this trivial explanation aside by gener-

ating new heatmaps in which we aggregate all of the odor response data for recordings from the

same cell types (Figure 8). For the LHONs in our dataset this resulted in a a 38 � 38 cell type heat-

map. Comparing Figure 8A vs B-C, it should be clear that while there are PNs with strongly corre-

lated odor responses, these groups are located along the diagonal. In contrast for the LHON

heatmap, there are many squares with high correlation far from the diagonal: many cell types have

odor responses that are correlated with multiple groups of cell types.

We considered three possible explanations for the differences that we see between PN and

LHON heatmaps.

Figure 4 continued

significant responses only (significant responses). LHONs have a lower baseline firing rate and, when using significant response only, a lower odor-

evoked firing rate then PNs. (D) Input resistance of PNs, LHLNs, and LHONs. (E) Different measures of sparseness of odor responses in PNs, LHLNs,

and LHONs showing that LHONs are broader then PNs. (F) Single trial response reliability using a threshold of 5 Hz for PNs, LHLNs, and LHONs.

Responses were reliable for all three groups with LHON responses slightly more reliable probably due to differences in baseline firing rate.

DOI: https://doi.org/10.7554/eLife.44590.010
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Figure 5. Comparing physiology and anatomy of different cell types. (A) Our pipeline for identifying cell types. (B) Odor responses for three cell types

(n = 2 neurons each) belonging to the same anatomy group. Each pair of neurons that belongs to the same functional cell type are marked by a

colored bar with the functional cell type number. Although the three cell types have really similar anatomy, their responses are clearly very different. (C)

Example of two functional cell types (n = 3 neurons each) that have very similar response properties but very different anatomy. (D) Some cell types

Figure 5 continued on next page
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Tuning Breadth - LHONs are more broadly tuned, responding to significantly more odors than

PNs. More broadly tuned cells may be more correlated with other cells, potentially explaining the

increased cross-correlation across cell types.

Cell Numbers - There are more LHONs then PNs. As the number of cells and cell types sampling

the same odor space increases, differences between cell types are bound to decrease resulting in

increased cross-correlation across cell types.

Odor Space - LHONs sample odor space in a biased manner, with many cell types responding to

related sets of odors, leading to higher cross-correlation.

To try to distinguish these different possibilities, we first carried out a simple computational

experiment in which we shuffled the odor stimulus labels, choosing a different permutation for each

cell type. This procedure maintains the same firing rates and tuning breadths for each cell type, but

disrupts the correlation structure across cell types that would result from extensive similarities in

odor profiles across types. Figure 8A’–C’ presents the results of this manipulation, which clearly

removes the off-diagonal structure for all three groups of cells, leaving almost no cases of elevated

cross-correlation. This effect is clearly much larger for LHONs than for PNs (quantified in Figure 8D).

Increased tuning breadth alone therefore cannot explain the extensive off-diagonal cross-correlation

structure for LHONs, but instead biases in the odor response properties across cell types appear to

be the main factor.

This first analysis suggests that in the absence of strong biases in the odors that excite LHONs,

tuning breadth has no substantial impact on the population cross-correlation. However, given that

LHONs have such response biases, we next examined whether tuning breadth could be a contribu-

tory factor. We found a statistically significant (p=0.004) although not particularly strong (adjusted

R2 = 0.19) positive relationship between mean odor response probability and mean cross-correlation

scores. However we can also see that if we compare with PNs, LHONs had consistently higher cross-

correlation scores, even for cell types with low odor response probabilities (left of red line in

Figure 8E). One issue with this last comparison is that the mean cross-correlation scores for narrowly

tuned LHONs still included comparisons against both broad and sparse LHONs. We therefore fur-

ther limited our analysis to consider the cross-correlation only between sparse LHON cell types.

Once again LHONs showed higher cross-correlation scores (p=2.7E-5) than PNs (Figure 8F). This

also indicates that the number of cell classes is not the main reason for the high correlation since by

limiting our analysis to sparse classes only we also matched the number of PN and LHON classes (20

and 22 classes, respectively).

Summarizing, we conclude that LHONs sample odor space less homogeneously than PNs leading

to higher cross-correlation in LHON responses than their PN inputs. We further show that increased

tuning breadth of LHONs and the increased number of LHON classes are not the main reason for

this high correlation.

Encoding of odor categories
We have already explored a number of aspects of odor coding by LHNs. For example we have seen

that LHNs, as a population, respond to 3 times more odors than their PN inputs and that they sam-

ple odor space inhomogeneously. We hypothesized that these features of LHN odor coding arise

because they pool specific odor input channels that signify odors of common behavioral significance.

The circuit origins of behavioral significance, which can be summarized at its very simplest level as a

binary valence – whether odors are attractive or repulsive – have received considerable attention

recently (reviewed by Knaden and Hansson, 2014). However the observed behavioral valence is

extremely dependent on numerous factors including the exact behavioral paradigm and odor con-

centration used. Therefore rather than trying to examine LH odor coding from the perspective of the

Figure 5 continued

showed significant variability in the strength of their odor responses across recorded cells while still showing consistency (n = 3 neurons for each of 2

cell types). (E, F, G) Frontal (top) and dorsal (bottom) images of dye filled neurons correspond to the functional cell types in B-D. Colored arrows

(dendritic) and arrowheads (axonal) pointing to the arbors of each cell type. Altogether the figure demonstrates cons functional cell type classification.
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Figure 6. Cross-correlation clustering of odor response data for PNs, LHLNs, and LHONs. (A) Analysis pipeline for generating the cell-odor response

correlation matrix and measuring correlation across cells. Responses were binned (blue squares, 50 ms) and the mean firing rate was calculated for each

time bin. For each cell, the responses to all odor, ware concatenated into a single vector and a matrix of all the cell odor responses was generated. This

cell-odor matrix was used to calculate the Pearson’s correlation between the odor responses for all pairs of cells. (B–D) Heatmaps of the resultant cross-

Figure 6 continued on next page
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behavioral valence reported for different odors in the literature, we initially focussed on encoding of

well-defined chemical features.

We first categorized our odor set based on the presence of alcohol, aldehyde, amine, carboxyl,

ester, phenyl chemical groups. We then examined odor encoding at the population level of PNs,

LHLNs, and LHONs using principal components analysis. The first principal component consistently

encoded response magnitude (data not shown). Figure 9A shows the population response trajecto-

ries projected into the space of the second and third principal components, and color-coded by

odor category. Two features of this analysis seemed particularly noteworthy. First, there was a pro-

gressive increase from PNs to LHONs in how spread out odor representations were in this principal

component space. Second, LHON responses appeared to separate certain odor categories, espe-

cially amine containing odors (typical of decomposing biological matter) versus acetates (typically

light, fruity odors).

This result motivated us to examine the ability of individual LHNs to encode odor categories. We

treated each cell as a binary classifier for a given odor category, that is signaling the presence or

absence of that category and measured its performance using a normalized area under the ROC

curve (AUC) score (see Materials and methods). LHONs and, to a lesser extent, LHLNs, but not PNs

convey category information in their odor responses, when compared with shuffled control distribu-

tions (Figure 9B). The LHON population has the largest fraction (70%) of category-informative cells,

followed closely by LHLNs, which have nearly twice as many category-informative cells as PNs (data

not shown). Among the six categories, four were highly represented in the LHON population and

amine categorizers appeared to be the most selective (Figure 9C). These results indicate that LHNs

indeed develop a novel ability to encode higher order odor features that are more likely to be

behaviorally relevant to the fly, confirming a longstanding hypothesis in the field.

As noted earlier, PCA analysis suggested that population odor responses were increasingly

spread out moving from PN through LHLN to LHON population responses. In the case of PNs, the

second and third principal components that are plotted in Figure 9A are dominated by a small num-

ber of odors with large values. We wondered if this might conceal a more regular structure as we

observed for LHONs. We therefore repeated the PCA analysis after carrying out an adaptive normal-

ization procedure boosting responses to all odors (see Materials and methods). However as shown

in Figure 9D, this did not reveal any strong categorical organization in PNs.

We also asked whether there was any association between particular odor categories and brain

regions within and outside the lateral horn (i.e. locations of LHON dendrites and axons, respectively).

We used a clustering approach to partition these regions into 25 compact ‘supervoxels’ (see Materi-

als and methods) and then asked if these were associated with LHONs encoding particular odor cat-

egories. Both within the LH and in the axon target regions in the superior protocerebrum we found

regions that were strongly associated with four of the odor categories (Figure 9E, amines, esters,

aldehydes and carboxylic acids. These included several well-separated domains in the output

regions, suggesting that there might be distinct groups of downstream target for LHONs with differ-

ent category specificity.

Given the improved selectivity of individual LHONs for specific odor categories we also tested

the ability of populations of LHNs to identify odor category or identity. To do this we repeatedly

generate random subpopulations of cells for a given number of cell types, where each cell was the

sole representative of a particular cell type. We then trained linear support vector classifiers (SVC) to

perform either identity or category decoding on a trial-by-trial basis for each time bin (see Materials

and methods), selecting a single SVC tuning parameter that maximized accuracy using one half of

the random samples. We then reported performance summaries for the other half of the random

samples using the selected SVC tuning parameters.

As we expected, LHN populations were better than PNs and LHLN at identifying odor category

(Figure 9F). At the very low end of the graph (just one cell type used for decoding) only LHONs

Figure 6 continued

correlation matrices for LHONs, PNs and LHLNs, respectively. To allow comparison all three heatmaps share the same color scale for the correlation

coefficient (top left) demonstrating a higher correlation between LHONs as well as considerable higher level of off-diagonal correlation structure.
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Figure 7. Comparing anatomy and physiology classification. (A) Cross correlation matrix of odor responses and fine anatomy (NBLAST) for the same

cells. Cells were divided according to their PNT. Only classes with at least three traced cells were used. We highlighted areas of misclassification with

either a star (single mis-classified cell) or a red bar for a section of several cells. Correlation matrices for six primary neurites were organized in pairs with

physiology on top and Anatomy below. Color scale for all physiology Correlation matrices and all anatomy Correlation matrices is the same. (B)
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could identify odor category when compared with shuffled control distributions, consistent with the

ROC analysis in Figure 9B. They maintained their superior performance over the entire range num-

ber of cell types tested. One important question for future work would be to determine what is the

biologically relevant size of LHON population that might feed into downstream neurons – the anat-

omy of LHONs with axon projections to disparate higher brain areas make it unlikely that there

would be integration of large numbers of LHON cell types.

In comparison, neither PNs, LHONs, or LHLNs showed above chance odor identification perfor-

mance when only one class was used (Figure 9G). As we increased the number of cell types in the

decoding population, performance improved for all groups but LHONs gradually improved com-

pared with PNs and LHLNs. In future it will be interesting to compare these results with KCs by

obtaining odor response data in equivalent conditions. While this analysis is certainly consistent with

our hypothesis that stereotyped integration in the LH could enable genetically determined categori-

cal odor representations, there is also a weakness that cannot obviously be overcome without addi-

tional data: this population decoding analysis tests the ability of random subsets of neurons to

predict the category or identity of all our test odors. However given the stereotyped nature of LHN

responses, we propose that particular LHN populations are dedicated for particular odor categories.

In this regard, future analysis based on comparing the responses of LHNs integrating known olfac-

tory channels will be instructive.

Integration of odor channels by LHNs
Many of our observations (increased tuning breadth, increased single cell categorization ability,

reduced representational dimensionality) suggest that the LHONs pool olfactory information to bet-

ter inform the behavioral significance of an odor. Although this provides a rationale for the observed

differences in odor coding, it does not account for them mechanistically. Previous light level studies

have attempted to predict PN to LHN connectivity (Jefferis et al., 2007) based on light level overlap

and a handful of these predictions have been validated (or refuted) electrophysiologically (Fişek and

Wilson, 2014). Nevertheless light level mapping, especially when carried out across brains cannot

reliably predict actual synaptic connections.

In order to compare our observations about LHN odor coding with measurements of the PN to

LHN convergence ratio, we leveraged a newly available whole brain EM dataset (Zheng et al.,

2018). This allowed us to obtain direct information about how LHN dendrites integrate inputs from

different PN axons. We selected an anatomically diverse sample of 29 LHONs and 17 LHLNs derived

from 10 and 5 primary neurite tracts, respectively (seven neurons are from Dolan et al., 2018, the

remainder P Schlegel, ASB, GSXEJ, in preparation). These neurons were reconstructed to comple-

tion in the lateral horn, enabling us to analyze the complete repertoire of excitatory PN input onto

their dendrites originating from 51 glomeruli (see Materials and methods).

All neurons analyzed had a small number of strong inputs but most had a long tail of weaker

inputs (Figure 10A). Therefore although they received at least one input from 13 glomeruli on aver-

age (range 0–33), if we considered only those glomeruli accounting for more than 1.5% of total input

synapses to a given LHN, then LHLNs received 5.0 ± 1.8 significant inputs from uniglomerularnputs

from uniglomerular excitatory olfactory PNs, and LHONs received 5.2 ± 2.9 (mean Â ± standard devi-

ation; Figure 10B) with a range of 0–13. One AD1b1 LHON received no uniglomerular excitatory

olfactory PN input, despite having dendritic innervation in the LH, indicating that some LHN types

Figure 7 continued

Summary comparing Adjusted Rand Index clustering score for each primary neurite tract by physiology and anatomy. Black dot in B to D marks the

results of analyzing the entire data set together. (C) Summary comparing Adjusted Rand Index clustering score for each primary neurite tract by

physiology and anatomy after correcting class labels in two cases. (D) Summary comparing percent correct clustering score for each primary neurite

tract by physiology and anatomy after class correction. (E) NBLAST clustering of all functional cell types with >=3 traced cells after merging two cases

of indistinct cell types (see Figure 7—figure supplement 1 for details). Note the excellent agreement between the anatomical clustering and our

manually defined functional cell types.

DOI: https://doi.org/10.7554/eLife.44590.013

The following figure supplement is available for figure 7:

Figure supplement 1. Morphologically and Physiologically Similar Classes.

DOI: https://doi.org/10.7554/eLife.44590.014
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Figure 8. Comparing odor coding of LHNs with their inputs. (A–C) Aggregated correlation heatmaps for LHONs, LHLNs, and PNs generated by

calculating a mean odor response profile for each cell type and then computing the correlation matrix across all cell types. (A’–C’) Aggregated

correlation heatmaps calculated after shuffling odor labels. For comparison all six heatmaps share the same color scale. (D) Histogram of mean

correlation shift by randomizing the odor labels (n = 1000 replicates). (E, E’) For each cell type the mean cross-correlation against all other cell types

Figure 8 continued on next page

Frechter et al. eLife 2019;8:e44590. DOI: https://doi.org/10.7554/eLife.44590 20 of 39

Research article Neuroscience

https://doi.org/10.7554/eLife.44590


receive majority input from other neurons within the LH. These numbers provide a key parameter to

start modeling the circuit origins of the odor coding properties of LHNs (Litwin-Kumar et al., 2017).

They are also comparable with recent optogenetic mapping observations on PN-LHN functional con-

nectivity which obtained an estimate of 4.8 glomeruli/LHN based on optogenetic mapping of PNs

innervating 39 glomeruli (Jeanne et al., 2018).

We also compared these LHN input numbers with those for MB Kenyon cells, re-analyzing prior

light level (Caron et al., 2013) as well as new EM data (Zheng et al., 2018). The cell type weighted

averages for glomerular inputs onto Kenyon cells were comparable across both data sources (EM,

5.2 ± 2.9, LM, 6.0 ± 1.2), although the EM average was slightly lower, possibly due to differences in

how the two studies counted claws. Intriguingly the mean number of glomerular inputs is highly

comparable between KCs and LHNs despite large differences in odor coding properties. However

there are obvious differences: Comparing EM data, there are many fewer synapses onto KC den-

drites compared with LHONs (77 ± 29 vs 467 ± 278). Secondly the proportion of feed-forward excit-

atory PN inputs was much lower for LHONs (79 ± 5% vs 41 ± 14%). In both cases the majority of

other inputs appear local in origin, with the single giant APL inhibitory neuron being the major

remaining input for KCs (Papadopoulou et al., 2011; Zheng et al., 2018), while LHONs received

many distinct inputs as we have recently shown in Dolan et al. (2018). In the future it will be

extremely interesting to determine how intrinsic and local circuit properties shape the very different

odor coding by neurons in the LH and MB.

Discussion

Odor coding in LH
Our principal finding is that lateral horn neurons (LHNs) as a population are genetically and anatomi-

cally defined cell types with stereotyped odor responses. Starting from recordings of genetically

defined populations we cross-validated fine scale anatomical differences and odor tuning for 37 LHN

cell types; this confirms that stereotypy is a general feature of the lateral horn (LH) and not particular

to specialist odor pathways such as those that process pheromone information, which may retain a

labeled line logic all the way from the periphery. Although we see evidence of narrowly tuned LHNs

dedicated to the processing of specific odors, the population as a whole shows 3x more odor

responses than their olfactory projection neuron (PN) inputs. The increased tuning breadth may

reflect a transition to a more behaviorally relevant coding scheme. This is consistent with our findings

that LHNs show significantly improved odor categorization compared with PNs, apparently due to

stereotyped pooling of related odor channels. The chemical categories that we analyzed are proba-

bly not of direct ethological relevance to the fly, but serve as proxies – further explorations of olfac-

tory neuroecology are clearly necessary. For example we saw limited evidence for simple

representations of olfactory valence in LHN responses.

It is instructive to compare the odor tuning properties we find across the lateral horn with those

reported for the Drosophila mushroom body. Major differences in the mushroom body (MB) include

the lack of response stereotypy (Murthy et al., 2008) and sparser odor tuning (Turner et al., 2008);

the distribution of odor tuning in the LH also appears to be wider – that is LHNs appear more func-

tionally heterogeneous. However, there are also similarities – there is divergence of PNs onto a

larger population of third order neurons in both cases. Furthermore baseline firing rates are very low

in both LHNs and Kenyon cells (KCs) and the evoked firing rates are also lower than in their PN

input. This could reflect energetic, spike economy considerations or a need to binarize neural

responses prior to memory formation or organizing behaviors.

Figure 8 continued

was plotted against the proportion of significant odor responses of that cell type, either with or without shuffling of odor labels. (F, F’) As for E but only

including correlation between sparse cell types (left to the red line in E indicating p(response)¡0.36, the highest odor response probability for PNs).

Note that F and F’ are not just a subset of E and E’ as we recalculated the mean cross-correlation after selecting the sparsest LHON and LHLN cell

types. Altogether the figure shows that the higher cross-correlation in LHON responses is due to LHONs sampling of odor space less homogeneously

than PNs and not because of increased tuning breadth of LHONs or the increased number of LHON classes.

DOI: https://doi.org/10.7554/eLife.44590.015
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Figure 9. Odor categorization in the LH. (A) Population representations of odors. Responses are projected into the spaces of the second and third

principal components, and color-coded by odor category. (B) Distribution of AUC scores for PNs and LHLNs, and LHONs. An AUC score of 0.5

indicates no information about odor category. Box = 25–75% centiles, line = median, whiskers 5–95% centiles, notch indicates bootstrap 95%

confidence interval of the median. LHON odor responses convey more category information than PNs (p<0:005), one-sided Mann-Whitney U-test (C)
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It is also interesting to compare response properties with recent recordings from the mammalian

posterolateral cortical amygdala (Lurilli and Datta, 2017), which has been compared to the LH,

since it receives spatially stereotyped input from the olfactory bulb (Sosulski et al., 2011) and is

required for innate olfactory behaviors (Root et al., 2014). (Lurilli and Datta, 2017) found that odor

tuning properties were very similar to the mammalian piriform cortex (which has been compared to

the mushroom body). Both regions showed decorrelated odor representations (whereas we find that

LHN odor responses show significant correlations suggestive of a focus on particular combinations

of olfactory channels) and odor tuning in the cortical amygdala was actually somewhat sparser. In fur-

ther contrast to our observations in the LH they found no evidence for categorization of odors by

chemical class and crucially no evidence for response stereotypy in a way suggestive of stereotyped

integration of defined odor channels. We would however caution with respect to the last point that

Figure 9 continued

Distribution of AUC scores for each population divided into the different odor categories (D) PCA analysis after divisive normalization. (E) Mapping of

the different odor categories to brain voxels (see Materials and methods: Odor coding analysis). (F–G) Decoding accuracy of linear support vector

classifiers (SVC) trained to perform category (F) or identity (G) classification using different numbers of cell classes. The main figure shows the result of

using 1 to 10 classes while the inset shows the result of using all available classes for each group. Altogether we show that LHONs are better at

encoding odor chemical categories than PNs.

DOI: https://doi.org/10.7554/eLife.44590.016
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olfactory PNs. LHNs exhibit a larger standard deviation; some LHNs may act in a specific labelled line for unique and behaviorally significant odors,
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had we recorded from a small fraction of randomly selected neurons of the Drosophila LH, we might

easily have missed response stereotypy. It is only because we were able to use genetics to bias our

sampling, and also to record from a significant fraction of the whole LH population, that we could

obtain clear evidence for odor response stereotypy. Nevertheless, these differences seem marked

and it will be very interesting to compare the logic of these systems across organisms. One point to

note is that the circuits in the fly may be more compact: LHNs can in a few cases connect directly to

fourth order neurons with descending projections to the nerve cord likely to have a direct impact on

motor behavior (Ruta et al., 2010; Huoviala et al., 2018).

Circuit mechanisms
There are some similarities between the increase in tuning breadth that we observe at the PN-LHN

transition and what has previously been reported at the first synaptic layer of the olfactory system

(the olfactory receptor neuron to PN synapse). In the antennal lobe broadening appears to depend

on a compressive non-linearity, which boosts weaker inputs (Bhandawat et al., 2007) and possible

excitatory local interactions (Olsen et al., 2007; Shang et al., 2007). Although a direct comparison

between the extent of broadening in the antennal lobe and LH is not possible without measuring

odor responses from many receptor neurons under the same stimulus conditions (as we did for PNs

and LHNs) it seems likely that the effect is larger in the LH. Importantly the mechanism here appears

quite different, with direct pooling of feed-forward inputs.

Our initial EM connectomics observations suggest that a typical output LHN (LHON) receives

strong inputs from 3 to 7 excitatory PNs albeit with a long tail of weaker connections, some of which

are likely to have an impact. Intriguingly this number (referred to as the synaptic degree, K, Litwin-

Kumar et al., 2017) is not that different from the seven inputs reported for KCs in the mushroom

body (Caron et al., 2013). How is it that LHONs and KCs listen to rather similar information but pro-

duce very different responses? It is true that the inputs received by LHNs will in general be more

highly correlated; this is both because LHNs appear to receive input from all the PNs originating

from a given glomerulus (when there are >1) and because those PNs coming from different glomer-

uli often have related odor tuning (Dolan et al., 2018; Jeanne et al., 2018). Nevertheless, we argue

strongly that the rules of integration that result in broadening in LHONs and a sharp reduction in

tuning breadth in KCs are likely to differ significantly. Fişek and Wilson (2014) have shown that

LHON firing rates scale linearly with their PN inputs, while Gruntman and Turner (2013) showed

that KC membrane potential linearly integrates dendritic inputs. Differences in the integrative prop-

erties could result from both intrinsic and circuit mechanisms (i.e. local interneuron interactions), but

two factors likely to have a major impact are the spatial distribution of synapses and the spike

threshold. PN inputs are broadly distributed across LHON dendrites (Schlegel, Bates et al, in prepa-

ration), whereas PN inputs onto KCs are highly clustered at individual dendritic claws. The many indi-

vidual connections at each KC claw may be integrated to produce a reliable response that is

nevertheless usually below the spike threshold – therefore multiple input PNs must be co-active and

KCs act as coincidence detectors. In contrast the inputs on LHON dendrites may be integrated in a

more graded fashion with a lower spike threshold (Fişek and Wilson, 2014). Of course the biggest

difference is that LHNs receive stereotyped inputs according to their anatomical/genetic identity

(see Dolan et al., 2018) and this provides a mechanism for the odor response stereotypy that we

observe.

We would also like to highlight some additional differences in circuit architecture between the

MB and LH that may be of functional significance. First the MB calyx receives only excitatory PN

input, whereas, there is a population of almost 100 inhibitory PNs that project to the LH

(Tanaka et al., 2012a). Second we find that the LH contains an estimated 580 local neurons (most of

which are inhibitory, Dolan et al., 2019), whereas the mushroom contains just one local inhibitory

neuron, the APL. We suspect that a major reason for this difference is again related to the stereo-

typed vs non-stereotyped design of these two centers. The APL is not selective but appears to pool

all KC inputs to implement a winner take all gain control mechanism, suppressing more weakly acti-

vated KCs (Papadopoulou et al., 2011). Our preliminary EM results show that at least some LHLNs

integrate small numbers of input channels (2–3 strong inputs). We suggest that they then make ste-

reotyped connections either reciprocally onto their input PNs or onto other specific neurons in the

LH.
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Cell types in the central brain
There is renewed interest in the identification of cell types in the brain as an important step in the

process of characterizing circuits and behavior (Zeng and Sanes, 2017; Bates et al., 2019a). Histori-

cally, cell types have been best classified by morphology and the most detailed work has been in the

sensory periphery (e.g. 55 cell types in the mouse retina: Masland, 2001). Recently single cell tran-

scriptomics has begun to match this morphological classification (Shekhar et al., 2016) and also to

enable more detailed exploration of diversity in deeper brain regions (e.g. 133 cell types in mamma-

lian cortex: Tasic et al., 2018). However, relating cell types to functional and network properties

especially in higher brain areas remains challenging.

One of the major surprises from our work is our identification of 165 anatomically distinct LHN

cell types; our cross-validation of anatomical and odor response properties for 37 leads us to believe

that most of these will turn out to be functionally stereotyped as well. Furthermore our light level

survey is incomplete; we predict that complete EM data could reveal more than 250 LHN cell types.

In short there are more cell types in the lateral horn than have yet been identified in the whole of

the mammalian neocortex (Tasic et al., 2018). This disparity raises a number of issues.

One interesting observation is that it was easier to identify cell types anatomically than by odor

response profile alone. It has recently proven possible to characterize 30 retinal ganglion cell types

in the mouse based solely on their visual response properties (Baden et al., 2016). It may be that

this highlights a difference between the richness of achievable visual stimulation protocols with odor

delivery; although our core 36 odor set was large by the standards of the field, this is still a small

fraction of the world of possible odors for the fly. Nevertheless there appear to be many more LHNs

than retinal ganglion cell types and we find examples of neurons that appear to be solely distin-

guished by their projection patterns (presumably defining different downstream partners) which are

only revealed through anatomical characterization. For these reasons we believe that response prop-

erties alone are insufficient to define cell type and this seems likely to be the case in other higher

brain areas.

Initial evidence from EM connectomics (Dolan et al., 2018) has shown that two specific LHN cell

types integrate stereotyped sets of olfactory channels with similar odor response profiles. This is par-

alleled by the recent work of Jeanne et al. (2018), who showed that morphologically similar neurons

sampled from the same or different GAL4 lines showed similar functional connectivity; furthermore

they showed that the patterns of co-integration were not random, but that certain pairings of PN

inputs were over-represented in the PN population. These observations are likely to be at the heart

of the category selectivity that we observe in LHON responses. It will be exciting to integrate func-

tional and anatomical properties more deeply with circuit properties. Furthermore our genetic

screening identifies at least 69 molecular profiles based on expression of driver lines (Figure 1E).

This molecular diversity underlies our ability to generate cell type specific split-GAL4 lines in

Dolan et al. (2019). The existence of such a rich and coupled genetic and anatomical diversity raises

interesting questions about how connection specificity can be achieved during development in this

integrative brain area.

What is the behavioral function of the lateral horn?
The lateral horn is one of two major olfactory centers in the fly. The hypothesis that it might play a

specific role in unlearned olfactory behaviors dates back at least to Heimbeck et al. (2001). This has

been strengthened by observations about the relative anatomical stereotypy of input projections to

the mushroom body and lateral horn (Marin et al., 2002; Wong et al., 2002; Tanaka et al., 2004;

Jefferis et al., 2007; Caron et al., 2013). Nevertheless in spite of this general model of a division of

labour between LH and MB, functional evidence has been hard to come by. Some arguments about

LH function have been based on experiments that manipulate mushroom body neurons; here it is

worth noting that there are olfactory projections neurons that target areas outside of these two prin-

cipal centers (e.g. Tanaka et al., 2012a; Aso et al., 2014b) so the lateral horn cannot rigorously be

concluded to mediate behaviors for which the mushroom body appears dispensable.

In this experimental vacuum a large number of hypotheses have been proposed for LH function.

One obvious suggestion based on anatomy was that LHNs should integrate across olfactory channels

(Marin et al., 2002; Wong et al., 2002). Of course integration can have opposing effects on tuning.

For example (Luo et al., 2010) proposed that LHNs might have highly selective odor responses and
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early recordings from narrowly tuned pheromone responsive neurons are consistent with this idea

(Ruta et al., 2010; Kohl et al., 2013). However Kohl et al. (2013) also observed more broadly

tuned neurons that clearly integrated across olfactory channels and Fişek and Wilson (2014) showed

quite linear integration of two identified olfactory channels. Our electrophysiological recordings

together with first EM connectomics results suggest that integration across multiple odor channels

and broadening of odor responses are the norm.

Turning to the biological significance of LHNs for the fly, one suggestion, based on anatomically

discrete domains for food and pheromone odors, is that the LH might organize odors by behavioral

significance (Jefferis et al., 2007). Others have suggested that the LH might mediate innate

responses to repulsive odors only (Wang et al., 2003) or that the LH might organize odor informa-

tion by hedonic valence (Strutz et al., 2014). Although our survey of LHN odor responses is not yet

conclusive on any of these points, we did find clear evidence for an improved ability to categorize

chemical groups of odorants (Figure 9). Further work integrating more information about the behav-

ioral significance of different odors should be instructive.

One synthesis of these different ideas is that the MB performs odor identification, whereas the

LH/lateral protocerebrum performs odor evaluation, both learned and innate (Galizia, 2014).

Although we have no evidence to support a direct role for the LH in evaluation of learned olfactory

signals, new work from our group has identified a class of lateral horn neurons that integrates both

innate (directly from the antennal lobe) and learned olfactory information (from MB output neurons)

of specific valence; these LHNs are required for innate appetitive behavior as well as learned aver-

sive recall (Dolan et al., 2018). We have also identified multiple LHN axon terminals as targets of

mushroom body output neurons, suggesting that mushroom body modulation of innate olfactory

pathways may be a general strategy of learned behavioral recall (Dolan et al., 2018; Dolan et al.,

2019). These results emphasize the extensive interconnection between these brain areas and should

caution against oversimplifying their distinct roles in olfactory behavior. Nevertheless synthesizing

the results in this study with other new work (Dolan et al., 2018; Dolan et al., 2019; Huoviala et al.,

2018; Jeanne et al., 2018) does support the hypothesis that stereotyped integration in the LH could

support genetically determined categorical odor representations, while the MB may enable identifi-

cation of specific learned odors.

We finally return to a key question posed at the start of the manuscript: why does the LH need so

many cells and cell types? At this stage we would suggest that LHNs are likely to show both stereo-

typed selectivity for odor categories and specificity for different aspects of odor-guided behavior.

Specific combinations of the same odor information could be used to regulate distinct behaviors by

targeting different premotor circuits (see Figure 5). Indeed our group has recently identified a

requirement of a specific LHN cell type (AV1a1) in egg-laying aversion (Huoviala et al., 2018) to the

toxic mold odorant geosmin (Stensmyr et al., 2012) even though this is one of more than 70 cell

types that receive geosmin information from olfactory PNs within the LH. The picture that this paints

is of a complex switchboard for olfactory information with many more outputs than we can yet

understand. It seems likely that different paths for information flow through the LH may be modu-

lated by external signals such as the internal state of the animal (Wang et al., 2013; Bräcker et al.,

2013; Sayin et al., 2018). The next few years should see very rapid progress in understanding the

logic of circuits within the LH and their downstream targets through the impact of connectomics

approaches combined with the anatomical and functional characterization and tool development

that we have begun in this study and Dolan et al. (2019). In conclusion, the Drosophila lateral horn

now offers a very tractable model to understand the transition between sensory coding and

behavior.

Materials and methods

Enhancer trap Split-GAL4 screen
We hypothesized the low yield of previous screens to identify LH driver lines was due to a combina-

tion of extensive genetic heterogeneity amongst LHNs and the use of classic enhancer trap GAL4

lines, each of which labeled many neuronal classes; if an expression pattern labels many neurons,

expression in a small subpopulation may be missed either because they are obscured by brighter
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neurons or because neurons of interest do not have a common highly organized structure that

observers can more easily discern (Ito et al., 2003).

With these concerns in mind, we carried out a Split-GAL4 screen (Luan et al., 2006) to generate

a more complete and selective set of lines. Split-GAL4 driver lines achieve their increased specificity

by the use of two hemidrivers, enhancer trap activation domain lines (ET-AD) and the other for

enhancer trap DNA binding domains lines (ET-DBD), each of which must be co-expressed within a

cell in order to reconstitute a functional transcription factor. The first stage of our screen was only

designed to identify ET-AD and ET-DBD lines that are enriched for LHNs. We dissected 2255 AD

hemidrivers and 514 DBD hemidrivers. At this stage we only rejected expression patterns that were

either very broad with strong expression across the brain, or contained no labelling at all in the LH.

All the lines that passed this basic check (174 DBD hemidriver lines and 282 AD hemidriver lines )

were then stained and imaged at high resolution on a confocal microscope allowing LHNs to be

identified and annotated amongst complex expression patterns.

Split-GAL4 screen: DBD and AD enhancers lines were crossed to broadly expressing lines (UAS-

CD8-GFP ; UAS-CD8-GFP; elav-AD and UAS-CD8-GFP ; UAS-CD8-GFP; Cha-DBD respectively) and

visualized by the expression of mCD8-GFP (Lee and Luo, 1999). Lines were selected and annotated

based on expression patterns. At the second stage of the screen lines that had similar clusters were

crossed and the final expression pattern evaluated and the best lines in terms of specificity and

strength of expression were selected for electrophysiology. As we carried out the physiology screen

using lines generated in our lab, GMR and VT lines became available for screening. As these lines

were sometimes sparse enough to be used directly for physiology we selected some GMR lines for

recording as well.

ET-AD insertions were screened by crossing to Cha-DBD (in theory targeting cholinergic excit-

atory neurons) with a GFP reporter, while ET-DBD insertions were crossed to elav-AD (in theory tar-

geting all neurons). In each case the resulting expression pattern was imaged. Of these lines we

chose the best lines based on criteria such as selectivity, and expression strength. The expression

pattern was analyzed and annotated for selected lines. Image registration (Ostrovsky et al., 2013)

to the standard IS2 template brain (Cachero et al., 2010; Manton et al., 2014) was used to facilitate

comparison of lines and clusters. AD and DBD lines that potentially contained the same neurons of

interest were then intercrossed to generate more specific lines.

Hierarchical naming system for LHNs
We chose primary neurite tract as the top level of our hierarchy because each neuron has just one

soma and primary neurite tract and because it groups functionally related neurons for example those

with common neurotransmitters or similar axonal projections. We named the 31 primary neurite

tracts found based on their anterior-posterior and dorso-ventral position with respect to the centre

of the LH: AV1-AV7 (AV = anterior ventral), AD1-AD5, PV1-PV12 and PD1-7. Neurons within each

tract typically have a shared developmental origin; using co-registered image data (Yu et al., 2013;

Ito et al., 2013; Manton et al., 2014), we matched neurons following each of the 31 tracts with 39

parental neuroblasts likely to generate LH neurons (Figure 1—figure supplement 1A, this indicates

that over a third of the neuronal lineages in the central brain have projections in the LH. Primary neu-

rite tracts were defined using skeletons extracted from light microscopy, and assessing whether co-

registered neurons’ primary neurites appeared to fasciculate and enter the neuropil together; higher

resolution data will likely reveal that some of these tracts can be subdivided.

Primary neurite tracts can be identified in even quite broadly expressed driver lines, but anatomy

group distinctions are not always evident and cell types can usually only be convincingly character-

ized with single neuron images. In our scheme, cell type names are composites incorporating the

corresponding tract and anatomy group. As shown in Figure 2G, cell type PV5a1 belongs to the

posterior ventral tract PV5 and anatomy group PV5a. This provides flexibility for the addition of new

cell types, while still ensuring that anatomically and functionally related neurons have similar names;

this naming strategy may be useful for other brain areas without clearly defined compartments.
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Computational neuroanatomy
Neuropil volumes
Using a standard female template brain (Ito et al., 2014) we calculated that the first olfactory relay,

the AL, has a volume of 1:5� 10
5 �m3. Normalizing with respect to the AL, the LH and whole MB

occupy relative volumes of 65% and 93%, respectively. However while second order projection neu-

rons leaving the AL make synapses throughout the LH, in the MB they are restricted to the calyx

region (relative volume 32% i.e. about half the LH). Similarly, while third order Kenyon cells are

completely intrinsic to the MB, LH output neurons have axonal processes outside the LH. Using light

level skeleton data (Chiang et al., 2011), we find that the on average LHNs have almost exactly the

same amount of arbor outside the LH as they have within the LH; note that this calculation was car-

ried out after aggregating by cell type, to avoid cell types that are present at higher frequencies in

the FlyCircuit dataset from skewing the results. We therefore conclude that the arbors of third order

LHNs are actually likely to occupy a greater volume than MB Kenyon cells (an estimated 130% of the

AL volume vs 93%).

On 17th December 2018, the PubMed search (‘mushroom body’ AND Drosophila) OR (‘mush-

room bodies’ AND Drosophila) returned 1002 results, whereas (‘lateral horn’ AND Drosophila) OR

(‘lateral protocerebrum’ AND Drosophila) returned 77 results. Note that lateral protocerebrum has

sometimes been used as a synonym for lateral horn and on other occasions refers to a wider range

of protocerebral neuropils – for this reason it is no longer a recommended term (Ito et al., 2014).

Skeleton data processing pipeline
Open source neuron skeletons were obtained from http://www.flycircuit.tw/ (accessed: January

2017), filtering for any skeleton with processes in within the LH (total: 2245). These skeletons had

been automatically reconstructed from sparse image data and the dataset described in previous

studies (Chiang et al., 2011; Lee et al., 2012). A bridging registration (Manton et al., 2014) was

generated from their Standard Model Brain to our FCWB template brain using the Computational

Morphometry Toolkit ( https://www.nitrc.org/projects/cmtk/). Skeletons manually traced from suc-

cessfully dye-filled neurons (147) during physiological experiments were also registered to a tem-

plate brain (IS2, Cachero et al., 2010) and bridged into the same FCWB space so that all skeletons

could be directly compared. Skeletons were then assigned as possible input neurons (1225) to the

LH from sensory neuropils or LHNs (1619). A minority (1225) of skeletons seemed to input the LH

from other brain areas, for example known MB output neurons (Aso et al., 2014a) and others that

may be centrifugal inputs from other brain areas. Lacking synaptic data we excluded them from our

analysis. Skeletons where split into axonal and dendritic compartments based on a classifier trained

on skeleton data from the Drosophila medulla (Lee et al., 2014) followed by manual editing based

on available confocal stack data and expert understanding of neuronal morphology.

Although the axo-dendritic segmentation process was very helpful in defining local vs output

LHNs, this was still sometimes challenging. For examples neurons in the AV4 tract, which clearly con-

sists predominantly of LHLNs sometimes project out of the LH to the superior lateral protocerebrum

(SLP) (Figure 2—figure supplement 1B-B’). Without information about synapse placement it is hard

to be certain if these are polarized neurons with axonal arbors in the SLP or local neurons whose

domain extends somewhat beyond the anatomically defined LH.

Since the standard LH (Ito et al., 2014) is not based solely on PN arborisations and we wanted to

exclude neurons that simply passed through the LH making few arborisations outside of their synap-

tic range. We therefore calculated an ‘overlap’ score between PN termini within the standard LH

neuropil and potential LHN arbor:

f ðis; jkÞ ¼
Xn

k¼1

e�d2=2d2

Skeletons were resampled so that we considered ‘points’ in the neuron at 1 mm intervals and an

‘overlap score’ calculated as the sum of f ðis; jkÞ over all points s of i. Here, i is the axonal portion of a

neuron, j is the dendritic portion of a putative target, d is the distance between two points at which

a synapse might occur (e.g. 1 mm), and d is the euclidean distance between points s and k . The sum

was taken of the scores between each point in i and each point in j . Neurons that did not meet a
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threshold score of 6000 were excluded as they only skimmed past the PN arbors. Many of the

remaining skeletons seemed tangential to the LH but plausibly received direct synaptic input from

PNs. A core’ set of LHNs was defined using two thresholds, one for overlap score and another for

percentage dendrite within the standard LH volume (Figure 2—figure supplement 1F).

Defining supervoxels for LH input and output zones
In order to define overlapping supervoxels that would divide the LH and its output zones into more

intuitive anatomical sub-volumes than contiguous isotropic cubes, we first used NBLAST to cluster

the axonal and dendritic sub-branches of our LHONs separately. These sub-branches were gener-

ated by calculating the Strahler order within the dendrite and removing the highest order segments.

We divided these sub-branches each into 25 different clusters. Each of these clusters was then used

to generate a supervoxel. For each cluster, a 3-D weighted kernel density estimate was calculated

based on points within the clustered sub-branches. Points were placed on the neurites at 1 mm inter-

vals and weighted as 1/total number of points in the cluster, so that supervoxels could be directly

compared. An ‘inclusion’ score for each LHON dendrite, LHLN arbor and PN axon analyzed within

each supervoxel was calculated by summing the density estimate for each point in the chosen arbor,

again sampled at 1 mm intervals, and normalized by the total number of points in each arbor. A ‘pro-

jection’ score between LH supervoxels and LH target supervoxels was calculated by multiplying the

average LH supervoxels and LH target supervoxel inclusion scores for each LHON cell type.

Immunochemistry and imaging
Immunochemistry was as described previously (Jefferis et al., 2007 and Kohl et al., 2013) except

that we used either streptavidin Alexa-568 (ThermoFisher S-11226 1:2000) for the filled neurons with

Pacific Blue (ThermoFisher P31582 1:1000) for detection of mouse anti-nc82 or streptavidin Pacific

Blue (ThermoFisher S-11222 1:2000) for the filled neurons with Alexa Fluor 568 (ThermoFisher

A21144 1:1000) for detection of mouse anti-nc82.

Electrophysiology and odor stimulation
Electrophysiological recordings were carried out using the general approach of Wilson et al. (2004)

as modified by Kohl et al. (2013). Briefly, on the day of eclosion flies were CO2 anesthetized and

females of the correct genotype were selected. On the day of the experiment (1–2 days later) the fly

was cold anesthetized, placed in the recording chamber, and dissected for recording as described in

Kohl et al. (2013). Data acquisition was performed as previously described only a Grasshopper

14S5M camera was used and the recording electrodes were 4.5 to 7 MW for PNs and 6 to 8 MW for

LHNs.

Odor stimuli were delivered via a custom odor delivery system (originally described by

Kohl et al., 2013; see jefferis-lab.org/resources). The setup used for these experiments had a total

of 64 channels. Unless otherwise indicated, liquid odors were diluted to 0.2% (2 microliter in 1 ml) of

mineral oil (Sigma Aldrich M8410) or distilled water; solid odors were dissolved at 2 mg in 1 ml of

solvent. A full list of odors, solvents and dilutions is provided as a supplementary spreadsheet. Dur-

ing stimulus presentation, a portion of the airstream was switched from a solvent control to a

selected odorant. The odorized air stream was then mixed with a clean carrier air stream at a 1:8

ratio to give a notional final dilution of 2.5 � 10-4. The length of the valve opening stimulus was 250

ms. All the genetic driver line combinations used for electrophysiological recording are given in our

supplemental data, driver lines.

Image analysis
Image registration of nc82 stained brains used CMTK fully automatic intensity-based 3D image regis-

tration available at http://www.nitrc.org/projects/cmtk (Rohlfing and Maurer, 2003; Jefferis et al.,

2007). We used the registration parameters and IS2 template brain described in Cachero et al.

(2010). Brains from which recordings have been made often have higher background staining in the

cortical cell body layer than the IS2 template and sometimes this results in mis-registration. We

addressed this issue by using a second template brain consisting of a high background image that

had been successfully registered against the IS2 template.
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Neuron tracing was carried out in Amira (Thermo Fisher Scientific, Merignac, France) using the

hxskeletonize plugin (Evers et al., 2005) or with the Simple Neurite Tracer plugin for Fiji/ImageJ

(Longair et al., 2011). Neurite tracing used Simple Neurite Tracer or the Virtual Finger plugin for

Vaa3D (Peng et al., 2014) on previously registered image data. Traces were then loaded into R

using the nat package (Jefferis and Manton, 2019; copy archived at https://github.com/elifescien-

ces-publications/nat). When necessary, they were transformed between the space of the JFRC2 and

IS2 template brains using the approach of Manton et al. (2014) and the nat.flybrains R package

(Manton and Jefferis, 2019; copy archived at https://github.com/elifesciences-publications/nat.

flybrains).

Fine scale analysis of neuronal structure was carried out using NBLAST clustering (Costa et al.,

2016) as implemented in the nat.nblast R package (Manton and Jefferis, 2018; copy archived at

https://github.com/elifesciences-publications/nat.nblast); clustering used Ward’s method as imple-

mented in the R function hclust.

Analysis of electrophysiological data
Spike finding was carried out in Igor Pro using the NeuroMatic package (Rothman and Silver, 2018)

as previously described (Kohl et al., 2013). All subsequent analysis was carried out in R using cus-

tom, open source packages: gphys (Jefferis, 2019; copy archived at https://github.com/elifescien-

ces-publications/gphys), physplitdata (Frechter and Jefferis, 2019b; copy archived at https://

github.com/elifesciences-publications/physplitdata), and physplit.analysis (Frechter and Jefferis,

2019a; copy archived at https://github.com/elifesciences-publications/physplit.analysis). Note that

to ensure reproducibility, the physplitdata package includes every spike from our study (469 cells,

638602 spikes). We determined if cells showed a significant increase in firing to an odor, by an exact

one-sided Poisson test of the number of spikes in windows 0.7–2.2 s after trial onset; we compared

odor and control (blank) stimuli using data from four trials per cell (physplit.analysis function poisson-

TestOdoursSF). We adjusted raw p values to control the false discovery rate (Benjamini and Hoch-

berg, 1995) using R’s p.adjust function; responses for a given cell-odor pair were declared

significant for FDR adjusted p < 0.01. For single trial response detection we used the same method

as above but the responses for a given cell-odor pair were declared significant for FDR adjusted to a

slightly more permissive p < 0.04 (single trials necessarily contain less information than the four trials

used above). The detection probability for each cell-odor pair was first calculated, then cell response

reliability was calculated by averaging across all the significant cell-odor pairs for each cell. Since the

weakest significant odor responses (as initially assessed using four trials) necessarily had lower detec-

tion probability we also tested the effect of selecting only cell-odor response pairs above a variety

of thresholds (Figure 2—figure supplement 1E), which resulted in a small increase in response reli-

ability. In the main sequence figure (Figure 4), we use a threshold of 5 Hz (which captures 95% of

our significant responses).

Odor response profiles for LHNs were initially manually classified, defining a functional cell type

which was then cross-referenced with other properties. In order for a cell to be included in our popu-

lation coding analysis it had to have trials for at least 28 odors, spiking responses to at least one

odor, in addition to identification of a specific functional cell type.

We also characterized the odor-evoked responses for a given cell-odor pair using peristimulus

time histograms (PSTH). The PSTH was calculated for the period 0–3 s using a sliding window of

width 500 ms and a time step of 50 ms. We summarized this by the maximum response in the win-

dow 0.55–2.4 s (valve opening was from 0.5 s) and when necessary compared this with a baseline

spiking rate before odor arrival (calculated for the range 0–0.55 s).

Odor coding analysis
Correlation and aggregated correlation heatmaps
To generate the correlation matrix we concatenated the PSTHs for each cell-odor pair to generate

one single continuous vector per cell; these vectors were then merged row-wise to form a matrix of

all cell odor responses. The cell-odor matrix was then used to calculate the odor response correla-

tion across all cells. For automatic assignment of cell types by physiological or anatomical similarity,

we used hierarchical clustering of the NBLAST or odor response similarity matrix using Ward’s

method as implemented in the R function hclust. We then calculated the percent correct and
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Adjusted Rand Index with R package mclust classError and adjustedRandIndex functions for different

dendrogram different cut heights; the cut height giving the minimum prediction error was then

selected.

Aggregated correlation heatmaps (Figure 8) were calculated by generating a mean odor

response profile for each cell type and then computing the Pearson cross-correlation coefficient

across all these cell types. The correlation shift was calculated by randomizing the odor labels and

subtracting the shuffled from the original matrix and taking the mean of the result matrix. This pro-

cedure was repeated 1000 times for each group (PNs, LHLNs, LHONs) to generate a distribution.

ROC analysis
The ROC analysis measured the ability of each functional cell type to categorize the presented

odors. We defined the response of each cell type to each odor as the maximum of the baseline sub-

tracted responses in the 6 time bins following odor onset. We then used these responses to com-

pute a separate area under the ROC curve (AUC) score for each cell type as a categorizer for each

of the six odor categories. The resulting scores indicated whether the presence of a response by a

cell type was an indicator for an odor category. For each cell type we also generated five shuffled

responses by randomly permuting the odor labels on the responses. We then computed the maxi-

mum AUC scores across odor categories within each cell type, and within each of the shuffles per

cell type. Averaging maxima over the shuffles yielded one unshuffled maximum AUC score, and one

shuffled one. Finally, we grouped these by the three cell groups (PNs, LHLNs, LHONs), and per-

formed one-sided Mann-Whitney U tests to determine the differences in the median scores.

Measuring population decoding accuracy
We using linear support vector classifiers to test the population decoding accuracy of each of the

three main groups of neurons (PNs, LHLNs, LHONs). The overall procedure is to repeatedly generate

random subpopulations of cells of a given size, where each cell is the sole representative of a partic-

ular class. We then train linear classifiers to perform identity or category decoding on a trial-by-trial

basis for each time bin. The classifiers used have a single parameter that has to be tuned, so we train

classifiers for a range of settings of this parameter and store the cross-validated accuracies. We then

report the results for the parameter value that maximized the accuracy.

For each run a population of N classes were selected based on a random seed, where N varied

from one up to a maximum of 50 (for LHONs). A single cell was then chosen to represent each class.

For shuffle trials, the odor labels of the responses were shuffled independently for each cell, bin, and

trial. The 120 (30 odors x four trials) responses for each cell in each bin were given numerical labels

according to the task (Category or Identity classification). This category label was then assigned to

all trials of that class (Category or Identity).

Linear support vector classifiers (SVC) were then trained independently for each bin using the sci-

kit-learn OneVsRestClassifier (https://scikit-learn.org/). Linear SVCs have a single parameter ”C’

which must be tuned. To perform this tuning we trained classifiers for each of a fixed set of C values,

and then determined the best C value (see below). This optimal C value (determined separately for

each bin) was then used in the performance plots. The range of C values typically used in practice

are powers of 10 spanning a ‘sufficiently broad’ range. We chose to use a range of 10̂[�8,–7. . .1] as

manual inspection showed that the optimal C values were usually within this range, and no consis-

tent plateauing behavior (where the optimal C value appears clipped to either limit of the range of

C values used) was observed.

We recorded the cross validated accuracy for each of 4 cross-validation runs as reported by the

scikit-learn cross_val_score function. This procedure yields for each bin and each C value, four accu-

racy values (one from each cross-validation run). We next determine the optimal C value for each

bin. To do so, we proceed as follows:

For each time bin of each cell we

1. Computed the mean accuracy after training the support vector classifier over four cross-
validations.

2. Split the multiple runs for each time bin x cell into two halves
3. Computed the best C value that is the one with the highest accuracy, using the first half of the

data.
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4. For each bin of the data in the second half, kept only the result for the best C value for that
bin.

5. Computed the mean (traces) and standard deviation (envelopes) of the accuracy over random
seeds in the performance plots.

This split procedure reduces the bias associated with selection of the parameter C by measuring

performance over independent random samples from those used to tune C. We also compared

accuracy of the whole procedure with shuffled data.

Mapping odor categories to brain regions
We sought to produce a simple visualization that combined the location of LHON axons and den-

drites with their odor category selectivity. First each cell type was assigned the odor category for

which it was most selective in the ROC analysis. In parallel we calculated the average amount of

cable overlap for each cell type the 25 LH input supervoxels and 25 LH output defined earlier. We

then combined these two data sources to create a supervoxel-category score by calculating the

mean supervoxel score, selecting only the classes whose score was maximal for that category. In this

way a high voxel score was generated only when classes were both specific for an odor category

and had dense arborization in a specific voxel. We then manually selected two separate thresholds

for the LH and the output regions as the two distributions of voxel scores were quite different.

Electron microscopy data analysis
The whole fly brain EM dataset is described by Zheng et al. (2018) and is available for public down-

load at temca2data.org.

Estimating LHN numbers
We identified the largest primary neurite tracts by combining bridging registrations of existing light

level data (Manton et al., 2014; Zheng et al., 2018) and by simple anatomical tracing. Tract size

was calculated by counting all the profiles in a single plane. In this way we identified 17 tracts con-

taining 2465 neuronal profiles. For large tracts, we traced a random subset of these profiles until the

first branch point and/or LH entry point – this was used to estimate the number of profiles in the

tract belonging to LHNs. The confidence intervals for each tract were calculated assuming that we

were sampling from a hypergeometric distribution. Since we only traced 17/31 primary neurite tracts

our estimate is a lower bound, but light level data suggest the remaining 14 tracts contain few LHNs

(Figure 2—figure supplement 1F). We could identify LH output neurons (LHONs) if the first branch

point was clearly outside the LH but one of the daughter branches entered the LH. However for

those neurons whose first branch point was in the LH it was not possible to determine whether they

were LHLNs or LHONs without more extensive tracing. However we were able to confirm the match

of EM traced tracts to light level neuronal morphologies by carrying out more extensive tracing of a

subset of neurons in each tract. In order to estimate the number of local vs output neurons, we

assumed that each tract consisted of its majority cell class (local or output).

PN to LHN connectivity
Preliminary work in Zheng et al. (2018) partially traced and identified most uniglomerular projection

neurons. An account of the tracing of projection neuron axons in the LH including marking all their

presynapses is given in Dolan et al. (2018). We completed LH arbors for excitatory uniglomerular

PNs from the following 51 glomeruli: D, DA1, DA2, DA3, DA4l, DA4m, DC1, DC2, DC3, DC4, DL1,

DL2d, DL2v, DL3, DL4, DL5, DM1, DM2, DM3, DM4, DM5, DM6, DP1l, DP1m, V, VA1d, VA1v, VA2,

VA3, VA4, VA5, VA6, VA7l, VA7m, VC1, VC2, VC3l, VC3m, VC4, VC5, VL1, VL2a, VL2p, VM1, VM2,

VM3, VM4, VM5d, VM5v, VM7d, VM7v.

Online resources
The source code and data supplements for this study are listed at jefferislab.org/si/frechter18. Data-

set and source code packages are hosted on GitHub and archived to zenodo.org. In order to make

our cell type annotations for FlyCircuit (Chiang et al., 2011) and dye filled skeletons, and our stimu-

lus response data more easily available to the community, we created an interactive R Shiny Web

app (shiny.rstudio.com), which can be found at http://jefferislab.org/si/lhlibrary (Bates and Jefferis,
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2019c; copy archived at https://github.com/elifesciences-publications/LHlibrary), based on data col-

lated from several studies, found at https://github.com/jefferislab/lhns (Bates et al., 2019a; copy

archived at https://github.com/elifesciences-publications/lhns). Skeletons can be viewed within a

template brain in 3D, response data can be plotted for specific odors and cell types, and skeletons

and response data can be downloaded as SWC and CSV files respectively. Significantly, this ‘LH

library’ also hosts maximal projection images (brain and ventral nervous system), single skeletons

from multi-color FlpOut, and 3D vector clouds representing sparse split-GAL4 lines that label LH cell

types (from Dolan et al., 2019, sister manuscript). The LH library also contains other available data-

sets that relate to the LH, including PN response data from a calcium imaging study (Badel et al.,

2016) and functional connectivity data from GH146 uniglomerular PNs providing input to LHNs

(Jeanne et al., 2018). We were able to cross-match 80/89 3D morphologies reported in

Jeanne et al. (2018) onto 26 LHN cell types in our data set. Finally we also include predicted con-

nectivity to a wide range of cell types (ASB) to enable the rapid generation of connectivity hypothe-

ses that can be tested functionally or through EM tracing. This web application can also be run

directly on an end user’s own computer to increase response speed.
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are provided in Materials and Methods and can also be found by following links at http://jefferislab.

org/si/frechter18.
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