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Abstract

Simultaneous measurement of cell lineage and cell fates is a longstanding goal in
biomedicine. Here we describe EMBLEM, a strategy to track cell lineage using
endogenous mitochondrial DNA variants in ATAC-seq data. We show that somatic
mutations in mitochondrial DNA can reconstruct cell lineage relationships at single cell
resolution with high sensitivity and specificity. Using EMBLEM, we define the genetic and
epigenomic clonal evolution of hematopoietic stem cells and their progenies in patients
with acute myeloid leukemia. EMBLEM extends lineage tracing to any eukaryotic

organism without genetic engineering.

Introduction

Resolving lineage relationships between cells is necessary to understand the
fundamental mechanisms underlying normal development and the progression of disease.
In recent years, new methods have emerged to enable cell lineage tracking with
increasing resolution, leading to substantial biological insights®. Specifically, genome

editing of reporter constructs via CRISPR-Cas9 allowed synthetic reconstruction of cell
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lineage relationships in model organisms, and has been coupled with transcriptome
profiling to inform cell fates2. These prospective “mutate-and-record” methods provide
powerful tools to resolve the developmental origin of cells in genetically engineered cells
and organisms, but cannot be utilized in living humans, archival clinical samples, or any
wild type organism!. Given these limitations, retrospective lineage tracing using
endogenous genetic markers is an alternative solution. Recent advances in sequencing
enable naturally occurring somatic mutations to be used as lineage markers, which
usually required single-cell genome sequencing to capture the sparse genetic
information®4.  Regions with high mutation rates, such as microsatellite repeats,
retrotransposons, and copy-number variants, has been used to resolve the lineage
relationship for normal or cancerous tissue samples®®. These methods reduce the cost
of whole genome sequencing, but still lack information on cell phenotypes.
Simultaneous measurement of the lineage relationship and cell fates is ultimately
required to address many biomedical questions. Here we describe EMBLEM (Epigenome
and Mitochondrial Barcode of Lineage from Endogenous Mutations), a strategy to track
cell lineage using endogenous mitochondrial DNA variants in ATAC-seq data. The end
result of EMBLEM is single-cell lineage information and rich global epigenomic profile
from the same individual cells (Figure 1A and Figure 1-figure supplement 1).
We illustrate the utility of EMBLEM in human blood progenitor cells to clarify the process

of pre-leukemic clonal evolution and the emerging biology of clonal hematopoiesis.

Results

Assay of Transposase-Accessible Chromatin by sequencing (ATAC-seq) is a
sensitive method used to study chromatin accessibility profiles in diverse cell types and
organisms’. During DNA transposition and amplification in cells, mitochondrial DNA is
also amplified at the same time (Figure 1A). Mitochondrial DNA (mtDNA) is a ~16kb
circular genome with ~10-fold higher mutation rate compared to the nuclear genome.
Hence, mtDNA incrementally accumulates unique, irreversible genetic mutations that are
passed on to daughter cells even in healthy humans and may be used for lineage
tracing®®. The majority of somatic mtDNA mutations are noncoding and thought to be

passengeri®. Importantly, the number of mitochondria (and therefore mtDNA) range from
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several hundreds to >10,000 per cell in different cell types, facilitating robust mtDNA

analysis even from a single cell.

We first observed that ATAC-seq effectively enriches for mtDNA. While mtDNA is
present in many kinds of DNA sequence libraries, it is substantially enriched in ATAC-seq
libraries due to the fact that mtDNA is not chromatinized and is therefore highly accessible
(Supplementary file 1). ATAC-seq enables a 17-fold or greater enrichment of mtDNA
compared to exome sequencing or whole genome sequencing in GM12878 human B
cells (Figure 1B), leading to an average ~18,000X coverage of mtDNA (Figurel--figure
supplements 2A). With this coverage, we detected 27 mitochondrial variants from
GM12878 cells (Figure 1C). 13 of these variants have a variant allele frequency (VAF)
greater than 90%, which are known as homoplasmic variants (Figure 1--figure
supplements 2B). We also detected 14 low frequency mitochondrial DNA variants, with
VAFs ranging from 0.1% to 24% (Figure 1C and Figure 1-figure supplement 2C). Similar
results for mtDNA enrichment were observed in human K562 cells (Figure 1-figure

supplement 3, Supplementary file 1)

The VAF from bulk ATAC-seq data represents the average of the allele
frequencies of the cell population. A 25% VAF may arise from 25% of cells in the
population with a homoplasmic variant, or alternatively arise from 100% of cells all having
a quarter of their mitochondria with the variant allele (Figure 1D). To distinguish between
these two models, we analyzed single-cell ATAC-seq data from GM12878. For 4 mtDNA
variants (VAF between 0.5%~24% at population level), we find that a mixture of both
models is in action for different variants (Figure 1E). For instance, mtDNA mutation 3082
is widely spread among single cells, but at low frequency per cell. Because it is extremely
unlikely (see METHOD) that the identical mutation arose independently in every single
cell, cells sharing the same mitochondrial mutations are inferred to have descended from
the same ancestral cell. These results suggest that even low frequency heteroplasmic

MtDNA mutations can be exploited for lineage tracing.
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To prove the principle that somatic mitochondrial mutations can track cells from
the same ancestor and to quantify the power of lineage mapping, we next applied
EMBLEM to primary blood cells from patients with acute myeloid leukemia (AML). Human
AML is organized as a hierarchy: a hematopoietic stem cell first acquires an initiating
mutation in one of a number of chromatin modifier genes, previously termed as “pre-
leukemic” hematopoietic stem cell (pHSC):13. pHSCs are functionally normal and are
not able to transplant AML, but upon accumulation of additional mutations, they give rise
to leukemic stem cells (LSCs) that are able to self-renew and recapitulate AML disease
upon transplantation''?, Finally, LSCs give rise to the bulk leukemic blast cells in AML??.
Targeted exome sequencing in these samples have identified somatic mutations in tumor
suppressor genes and oncogenes that link the lineage relationship of pHSCs, LSCs and

blasts, providing the ground truth for our analyses?3.

We applied EMBLEM to the ATAC-seq profiles of FACS-purified LSCs and
leukemic blasts first (Supplementary file 1). Using high-confidence mtDNA mutations,
detected both from bulk ATAC-seq and single cell ATAC-seq, we found the LSC and
blast populations not only shared the same heteroplasmic variants, but also showed
similar distribution and allele frequency at the cellular level (Figure 1-figure supplement
4). These results indicate the two populations are identical at the genetic level, but
divergent at the epigenomic level, consistent with previous studies#>. In patient SU353,
we identified four diagnostic mtDNA mutations in the same cell (Figure 1F), which
indicates these four mitochondrial variants already co-existed in the ancestral cell (see
METHOD). With the assumption that all these LSCs and blasts are clonal, we further
guantified the detection rate of each mtDNA variant as a function of allele frequency and
sequencing depth (Figure 1G). We found that when a single variant allele has a frequency
greater than 20%, the detection rate can be up to 90% with >20X coverage (e.g. site
6776). In contrast, when the variant allele has a frequency lower than 1%, the detection
rate drops to 20% when the coverage is below 100X (e.g. site 6705). While high drop-
out rate is a common challenge for single-cell technologies'®, computational imputation
of the missing information from single cell data can address this problem’. When multiple

mMtDNA variants are co-detected in multiple single cells, we can infer their origin and
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linkage in the ancestral cell (see METHOD). Thus, cells containing any one of these
variants will still inform their origin from the same lineage. With any combination of the
four variants, 90% (sensitivity) of the cells can be unambiguously assigned to the correct
lineage with just 20x mtDNA coverage (Figure 1H). Furthermore, two mtDNA mutations
identified in other cells (e.g. pHSC specific site 2967,6268) were never detected (false
positive=0) in LSCs and blasts (Figure 1-figure supplement 4), showing a high specificity
of the method. Similar performance of single cell lineage tracing for another patient
(SU070) are shown in Figure 1-figure supplement 5. These results demonstrate that
somatic DNA mutations in the mitochondrial genome are a powerful endogenous marker

to identify clonal cell populations.

To expand on these findings to additional different cell lineages, we applied
EMBLEM to bulk ATAC-seq data from sorted blood cells from healthy human donors and
patients with AML(Supplementary file 1)*4. We identified heteroplasmic mtDNA mutations
in multiple cell populations of primary blood cells from healthy donors and all AML patients
(Figure 2-figure supplement 1A, Supplementary file 2). The heteroplasmic mtDNA
mutations showed a similar mutant spectrum as observed by previous studies using

cancer genomic data (Figure 2 -figure supplement 1B and C)*°.

Furthermore, EMBLEM, not only confirmed the previous lineage hierarchy of AML,
but also extended the previous model of pHSC heterogeneity (Figure 2A). In the AML
cases with LSCs sequenced by ATAC-seq, the LSCs and their corresponding leukemic
blasts have nearly identical heteroplasmic mtDNA mutations (Figure 2B-C and Figure 2-
figure supplements 1D), suggesting a direct lineage relationship and short generation
history between LSCs and blasts. We then examined whether any of the mtDNA variants
present in LSCs can be seen in the pHSCs, where the first leukemia-associated protein-
coding mutations have already occurred in functional normal hematopoietic stem cells34,
We detected blast-associated mtDNA mutations in pHSCs in all 11 cases. Interestingly,
we also detected additional heteroplasmic mtDNA mutations present specifically in
pHSCs (Figure 2C). In the 11 cases we investigated, 7 cases have pHSC-unique

heteroplasmic mtDNA mutations (Figure 2-figure supplement 1D and E), a previously
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unrecognized level of pHSC heterogeneity. pHSCs are capable of long-term self-renewal
and possess a clonal growth advantage, allowing them to clonally outcompete normal
HSCs. Indeed, the clonal frequency of pHSCs is a poor prognostic factor for overall
survival in AML*. Our discovery of pHSCs with distinct heteroplasmic mtDNA mutations

suggests the existence of multiple distinct sub-clones of pHSCs in AML patients.

To validate the heterogeneity of pHSCs inferred from EMBLEM of bulk cell
populations, we performed single-cell ATAC-seq of HSCs from AML patient SU353, which
exhibited both a high burden of pre-leukemic somatic coding gene mutations and high
frequency of pHSC-specific heteroplasmic mtDNA mutations'*. We identified the
heteroplasmic mtDNA variants from each single cell, which separated the HSCs into three
lineages: Two clonal subpopulations termed “clone 1” (18 cells) and “clone 2” (104 cells),
and a third population with no mtDNA variants despite sufficient mtDNA coverage (pHSC
with WT mtDNA, 31 cells) (Figure 2D). Notably, clone 2 possessed pHSC-specific mtDNA
mutations, while clone 1 possessed mtDNA mutations shared with LSCs, indicating
clonel is the lineage precursor of AML. These results confirm that multiple pHSC clones
arise in AML patients, and one subclone eventually evolved to become the LSC (Figure
2-figure supplement 2A).

Finally, we related the clonotype of pHSCs to their single-cell chromatin
accessibility profiles. We interrogated the patterns of active DNA elements and enriched
transcription factor motifs in sequential stages of AML development from the same patient,
and contrasted with HSCs from normal donors using ChromVAR?® (Figure 2E and Figure
2-figure supplement 2B). The chromatin accessibility profiles of pHSCs are more similar
to HSCs than to LSCs or leukemic blasts. The greatest deviation between HSC and other
cell types occurred at DNA binding motifs of the transcription factor Jun/Fos, a known key
regulator of HSC biology® (Figure 2F). Furthermore, the three lineages of pHSCs
revealed by mtDNA mutations also showed distinctive chromatin profiles (Figure 2G).
Clone 1 pHSC, which gives rise to the LSC and AML leukemia, is already more similar to
LSCs and blasts in its chromatin accessibility. In contrast, clone 2 that comprises the

larger fraction of pHSCs exhibited variable chromatin profiles at the single-cell level that
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spanned the range of normal HSCs, pHSC with WT mtDNA(WT cells), is also diverged
from normal HSCs. Thus, both lineage tracing and single cell epigenomic states indicate
clone 1 as the original stem cell of the AML in patient SU353. Supervised comparison of
the chromatin accessibility profiles among these clonal sub-populations further identified
distinct and significantly enriched transcription factor motifs (Figure 2H and Figure 2-
figure supplement 2C-E). These results indicate the heterogeneity of HSCs from AML

patients both on a genetic and epigenomic level.

Discussion

We present a computational strategy to combine cell lineages tracing by
endogenous mtDNA mutations and chromatin accessibility profiling in the same cell using
single-cell ATAC-seq data. This approach is applicable to any eukaryote, does not require
genetic engineering or genome editing, and is cost effective as the lineage information
comes “for free” on top of epigenomic insights. The relative merits of mtDNA vs other
genetic markers for lineage tracing are outlined in Supplementary file 3. An important
advantage of EMBLEM is that we enable clonotype tracing in existing ATAC-seq data
sets and hierarchical lineage construction from ATAC-seq that thousands of labs have
already generated. All future ATAC-seq data acquired for other inquiries will also have
the benefit of lineage information. EMBLEM may also be extended to other single cell
technologies, in which mtDNA is sequenced. We show that EMBLEM is successful even
with low frequency heteroplasmic mutations, detection of rare clones in a population, and
authentic clinical samples. With advances in the throughput and depth of single-cell
genomic technologies, we believe EMBLEM may be a powerful tool to bring insight for
many biomedical questions, including development, regeneration, immunity, and cancer
with integration of genotype and phenotype information from the same cell. During
revision of this work, Ludwig et al. reported the feasibility of using mtDNA and single cell
genomics for lineage tracing, which independently validates the potentially broad utility of

this approach.®

Although powerful and broadly applicable, mtDNA lineage tracing also has its

limitations. One limitation of this method is absence of mtDNA mutations in cells and
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tissues of embryos and young animals, which precluded us from applying EMBLEM to
published scATAC-seq data of early animal development. Moreover, the possibility of
selective mitochondrial inheritance or intercellular mitochondria transfer may affect the
accuracy of inferred lineages?®-23. On the other hand, asymmetric transmission of
mitochondria would not necessarily affect cellular lineage tracing, as long as the variant
alleles are randomly segregated. Using SCATAC-seq data from a mixing experiment with
human and mouse cells?4, we found species-specific mtDNA always paired with species-
specific nuclear genomic DNA (Figure 2-figure supplement 4 ). These results suggest that
mitochondrial horizontal transfer is not a confounder of our study and does not universally
occur between cells. The aforementioned two scenarios reflect the potential uncoupling
of nuclear and mitochondrial genomes, which would be of interest to investigate by
EMBLEM in combination with other gDNA tracing methods.

MtDNA lineage tracing produced new insights concerning the pHSC, the human
hematopoietic stem cell that suffers the first oncogenic mutation in AML evolution. Our
results add to the evidence that the pHSC population is heterogeneous, with evidence of
multiple mtDNA clones. Unexpectedly, the pHSC lineage that gives rise to the
subsequent acute myeloid leukemia is not the lineage with the best competitive potential
among pHSCs, as the leukemogenic lineage is often in the minority. pHSC burden is a
strong poor prognostic predictor of AML survival's. It is widely believed that the
association between high pHSC burden and poor AML patient prognosis reflected the
enhanced self-renewal and competitive ability of the mutant pHSC. Our analysis
suggests that high pHSC burden may reflect the diversity of pHSCs or the underlying
mutational processes. These alternative interpretations of the link between pHSC burden

and poor clinical prognosis should be addressed in future studies.
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Material and Methods
Public data accession. Aligned bam files for GM12878 whole exome, low coverage
whole genome, and PCR free whole genome sequence, were downloaded through phase
3 release of 1000 genomes (ftp://ftp.1000genomes.ebi.ac.uk)
The alignment files were accessed via the following ftp links:
e ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/NA12878/exome_alignment
INA12878.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam ./
e ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/NA12878/alignment/NA128
78.mapped.ILLUMINA.bwa.CEU.low_coverage.20121211.bam ./
e ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/phase3/data/NA12878/high_coverage_al
ignment/NA12878.mapped.ILLUMINA.bwa.CEU.high_coverage_pcr_free.201309
06.bam ./

ATAC-seq and single cell ATAC-seq data for GM12878 generated by Buenrostro et al.
were downloaded through GEO with accession number GSE47753 and GSE65360,
respectively”?5. Bulk ATAC-seq data from normal donors and AML patients generated
by Corces et.al'*., were downloaded through GEO with accession number GSE74912.
Single cell ATAC-seq data for leukemia stem cell and leukemic blasts generated by the
same study were downloaded through GEO with accession number GSE74310. Single
cell ATAC-seq from normal HSC generated by Buenrostro et al., were downloaded
through GEO with accession number GSE96772%6. Supplementary file 1 summarized
the detail information of all the datasets used in this study.

Comparison of mitochondrial genome capture rate and coverage. Sequencing reads
from ATAC-seq were aligned to the reference genome by BWA alignment tool?’. The
same reference, GRCh37(used by 1000 genome) and human reference mtDNA
sequence rCRS (revised Cambridge reference sequence), were used for ATAC-seq data
processing. Samtools?® was used for manipulating sequence reads and calculating
sequence depth. For all the data sets, the aligned reads were further filtered with mapping
quality (Q >30) and PCR redundancy was removed. The percentage of reads from

mitochondrial genome compared to that of the nuclear genome were calculated after all
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the clean-up steps. The mitochondrial genome coverage was calculated using bases
with sufficient sequence quality score (q > 30). A strong depletion region around 3107
due to the sequencing error(3170N) in the reference genome was excluded in the

coverage plot1°,

Bulk ATAC-seq data process and mitochondrial DNA variants calling. Most of the
ATAC-seq pipelines remove mtDNA during their process. To rescue the genetic
information from mtDNA, we modified our ATAC-seq pipeline and added SNP calling
steps, which focuses on the mitochondrial genome. Briefly, adaptor sequences were
trimmed from FASTQs using custom Python scripts. Paired-end reads were aligned to
the reference genome using BWA. To improve the accuracy of heteroplasmic mutation
calling, we followed the somatic mutation calling guidelines from GATK??, with additional
clean-up steps before variant calling. Reads mapped to mtDNA were extracted using
Samtools?® from the final bam files and variants were called using VarScan23 with "--
min-var-freq 0.001" (Figure 1--figure supplements 1A). The heteroplasmic variants were
further filtered through the following steps to exclude potential sequencing or mapping

errors:

1. Thirteen frequent false-positive variants by misalignment due to extensive level of
homopolymers in rCRS and due to sequencing error in the reference genome(reported in
the previous study!®), were also observed and removed in this study. The following sites
were explicitly removed:

Misalignment due to ACCCCCCCTCCCCC (rCRS 302-315)

A302C, C309T, C311T, C312T, C313T, G316C

Misalignment due to GCACACACACACC (rCRS 513-525)

C514A, A515G, A523C, C524G

Misalignment due to 3107N in rCRS (ACNTT, rCRS 3105-3109)

C3106A, T3109C, C3110A

2. Strand imbalance is a potential feature of sequencing error with various causes. To
remove the potential sequence error from lllumina NextSeq (with a known high error rate

at A bases) and sequence error from DAN damage(G->T, C->A)3!, we required > 2 reads

10



306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

Xu et al. (CHANG)

detected from both the forward and reverse orientation, and strand is balanced
(30%<forward/(forward + reverse)<70%).

3. Variant sites with VAF>0.9, but less than 1, were counted as homoplasmic variants.
Although the germline polymorphic can be a back heteroplasmic mutations, the
observation of these events is higher than expected, which implies the false positive
calling due to mapping bias for non-reference allele and sequencing errors.

4. For bulk ATAC-seq data from AML patients, heteroplasmic mutations with variant allele

frequency >1% were reported.

For all the AML cases(n=15) from Corces et.al'4, we selected the cases( n=12) with at
least one confident heteroplasmic mtDNA mutation detected in any cell type for lineage
relationship comparison. We found that in one patient (SU209), the number of
heteroplasmic mutations (37) and their VAF are significantly higher than other patients.
Most of these heteroplasmic mutations also overlapped with common variants present in
the general human population
(http://ftp.1000genomes.ebi.ac.uk/voll/ftp/release/20130502/ALL.chrMT.phase3_callmo
m-v0_4.20130502.genotypes.vcf.gz), which indicates potential sample contamination.
Therefore, this case was excluded from lineage relationship comparison and 11 AML

cases were finally shown in Figure 2--figure supplements 1.

Single cell ATAC library resequencing. To better evaluate the detection rate in single
cell ATAC-seq data, we re-sequenced the previous libraries(LSCs and AML blasts from
SU070 and SU373) from Corces et.al**. The re-sequenced data were uploaded to GEO

and accession number is GSE122576.

Human AML samples Human AML samples were obtained from patients at the Stanford
Medical Center with informed consent, according to institutional review board (IRB)-
approved protocols (Stanford IRB, 18329 and 6453). Mononuclear cells from each
sample were isolated by Ficoll separation, resuspended in 90% FBS + 10% DMSO, and
cryopreserved in liquid nitrogen. All analyses conducted here on AML cells used freshly

thawed cells.

11



337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

Xu et al. (CHANG)

Cell Sorting. Cell samples were first thawed and incubated at 37°C with 200 U/mL
DNase in IMDM + 10% FBS. To enrich for CD34+ cells, magnetic bead separation was
performed using MACS beads (Miltenyi Biotech) according to the manufacturer’s protocol.
For cell staining and sorting, the following antibody cocktail was used with the schema
shown in Figure 2-- figure supplements 3

CD34-APC, clone 581, Biolegend, at 1:50 dilution.

CD38-PE-Cy7, clone HB7, Biolegend, 1:25 dilution.

CD19-PE-Cys5, clone H1B9, BD Biosciences, 1:50 dilution

CD20-PE-Cy5, clone 2H7, BD Biosciences, 1:50 dilution

CD3-APC-Cy7, clone SK7, BD Biosciences, 1:25 dilution

CD99-FITC, clone TU12, BD Biosciences, 1:20 dilution

TIM3-PE, clone 344823, R&D Systems, 1:20 dilution

CD45-KromeOrange, clone J.33, Beckman Coulter at 1:25 dilution

Samples were sorted using a Becton Dickinson FACS Aria ll. pHSCs were re-suspended
and kept in cold FACS buffer containing 1 ug/mL propidium iodide prior to and after sorting.

Cells were then immediately prepared for single cell ATAC-seq.

Single cell ATAC-seq from pHSC. Cells were washed 2 times in C1 DNA Seq Cell
Wash Buffer (Fluidigm). ~10K cells were then re-suspended in 6 mL of C1 DNA Seq Cell
Wash Buffer, and were combined with 4 mL of C1 Cell Suspension Reagent, 7 mL of this
cell mix was loaded onto the Fluidigm IFC. Cells at a concentration of 260-380 cells/pL
were then assayed using SCATAC-seq as previously described?®. Briefly, single cells
were captured using the C1 Single-Cell Auto Prep IFC microfluidic chips. Cells were
permeabilized and accessible fragments were captured using 20 pL of Tn5 transposition
mix (1.5x TD buffer, 1.5 pL transposease (Nextera DNA Sample Prep Kit, lllumina), 1x
C1 Loading Reagent with low salt (Fluidigm), and 0.15% NP40) at 30 minutes at 37°C.
In a 96-well plate, 7 uL of harvested libraries were amplified in 50 pL PCR for an additional
17 cycles (1.25 pM custom Nextera dual-index PCR primers in 1x NEBnext High-Fidelity
PCR Master Mix using the following PCR conditions: 72°C for 5min; 98°C for 30 s;) using
the following PCR conditions: 72°C for 5min; 98°C for 30 s; and thermocycling at 98°C

12
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for 10 s, 72°C for 30 s, and 72°C for 1 min. The PCR products were pooled creating a
final volume of ~4.8 mL. The pooled library was purified on a single MinElute PCR
purification column (Qiagen). Libraries were quantified using gPCR prior to sequencing.
The scATAC-seq libraries were sequenced by lllumina MiSeq. The sequence data was
uploaded to GEO under the accession number GSE122577.

Single cell ATAC-seq data processing and mitochondrial DNA variant calling.
Single cell ATAC-seq were processed similarly to the bulk ATAC-seq, taking each
individual cell as one sample. Recalibration steps were not applied for single cell data, as
the sequence depth is not sufficient to empirically adjust the quality scores. After cleaning
the alignment, files from every single cell were merged and heteroplasmic variants were
first called with the merged bam and filtered using the same criteria as bulk data.
Heteroplasmic variants called from merged data or from bulk data were re-counted in
each individual cell using Samtools with "-q 20 -Q 20". And the non-reference allele had

to match the variants detected in merged or bulk data.

Detection rate estimation. In every single cell, if the variant allele detected in merged
or bulk data were supported by any reads, it was considered positive; otherwise, it was
counted as zero. A binary matrix was used to present the lineage relationship among
single cells and plotted as a heat map. The intersections of the variants were quantified
by the Upset R package®?. The number of detected variants showed a correlation with
sequencing depth and the number of cells with all variants (Figure 1--figure supplements
3 and 4) confirmed the variants already co-existed in the ancestral cell. Following this
assumption, the detection rate can be measured as the proportion of cells with variants
in the total number of cells. For each variant, cells were separated into different bins,
increased by 10, according to the total sequencing depth at each variant. The detection
rate for each variant site was then calculated in each bin. The combined detection rate
was estimated by 1-(1-R1)*(1-R2)*(1-R3)*(1-R4), where R; is the detection rate for each

variant.

Lineage inference. The probability of observing a mutation at a given site is Pn=n*r,

13
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where r is the average mutation rate in the mitochondrial genome and n is the copy of
mtDNAs in a single cell. ris estimated to be ~10™7 per base?33, n is around 100~10000
per cell*4, so P, will be 10™°~10"3. The probability of N cells sharing the same mtDNA
mutations, but raising independently, will be (Pn)"™N. Thus, when there are more than 3
cells in the population sharing a common mtDNA mutation, the probability of these
independently occurring will be close to 0. Cells with common mtDNA mutations inherited
the mutations from the same ancestral cell is more likely to explain the observation.
Furthermore, when a set of mutations (more than 1) is detected in more than 1 cells, the
null hypothesis (independently occurred) is rejected more confidently. The mutations
within the ancestry cells can be inferred from the intersection of mutations. If a set of
mutations are co-existed in the ancestral cell and the absence of mutations in the
daughter cells are more likely caused by false detection in single cell libraries or genetic
draft during cell replications. Then the observed cells with different intersections (e.g
V1+V2) will be as expected by Py1*Pv2*N, after normalized by sequencing depth. The
exclusive of intersections from high-frequency mutations will infer the separation of
mtDNA mutations and multiple cell lineage. The intersections of the variants were
quantified by the Upset R package®?. In the scATAC-seq from pHSCs from SU353, the
intersection of variants showed most of the cells were separated by two sets of different
variants (Figure 2D). But there are a few cells displaying a mixture of variants from the
two sets. We suspected these may cause by the doublet of cells in the same well during
single cell separation on C1 chip. We further separated the intersection map by the chip
and observed the number of cells with mixture variants correlated to the concentration of
cells loaded to C1 Chip. These cells were removed during subsequent analysis. Single
cells with any variants in the two sets were kept and cells with more than 40X coverage
on mtDNA, but no variants in the two sets were considered as wild-type HSCs. After all
the filter steps, 153 cells had lineage information and were separated into three

subgroups.
Single cell ATAC-seq chromatin analysis. ATAC sequences mapped to the nuclear

genome were used for chromatin accessibility profiling. Bam files were merged for the

same cell types and used as input files for chromVAR?®. Peak files from Buenrostro et.al?®
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were used as open background regions to quantify the accessibility signal from every
single cell. Cells with fewer than 200 unique reads or less than 25% of reads in peak
regions were removed for chromatin analysis. chromVAR was applied to calculate TF
motif-associated chromatin accessibility landscape changes and identify potential
regulators of epigenomic variability. This approach quantifies accessibility variation
across single-cells by aggregating accessible regions containing a specific TF motif, then
compares the observed accessibility of all peaks containing a TF motif to a background
set of peaks normalizing for known technical confounders. For determining differentially
accessible motifs between different subpopulations, a Wilcoxon test was used to calculate
the p values of the difference between the two groups.

Code availability. Custom analysis code can be downloaded from
GitHub(https://github.com/ChangLab/ATAC_mito_sc)3®
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Figure Legends

Figure 1. EMBLEM reveals cell lineage from mtDNA mutations
(A) EMBLEM workflow. Usings standard ATAC-seq data as input (left), an SNV calling
step was added to enumerate all single nucleotide variants in mtDNA (middle). EMBLEM
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identifies heteroplasmic mtDNA mutations in single cells, groups mutations into diagnostic
sets, and infers cell lineage based on mtDNA variants, and overlays clonotype information
on epigenomic profile of the same cells (right).

(B) ATAC-seq enriches for mtDNA reads compared to whole exome sequencing (WES),
low coverage whole genome sequence (WGS_L), or PCR-free, high-coverage whole
genome sequence (WGS_H).

(C) Bimodal distribution of variant allele frequency (VAF) of mtDNA mutations discovered
using ATAC-seq. Yellow bar presents the homoplastic variants that can distinguish
different individuals. Heteroplasmic variants can distinguish clonal cell populations within
one indiviual.

(D) Two possible models for 25% mMtDNA VAF in bulk: Homoplastic variants in a small
proportion of cells (top) or heteroplasmic variants in nearly every single cell (bottom). Blue
cells: cells with mutated mtDNA, blue dots: mtDNA with mutated allele.

(E) VAF of mtDNA mutations in single cell ATAC-seq data of human B cells. Each dot
present the VAF (y-axis) in single cells, and rotated kernel density on each side present
their distribution. The x-axis indicates the mutation site (the nucleotide position in
mitochondrial genome).

(F) mtDNA mutations in human AML. Each row in the heap map is a single cell (LSC or
AML blast); each column is a heteroplasmic mtDNA mutation. Blue color indicates the
mtDNA variant is detected (>1 reads); white color indicates no mutation. The nucleotide
position in mitochondrial genome for each mutation is indicated.

(G) Combined set of heteroplasmic mtDNA mutations improve cell lineage assignment in
single cells. Cells were first separated into bins according to their mtDNA coverage (x-
axis). The detection rate (y-axis) for each site (indicated by different color and shape) is
calculated with the number of cells with that mutations divided by total number of cells in
that bin. The detection rate of combining four sites (black line, METHOD) is substantially
increased.

(H) Quantitation of mtDNA mutation detection rate as a function of sequencing depth and
number of single cells. Cells were sorted in descending order by their sequencing depth
and grouped into bins (10% of cells in each row). Distribution of sequencing depth is

shown on the left panel. The black line and dark blue shade indicate mean + standard
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deviation, respectively. The light blue shade indicates remaining value of the bin. Cells
with or without mtDNA variants are shown in blue and orange on the right panel,

respectively.

Figure 2. Clonal evolution of pre-leukemic HSCs inferred from joint lineage tracing
and single cell chromatin accessibility.

(A) Lineage hierarchy in acute myeloid leukemia based on EMBLEM and prior genetic
information. mtDNA mutations reveals pHSC clonal heterogeneity. The clonal precursor
of the leukemic stem cell is not the clone with most representation in the pHSC pool, but
rather the clone with epigenomic bias towards the leukemic regulatory program, as
depicted by related color schemes.

(B) EMBLEM deconvolutes AML clonal heterogeneity. Heteroplasmic mtDNA mutations
in three cell populations from patients SU070 are shown. Mutations sites (in rows) in
each FACS-sorted cell population (in columns) are shown, with size of each circle
representing its VAF. Several mtDNA mutations (sites shown in purple) are detected in
pHSCs and transmitted to LSCs and blasts, confirming those pHSC clones at the apex of
leukemia lineage. LSCs accumulated additional mtDNA mutations (sites shown in green)
and are transmitted to leukemic blasts in patient SU070. Allele frequency, sequencing
depth and annotation of the variant allele are shown in Figure 2--figure supplements 1
and Supplementary file 2.

(C) Same plot as (B) shown for patient SU353. In addition to the shared mtDNA mutations
in pHSCs, LSCs, and blasts (purple), two pHSCs-specific mtDNA mutations are also
detected (yellow). Allele frequency, sequencing depth and annotation of the variant allele
are shown in Figure 2--figure supplements 1 and Supplementary file 2.

(D) Heteroplasmic mutations in single pHSCs from one patient reveals clonal
heterogeneity. Each column is a mtDNA nucleotide position; each row is one cell. Blue
color indicates the presence of the mtDNA variant. Shown are cells with any mtDNA
mutation detected, or cells with more than 40X coverage of the mitochondrial genome
without any detected mutation(pHSC with WT mtDNA). The number of cells in each
clonotype are indicated on the right.
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(E) Landscape of single-cell chromatin accessibility of blood progenitor and leukemic cells
in patient SU353. tSNE map using bias-corrected deviations from chromatin accessibility
showing cluster of AML blasts, LSCs, pHSCs and normal HSC, colored by cell types.
(F) Chromatin accessibility of the FOS:JUN binding motif across the same single cells.
tSNE map colored by deviation z-score for motif associated to FOS:JUN, the most
variable TF motif.

(G) pHSC clones possess distinct epigenomic signatures. Clone 1 that gives rise to the
AML has a chromatin accessibility profile that more resembles LSCs and leukemic blasts.
“WT” pHSC refers to the pHSC with WT mtDNA. Clonotype information from EMBLEM is
overlaid on the tSNE map defined by TF motif deviations, and colored by different lineal
sub-populations defined by mtDNA mutations.

(H) Quantitation of distinct single-cell chromatin accessibility at FOS:JUN motifs among
different pHSC clones defined by EMBLE. Clone 1 pHSCs tend to down regulate
FOS:JUN accessibility, while clone 2 pHSC shows substantially greater cell-to-cell
variability. pHSCs with no detectable mtDNA variants and normal HSCs are shown for
comparison. TF deviation of single cells (black dots) is shown on the distribution box-plot.
The statistical significant were indicated by “*” when p<0.05, “**” when p<0.01(Wilcoxon

rank-sum test).

Figure 1-figure supplement 1. EMBLEM workflow for SNP calling and lineage
inference.

(A) Workflow for mitochondrial DNA variant calling from ATAC-seq data. This workflow
was applied to both bulk and single cell ATAC-seq. The steps indicated with dotted lines
were not applied to single-cell data.

(B) Workflow for inferring lineage relationships from single-cell ATAC-seq data. BAM files
from single cells were first merged and confident mtDNA variants were called. Mutated
alleles from these variant sites were then counted for each single cell. The cell lineage
was then inferred from mtDNA variants and analyzed alongside the chromatin profile for

each cell.
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Figure 1-figure supplement 2: mtDNA coverage and variants from different
sequencing libraries from GM12878 human B cells.

(A) Mitochondrial genome coverage from each of four different sequencing libraries
including WGS_H (high coverage PCR-free whole genome sequencing), WGS_L(low
coverage whole genome sequencing), WES(whole exome sequencing), ATAC-seq. The
Y axis shows coverage scaled in logio. 43M paired-end ATAC-seq reads(2x50bp) yielded
the same coverage of mtDNA as 747M paired-end reads(2x250bp) from WGS-H data.
(B) Comparison of variants detected in sequencing data from four different library
preparations. The number of variants detected in each library is shown on the bottom left.
The intersection of different libraries (bottom-right) and the number of variants s are
shown on the top. Homoplasmic variants are in yellow and heteroplasmic variants are in
blue.

(C) Heteroplasmic mtDNA mutations detected by WGS_H( in blue) and ATAC-seq( in
red). The X axis is the position of the mutation on mitochondrial genome and Y axis is the

variant allele frequency in percentage.

Figure 1-figure supplement 3: Heteroplasmic mtDNA mutation in K562 cells.

(A) Percentage of mtDNA reads in ATAC-seq and whole genome sequence(WGS)
libraries from human K562 cells. 4 millions mtDNA reads from 32 millions total mapped
reads in ATAC, 7 millions mtDNA reads from 1775 millions total reads in WGS.

(B) The average coverage of the mitochondrial genome in ATAC and WGS form K562
cells.
(C) Number of heterplasmic mtDNA mutations detected in ATAC and WGS. The

intersection size represents mutations detected by single or both methods.

(D) Variant allele frequency of mtDNA mutations and their correlation between ATAC and
WGS. The red dots indicates the mutations detected by both ATAC and WGS, with the
same criteria. The black dots indicates the mutations detected by ATAC or WGS only.

Figure 1-figure supplement 4: Heteroplasmic variants in single cells from AML
blasts and LSCs (SU353)
(A) Heatmap showing variant mitochrondrial sites (columns) in each AML blast from

patient SU353(rows). The color represents the number of reads supporting the variant
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allele (log2(depth)). The first two sites are negative controls, which are detected in pHSCs
only.

(B) Bar plot showing the number of cells in which we detect each mitochondrial variant.
The last bar shows the number of cells with any one of the four variants detected.

(C) The top right shows the number of cells with each different combination of variants
detected. The number of cells is shown on top of the bar. The combination of variants
detected is annotated below the bar. The total number of cells with each variant site
detected is shown to the left. The average coverage of the mitochondrial genome for each
intersection group is shown below.

(D) VAF of mtDNA variants. The x-axis indicates the variant site notated by the nucleotide
position in the mitochondrial genome. Each dot represents the VAF (y-axis) in single cells
and the rotated kernel density on each side shows their distribution.

(E-H) Same as (A-D), for leukemia stem cells (LSCs) from patient SU353.

Figure 1-figure supplement 5: Heteroplasmic variants in single cells from AML
blasts and LSCs (SUQ70)

(A-D) Same as Figure 1--figure supplement 3 A-D for AML blasts from SUQ70.

(E-H) Same as Figure 1--figure supplement 3 A-D for LSCs from SUQ70.

(I) Quantification of the detection rate for each heteroplasmic variant from mtDNA. Cells
(both LSCs and AML blasts) were first separated into bins according to their coverage of
MtDNA (x-axis). The detection rate (y-axis) for each site (notated by different color and
shape) is calculated as the number of cells with that variant detected divided by the total
number of cells in that bin.

(J) Quantitation of mtDNA mutation detection rate as a function of sequencing depth and
the number of single cells. Cells were sorted in descending order by their sequencing
depth and grouped into bins (10 cells in each row). Distribution of sequencing depth is
shown on the left panel. Cells with or without mtDNA mutations are shown in blue or

orange, respectively.

Figure 2-figure supplement 1: Heteroplasmic mtDNA mutations detected in bulk
ATAC-seq from AML patients.
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(A) The number of heteroplasmic variants detected using ATAC-seq data from normal
primary blood cells and cancer cells from AML patients.

(B) The number of mtDNA variants identified from normal and cancer samples in different
substitution classes are shown as a bar plot. Mutations from normal (gray) and cancer
(yellow) samples are separated. The C>T and T>C signature in cancer mtDNA has been
observed in previous studies and it's equivalent to the one that has been operating during
the evolution of human germline mtDNAs.

(C) Annotation of mtDNA mutations and the proportion of mutations in coding and non-
coding regions. Coding mutations are divided into synonymous, nonsynonymous, and
gain of stop codon. Heteroplasmic mutations detected from cancer samples show a
similar distribution as those from normal samples, with a slightly higher proportion falling
within coding regions.

(D) Heteroplasmic mutations in three cell stages for each AML patient. Variant allele (in
rows) in each cell population (in columns) are shown with a circle, with size indicating
their variant allele frequency. Sequencing depth of the variant allele is indicated by the
color of the circle (in logz scale). pHSC specific mutation sites are in red. Allele frequency
and annotation of mMtDNA mutations were shown in Supplementary file 2

(E) Heteroplasmic mutations in two cell stages for each AML patient. Variant allele (in
rows) in each cell population (in columns) are shown with a circle, with size indicating
their variant allele frequency. Sequencing depth of the variant allele is indicated by the
color of the circle (in logz scale). pHSC specific mutation sites are in red. Allele frequency

and annotation of mMtDNA mutations were shown in Supplementary file 2

Figure 2-figure supplement 2: Single cell chromatin accessibility

(A) Phylogenetic relationship of cells from SU353 was inferred using the Neighbor-Joining
method. The phylogenetic tree is drawn to scale, with branch lengths in the units of the
number of base difference per site. The clade in purple matched to clone 1 and the clade
in yellow matched to clone2 in Figure 2D. The cell type and mtDNA variants in each single
cell are shown on the right. 229 single cells with at least one of the six heteroplasmic

mtDNA mutations were included.
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(B) Heat map showing clusters of pHSCs from SU353 and normal HSCs from a healthy
donor, based on the z-score of TF deviation. The Z-scored deviation is shown for
individual cells (columns) for each TF (rows). Clone information is shown on the top of
the heat map. Top 50 most variable motifs were used in this heat map.

(C) Volcano plot showing the difference in chromatin accessibility for transcription factor
binding motifs between Clone 1 and Clone 2. The x-axis shows the mean difference of
bias-corrected deviations and the y-axis shows the p-value (in logio scale). The most
significant differential motifs are annotated with TF names.

(D)Same as in (C) for Clone 1 vs. WT cells.

(E)Same as in (C) for Clone 2 vs. WT cells. No significantly differential motifs were
detected.

Figure 2--figure supplements 3: Sorting Scheme for pHSCs.
Scheme of FACS sorting of the pHSC population from AML patient SU353. Initial sort (top

panel) and post-sort purity (bottom panel) are shown.

Figure 2-figure supplement 4: Investigation of horizontal mitochondrial transfer
using mixing experiment from mouse and human cells.

(A) Scatter plot shows the number of unique reads mapped to human and moue nuclear
genome(gDNA). Red circle indicates cell doublet. Sequence reads from each single cell
were mapped to human and mouse combined reference genome. Unique mapped reads
on gDNA and mtDNA were counted respectively.

(B) Scatter plot shows the number of unique reads mapped to human and moue
mitochondrial genome(mtDNA). Red circle indicates cell doublet.

(C) Species-specific score for gDNA and mtDNA. The species-specific score was
calculated with (Chuman/(Chuman+Cmouse)-0.5. “-0.5” or “0.5” indicate 100% alignment
to mouse or human reference. The positive correlation between gDNA and mtDNA

indicates the species-specific mtDNA always paired with species-specific gDNA.

Supplementary file 1: Information of datasets utilized in this study.
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Supplementary file 2: Heteroplasmic mtDNA mutations detected in each AML
patient. Allele frequence, seqeunce coverage and annotation information of the variants

are provided.

Supplementary file 3: Relative merits of mtDNA vs. other genetic markers for
lineage tracing
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