

1 **Single-cell lineage tracing by endogenous mutations enriched in**
2 **transposase accessible mitochondrial DNA**

3

4 Jin Xu^{1,2,3}, Kevin Nuno^{4,5}, Ulrike M. Litzenburger^{1,2,3}, Yanyan Qi^{1,2,3}, M Ryan Corces^{1,2,3},
5 Ravindra Majeti^{4,5} & Howard Y. Chang^{1,2,3}

6 ¹Center for Personal Dynamic Regulomes, Stanford, CA 94305, USA.

7 ²Dept. of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.

8 ³Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.

9 ⁴Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of
10 Medicine, Stanford, California, USA.

11 ⁵Division of Hematology, Department of Medicine, Stanford University School of Medicine,
12 Stanford, California, USA.

13

14 Correspondence to: H.Y.C. (howchang@stanford.edu) and R.M (rmajeti@stanford.edu).

15

16 **Abstract**

17 Simultaneous measurement of cell lineage and cell fates is a longstanding goal in
18 biomedicine. Here we describe EMBLEM, a strategy to track cell lineage using
19 endogenous mitochondrial DNA variants in ATAC-seq data. We show that somatic
20 mutations in mitochondrial DNA can reconstruct cell lineage relationships at single cell
21 resolution with high sensitivity and specificity. Using EMBLEM, we define the genetic and
22 epigenomic clonal evolution of hematopoietic stem cells and their progenies in patients
23 with acute myeloid leukemia. EMBLEM extends lineage tracing to any eukaryotic
24 organism without genetic engineering.

25

26 **Introduction**

27 Resolving lineage relationships between cells is necessary to understand the
28 fundamental mechanisms underlying normal development and the progression of disease.
29 In recent years, new methods have emerged to enable cell lineage tracking with
30 increasing resolution, leading to substantial biological insights¹. Specifically, genome
31 editing of reporter constructs via CRISPR-Cas9 allowed synthetic reconstruction of cell

32 lineage relationships in model organisms, and has been coupled with transcriptome
33 profiling to inform cell fates². These prospective “mutate-and-record” methods provide
34 powerful tools to resolve the developmental origin of cells in genetically engineered cells
35 and organisms, but cannot be utilized in living humans, archival clinical samples, or any
36 wild type organism¹. Given these limitations, retrospective lineage tracing using
37 endogenous genetic markers is an alternative solution. Recent advances in sequencing
38 enable naturally occurring somatic mutations to be used as lineage markers, which
39 usually required single-cell genome sequencing to capture the sparse genetic
40 information^{3,4}. Regions with high mutation rates, such as microsatellite repeats,
41 retrotransposons, and copy-number variants, has been used to resolve the lineage
42 relationship for normal or cancerous tissue samples^{5,6}. These methods reduce the cost
43 of whole genome sequencing, but still lack information on cell phenotypes.

44 Simultaneous measurement of the lineage relationship and cell fates is ultimately
45 required to address many biomedical questions. Here we describe EMBLEM (Epigenome
46 and Mitochondrial Barcode of Lineage from Endogenous Mutations), a strategy to track
47 cell lineage using endogenous mitochondrial DNA variants in ATAC-seq data. The end
48 result of EMBLEM is single-cell lineage information and rich global epigenomic profile
49 from the same individual cells (Figure 1A and Figure 1-figure supplement 1).
50 We illustrate the utility of EMBLEM in human blood progenitor cells to clarify the process
51 of pre-leukemic clonal evolution and the emerging biology of clonal hematopoiesis.

52

53 Results

54 Assay of Transposase-Accessible Chromatin by sequencing (ATAC-seq) is a
55 sensitive method used to study chromatin accessibility profiles in diverse cell types and
56 organisms⁷. During DNA transposition and amplification in cells, mitochondrial DNA is
57 also amplified at the same time (Figure 1A). Mitochondrial DNA (mtDNA) is a ~16kb
58 circular genome with ~10-fold higher mutation rate compared to the nuclear genome.
59 Hence, mtDNA incrementally accumulates unique, irreversible genetic mutations that are
60 passed on to daughter cells even in healthy humans and may be used for lineage
61 tracing^{8,9}. The majority of somatic mtDNA mutations are noncoding and thought to be
62 passenger¹⁰. Importantly, the number of mitochondria (and therefore mtDNA) range from

63 several hundreds to >10,000 per cell in different cell types, facilitating robust mtDNA
64 analysis even from a single cell.

65

66 We first observed that ATAC-seq effectively enriches for mtDNA. While mtDNA is
67 present in many kinds of DNA sequence libraries, it is substantially enriched in ATAC-seq
68 libraries due to the fact that mtDNA is not chromatinized and is therefore highly accessible
69 (Supplementary file 1). ATAC-seq enables a 17-fold or greater enrichment of mtDNA
70 compared to exome sequencing or whole genome sequencing in GM12878 human B
71 cells (Figure 1B), leading to an average ~18,000X coverage of mtDNA (Figure 1-figure
72 supplements 2A). With this coverage, we detected 27 mitochondrial variants from
73 GM12878 cells (Figure 1C). 13 of these variants have a variant allele frequency (VAF)
74 greater than 90%, which are known as homoplasmic variants (Figure 1-figure
75 supplements 2B). We also detected 14 low frequency mitochondrial DNA variants, with
76 VAFs ranging from 0.1% to 24% (Figure 1C and Figure 1-figure supplement 2C). Similar
77 results for mtDNA enrichment were observed in human K562 cells (Figure 1-figure
78 supplement 3, Supplementary file 1)

79

80 The VAF from bulk ATAC-seq data represents the average of the allele
81 frequencies of the cell population. A 25% VAF may arise from 25% of cells in the
82 population with a homoplasmic variant, or alternatively arise from 100% of cells all having
83 a quarter of their mitochondria with the variant allele (Figure 1D). To distinguish between
84 these two models, we analyzed single-cell ATAC-seq data from GM12878. For 4 mtDNA
85 variants (VAF between 0.5%~24% at population level), we find that a mixture of both
86 models is in action for different variants (Figure 1E). For instance, mtDNA mutation 3082
87 is widely spread among single cells, but at low frequency per cell. Because it is extremely
88 unlikely (see METHOD) that the identical mutation arose independently in every single
89 cell, cells sharing the same mitochondrial mutations are inferred to have descended from
90 the same ancestral cell. These results suggest that even low frequency heteroplasmic
91 mtDNA mutations can be exploited for lineage tracing.

92

93 To prove the principle that somatic mitochondrial mutations can track cells from
94 the same ancestor and to quantify the power of lineage mapping, we next applied
95 EMBLEM to primary blood cells from patients with acute myeloid leukemia (AML). Human
96 AML is organized as a hierarchy: a hematopoietic stem cell first acquires an initiating
97 mutation in one of a number of chromatin modifier genes, previously termed as “pre-
98 leukemic” hematopoietic stem cell (pHSC)^{11,13}. pHSCs are functionally normal and are
99 not able to transplant AML, but upon accumulation of additional mutations, they give rise
100 to leukemic stem cells (LSCs) that are able to self-renew and recapitulate AML disease
101 upon transplantation^{11,12}. Finally, LSCs give rise to the bulk leukemic blast cells in AML¹².
102 Targeted exome sequencing in these samples have identified somatic mutations in tumor
103 suppressor genes and oncogenes that link the lineage relationship of pHSCs, LSCs and
104 blasts, providing the ground truth for our analyses¹³.

105

106 We applied EMBLEM to the ATAC-seq profiles of FACS-purified LSCs and
107 leukemic blasts first (Supplementary file 1). Using high-confidence mtDNA mutations,
108 detected both from bulk ATAC-seq and single cell ATAC-seq, we found the LSC and
109 blast populations not only shared the same heteroplasmic variants, but also showed
110 similar distribution and allele frequency at the cellular level (Figure 1-figure supplement
111 4). These results indicate the two populations are identical at the genetic level, but
112 divergent at the epigenomic level, consistent with previous studies^{14,15}. In patient SU353,
113 we identified four diagnostic mtDNA mutations in the same cell (Figure 1F), which
114 indicates these four mitochondrial variants already co-existed in the ancestral cell (see
115 METHOD). With the assumption that all these LSCs and blasts are clonal, we further
116 quantified the detection rate of each mtDNA variant as a function of allele frequency and
117 sequencing depth (Figure 1G). We found that when a single variant allele has a frequency
118 greater than 20%, the detection rate can be up to 90% with >20X coverage (e.g. site
119 6776). In contrast, when the variant allele has a frequency lower than 1%, the detection
120 rate drops to 20% when the coverage is below 100X (e.g. site 6705). While high drop-
121 out rate is a common challenge for single-cell technologies¹⁶, computational imputation
122 of the missing information from single cell data can address this problem¹⁷. When multiple
123 mtDNA variants are co-detected in multiple single cells, we can infer their origin and

124 linkage in the ancestral cell (see METHOD). Thus, cells containing any one of these
125 variants will still inform their origin from the same lineage. With any combination of the
126 four variants, 90% (sensitivity) of the cells can be unambiguously assigned to the correct
127 lineage with just 20x mtDNA coverage (Figure 1H). Furthermore, two mtDNA mutations
128 identified in other cells (e.g. pHSC specific site 2967,6268) were never detected (false
129 positive=0) in LSCs and blasts (Figure 1-figure supplement 4), showing a high specificity
130 of the method. Similar performance of single cell lineage tracing for another patient
131 (SU070) are shown in Figure 1-figure supplement 5. These results demonstrate that
132 somatic DNA mutations in the mitochondrial genome are a powerful endogenous marker
133 to identify clonal cell populations.

134

135 To expand on these findings to additional different cell lineages, we applied
136 EMBLEM to bulk ATAC-seq data from sorted blood cells from healthy human donors and
137 patients with AML(Supplementary file 1)¹⁴. We identified heteroplasmic mtDNA mutations
138 in multiple cell populations of primary blood cells from healthy donors and all AML patients
139 (Figure 2-figure supplement 1A, Supplementary file 2). The heteroplasmic mtDNA
140 mutations showed a similar mutant spectrum as observed by previous studies using
141 cancer genomic data (Figure 2 -figure supplement 1B and C)¹⁰.

142

143 Furthermore, EMBLEM, not only confirmed the previous lineage hierarchy of AML,
144 but also extended the previous model of pHSC heterogeneity (Figure 2A). In the AML
145 cases with LSCs sequenced by ATAC-seq, the LSCs and their corresponding leukemic
146 blasts have nearly identical heteroplasmic mtDNA mutations (Figure 2B-C and Figure 2-
147 figure supplements 1D), suggesting a direct lineage relationship and short generation
148 history between LSCs and blasts. We then examined whether any of the mtDNA variants
149 present in LSCs can be seen in the pHSCs, where the first leukemia-associated protein-
150 coding mutations have already occurred in functional normal hematopoietic stem cells^{13,14}.
151 We detected blast-associated mtDNA mutations in pHSCs in all 11 cases. Interestingly,
152 we also detected additional heteroplasmic mtDNA mutations present specifically in
153 pHSCs (Figure 2C). In the 11 cases we investigated, 7 cases have pHSC-unique
154 heteroplasmic mtDNA mutations (Figure 2-figure supplement 1D and E), a previously

155 unrecognized level of pHSC heterogeneity. pHSCs are capable of long-term self-renewal
156 and possess a clonal growth advantage, allowing them to clonally outcompete normal
157 HSCs. Indeed, the clonal frequency of pHSCs is a poor prognostic factor for overall
158 survival in AML¹⁴. Our discovery of pHSCs with distinct heteroplasmic mtDNA mutations
159 suggests the existence of multiple distinct sub-clones of pHSCs in AML patients.

160

161 To validate the heterogeneity of pHSCs inferred from EMBLEM of bulk cell
162 populations, we performed single-cell ATAC-seq of HSCs from AML patient SU353, which
163 exhibited both a high burden of pre-leukemic somatic coding gene mutations and high
164 frequency of pHSC-specific heteroplasmic mtDNA mutations¹⁴. We identified the
165 heteroplasmic mtDNA variants from each single cell, which separated the HSCs into three
166 lineages: Two clonal subpopulations termed “clone 1” (18 cells) and “clone 2” (104 cells),
167 and a third population with no mtDNA variants despite sufficient mtDNA coverage (pHSC
168 with WT mtDNA, 31 cells) (Figure 2D). Notably, clone 2 possessed pHSC-specific mtDNA
169 mutations, while clone 1 possessed mtDNA mutations shared with LSCs, indicating
170 clone 1 is the lineage precursor of AML. These results confirm that multiple pHSC clones
171 arise in AML patients, and one subclone eventually evolved to become the LSC (Figure
172 2-figure supplement 2A).

173

174 Finally, we related the clonotype of pHSCs to their single-cell chromatin
175 accessibility profiles. We interrogated the patterns of active DNA elements and enriched
176 transcription factor motifs in sequential stages of AML development from the same patient,
177 and contrasted with HSCs from normal donors using ChromVAR¹⁵ (Figure 2E and Figure
178 2-figure supplement 2B). The chromatin accessibility profiles of pHSCs are more similar
179 to HSCs than to LSCs or leukemic blasts. The greatest deviation between HSC and other
180 cell types occurred at DNA binding motifs of the transcription factor Jun/Fos, a known key
181 regulator of HSC biology¹⁸ (Figure 2F). Furthermore, the three lineages of pHSCs
182 revealed by mtDNA mutations also showed distinctive chromatin profiles (Figure 2G).
183 Clone 1 pHSC, which gives rise to the LSC and AML leukemia, is already more similar to
184 LSCs and blasts in its chromatin accessibility. In contrast, clone 2 that comprises the
185 larger fraction of pHSCs exhibited variable chromatin profiles at the single-cell level that

186 spanned the range of normal HSCs, pHSC with WT mtDNA(WT cells), is also diverged
187 from normal HSCs. Thus, both lineage tracing and single cell epigenomic states indicate
188 clone 1 as the original stem cell of the AML in patient SU353. Supervised comparison of
189 the chromatin accessibility profiles among these clonal sub-populations further identified
190 distinct and significantly enriched transcription factor motifs (Figure 2H and Figure 2-
191 figure supplement 2C-E). These results indicate the heterogeneity of HSCs from AML
192 patients both on a genetic and epigenomic level.

193

194 **Discussion**

195 We present a computational strategy to combine cell lineages tracing by
196 endogenous mtDNA mutations and chromatin accessibility profiling in the same cell using
197 single-cell ATAC-seq data. This approach is applicable to any eukaryote, does not require
198 genetic engineering or genome editing, and is cost effective as the lineage information
199 comes “for free” on top of epigenomic insights. The relative merits of mtDNA vs other
200 genetic markers for lineage tracing are outlined in Supplementary file 3. An important
201 advantage of EMBLEM is that we enable clonotype tracing in existing ATAC-seq data
202 sets and hierarchical lineage construction from ATAC-seq that thousands of labs have
203 already generated. All future ATAC-seq data acquired for other inquiries will also have
204 the benefit of lineage information. EMBLEM may also be extended to other single cell
205 technologies, in which mtDNA is sequenced. We show that EMBLEM is successful even
206 with low frequency heteroplasmic mutations, detection of rare clones in a population, and
207 authentic clinical samples. With advances in the throughput and depth of single-cell
208 genomic technologies, we believe EMBLEM may be a powerful tool to bring insight for
209 many biomedical questions, including development, regeneration, immunity, and cancer
210 with integration of genotype and phenotype information from the same cell. During
211 revision of this work, Ludwig et al. reported the feasibility of using mtDNA and single cell
212 genomics for lineage tracing, which independently validates the potentially broad utility of
213 this approach.¹⁹

214

215 Although powerful and broadly applicable, mtDNA lineage tracing also has its
216 limitations. One limitation of this method is absence of mtDNA mutations in cells and

217 tissues of embryos and young animals, which precluded us from applying EMBLEM to
218 published scATAC-seq data of early animal development. Moreover, the possibility of
219 selective mitochondrial inheritance or intercellular mitochondria transfer may affect the
220 accuracy of inferred lineages²⁰⁻²³. On the other hand, asymmetric transmission of
221 mitochondria would not necessarily affect cellular lineage tracing, as long as the variant
222 alleles are randomly segregated. Using scATAC-seq data from a mixing experiment with
223 human and mouse cells²⁴, we found species-specific mtDNA always paired with species-
224 specific nuclear genomic DNA (Figure 2-figure supplement 4). These results suggest that
225 mitochondrial horizontal transfer is not a confounder of our study and does not universally
226 occur between cells. The aforementioned two scenarios reflect the potential uncoupling
227 of nuclear and mitochondrial genomes, which would be of interest to investigate by
228 EMBLEM in combination with other gDNA tracing methods.

229

230 mtDNA lineage tracing produced new insights concerning the pHSC, the human
231 hematopoietic stem cell that suffers the first oncogenic mutation in AML evolution. Our
232 results add to the evidence that the pHSC population is heterogeneous, with evidence of
233 multiple mtDNA clones. Unexpectedly, the pHSC lineage that gives rise to the
234 subsequent acute myeloid leukemia is not the lineage with the best competitive potential
235 among pHSCs, as the leukemogenic lineage is often in the minority. pHSC burden is a
236 strong poor prognostic predictor of AML survival¹⁴. It is widely believed that the
237 association between high pHSC burden and poor AML patient prognosis reflected the
238 enhanced self-renewal and competitive ability of the mutant pHSC. Our analysis
239 suggests that high pHSC burden may reflect the diversity of pHSCs or the underlying
240 mutational processes. These alternative interpretations of the link between pHSC burden
241 and poor clinical prognosis should be addressed in future studies.

242

243

244 **Material and Methods**

245 **Public data accession.** Aligned bam files for GM12878 whole exome, low coverage
246 whole genome, and PCR free whole genome sequence, were downloaded through phase
247 3 release of 1000 genomes (<ftp://ftp.1000genomes.ebi.ac.uk>)

248 The alignment files were accessed via the following ftp links:

- 249 • ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/exome_alignment
250 /NA12878.mapped.ILLUMINA.bwa.CEU.exome.20121211.bam ./
- 251 • <ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/alignment/NA128>
252 78.mapped.ILLUMINA.bwa.CEU.low_coverage.20121211.bam ./
- 253 • ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/phase3/data/NA12878/high_coverage_al
254 ignment/NA12878.mapped.ILLUMINA.bwa.CEU.high_coverage_pcr_free.201309
255 06.bam ./

256

257 ATAC-seq and single cell ATAC-seq data for GM12878 generated by Buenrostro et al.
258 were downloaded through GEO with accession number GSE47753 and GSE65360,
259 respectively^{7,25}. Bulk ATAC-seq data from normal donors and AML patients generated
260 by Corces et.al¹⁴., were downloaded through GEO with accession number GSE74912.
261 Single cell ATAC-seq data for leukemia stem cell and leukemic blasts generated by the
262 same study were downloaded through GEO with accession number GSE74310. Single
263 cell ATAC-seq from normal HSC generated by Buenrostro et al., were downloaded
264 through GEO with accession number GSE96772²⁶. Supplementary file 1 summarized
265 the detail information of all the datasets used in this study.

266

267 **Comparison of mitochondrial genome capture rate and coverage.** Sequencing reads
268 from ATAC-seq were aligned to the reference genome by BWA alignment tool²⁷. The
269 same reference, GRCh37(used by 1000 genome) and human reference mtDNA
270 sequence rCRS (revised Cambridge reference sequence), were used for ATAC-seq data
271 processing. Samtools²⁸ was used for manipulating sequence reads and calculating
272 sequence depth. For all the data sets, the aligned reads were further filtered with mapping
273 quality (Q >30) and PCR redundancy was removed. The percentage of reads from
274 mitochondrial genome compared to that of the nuclear genome were calculated after all

275 the clean-up steps. The mitochondrial genome coverage was calculated using bases
276 with sufficient sequence quality score ($q > 30$). A strong depletion region around 3107
277 due to the sequencing error(3170N) in the reference genome was excluded in the
278 coverage plot¹⁰.

279

280 **Bulk ATAC-seq data process and mitochondrial DNA variants calling.** Most of the
281 ATAC-seq pipelines remove mtDNA during their process. To rescue the genetic
282 information from mtDNA, we modified our ATAC-seq pipeline and added SNP calling
283 steps, which focuses on the mitochondrial genome. Briefly, adaptor sequences were
284 trimmed from FASTQs using custom Python scripts. Paired-end reads were aligned to
285 the reference genome using BWA. To improve the accuracy of heteroplasmic mutation
286 calling, we followed the somatic mutation calling guidelines from GATK²⁹, with additional
287 clean-up steps before variant calling. Reads mapped to mtDNA were extracted using
288 Samtools²⁸ from the final bam files and variants were called using VarScan2³⁰ with "--
289 min-var-freq 0.001" (Figure 1--figure supplements 1A). The heteroplasmic variants were
290 further filtered through the following steps to exclude potential sequencing or mapping
291 errors:

292

293 1. Thirteen frequent false-positive variants by misalignment due to extensive level of
294 homopolymers in rCRS and due to sequencing error in the reference genome(reported in
295 the previous study¹⁰), were also observed and removed in this study. The following sites
296 were explicitly removed:

297 Misalignment due to ACCCCCCCTCCCCC (rCRS 302-315)

298 A302C, C309T, C311T, C312T, C313T, G316C

299 Misalignment due to GCACACACACACC (rCRS 513-525)

300 C514A, A515G, A523C, C524G

301 Misalignment due to 3107N in rCRS (ACNTT, rCRS 3105-3109)

302 C3106A, T3109C, C3110A

303 2. Strand imbalance is a potential feature of sequencing error with various causes. To
304 remove the potential sequence error from Illumina NextSeq (with a known high error rate
305 at A bases) and sequence error from DAN damage(G->T, C->A)³¹, we required > 2 reads

306 detected from both the forward and reverse orientation, and strand is balanced
307 (30%<forward/(forward + reverse)<70%).

308 3. Variant sites with VAF>0.9, but less than 1, were counted as homoplasmic variants.

309 Although the germline polymorphic can be a back heteroplasmic mutations, the
310 observation of these events is higher than expected, which implies the false positive
311 calling due to mapping bias for non-reference allele and sequencing errors.

312 4. For bulk ATAC-seq data from AML patients, heteroplasmic mutations with variant allele
313 frequency >1% were reported.

314

315 For all the AML cases(n=15) from Corces et.al¹⁴, we selected the cases(n=12) with at
316 least one confident heteroplasmic mtDNA mutation detected in any cell type for lineage
317 relationship comparison. We found that in one patient (SU209), the number of
318 heteroplasmic mutations (37) and their VAF are significantly higher than other patients.

319 Most of these heteroplasmic mutations also overlapped with common variants present in
320 the general human population

321 (http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/ALL.chrMT.phase3_callmo
322 m-v0_4.20130502.genotypes.vcf.gz), which indicates potential sample contamination.
323 Therefore, this case was excluded from lineage relationship comparison and 11 AML
324 cases were finally shown in Figure 2--figure supplements 1.

325

326 **Single cell ATAC library resequencing.** To better evaluate the detection rate in single
327 cell ATAC-seq data, we re-sequenced the previous libraries(LSCs and AML blasts from
328 SU070 and SU373) from Corces et.al¹⁴. The re-sequenced data were uploaded to GEO
329 and accession number is GSE122576.

330

331 **Human AML samples** Human AML samples were obtained from patients at the Stanford
332 Medical Center with informed consent, according to institutional review board (IRB)-
333 approved protocols (Stanford IRB, 18329 and 6453). Mononuclear cells from each
334 sample were isolated by Ficoll separation, resuspended in 90% FBS + 10% DMSO, and
335 cryopreserved in liquid nitrogen. All analyses conducted here on AML cells used freshly
336 thawed cells.

337

338 **Cell Sorting.** Cell samples were first thawed and incubated at 37°C with 200 U/mL
339 DNase in IMDM + 10% FBS. To enrich for CD34+ cells, magnetic bead separation was
340 performed using MACS beads (Miltenyi Biotech) according to the manufacturer's protocol.

341 For cell staining and sorting, the following antibody cocktail was used with the schema
342 shown in Figure 2-- figure supplements 3

343 CD34-APC, clone 581, Biolegend, at 1:50 dilution.

344 CD38-PE-Cy7, clone HB7, Biolegend, 1:25 dilution.

345 CD19-PE-Cy5, clone H1B9, BD Biosciences, 1:50 dilution

346 CD20-PE-Cy5, clone 2H7, BD Biosciences, 1:50 dilution

347 CD3-APC-Cy7, clone SK7, BD Biosciences, 1:25 dilution

348 CD99-FITC, clone TU12, BD Biosciences, 1:20 dilution

349 TIM3-PE, clone 344823, R&D Systems, 1:20 dilution

350 CD45-KromeOrange, clone J.33, Beckman Coulter at 1:25 dilution

351 Samples were sorted using a Becton Dickinson FACS Aria II. pHSCs were re-suspended

352 and kept in cold FACS buffer containing 1 ug/mL propidium iodide prior to and after sorting.

353 Cells were then immediately prepared for single cell ATAC-seq.

354

355 **Single cell ATAC-seq from pHSC.** Cells were washed 2 times in C1 DNA Seq Cell

356 Wash Buffer (Fluidigm). ~10K cells were then re-suspended in 6 mL of C1 DNA Seq Cell

357 Wash Buffer, and were combined with 4 mL of C1 Cell Suspension Reagent, 7 mL of this

358 cell mix was loaded onto the Fluidigm IFC. Cells at a concentration of 260-380 cells/µL

359 were then assayed using scATAC-seq as previously described²⁵. Briefly, single cells

360 were captured using the C1 Single-Cell Auto Prep IFC microfluidic chips. Cells were

361 permeabilized and accessible fragments were captured using 20 µL of Tn5 transposition

362 mix (1.5x TD buffer, 1.5 µL transposease (Nextera DNA Sample Prep Kit, Illumina), 1x

363 C1 Loading Reagent with low salt (Fluidigm), and 0.15% NP40) at 30 minutes at 37°C.

364 In a 96-well plate, 7 µL of harvested libraries were amplified in 50 µL PCR for an additional

365 17 cycles (1.25 µM custom Nextera dual-index PCR primers in 1x NEBnext High-Fidelity

366 PCR Master Mix using the following PCR conditions: 72°C for 5min; 98°C for 30 s;) using

367 the following PCR conditions: 72°C for 5min; 98°C for 30 s; and thermocycling at 98°C

368 for 10 s, 72°C for 30 s, and 72°C for 1 min. The PCR products were pooled creating a
369 final volume of ~4.8 mL. The pooled library was purified on a single MinElute PCR
370 purification column (Qiagen). Libraries were quantified using qPCR prior to sequencing.
371 The scATAC-seq libraries were sequenced by Illumina MiSeq. The sequence data was
372 uploaded to GEO under the accession number GSE122577.

373

374 **Single cell ATAC-seq data processing and mitochondrial DNA variant calling.**
375 Single cell ATAC-seq were processed similarly to the bulk ATAC-seq, taking each
376 individual cell as one sample. Recalibration steps were not applied for single cell data, as
377 the sequence depth is not sufficient to empirically adjust the quality scores. After cleaning
378 the alignment, files from every single cell were merged and heteroplasmic variants were
379 first called with the merged bam and filtered using the same criteria as bulk data.
380 Heteroplasmic variants called from merged data or from bulk data were re-counted in
381 each individual cell using Samtools with "-q 20 -Q 20". And the non-reference allele had
382 to match the variants detected in merged or bulk data.

383

384 **Detection rate estimation.** In every single cell, if the variant allele detected in merged
385 or bulk data were supported by any reads, it was considered positive; otherwise, it was
386 counted as zero. A binary matrix was used to present the lineage relationship among
387 single cells and plotted as a heat map. The intersections of the variants were quantified
388 by the Upset R package³². The number of detected variants showed a correlation with
389 sequencing depth and the number of cells with all variants (Figure 1--figure supplements
390 3 and 4) confirmed the variants already co-existed in the ancestral cell. Following this
391 assumption, the detection rate can be measured as the proportion of cells with variants
392 in the total number of cells. For each variant, cells were separated into different bins,
393 increased by 10, according to the total sequencing depth at each variant. The detection
394 rate for each variant site was then calculated in each bin. The combined detection rate
395 was estimated by $1 - (1 - R_1) * (1 - R_2) * (1 - R_3) * (1 - R_4)$, where R_n is the detection rate for each
396 variant.

397

398 **Lineage inference.** The probability of observing a mutation at a given site is $P_n = n * r$,

399 where r is the average mutation rate in the mitochondrial genome and n is the copy of
400 mtDNAs in a single cell. r is estimated to be $\sim 10^{-7}$ per base³³, n is around 100~10000
401 per cell³⁴, so P_n will be $10^{-5}\sim 10^{-3}$. The probability of N cells sharing the same mtDNA
402 mutations, but raising independently, will be $(P_n)^N$. Thus, when there are more than 3
403 cells in the population sharing a common mtDNA mutation, the probability of these
404 independently occurring will be close to 0. Cells with common mtDNA mutations inherited
405 the mutations from the same ancestral cell is more likely to explain the observation.
406 Furthermore, when a set of mutations (more than 1) is detected in more than 1 cells, the
407 null hypothesis (independently occurred) is rejected more confidently. The mutations
408 within the ancestry cells can be inferred from the intersection of mutations. If a set of
409 mutations are co-existed in the ancestral cell and the absence of mutations in the
410 daughter cells are more likely caused by false detection in single cell libraries or genetic
411 draft during cell replications. Then the observed cells with different intersections (e.g
412 $V1+V2$) will be as expected by $P_{V1} * P_{V2} * N$, after normalized by sequencing depth. The
413 exclusive of intersections from high-frequency mutations will infer the separation of
414 mtDNA mutations and multiple cell lineage. The intersections of the variants were
415 quantified by the Upset R package³². In the scATAC-seq from pHSCs from SU353, the
416 intersection of variants showed most of the cells were separated by two sets of different
417 variants (Figure 2D). But there are a few cells displaying a mixture of variants from the
418 two sets. We suspected these may cause by the doublet of cells in the same well during
419 single cell separation on C1 chip. We further separated the intersection map by the chip
420 and observed the number of cells with mixture variants correlated to the concentration of
421 cells loaded to C1 Chip. These cells were removed during subsequent analysis. Single
422 cells with any variants in the two sets were kept and cells with more than 40X coverage
423 on mtDNA, but no variants in the two sets were considered as wild-type HSCs. After all
424 the filter steps, 153 cells had lineage information and were separated into three
425 subgroups.

426

427 **Single cell ATAC-seq chromatin analysis.** ATAC sequences mapped to the nuclear
428 genome were used for chromatin accessibility profiling. Bam files were merged for the
429 same cell types and used as input files for chromVAR¹⁵. Peak files from Buenrostro et.al²⁶

430 were used as open background regions to quantify the accessibility signal from every
431 single cell. Cells with fewer than 200 unique reads or less than 25% of reads in peak
432 regions were removed for chromatin analysis. chromVAR was applied to calculate TF
433 motif-associated chromatin accessibility landscape changes and identify potential
434 regulators of epigenomic variability. This approach quantifies accessibility variation
435 across single-cells by aggregating accessible regions containing a specific TF motif, then
436 compares the observed accessibility of all peaks containing a TF motif to a background
437 set of peaks normalizing for known technical confounders. For determining differentially
438 accessible motifs between different subpopulations, a Wilcoxon test was used to calculate
439 the p values of the difference between the two groups.

440

441 **Code availability.** Custom analysis code can be downloaded from
442 GitHub(https://github.com/ChangLab/ATAC_mito_sc)³⁵

443

444

445

446 **Acknowledgements**

447 We thank C. Curtis, Ava Carter, Furqan Fazal, Kevin Parker and Chun-Kan Chen for
448 insightful advice and assistance. Supported by US National Institutes of Health P50-
449 HG007735 (to H.Y.C.), R01CA188055 (to R.M.), and R01HL142637 (to R.M.). R.M. is a
450 Scholar of the Leukemia and Lymphoma Society. H.Y.C. is an Investigator of the Howard
451 Hughes Medical Institute.

452

453 **Competing interests**

454 H.Y.C. is a co-founder of Accent Therapeutics and an advisor for 10x Genomics and
455 Spring Discovery. Stanford University has filed a patent on ATAC-
456 seq(US20160060691A1), on which H.Y.C. is named as an inventor.

457

458 **Figure Legends**

459

460 **Figure 1. EMBLEM reveals cell lineage from mtDNA mutations**

461 (A) EMBLEM workflow. Using standard ATAC-seq data as input (left), an SNV calling
462 step was added to enumerate all single nucleotide variants in mtDNA (middle). EMBLEM

463 identifies heteroplasmic mtDNA mutations in single cells, groups mutations into diagnostic
464 sets, and infers cell lineage based on mtDNA variants, and overlays clonotype information
465 on epigenomic profile of the same cells (right).

466 (B) ATAC-seq enriches for mtDNA reads compared to whole exome sequencing (WES),
467 low coverage whole genome sequence (WGS_L), or PCR-free, high-coverage whole
468 genome sequence (WGS_H).

469 (C) Bimodal distribution of variant allele frequency (VAF) of mtDNA mutations discovered
470 using ATAC-seq. Yellow bar presents the homoplasic variants that can distinguish
471 different individuals. Heteroplasmic variants can distinguish clonal cell populations within
472 one individual.

473 (D) Two possible models for 25% mtDNA VAF in bulk: Homoplasic variants in a small
474 proportion of cells (top) or heteroplasmic variants in nearly every single cell (bottom). Blue
475 cells: cells with mutated mtDNA, blue dots: mtDNA with mutated allele.

476 (E) VAF of mtDNA mutations in single cell ATAC-seq data of human B cells. Each dot
477 present the VAF (y-axis) in single cells, and rotated kernel density on each side present
478 their distribution. The x-axis indicates the mutation site (the nucleotide position in
479 mitochondrial genome).

480 (F) mtDNA mutations in human AML. Each row in the heap map is a single cell (LSC or
481 AML blast); each column is a heteroplasmic mtDNA mutation. Blue color indicates the
482 mtDNA variant is detected (>1 reads); white color indicates no mutation. The nucleotide
483 position in mitochondrial genome for each mutation is indicated.

484 (G) Combined set of heteroplasmic mtDNA mutations improve cell lineage assignment in
485 single cells. Cells were first separated into bins according to their mtDNA coverage (x-
486 axis). The detection rate (y-axis) for each site (indicated by different color and shape) is
487 calculated with the number of cells with that mutations divided by total number of cells in
488 that bin. The detection rate of combining four sites (black line, METHOD) is substantially
489 increased.

490 (H) Quantitation of mtDNA mutation detection rate as a function of sequencing depth and
491 number of single cells. Cells were sorted in descending order by their sequencing depth
492 and grouped into bins (10% of cells in each row). Distribution of sequencing depth is
493 shown on the left panel. The black line and dark blue shade indicate mean \pm standard

494 deviation, respectively. The light blue shade indicates remaining value of the bin. Cells
495 with or without mtDNA variants are shown in blue and orange on the right panel,
496 respectively.

497

498 **Figure 2. Clonal evolution of pre-leukemic HSCs inferred from joint lineage tracing
499 and single cell chromatin accessibility.**

500 (A) Lineage hierarchy in acute myeloid leukemia based on EMBLEM and prior genetic
501 information. mtDNA mutations reveals pHSC clonal heterogeneity. The clonal precursor
502 of the leukemic stem cell is not the clone with most representation in the pHSC pool, but
503 rather the clone with epigenomic bias towards the leukemic regulatory program, as
504 depicted by related color schemes.

505 (B) EMBLEM deconvolutes AML clonal heterogeneity. Heteroplasmic mtDNA mutations
506 in three cell populations from patients SU070 are shown. Mutations sites (in rows) in
507 each FACS-sorted cell population (in columns) are shown, with size of each circle
508 representing its VAF. Several mtDNA mutations (sites shown in purple) are detected in
509 pHSCs and transmitted to LSCs and blasts, confirming those pHSC clones at the apex of
510 leukemia lineage. LSCs accumulated additional mtDNA mutations (sites shown in green)
511 and are transmitted to leukemic blasts in patient SU070. Allele frequency, sequencing
512 depth and annotation of the variant allele are shown in Figure 2--figure supplements 1
513 and Supplementary file 2.

514 (C) Same plot as (B) shown for patient SU353. In addition to the shared mtDNA mutations
515 in pHSCs, LSCs, and blasts (purple), two pHSCs-specific mtDNA mutations are also
516 detected (yellow). Allele frequency, sequencing depth and annotation of the variant allele
517 are shown in Figure 2--figure supplements 1 and Supplementary file 2.

518 (D) Heteroplasmic mutations in single pHSCs from one patient reveals clonal
519 heterogeneity. Each column is a mtDNA nucleotide position; each row is one cell. Blue
520 color indicates the presence of the mtDNA variant. Shown are cells with any mtDNA
521 mutation detected, or cells with more than 40X coverage of the mitochondrial genome
522 without any detected mutation(pHSC with WT mtDNA). The number of cells in each
523 clonotype are indicated on the right.

524 (E) Landscape of single-cell chromatin accessibility of blood progenitor and leukemic cells
525 in patient SU353. tSNE map using bias-corrected deviations from chromatin accessibility
526 showing cluster of AML blasts, LSCs, pHSCs and normal HSC, colored by cell types.
527 (F) Chromatin accessibility of the FOS:JUN binding motif across the same single cells.
528 tSNE map colored by deviation z-score for motif associated to FOS:JUN, the most
529 variable TF motif.
530 (G) pHSC clones possess distinct epigenomic signatures. Clone 1 that gives rise to the
531 AML has a chromatin accessibility profile that more resembles LSCs and leukemic blasts.
532 "WT" pHSC refers to the pHSC with WT mtDNA. Clonotype information from EMBLEM is
533 overlaid on the tSNE map defined by TF motif deviations, and colored by different lineal
534 sub-populations defined by mtDNA mutations.
535 (H) Quantitation of distinct single-cell chromatin accessibility at FOS:JUN motifs among
536 different pHSC clones defined by EMBLEM. Clone 1 pHSCs tend to down regulate
537 FOS:JUN accessibility, while clone 2 pHSC shows substantially greater cell-to-cell
538 variability. pHSCs with no detectable mtDNA variants and normal HSCs are shown for
539 comparison. TF deviation of single cells (black dots) is shown on the distribution box-plot.
540 The statistical significant were indicated by “*” when $p<0.05$, “**” when $p<0.01$ (Wilcoxon
541 rank-sum test).

542
543 **Figure 1-figure supplement 1: EMBLEM workflow for SNP calling and lineage**
544 **inference.**

545 (A) Workflow for mitochondrial DNA variant calling from ATAC-seq data. This workflow
546 was applied to both bulk and single cell ATAC-seq. The steps indicated with dotted lines
547 were not applied to single-cell data.
548 (B) Workflow for inferring lineage relationships from single-cell ATAC-seq data. BAM files
549 from single cells were first merged and confident mtDNA variants were called. Mutated
550 alleles from these variant sites were then counted for each single cell. The cell lineage
551 was then inferred from mtDNA variants and analyzed alongside the chromatin profile for
552 each cell.

553

554 **Figure 1-figure supplement 2: mtDNA coverage and variants from different**
555 **sequencing libraries from GM12878 human B cells.**

556 (A) Mitochondrial genome coverage from each of four different sequencing libraries
557 including WGS_H (high coverage PCR-free whole genome sequencing), WGS_L(low
558 coverage whole genome sequencing), WES(whole exome sequencing), ATAC-seq. The
559 Y axis shows coverage scaled in \log_{10} . 43M paired-end ATAC-seq reads(2x50bp) yielded
560 the same coverage of mtDNA as 747M paired-end reads(2x250bp) from WGS-H data.

561 (B) Comparison of variants detected in sequencing data from four different library
562 preparations. The number of variants detected in each library is shown on the bottom left.
563 The intersection of different libraries (bottom-right) and the number of variants s are
564 shown on the top. Homoplasmic variants are in yellow and heteroplasmic variants are in
565 blue.

566 (C) Heteroplasmic mtDNA mutations detected by WGS_H(in blue) and ATAC-seq(in
567 red). The X axis is the position of the mutation on mitochondrial genome and Y axis is the
568 variant allele frequency in percentage.

569

570 **Figure 1-figure supplement 3: Heteroplasmic mtDNA mutation in K562 cells.**

571 (A) Percentage of mtDNA reads in ATAC-seq and whole genome sequence(WGS)
572 libraries from human K562 cells. 4 millions mtDNA reads from 32 millions total mapped
573 reads in ATAC, 7 millions mtDNA reads from 1775 millions total reads in WGS.

574 (B) The average coverage of the mitochondrial genome in ATAC and WGS form K562
575 cells.

576 (C) Number of heteroplasmic mtDNA mutations detected in ATAC and WGS. The
577 intersection size represents mutations detected by single or both methods.

578 (D) Variant allele frequency of mtDNA mutations and their correlation between ATAC and
579 WGS. The red dots indicates the mutations detected by both ATAC and WGS, with the
580 same criteria. The black dots indicates the mutations detected by ATAC or WGS only.

581

582 **Figure 1-figure supplement 4: Heteroplasmic variants in single cells from AML**
583 **blasts and LSCs (SU353)**

584 (A) Heatmap showing variant mitochondrial sites (columns) in each AML blast from
585 patient SU353(rows). The color represents the number of reads supporting the variant

586 allele (log₂(depth)). The first two sites are negative controls, which are detected in pHSCs
587 only.
588 (B) Bar plot showing the number of cells in which we detect each mitochondrial variant.
589 The last bar shows the number of cells with any one of the four variants detected.
590 (C) The top right shows the number of cells with each different combination of variants
591 detected. The number of cells is shown on top of the bar. The combination of variants
592 detected is annotated below the bar. The total number of cells with each variant site
593 detected is shown to the left. The average coverage of the mitochondrial genome for each
594 intersection group is shown below.
595 (D) VAF of mtDNA variants. The x-axis indicates the variant site notated by the nucleotide
596 position in the mitochondrial genome. Each dot represents the VAF (y-axis) in single cells
597 and the rotated kernel density on each side shows their distribution.
598 (E-H) Same as (A-D), for leukemia stem cells (LSCs) from patient SU353.
599

600 **Figure 1-figure supplement 5: Heteroplasmic variants in single cells from AML
601 blasts and LSCs (SU070)**

602 (A-D) Same as Figure 1--figure supplement 3 A-D for AML blasts from SU070.
603 (E-H) Same as Figure 1--figure supplement 3 A-D for LSCs from SU070.
604 (I) Quantification of the detection rate for each heteroplasmic variant from mtDNA. Cells
605 (both LSCs and AML blasts) were first separated into bins according to their coverage of
606 mtDNA (x-axis). The detection rate (y-axis) for each site (notated by different color and
607 shape) is calculated as the number of cells with that variant detected divided by the total
608 number of cells in that bin.
609 (J) Quantitation of mtDNA mutation detection rate as a function of sequencing depth and
610 the number of single cells. Cells were sorted in descending order by their sequencing
611 depth and grouped into bins (10 cells in each row). Distribution of sequencing depth is
612 shown on the left panel. Cells with or without mtDNA mutations are shown in blue or
613 orange, respectively.

614
615 **Figure 2-figure supplement 1: Heteroplasmic mtDNA mutations detected in bulk
616 ATAC-seq from AML patients.**

617 (A) The number of heteroplasmic variants detected using ATAC-seq data from normal
618 primary blood cells and cancer cells from AML patients.

619 (B) The number of mtDNA variants identified from normal and cancer samples in different
620 substitution classes are shown as a bar plot. Mutations from normal (gray) and cancer
621 (yellow) samples are separated. The C>T and T>C signature in cancer mtDNA has been
622 observed in previous studies and it's equivalent to the one that has been operating during
623 the evolution of human germline mtDNAs.

624 (C) Annotation of mtDNA mutations and the proportion of mutations in coding and non-
625 coding regions. Coding mutations are divided into synonymous, nonsynonymous, and
626 gain of stop codon. Heteroplasmic mutations detected from cancer samples show a
627 similar distribution as those from normal samples, with a slightly higher proportion falling
628 within coding regions.

629 (D) Heteroplasmic mutations in three cell stages for each AML patient. Variant allele (in
630 rows) in each cell population (in columns) are shown with a circle, with size indicating
631 their variant allele frequency. Sequencing depth of the variant allele is indicated by the
632 color of the circle (in \log_2 scale). pHSC specific mutation sites are in red. Allele frequency
633 and annotation of mtDNA mutations were shown in Supplementary file 2

634 (E) Heteroplasmic mutations in two cell stages for each AML patient. Variant allele (in
635 rows) in each cell population (in columns) are shown with a circle, with size indicating
636 their variant allele frequency. Sequencing depth of the variant allele is indicated by the
637 color of the circle (in \log_2 scale). pHSC specific mutation sites are in red. Allele frequency
638 and annotation of mtDNA mutations were shown in Supplementary file 2

639

640 **Figure 2-figure supplement 2: Single cell chromatin accessibility**

641 (A) Phylogenetic relationship of cells from SU353 was inferred using the Neighbor-Joining
642 method. The phylogenetic tree is drawn to scale, with branch lengths in the units of the
643 number of base difference per site. The clade in purple matched to clone 1 and the clade
644 in yellow matched to clone2 in Figure 2D. The cell type and mtDNA variants in each single
645 cell are shown on the right. 229 single cells with at least one of the six heteroplasmic
646 mtDNA mutations were included.

647 (B) Heat map showing clusters of pHSCs from SU353 and normal HSCs from a healthy
648 donor, based on the z-score of TF deviation. The Z-scored deviation is shown for
649 individual cells (columns) for each TF (rows). Clone information is shown on the top of
650 the heat map. Top 50 most variable motifs were used in this heat map.
651 (C) Volcano plot showing the difference in chromatin accessibility for transcription factor
652 binding motifs between Clone 1 and Clone 2. The x-axis shows the mean difference of
653 bias-corrected deviations and the y-axis shows the p-value (in \log_{10} scale). The most
654 significant differential motifs are annotated with TF names.
655 (D) Same as in (C) for Clone 1 vs. WT cells.
656 (E) Same as in (C) for Clone 2 vs. WT cells. No significantly differential motifs were
657 detected.
658

659 **Figure 2--figure supplements 3: Sorting Scheme for pHSCs.**
660 Scheme of FACS sorting of the pHSC population from AML patient SU353. Initial sort (top
661 panel) and post-sort purity (bottom panel) are shown.
662

663 **Figure 2-figure supplement 4: Investigation of horizontal mitochondrial transfer**
664 **using mixing experiment from mouse and human cells.**
665 (A) Scatter plot shows the number of unique reads mapped to human and mouse nuclear
666 genome(gDNA). Red circle indicates cell doublet. Sequence reads from each single cell
667 were mapped to human and mouse combined reference genome. Unique mapped reads
668 on gDNA and mtDNA were counted respectively.
669 (B) Scatter plot shows the number of unique reads mapped to human and mouse
670 mitochondrial genome(mtDNA). Red circle indicates cell doublet.
671 (C) Species-specific score for gDNA and mtDNA. The species-specific score was
672 calculated with $(\text{Chuman}/(\text{Chuman}+\text{Cmouse})-0.5)$. “-0.5” or “0.5” indicate 100% alignment
673 to mouse or human reference. The positive correlation between gDNA and mtDNA
674 indicates the species-specific mtDNA always paired with species-specific gDNA.
675

676 **Supplementary file 1: Information of datasets utilized in this study.**
677

678 **Supplementary file 2: Heteroplasmic mtDNA mutations detected in each AML**
679 **patient.** Allele frequency, sequence coverage and annotation information of the variants
680 are provided.

681

682 **Supplementary file 3: Relative merits of mtDNA vs. other genetic markers for**
683 **lineage tracing**

684

685 **References**

- 686 1. Woodworth, M. B., Girsikis, K. M. & Walsh, C. A. Building a lineage from single
687 cells: Genetic techniques for cell lineage tracking. *Nat. Rev. Genet.* **18**, 230–244
688 (2017).
- 689 2. Spanjaard, B. *et al.* Simultaneous lineage tracing and cell-type identification using
690 CrISPr-Cas9-induced genetic scars. *Nat. Biotechnol.* **36**, 469–473 (2018).
- 691 3. Lee-Six, H. *et al.* Population dynamics of normal human blood inferred from
692 somatic mutations. *Nature* **561**, 473–478 (2018).
- 693 4. Wang, Y. *et al.* Clonal evolution in breast cancer revealed by single nucleus
694 genome sequencing. *Nature* **512**, 155–160 (2014).
- 695 5. Ervony, G. D. *et al.* Cell Lineage Analysis in Human Brain Using Endogenous
696 Retroelements. *Neuron* **85**, 49–60 (2015).
- 697 6. Biezuner, T. *et al.* A generic, cost-effective, and scalable cell lineage analysis
698 platform. *Genome Res.* **26**, 1588–1599 (2016).
- 699 7. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J.
700 Transposition of native chromatin for fast and sensitive epigenomic profiling of
701 open chromatin, DNA-binding proteins and nucleosome position. *Nat. Methods*
702 **10**, 1213–8 (2013).
- 703 8. Morris, J. *et al.* Pervasive within-Mitochondrion Single-Nucleotide Variant
704 Heteroplasmy as Revealed by Single-Mitochondrion Sequencing. *Cell Rep.* **21**,
705 2706–2713 (2017).
- 706 9. Fellous, T. G. *et al.* A methodological approach to tracing cell lineage in human
707 epithelial tissues. *Stem Cells* **27**, 1410–1420 (2009).
- 708 10. Ju, Y. S. *et al.* Origins and functional consequences of somatic mitochondrial
709 DNA mutations in human cancer. *Elife* **3**, 1–28 (2014).
- 710 11. Jan, M. *et al.* Clonal evolution of preleukemic hematopoietic stem cells precedes
711 human acute myeloid leukemia. *Sci. Transl. Med.* **4**, 149ra118 (2012).
- 712 12. Thomas, D. & Majeti, R. Review Series Biology and relevance of human acute
713 myeloid leukemia stem cells. (2017). doi:10.1182/blood
- 714 13. Corces-Zimmerman, M. R., Hong, W.-J., Weissman, I. L., Medeiros, B. C. &
715 Majeti, R. Preleukemic mutations in human acute myeloid leukemia affect
716 epigenetic regulators and persist in remission. *Proc. Natl. Acad. Sci.* **111**, 2548–
717 2553 (2014).
- 718 14. Corces, M. R. *et al.* Lineage-specific and single-cell chromatin accessibility charts
719 human hematopoiesis and leukemia evolution. *Nat. Genet.* **48**, 1193–1203

720 (2016).

721 15. Schep, A. N., Wu, B., Buenrostro, J. D. & Greenleaf, W. J. ChromVAR: Inferring
722 transcription-factor-associated accessibility from single-cell epigenomic data. *Nat. Methods* **14**, 975–978 (2017).

723 16. Kharchenko, P. V., Silberstein, L. & Scadden, D. T. Bayesian approach to single-
724 cell differential expression analysis. *Nat. Methods* **11**, 740–742 (2014).

725 17. Zhang, L. & Zhang, S. Comparison of computational methods for imputing single-
726 cell RNA-sequencing data. *IEEE/ACM Trans. Comput. Biol. Bioinforma.* **PP**, 1
727 (2018).

728 18. Santaguida, M. *et al.* JunB Protects against Myeloid Malignancies by Limiting
729 Hematopoietic Stem Cell Proliferation and Differentiation without Affecting Self-
730 Renewal. *Cancer Cell* **15**, 341–352 (2009).

731 19. Ludwig, L. S. *et al.* Lineage Tracing in Humans Enabled by Mitochondrial
732 Mutations and Single-Cell Genomics. *Cell* 1–15 (2019).
733 doi:10.1016/j.cell.2019.01.022

734 20. Mishra, P. & Chan, D. C. Mitochondrial dynamics and inheritance during cell
735 division, development and disease. *Nat. Rev. Mol. Cell Biol.* **15**, 634–646 (2014).

736 21. Moschoi, R. *et al.* Protective mitochondrial transfer from bone marrow stromal
737 cells to acute myeloid leukemic cells during chemotherapy. *Blood* **128**, 253–265
738 (2016).

739 22. Marlein, C. R. *et al.* NADPH oxidase-2 derived superoxide drives mitochondrial
740 transfer from bone marrow stromal cells to leukemic blasts. *Blood* **130**, 1649–
741 1660 (2017).

742 23. Hayakawa, K. *et al.* Transfer of mitochondria from astrocytes to neurons after
743 stroke. *Nature* **535**, 551–555 (2016).

744 24. Satpathy, A. T. *et al.* Transcript-indexed ATAC-seq for precision immune profiling.
745 *Nat. Med.* **24**, 1 (2018).

746 25. Buenrostro, J. D. *et al.* Single-cell chromatin accessibility reveals principles of
747 regulatory variation. *Nature* **523**, 486–490 (2015).

748 26. Buenrostro, J. D. *et al.* Integrated Single-Cell Analysis Maps the Continuous
749 Regulatory Landscape of Human Hematopoietic Differentiation. *Cell* **173**, 1535–
750 1548.e16 (2018).

751 27. Li, H., Li, H., Durbin, R. & Durbin, R. Fast and accurate short read alignment with
752 Burrows-Wheeler transform. *Bioinformatics* **25**, 1754–1760 (2009).

753 28. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinformatics*
754 **25**, 2078–2079 (2009).

755 29. McKenna, A. *et al.* The Genome Analysis Toolkit: A MapReduce framework for
756 analyzing next-generation DNA sequencing data. *Genome Res.* **20**, 1297–1303
757 (2010).

758 30. Koboldt, D. C. *et al.* VarScan 2: Somatic mutation and copy number alteration
759 discovery in cancer by exome sequencing. *Genome Res.* **22**, 568–576 (2012).

760 31. Chen, L., Liu, P., Evans, T. C. & Ettwiller, L. M. DNA damage is a pervasive
761 cause of sequencing errors, directly confounding variant identification. *Science*
762 (80-.). **355**, 752–756 (2017).

763 32. Conway, J. R., Lex, A. & Gehlenborg, N. UpSetR: an R package for the
764 visualization of intersecting sets and their properties.

765

766 doi:10.1093/bioinformatics/btx364

767 33. Coller, H. A. *et al.* High frequency of homoplasmic mitochondrial DNA mutations
768 in human tumors can be explained without selection. *Nat. Genet.* **28**, 147–150
769 (2001).

770 34. Miller, F. J., Rosenfeldt, F. L., Zhang, C., Linnane, A. W. & Nagley, P. Precise
771 determination of mitochondrial DNA copy number in human skeletal and cardiac
772 muscle by a PCR-based assay: lack of change of copy number with age. *Nucleic
773 Acids Res.* **31**, e61 (2003).

774

775 35. Jin Xu. 2019 ATAC_mito_sc. Github https://github.com/ChangLab/ATAC_mito_sc.

776 1c1946a

Figure 1

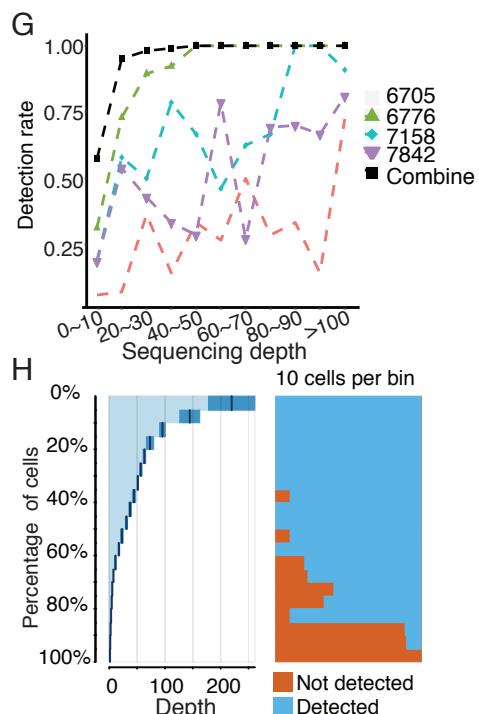
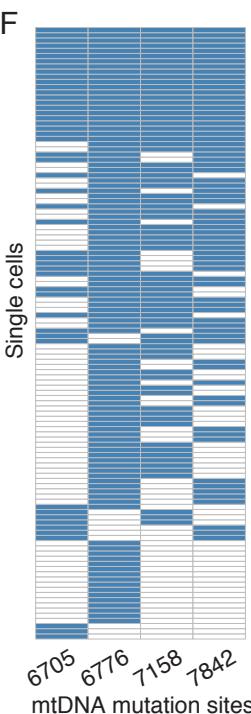
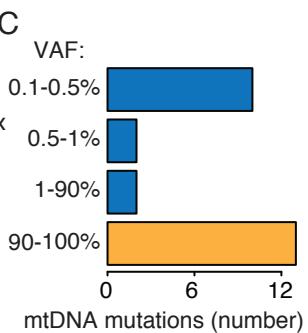
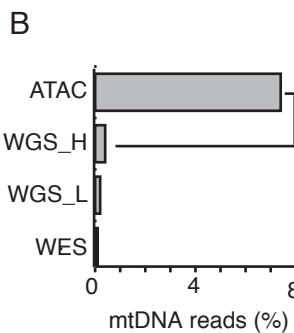
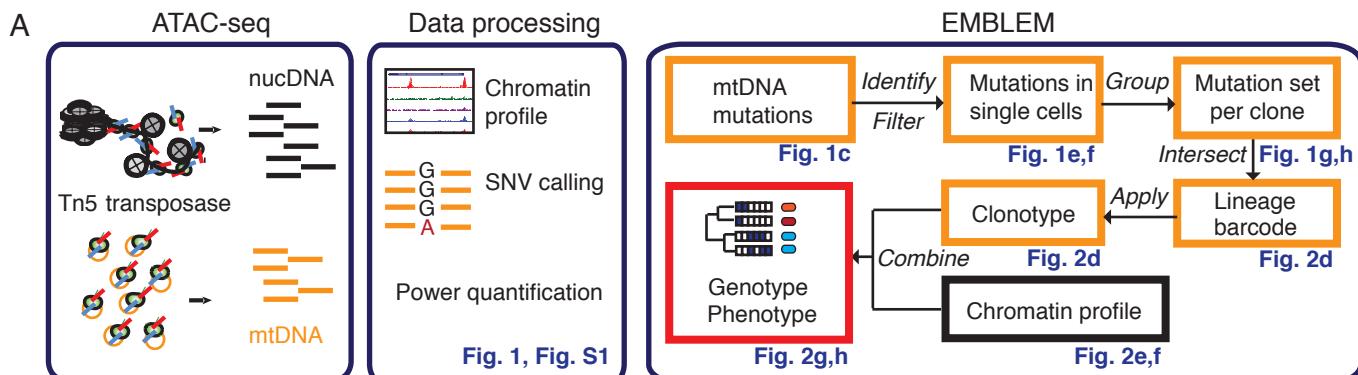
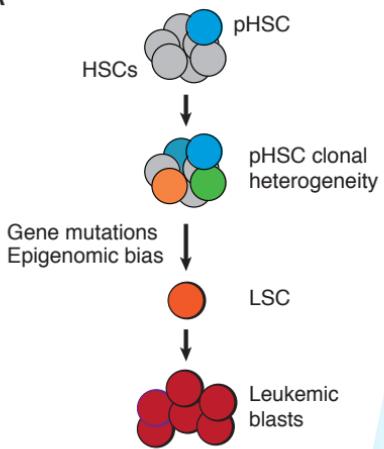
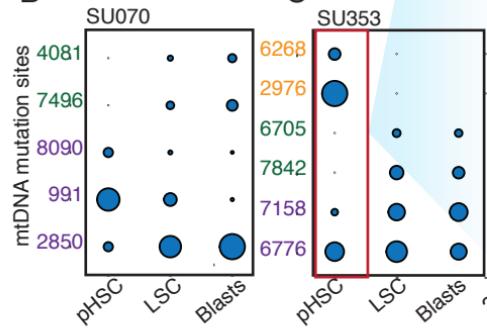
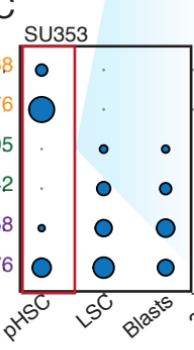
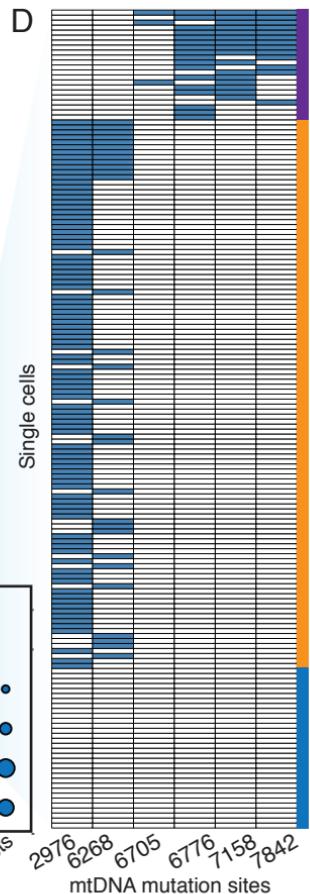
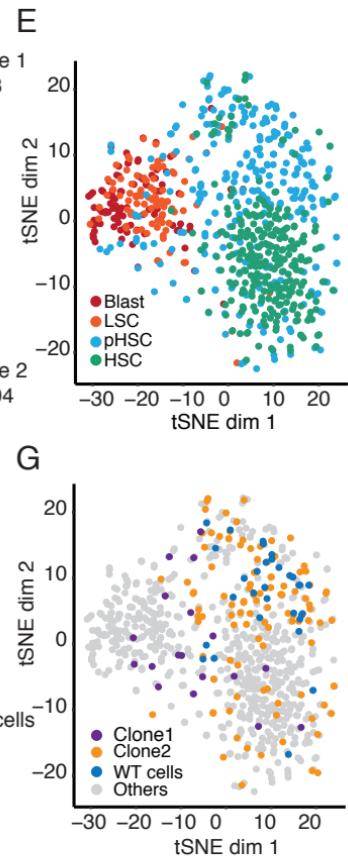
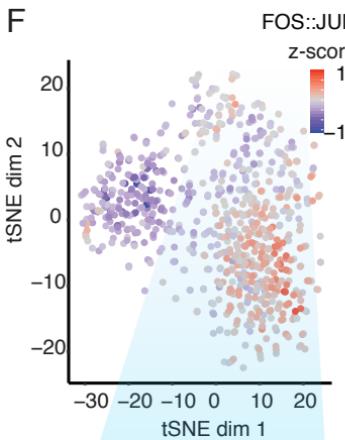








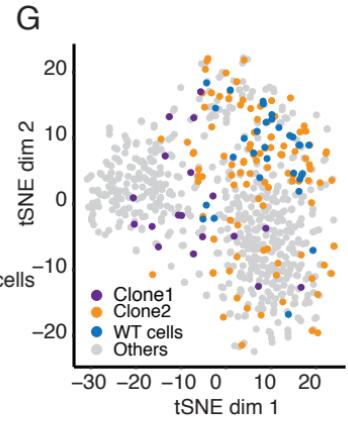
Figure 2


A


B


C


D


E

F

G

H

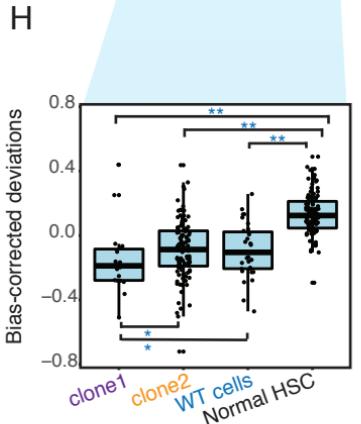


Figure 1-S1

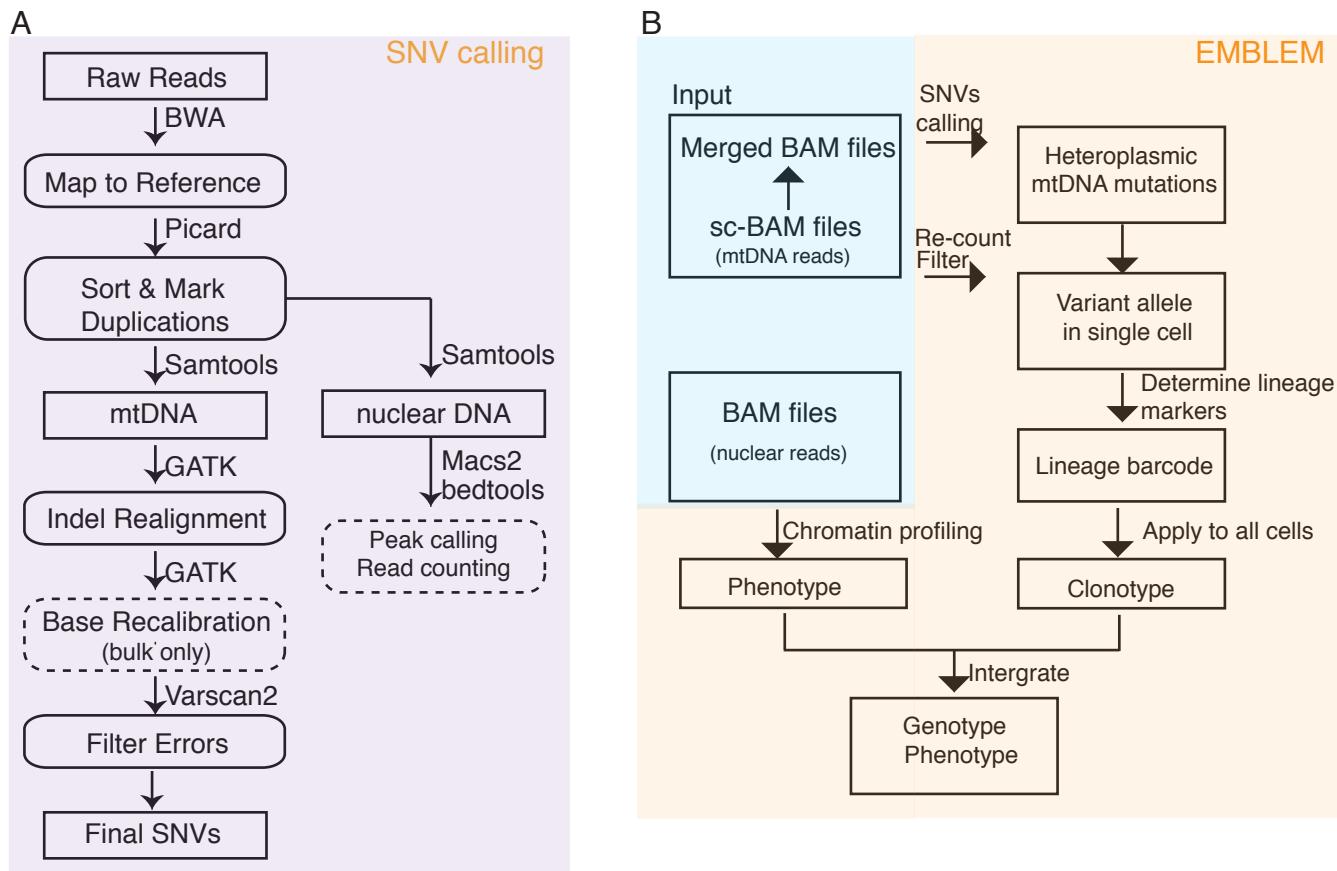


Figure 1-S2

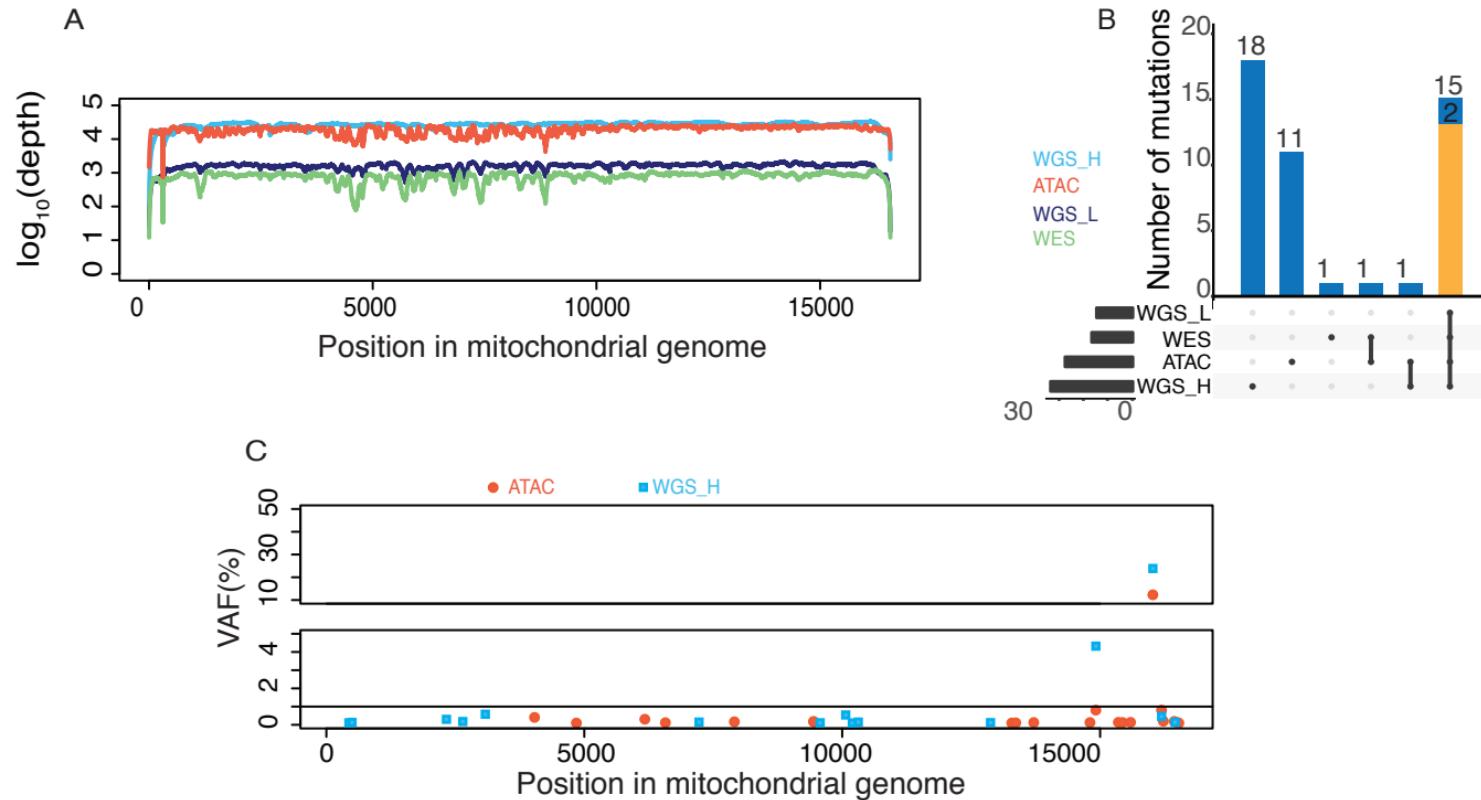


Figure 1-S3

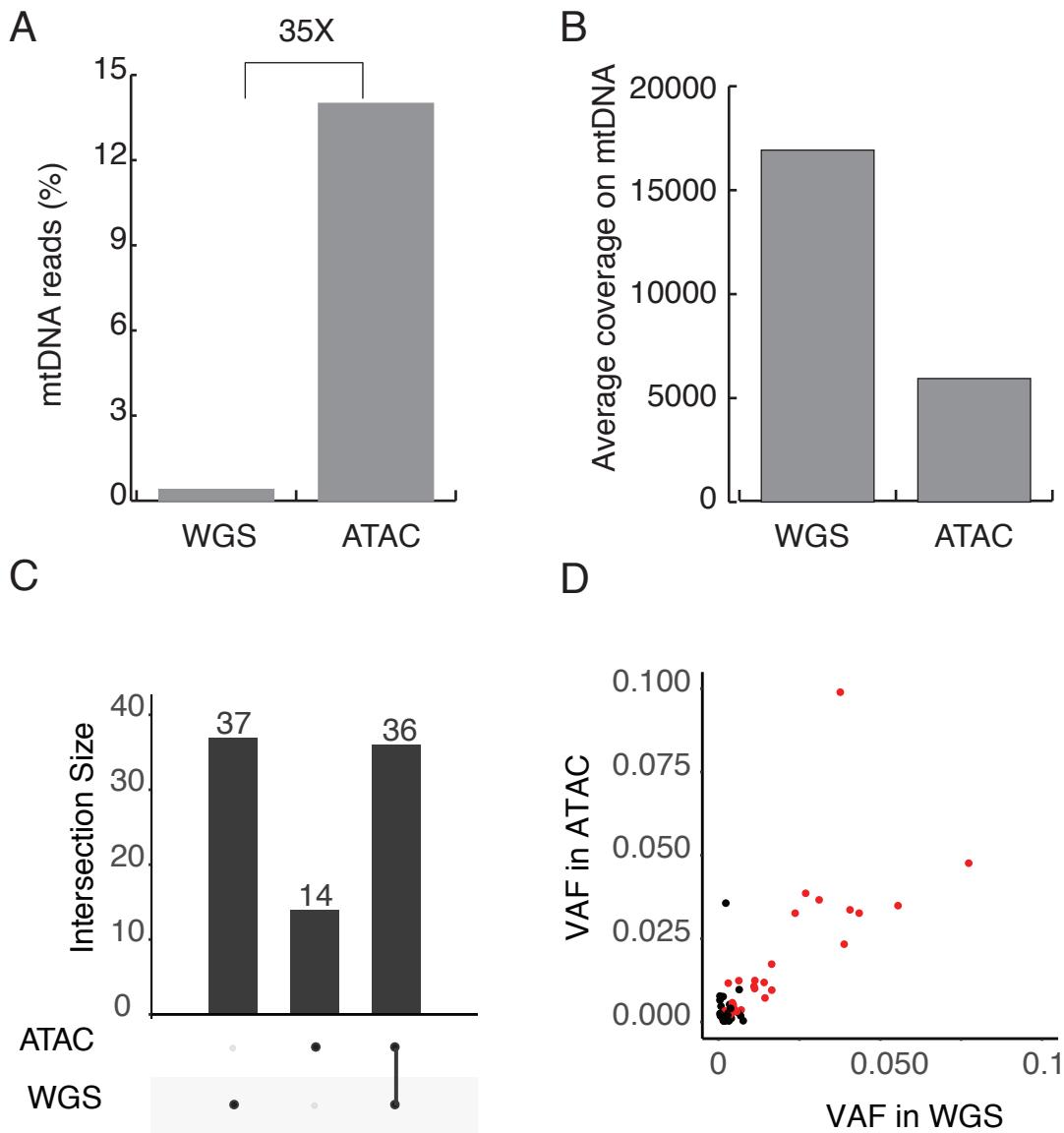


Figure1-S4

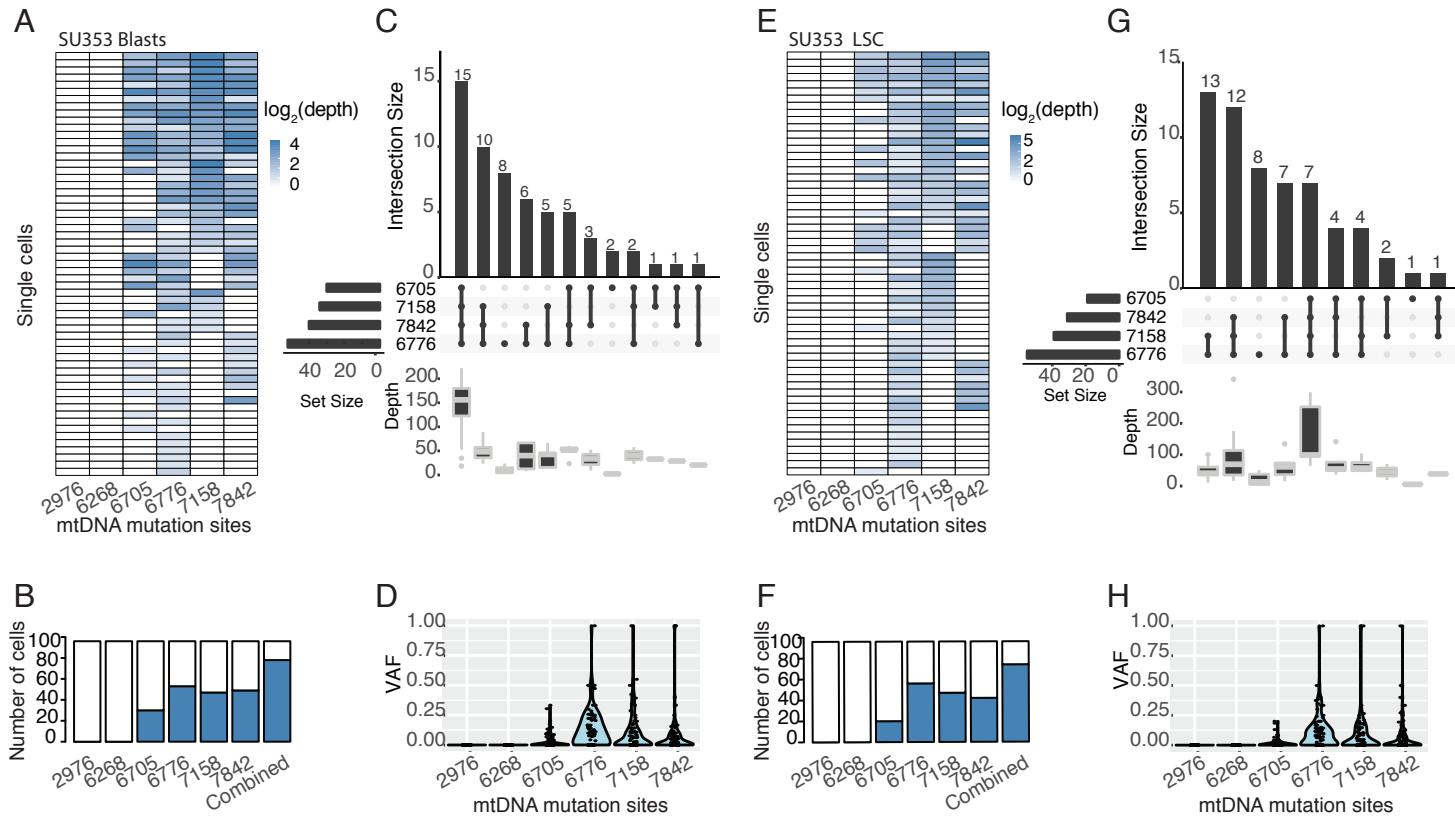


Figure1-S5

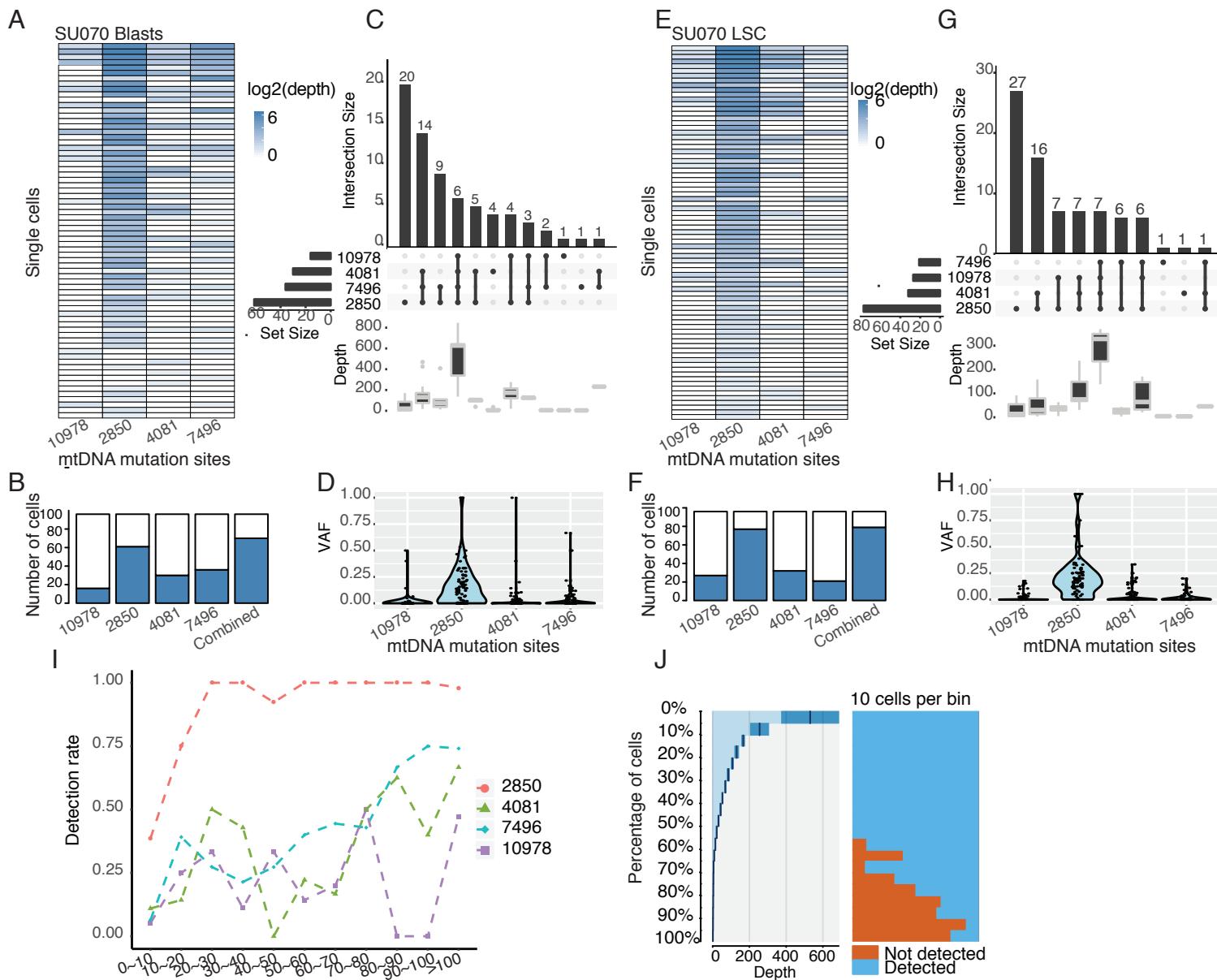


Figure2-S1

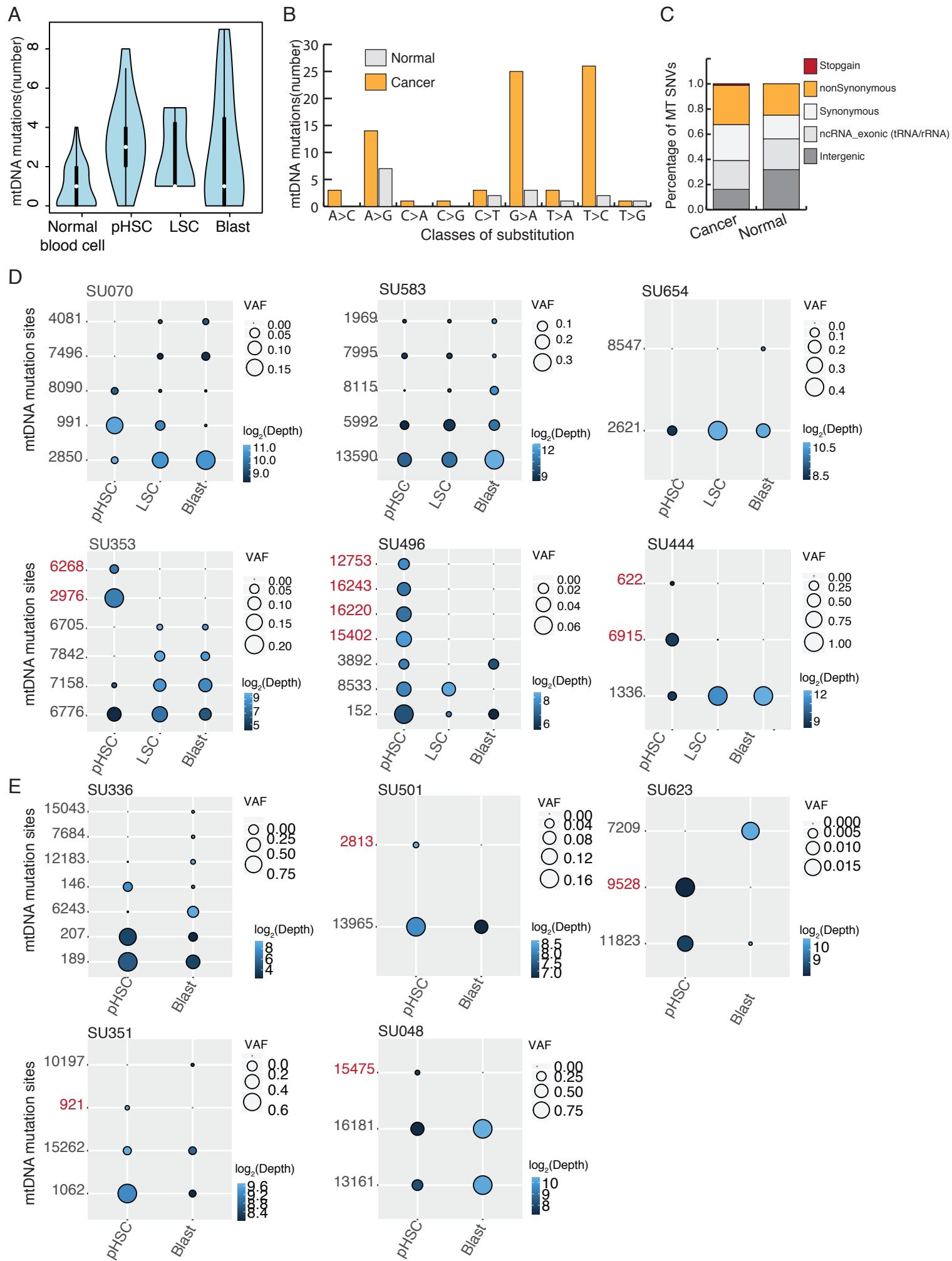
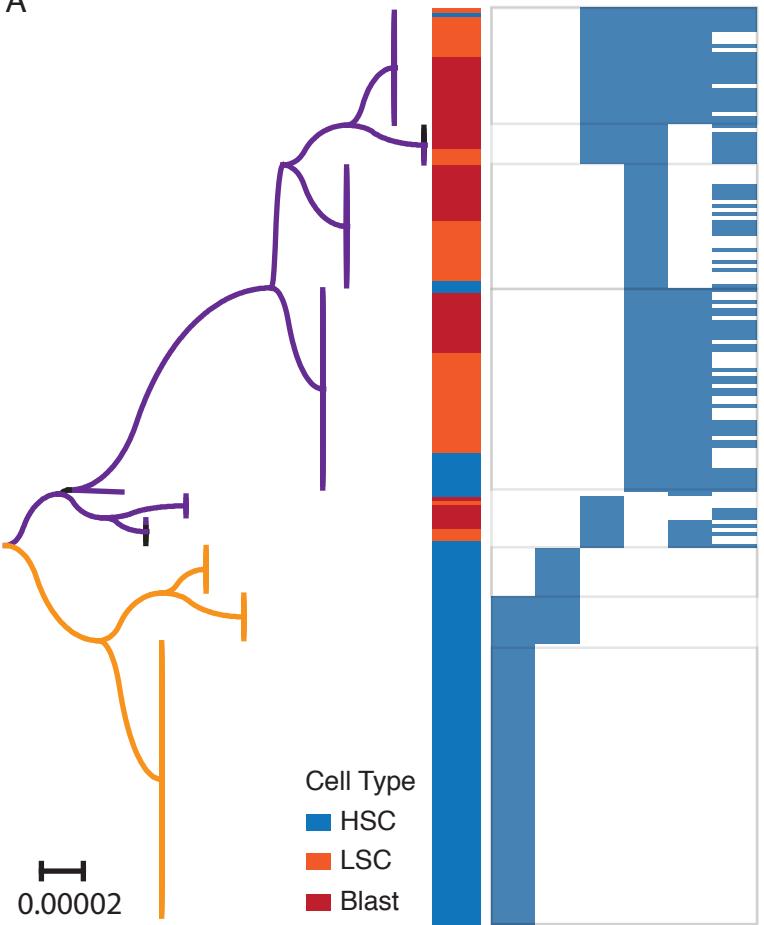
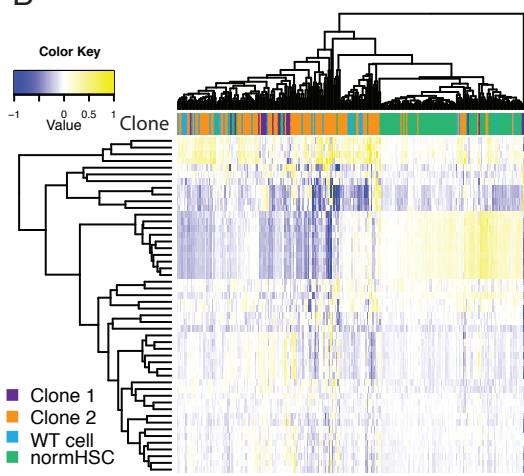
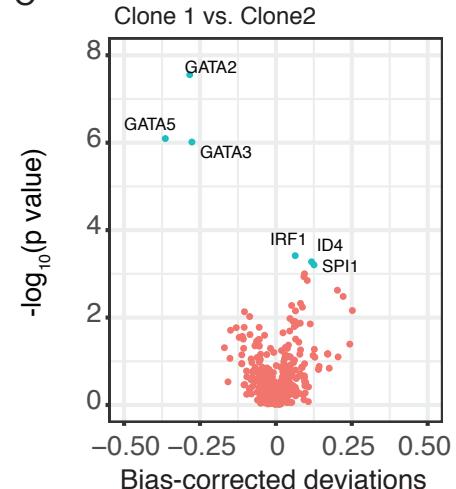
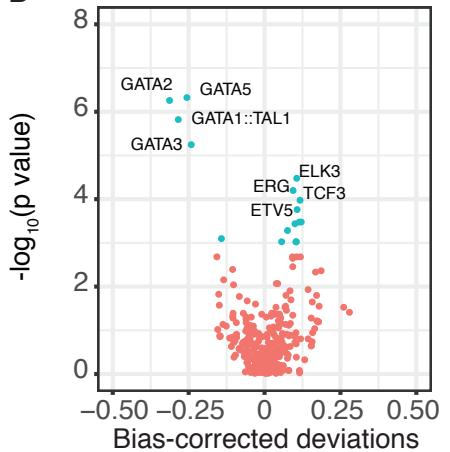




Figure2- S2


A


B

C

Clone 1 vs. WT cells

E

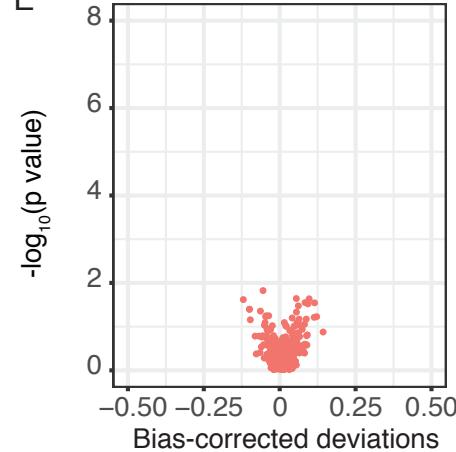
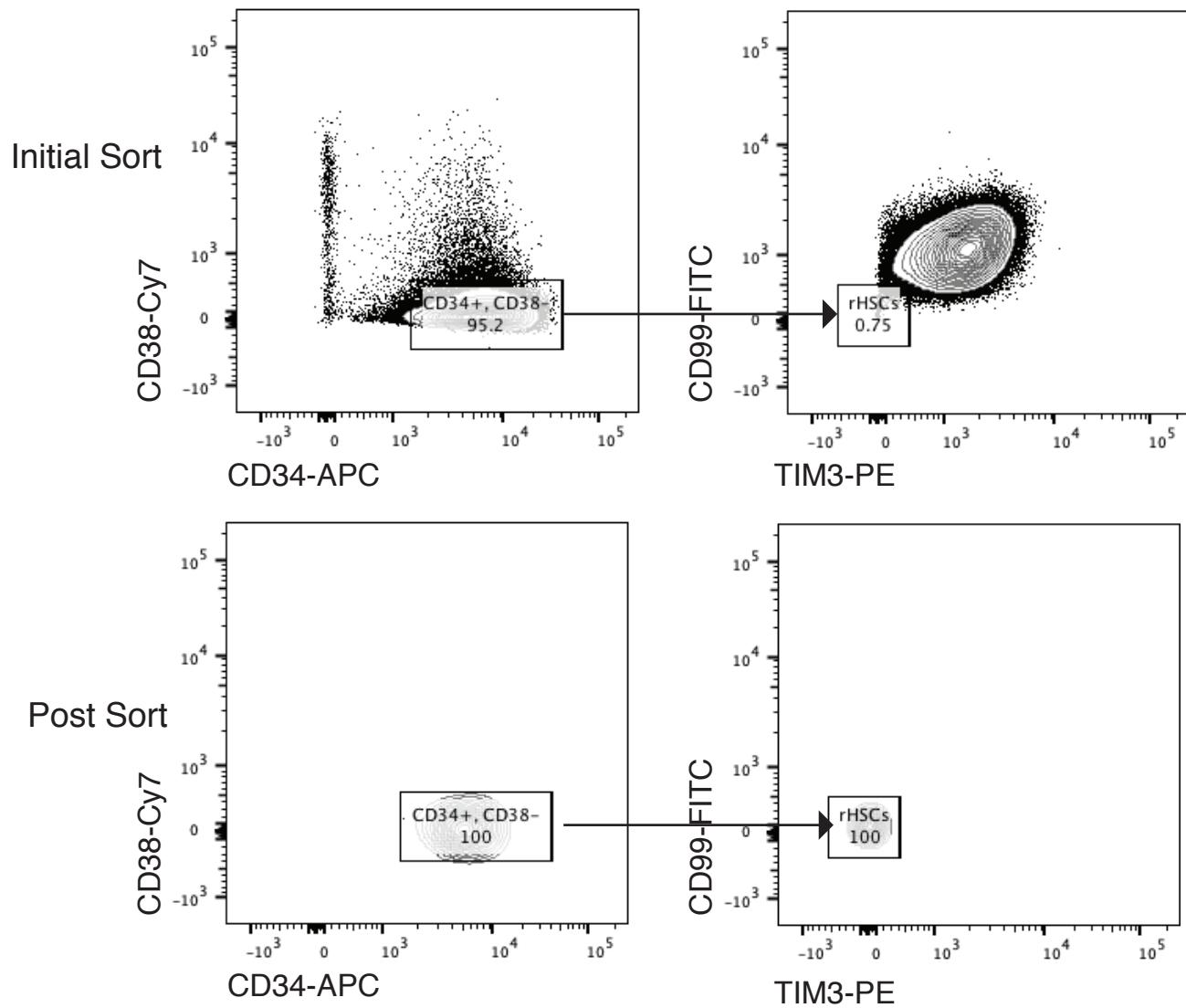
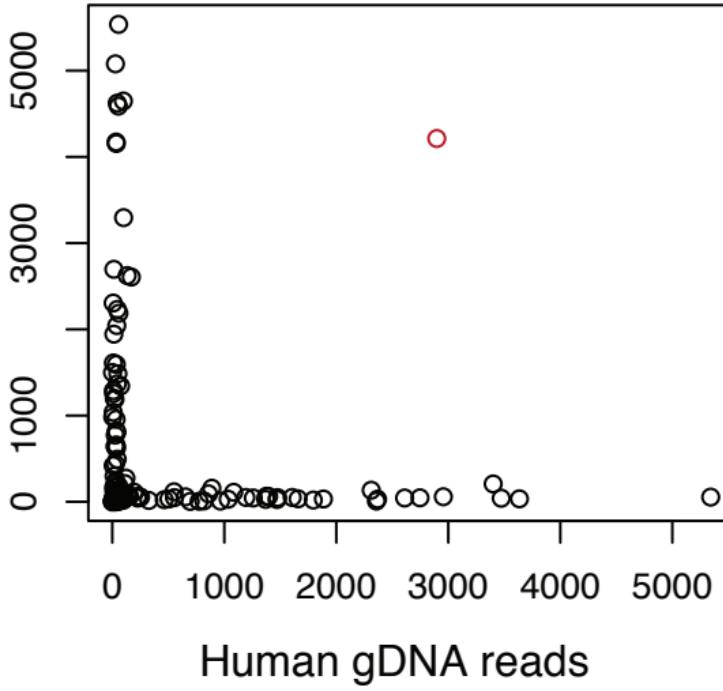
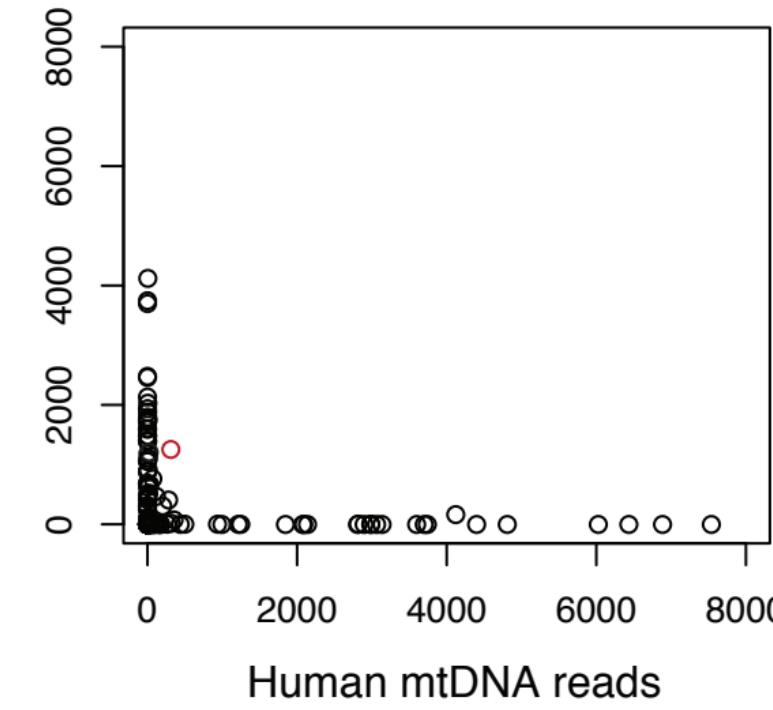
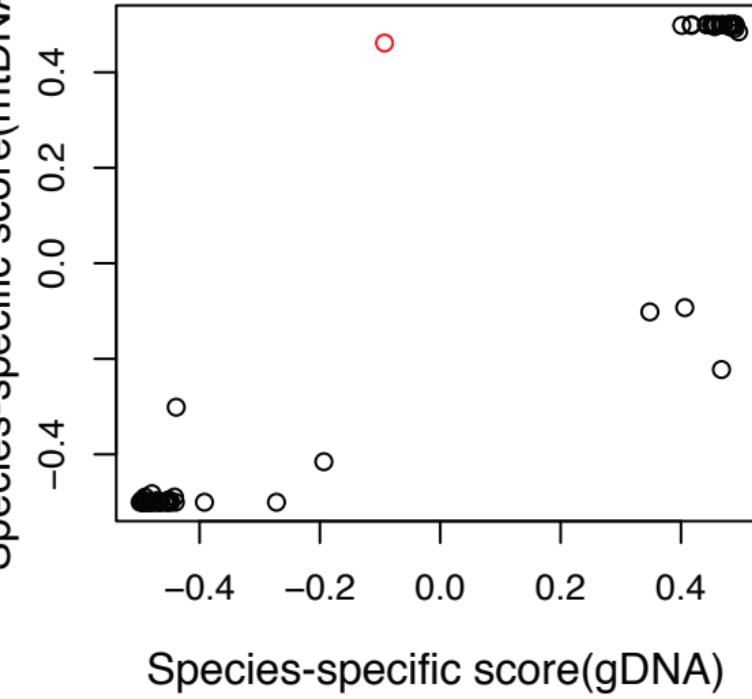




Figure2- S3



A


Mouse gDNA reads

B

Mouse mtDNA reads

C

Species-specific score(mtDNA)

