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SYNTHETIC BIOLOGY

Minimal cells, maximal

knowledge

Modeling all the chemical reactions that take place in a minimal cell will

help us understand the fundamental interactions that power life.
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f we could map and understand every single

molecular process in a cell, we would have a

better grasp of the fundamental principles
of life. We could ultimately use this knowledge
to design and create artificial organisms. An
obvious way to start this endeavor is to study
minimal cells, natural or synthetic organisms that
contain only the bare minimum of genetic infor-
mation needed to survive. By building and
studying these very simplified cells — so simple
they have been described as the ‘hydrogen
atoms of biology’ (Morowitz, 1984) — we may
be able to dissect all the molecular mechanisms
required to sustain cellular life.

The elucidation of the DNA double helix in
1953, and the subsequent cracking of the
genetic code, made it possible to link molecular
processes to DNA sequences (Figure 1). In turn,
whole genome sequencing has revealed a col-
lection of molecular in the
genomes of a great number of organisms, start-
ing in 1995 with the first complete bacterial

roles encoded

genomes (Fleischmann et al, 1995;
Fraser et al., 1995), and then expanding thanks
to next-generation sequencing methods
(McGuire et al., 2008; Spencer, 2008). Yet, this
has also showed that we do not know or can
only guess the roles of many genes which are
essential to life.

In 2008, as large-scale sequencing projects
were initiated, a group of scientists at the J.
Craig Venter Institute (JCVI) artificially recreated
the genome of a bacterium. The team made
DNA fragments in the laboratory, and then used
a combination of chemistry and biology techni-
ques to assemble the pieces 'in the right order’,
using the genetic information of the Myco-
plasma genitalium bacteria as a template
(Gibson et al., 2008). This marked a significant
branching point in the history of biology: while
the previous decades had focused on acquiring
as much knowledge as possible about natural
organisms, creating a genome from scratch in a
laboratory demonstrated the potential to design
synthetic cells (Figure 1). This shifted synthetic
biology, the field in which researchers try to
build biological entities, towards an engineering
discipline that could work at the scale of a
genome. The same team then went on to build
Mycoplasma mycoides JCVI-syn1.0, the first liv-
ing cell with an entirely artificial chromosome
(Gibson et al., 2010). In both cases, the artificial
genetic information faithfully replicated that
found in the wild-type bacteria.

The next goal was to piece together an artifi-
cial genome that contains only those genes that
are absolutely necessary for life and growth. In
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Figure 1. Synthetic biology and minimal cells: an historical perspective. Elucidating the DNA double helix marked the beginning of the molecular
biology era, and it became possible to study molecular mechanisms that underpinned observable phenotypes. DNA sequencing methods improved,
leading to whole-genome sequencing at the end of the 1990s. Methods for mathematical cell modeling were developed during the 1980s and 1990s,
and computer simulations of metabolic networks (also known as genome-scale models of metabolism, or GEMs) could be reconstructed. A defining
moment took place in 2008 (red), with the creation of the first artificial genome that mimicked the genetic information of M. genitalium, the free-living,
non-synthetic organism with the smallest genome. Thanks to developments in next-generation sequencing methods, this was paired with the rise of
large-scale genome sequencing ventures, such as the human microbiome and the 1000 genomes projects. Advances in whole-genome synthesis,
assembly, and transplantation helped create the first cell living with an entirely synthetic genome shortly after. Taken together, these achievements
marked the coming of age for synthetic biology.

2016, after years of design and testing, the
genetic information in JCVI-syn1.0 was whittled
down to produce M. mycoides JCVI-syn3.0,
which harbors the smallest genome of any free-
living organism (Hutchison et al., 2016). Nota-
bly, JCVI-syn3.0 was originally reported to con-
tain 149 genes whose roles were unknown. Since
then this number has shrunk to 91, and further
reducing this figure still represents the next chal-
lenge in synthetic biology (Danchin and Fang,
2016).

Now, in elife, Zan Luthey-Schulten and col-
leagues at the JCVI, the University of lllinois at
Urbana-Champaign, the University of California
at San Diego, and the University of Florida —
including Marian Breuer as first author - report
the first computational or ‘in silico’ model for a
synthetic minimal organism (Breuer et al.,
2019). The team reconstructed the complete set
of chemical reactions that take place in the
organism (that is, its metabolism). This effort

bridges the gap between DNA sequences and
molecular processes at the level of an entire bio-
logical system.

Breuer et al. performed their modeling work
on M. mycoides JCVI-syn3.0A, a robust variation
of JCVI-syn3.0 that contains 11 more genes. This
was required because genome
involves a high number of genetic modifications,
which tend to produce weaker cells that are
harder to grow under laboratory conditions
(Choe et al., 2019). To create their computa-
tional model, the team used the biochemical
knowledge readily available for the parent strain
JCVI-syn1.0 and identified the remaining candi-
date genes that participate in metabolism in
JCVI-syn3.0A. These genes were then associated
with cellular chemical reactions and, step-by-
step, the entire metabolic network was mod-
eled. This approach regroups the extensive
knowledge on the metabolism of JCVI-syn3.0A
in a single, highly valuable community resource

reduction
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that can help interrogate missing roles in the
metabolic network and integrate experimental
data.

Once a genome-scale model was obtained, it
became possible to use it to perform computer
simulations of different cellular phenotypes.
Briefly, the in silico model represents the
optimal metabolic state of the cell as an optimi-
zation problem on which constraints are applied.
For instance, the metabolic models are con-
strained by the balance of reactants and prod-
ucts in a given chemical reaction (stoichiometry),
and the conversion rates of the metabolites (flux
bounds). Breuer et al. simulated the growth phe-
notype of JCVI-syn3.0A by optimizing for the
production of cellular biomass, and then juxta-
posed the predictions with real-life data, such as
results from quantitative proteomics studies. In
particular, they compared the genes that the
model deemed essential with those highlighted
when systematically mutating the genome of
JCVI-syn3.0A. This revealed 30 genes that are
required for survival but whose role is unknown.
Understanding what these genes do is the next
priority in the effort to complete the characteri-
zation of all molecular processes in a cell.

Overall, the model and experimental data
generally agreed on their identification of essen-
tial genes; yet, a perfect match was not
achieved, as is also the case when similar
computational models are applied to natural
organisms. Still, one would imagine that if this
standard were within reach, it would be
achieved first for minimal cells. To improve the
quality of prediction, constraints that are more
accurate need to be applied, and this would
require additional information. For example, a
completely defined media that contains only the
necessary nutrients for JCVI-syn3.0A should be
generated. It would also prove useful to have a
precise biomass composition, that is, a detailed
report of the proportion of major molecules and
metabolites in the cell. Finally, many biochemical
processes, such as isozymes (when enzymes with
different structures catalyze the same reaction)
or promiscuous reactions (when an enzyme can
participate in many reactions) would need to be
carefully investigated.

Such constraint-based modeling may be key
to help with the generation of working genomes
from square one, and in this regard, the model
generated by Breuer et al. is the first of many
steps to perfectly mirror a synthetic cell in silico.
Next, the simulation could be expanded beyond
metabolism to include other sets of biological
processes, such as the gene
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expression machinery. This would help identify
key constraints and trade-offs that cells must
deal with in the struggle for life. In turn, these
constraints could become the framework
required to artificially design increasingly com-
plex organisms, much like the hydrogen atom
paved the way to understanding the behavior of
more complex elements.
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