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A virtual burrow assay for head–fixed
mice measures habituation,
discrimination, exploration and avoidance
without training
Andrew JP Fink†*, Richard Axel, Carl E Schoonover†*

Department of Neuroscience, Howard Hughes Medical Institute, Columbia
University, New York, United States

Abstract We have designed an assay that measures approach and avoidance behaviors in head-

fixed mice at millisecond timescale, is compatible with standard electrophysiological and optical

methods for measuring neuronal activity, and requires no training. The Virtual Burrow Assay

simulates a scenario in which a mouse, poised at the threshold of its burrow, evaluates whether to

exit the enclosure or to retreat inside. The assay provides a sensitive readout of habituation,

discrimination and exploration, as well as avoidance of both conditioned and innately aversive cues.

DOI: https://doi.org/10.7554/eLife.45658.001

Introduction
Mice in the wild must balance the need to seek safety inside their burrow with the need to gather

information and resources in the outside world (Birke et al., 1985; Blanchard and Blanchard, 2008;

Blanchard and Blanchard, 1989). An egress at the wrong moment, a delayed or slow ingress to

escape from a predator, or even undue reticence to investigate the world outside all undermine the

fitness of the organism. The behavioral motifs displayed at the threshold of the burrow and the cir-

cuits that govern them are therefore likely to have been selected over evolutionary time. We have

developed a Virtual Burrow Assay (VBA) for head-fixed mice that aims to recapitulate the conditions

characteristic of being poised at the threshold of the burrow in order to capture these innate

behaviors.

Behavioral assays for head-fixed mice typically require several sessions of acclimation to head-fix-

ation and task training, even for relatively simple applications such as measuring sensory discrimina-

tion (Guo et al., 2014) or obtaining controlled locomotion in a visual (Dombeck et al., 2010), or

olfactory (Radvansky and Dombeck, 2018) virtual-reality environment. In training-dependent para-

digms, variability in task proficiency can contaminate the measurement of the sensory or cognitive

quantities that are inferred from the behavior. Moreover, training unavoidably engages circuits

required for signaling reward, regulating satiety/motivation, learning the structure of the task, and

learning, planning and executing new motor actions. This interposes additional layers of complexity

between the sensory or cognitive operations that are the object of study and the behavior that is

observed in order to infer their properties. This added complexity is likely to further challenge the

already difficult interpretation of lesion or perturbation studies (Wolff and Ölveczky, 2018) or of

the relationship between neural activity and concomitant behavior.

We developed the VBA in order to elicit interpretable behavior in head-fixed mice without requir-

ing any training. The motivation for this was twofold: (1) to minimize behavioral noise introduced by

variability in task proficiency and (2) to minimize the complexity of the circuit operations necessary

to produce meaningful behavior under head fixation. When they are introduced into the VBA mice
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exhibit an innate tendency to retreat inside an available enclosure—a drive that can be leveraged to

measure a diversity of behaviors, ranging from innate avoidance and fear conditioning to stimulus

discrimination and exploration. These behaviors, which are observed without training or prior accli-

mation to handling or head-fixation, are stereotyped and consistent across animals.

Results

The Virtual Burrow Assay and its operation
The VBA consists of a tube enclosure (virtual burrow), constrained to slide back and forth along the

anterior-posterior axis of the body of a head-fixed mouse (Figure 1A,B). When placed in the virtual

burrow mice retreat inside the enclosure, pulling the tube up around their bodies as far as possi-

ble—a behavior we have termed ‘ingress’ (Figure 1—video 1). All mice we have tested exhibit this

behavior immediately after being introduced into the VBA, remaining fully inside the virtual burrow

with only transient excursions from the ingress position (Figure 1C). Neither training nor acclimation

to the assay is required to observe this consistent and sustained ingress.

The assay measures the propensity of an animal to ingress in response to a given stimulus. It is

therefore necessary to pull the virtual burrow away from the mouse in order to ask what induces the

animal to ingress. When the enclosure is retracted by a motor tethered to the virtual burrow, mice

invariably try to get back inside (Figure 1D, Figure 1—video 2). After an initial bout of resistance

(<30 s), mice voluntarily maintain an ‘egress’ position and thus can be presented test stimuli. Mice

quickly adapt to this scenario, exhibiting within one to three minutes periods of >15 s during which

they voluntarily hold the virtual burrow in the egress position. This sequence of behaviors has been

observed in all mice tested and been found to persist across repeated tests on four separate days

over a 16 day interval (Figure 1—figure supplement 1). No prior acclimation to handling or head

fixation is required.

Air puffs elicit rapid and reliable ingress
We first determined whether an innately aversive stimulus, such as air puff, induces ingress, and if

so, the degree to which this response is rapid and stereotyped (Figure 2A). Strong air puffs deliv-

ered to the snout (80 psi, 2 mm distance) elicited short-latency, rapid ingress in all mice tested on all

trials (Figure 2B; Figure 2—video 1). Animals generated this behavior by pulling the burrow up to

the ingress position in a coordinated, simultaneous movement of their fore- and hind-limbs. The

latency of ingress varied little across animals (m = 18.5 msec, cv = 0.07, N = 5 mice, three trials per

mouse) and across trials (cv = 0.10). Weak air puffs (2 psi, 15 cm distance) did not elicit ingress but

instead a transient movement resulting in no net change in burrow position. This apparent flinch-like

startle response (Davis, 1984) can be clearly distinguished from the ongoing movement of the bur-

row caused by the animal’s breathing (Figure 2C).

We then demonstrated that ingress in response to air puff reflects flight to shelter inside the vir-

tual burrow, rather than just a backwards movement to avoid the source of the stimulus. First, we

compared responses to air puffs delivered to the snout with air puffs delivered to the hindquarters

(Figure 2D top, orange vs. green). As observed previously, all animals ingressed on all trials when

air puffs were directed at the snout (Figure 2E orange and 2F left, N = 4 mice, three trials each).

When air puffs were directed at the hindquarters, mice also invariably ingressed (Figure 2E green

and 2F second from left, N = 4 mice, three trials each). Thus the drive to ingress into the virtual bur-

row overcomes the drive to move in the direction opposite the air puff. Second, we replaced the

tube with a flat, open platform that was similarly constrained to move along the anterior-posterior

axis of the mouse’s body (Figure 2D bottom). Mice in this configuration exhibited a transient, flinch-

like response to air puff delivered to the snout or hindquarters (N = 4 mice each, three trials each)

followed, in some cases, by relatively small displacements of the platform with little net preference

between the egress or ingress directions (Figure 2E pink and blue, 2F second from right and right,

median displacement of 14.9 mm and 17.0 mm in tube vs. 0.2 mm and 2.3 mm on platform, for

snout and hindquarters, respectively). These observations, together with the stereotypy, high repro-

ducibility across animals, and low latency of the response to strong air puff, and the fact that these

behaviors require no training, suggest that ingress to air puff in the VBA reflects an innate behavioral

program to flee to shelter.
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Figure 1. The Virtual Burrow Assay. (A) Left; diagram of ingress (top) and egress (bottom). Right, photograph of

mouse in ingress position (top) and egress position (bottom). (B) Instrument diagram. The mouse’s head is fixed

by a headplate holder while it stands inside a virtual burrow. The burrow’s movement is constrained to the

animal’s anterior-posterior axis by a pair of near-frictionless air bearings. A linear actuator can retract the burrow,

pulling the animal out of the enclosure. A laser displacement sensor measures burrow position and a force sensor

measures any resistance the animal exerts against the tether. (Rendering courtesy of T. Tabachnik, Advanced

Instrumentation, Zuckerman Mind Brain Behavior Institute). (C) Tube position during 60 s of open loop mode.

Gray, individual animals; red, mean across N = 10 mice. For visual clarity only five randomly selected individual

(gray) traces are shown. Dashed lines indicate ingress and egress positions. Histogram at right shows distribution

of tube position during the same epoch across all animals. (D) Force (in millinewtons) generated during first 5 s

after pullback to egress position for N = 10 mice (gray traces, mean force generated across all pull-backs for each

individual animal; red trace, mean across all animals). Inset: distribution of total force exerted each time the

animals were pulled back. Force was integrated after each pullback until the animal ceased resisting and the

tether was slackened.

DOI: https://doi.org/10.7554/eLife.45658.002

The following video and figure supplements are available for figure 1:

Figure supplement 1. Persistence of stereotyped behavior across multiple days.

DOI: https://doi.org/10.7554/eLife.45658.004

Figure supplement 2. Schematic and flow diagram.

Figure 1 continued on next page
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Looming visual stimuli elicit ingress
We next asked whether visual stimuli that evoke flight in freely moving animals also evoke a

response in the VBA. For this we employed a predator-like visual ‘looming’ stimulus known to trigger

flight in freely moving mice (De Franceschi et al., 2016; Yilmaz and Meister, 2013) (Figure 3A, top

left). Mice in the VBA ingressed on 80% of trials in response to an expanding black disk displayed

above their heads (Figure 3A, top left, B, top, C, orange, and D, left; Figure 3—video 1). The habit-

uation to repeated stimulation reported in freely moving mice (De Franceschi et al., 2016) was not

observed in the VBA (Figure 3B, top). We also presented stimuli to mice in the VBA that do not elicit

flight responses in freely moving mice: a contracting black disk and a small black disk sweeping

across the visual field (Figure 3A, top middle and top right) (De Franceschi et al., 2016). These

stimuli did not reliably elicit ingress, yielding responses on 0% or 13% of trials, respectively

(Figure 3B, middle and bottom, C, pink and green, D, middle and right). These data show that a

visual stimulus that elicits flight in freely moving mice elicits ingress in the VBA and that control stim-

uli that do not elicit flight do not elicit ingress.

Unanticipated odorant stimuli elicit ingress or exploration
We next asked whether the VBA can measure habituation (Figure 4). We observed that mice reliably

ingress to initial presentations of an odorant stimulus, and their response decreases over the course

of repeated stimulation (ingress on 67% of first three trials; 10% of subsequent trials, N = 5 mice,

Figure 4B, left, Figure 4C, orange, and Figure 4D, left). This response is odor-selective: after 15

presentations of the first odorant (Odor 1) we randomly interleaved it with a second odorant (Odor

2) and observed that animals selectively ingressed to the second, but remained habituated to the

first odor (ingress on 47% of first three Odor 2 trials; 12% of subsequent trials, Figure 4B,C blocks

16–30, and Figure 4D, middle). After 15 further blocks of Odor 1 and Odor 2, resulting in habitua-

tion to the second odor, we randomly interleaved them with a third odorant (Odor 3), and once

again observed selective ingress to the new odor (ingress on 60% of first three Odor 3 trials; 8% of

subsequent trials, Figure 4B,C blocks 31–45, and Figure 4D, right).

The selective response to a second odor following habituation to the first (Figure 4B–D) demon-

strates that the response decrement is due neither to adaptation of the sensory epithelium nor to

effector fatigue (Groves and Thompson, 1970; Rankin et al., 2009; Thompson and Spencer,

1966). A habituated response can transiently increase following presentation of a different stimulus,

a phenomenon termed dishabituation (Groves and Thompson, 1970; Thompson and Spencer,

1966). However, we did not observe renewed ingress to Odor 1 following the first presentation of

Odor 2 or Odor 3 (See Materials and methods section for discussion).

On early trials mice occasionally exit the virtual burrow before initiating their ingress (data not

shown). We speculated that this voluntary egress corresponds to a brief bout of exploration. To test

this, we coupled the odor source to the burrow, so that egress from the burrow brought the odor

source closer to the animal’s nose, while ingress distanced it (Figure 4E). We reasoned that granting

the animal control over its proximity to the odor port would allow it to select between the drive to

explore an odorant stimulus (by exiting the burrow) and the drive to remain inside. In contrast to all

other experiments, in which trials were initiated while the animal was in a mandatory egress position,

here the animals were granted control over burrow position at all times and almost invariably main-

tained full ingress prior to stimulus delivery. We observed that under this configuration mice exited

the virtual burrow for brief (~1 s) bouts before resuming a fully ingressed position (Figure 4F, Fig-

ure 4—video 1). This response habituated, with the animals egressing further on earlier than on later

trials (median egress 21.9 mm for trials 1–2 vs. 10.5 mm for trials 3–5, N = 5 mice, Figure 4G,H).

Together, these results indicate that the VBA measures selective responses to unanticipated

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.45658.003

Figure 1—video 1. Spontaneous behavior of a mouse in the Virtual Burrow Assay.

DOI: https://doi.org/10.7554/eLife.45658.005

Figure 1—video 2. Burrow pulled to egress position.

DOI: https://doi.org/10.7554/eLife.45658.006
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stimuli—ingress or egress, depending upon the configuration of the assay—and that these behaviors

can be employed to measure habituation.

Aversively conditioned odorants elicit ingress
We next asked whether the VBA can measure conditioned responses following aversive Pavlovian

conditioning (Figure 5). One odorant (CS+) was paired with footshock in a conditioning chamber; a

second (CS-) was presented in the chamber without footshock; and a third (Odor3) was not pre-

sented in the chamber but was tested in the VBA before and after conditioning.

Prior to conditioning, mice initially ingressed in response to all three stimuli then habituated over

subsequent trials (Figure 5D,F,H). After conditioning (48 hr later) the response recovered

(Figure 5C,G, first trial), and the animals once again habituated to the CS- and Odor3. However,

they continued to ingress to the CS+, exhibiting both a greater ingress likelihood (CS+ 72%, CS-

26%, Odor3 33%, mean across trials 2–7, six trials per mouse, pooled across N = 9 mice) as well as a
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Figure 2. Reliable, short-latency ingress to noxious air puff. (A) Diagram of experimental set up. The mouse is

head-fixed in the virtual burrow and an air puff is delivered to the nose. (B) Left, burrow position over time

showing a single ingress in response to a strong air puff (gray box, 200 msec, 80 psi). Upward deflections

correspond to burrow movement towards the animal’s head (ingress). Right, 15 ingress responses from a single

animal to 15 air puffs. Dashed box at left demarcates epoch in which time scale is expanded at right. (C) Example

of flinch in response to weak air puff. Downward going, approximately 2 Hz oscillations correspond to the animal’s

breathing cycle. Upward going low-amplitude, transient deflection corresponds to startle in response to air puff

(gray box, 20 msec, 2 psi). (D) Diagram of tube (top) and platform (bottom) variants. Air puffs are directed either at

the snout (top, orange and bottom, pink) or at the hindquarters (top, green and bottom, blue). (E) Mean change in

burrow position in response to air puff (gray box) across all animals and all trials (N = 4 animals, three trials each,

per condition); same color scheme as in previous panel. (F) Change in burrow position at T = 1.5 s relative to pre-

stimulus epoch, pooled across animals and trials. A Wilcoxon rank-sum test was employed to evaluate whether the

change in burrow position differed significantly (p(tube-front,tube-back)=0.71, p(tube-front,platform-front)

=9.7�10�05, p(tube-front,platform-back)=3.7�10�05, p(tube-back,platform-front)=9.7�10�05, p(tube-back,platform-

back)=6.0�10�05, p(platform-front,platform-back)=0.078, N = 4 mice, three trials each, per condition). Individual

trials, gray points. Normalized, smoothed histogram, light gray shading. Median, red line. *** indicates p<0.001,

n.s. indicates p�0.05.

DOI: https://doi.org/10.7554/eLife.45658.007

The following video is available for figure 2:

Figure 2—video 1. Ingress in response to strong air puff.

DOI: https://doi.org/10.7554/eLife.45658.008
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greater displacement (median ingress 9.98 mm for CS+, 0.27 mm for CS-, and 0.36 mm for Odor3,

N = 9 mice, Figure 5B,C,E,G,I) in response to the CS+ than to the CS- or Odor3.

On occasion we noted a second behavioral response evoked by the CS+ following conditioning:

an oscillation in burrow position (Figure 5—figure supplement 1). Simultaneous video recording

(not shown) indicated that this high frequency oscillatory response was associated with trembling of

the animal’s body. While we observed ingress without trembling, on some trials trembling preceded

ingress by several seconds (Figure 5—figure supplement 1, top trace), or occurred on ingress-free
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Figure 3. Flight-inducing visual stimuli selectively elicit ingress. (A) An expanding black disk (left, orange), a

contracting black disk (middle, pink), and a sweeping black disk of constant size (right, green), were presented on

a visual display positioned directly over a mouse head-fixed in the virtual burrow (bottom). (B) Responses of all

mice on all trials to three visual stimuli (three mice per condition, five trials each) ordered by mouse within each

trial: Expanding (‘Loom’), disk widening from 2˚ to 50˚ over 250 msec, holding the 50˚ disk for 500 msec;

Contracting (‘Recede’), disk diminishing from 50˚ to 2˚ over 250 msec, holding the 2˚ disk for 500 msec; Sweeping

(‘Sweep’), 5˚ disk sweeping smoothly across the diagonal of the screen at a rate of 21˚/sec. Color map

corresponds to change in burrow position with respect to baseline. Dashed lines separate trials. (C) Mean change

in burrow position per condition across all animals and all trials. (D) Maximum change in burrow position in the 6 s

following stimulus onset per condition across all animals and all trials. Ingress was defined as a maximum

displacement of the burrow relative to the pre-stimulus baseline position >2 mm, indicated by the dashed line.

The likelihood of ingress was 0.73, 0.00 and 0.13 for loom, recede, and sweep, respectively. Individual trials, gray

points. Normalized, smoothed histogram, light gray shading. Median, red line. A two-proportion z-test pooled

across all mice (N = 3) was employed to evaluate whether the probability of ingress differs significantly across

stimulus conditions. p(loom,recede)=1.5�10�05, p(loom,sweep)=4.6�10�04, p(recede,sweep)=0.072. *** indicates

p<0.001, n.s. indicates p�0.05.

DOI: https://doi.org/10.7554/eLife.45658.009

The following video is available for figure 3:

Figure 3—video 1. Ingress in response to visual looming stimulus.

DOI: https://doi.org/10.7554/eLife.45658.010
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Figure 4. Habituation to unanticipated stimuli. (A) Three odorant stimuli were delivered to mice in the virtual

burrow assay. (B) Habituating responses to repeated presentation of odorant stimuli from a representative mouse.

Color map corresponds to change in burrow position with respect to baseline. Black lines indicate odorant

stimulus epoch (8 s duration). (C) Median value across mice (N = 5) of maximum change in burrow position, per

odor condition, per block. (D) Maximum change in burrow position for each odorant during the first three trials

(left) and all later trials (right), pooled across animals. Individual trials, gray points. Normalized, smoothed

histogram, light gray shading. Median, red line. A two-proportion z-test on ingress probability pooled across all

mice (N = 5) was employed to evaluate whether the probability of ingress differed significantly between the first

three presentations of each odorant stimulus and all subsequent presentations of that odorant; ingress defined as

Figure 4 continued on next page
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trials (Figure 5—figure supplement 1, middle trace), and was selective for the CS+ following condi-

tioning. Thus the VBA can measure two kinds of stimulus-selective conditioned responses following

aversive conditioning: trembling and ingress.

We took advantage of the high temporal precision of the VBA to measure the exact latency of

ingress responses to CS+ presentations. Mice can report discrimination of odor stimuli within ~100

msec (Resulaj and Rinberg, 2015) and we have demonstrated that they are capable of initiating

stimulus-evoked ingress within ~20 msec (Figure 2). It was therefore surprising to observe that the

median latency to ingress to the CS+ was 709 msec, and 27% of conditioned respones (CRs) were

initiated at latencies higher than 1 s following CS+ onset (Figure 6A,B). Precise measurement of CR

onset revealed a second unanticipated feature: the frequency of high-latency (>1 s) responses

increased significantly as a function of trial number, from 4.2% on the first three trials to 39% on last

three trials (Figure 6C). Therefore, extinction is characterized not only by a decrease in the probabil-

ity of a CR but also by an increase in the latency to produce a CR.

Neurophysiological recording in the VBA
We next tested whether it is possible to obtain stable extracellular recordings of single units in the

brains of mice while they are behaving in the VBA. For this we implanted a silicon probe in layer 2 of

the piriform cortex and recorded spontaneous spiking activity after head-fixation in the apparatus.

No olfactory stimuli were presented during this experiment. After spike sorting we compared both

mean and single-unit firing rates to three behavioral quantities: position, absolute velocity, and

force. During abrupt transitions in behavioral state, neither mean nor single-unit rates appeared to

be affected (Figure 7A). Indeed, the variance in mean firing rate accounted for by position, velocity

and force is negligible (Figure 7B, top; linear regression R2 = 9.3�10�3, 8.9 � 10�3, and 3.4 � 10�3,

respectively). This observation also holds at the single-unit level (Figure 7B, bottom; linear regres-

sion median R2 = 3.0�10�4, 1.8 � 10�3, and 1.1 � 10�3, respectively). We conclude that behavior in

the VBA does not sufficiently disrupt simultaneous neurophysiological recording as to prevent or

cause spurious detection of spike waveforms. The assay also permits stable measurement of calcium

transients in response to odorant stimuli using 2-photon microscopy through a GRIN lens implanted

in the basolateral amygdala (O’Neill, P.K., personal communication).

Discussion
We have designed an assay for head-fixed mice that reveals a diverse set of behavioral features

related to sensory, cognitive, emotional and motor functions. These features can be measured with-

out the animal having been trained in the sensorimotor contingencies of the instrument, or even

been previously acclimated to head-fixation. The assay captures flight-like behavior (Figures 2 and

3), exploration (Figure 4), as well as the detection of the precise onset of conditioned responses to

Figure 4 continued

maximum displacement >2 mm during the 8 s stimulus epoch, indicated by the dashed line. p(Odor1 trials 1–3,

Odor1 trials 4–45)=8.8�10�10, p(Odor2 trials 1–3, Odor2 trials 4–30)=1.9�10�04, p(Odor3 trials 1–3, Odor3 trials 4–

15)=2.2�10�06. *** indicates p<0.001. (E) Diagram of the odor port coupled to the virtual burrow; the mouse is

required to egress in order to draw the odor source closer to its nose. (F) Habituating response of a representative

mouse to repeated presentations of an odorant stimulus. Downward-going traces correspond to egress. Gray

arrows indicate odorant stimulus onset (8 s duration). (G) Average response of all mice tested (N = 5) per trial.

Color map as above, except that warmer colors depict egress rather than ingress. Note that, as above, 0 mm

corresponds to the virtual burrow’s position prior to stimulus presentation; however in these experiments the

animals began each trial in the ingress position rather than in the egress position. (H) Maximum change in burrow

position during the first two trials (left) and the subsequent three trials (right), pooled across animals. A Wilcoxon

rank-sum test was employed to evaluate whether the maximum change in burrow position differed significantly (p

(trials1-2,trials3-5)=0.0021, N = 5 mice). Individual trials, gray points. Normalized, smoothed histogram, light gray

shading. Median, red line. ** indicates p<0.01.

DOI: https://doi.org/10.7554/eLife.45658.011

The following video is available for figure 4:

Figure 4—video 1. Egress in response to unanticipated odorant stimulus.

DOI: https://doi.org/10.7554/eLife.45658.012
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Figure 5. Ingress in response to aversively conditioned odorant stimuli. (A) Three odorant stimuli were presented

to mice head fixed in the VBA on day 1 (Pre-test) and day 3 (Test). On day 2 (Conditioning), animals were placed in

a fear conditioning chamber and two of the odorant stimuli were presented: a CS +odorant, paired with shock,

and a CS- odorant, never paired with shock. A third odorant Odor3 (O3) was presented on days 1 and 3 but not

during conditioning on day 2. (B) Change in burrow position relative to pre-stimulus baseline on individual trials

after odor-shock conditioning from a representative mouse. Colored box demarcates odorant stimulus epoch. CS

+: paired with shock; CS-: presented in chamber without shock; Odor3: not presented in fear conditioning

chamber. (C) Test responses of all mice on all trials to the three stimuli, ordered by mouse within each trial. Lines

at bottom indicates odorant stimulus epoch (8 s duration). D, E. Mean change in burrow position during Pre-test

(D) and Test (E) relative to pre-stimulus baseline per odor condition during trials 2–7 (shading indicates ±1

standard deviation, N = 9 mice). Gray line at top corresponds to odorant stimulus epoch. F, G. Median value

across mice of maximum change in burrow position, per odorant condition, per trial during Pre-test (F) and Test

(G). Dashed boxes demarcate trials 2–7, used to compute mean responses in D and E, and to perform statistical

tests in H and I. H, I. Maximum change in burrow position during the odorant stimulus, per condition across all

animals on trials 2 through seven during Pre-test (H) and Test (I). Individual trials, gray points. Normalized,

smoothed histogram, light gray shading. Median, red line. The probability of ingress for each odorant stimulus

during Test was 0.72 for CS+, 0.26 for CS-, and 0.33 for Odor3. A two-proportion z-test on ingress probability on

trials 2–7 (6 trials per mouse, pooled across N = 9 mice) was employed to evaluate whether the probability of

ingress differed significantly; statistical analysis was restricted to trials 2–7 to mitigate the effects of recovery

observed on the first trial and extinction observed on the last four trials; ingress defined as maximum

displacement >2 mm during the 8 s stimulus. p(CS+,CS-)=1.0�10�05, p(CS+,O3)=5.0�10�05, p(CS-,O3)=0.35.

Ingress threshold indicated by the dashed line; *** indicates p<0.001, n.s. indicates p>0.05. This result is robust to

the choice of ingress threshold over a range of 0.5 to 10 mm (Figure 5—figure supplement 2).

DOI: https://doi.org/10.7554/eLife.45658.013

The following figure supplements are available for figure 5:

Figure supplement 1. Trembling in response to aversively conditioned odorant stimuli.

DOI: https://doi.org/10.7554/eLife.45658.014

Figure supplement 2. Robustness of statistical test to choice of ingress threshold.

DOI: https://doi.org/10.7554/eLife.45658.015

Fink et al. eLife 2019;8:e45658. DOI: https://doi.org/10.7554/eLife.45658 9 of 21

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.45658.013
https://doi.org/10.7554/eLife.45658.014
https://doi.org/10.7554/eLife.45658.015
https://doi.org/10.7554/eLife.45658


aversively conditioned odor stimuli (Figures 5 and 6)—measurements that have otherwise not been

possible in head-fixed mice. In contrast to standard training-based assays for head-fixed mice, this

training-free approach may reduce variability due to differences in task proficiency across animals

and minimize the complexity of the circuit operations necessary to produce meaningful behavior

under head fixation. The apparatus is compatible with standard electrophysiological and optical

methods for measuring neuronal activity (Figure 7). Because it measures behavior at a timescale

comparable to that of neuronal dynamics, the assay permits direct comparison between these two

quantities.

Four observations suggest that ingress in the VBA reflects an innate behavioral program to seek

the safety of an enclosure. (1) Mice exhibit consistent and reliable ingress without training or even

acclimation to head-fixation (Figure 1C) and invariably resist being pulled out of the burrow

(Figure 1D). (2) Ingress responses to air puff are characterized by markedly low latency and low vari-

ability across trials and across animals (Figure 2A–C), indicative of a highly conserved behavior. (3)

Ingress does not depend upon the location of the source of the air puff but does require the avail-

ability of an enclosure (Figure 2D–F). (4) Mice ingress selectively to looming stimuli (Figure 3) that

evoke flight in freely moving mice (De Franceschi et al., 2016; Yilmaz and Meister, 2013). We

speculate that by simulating key features of the mouse Umwelt (von Uexküll, 1957), the contingen-

cies of the assay permit expression of these innate behavioral programs in spite of the contrivance

of the apparatus and of head-fixation.

We have observed four stimulus-induced behaviors in this assay: flinch, ingress, egress bout, and

trembling. We interpret flinch in response to mild air puff as a startle response (Davis, 1984); ingress

in response to puff and looming stimuli as a flight-like response; egress bout as exploration; and

trembling as a component of what is commonly referred to as ‘freezing’. Indeed, while mice typically

ingressed in response to CS+ presentation (Figure 5), on some trials animals also exhibited a selec-

tive trembling response to the aversive cue (Figure 5—figure supplement 1). We made this same

observation in high-speed video taken of freely moving animals during training in the conditioning

chamber (data not shown), confirming previous reports of high-frequency trembling in wild rodents

following the presentation fear-inducing stimuli (Griffith, 1920; Hofer, 1970). We also observed

two distinct responses to unanticipated stimuli, which depend on the context in which the stimulus

was presented. When unanticipated stimuli were presented to mice in the exposed, egress position,

they reliably ingressed (Figure 4A–D). In contrast, mice briefly egressed in order to sample unantici-

pated stimuli if these were presented while the animals were ingressed (Figure 4E–H). This parallels

the behavior of unconstrained animals, which exhibit either exploration (neophilia), avoidance
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Figure 6. Latency of ingress to aversively conditioned odorant stimuli. (A) Distribution of ingress onset latency

during CS+ trials for all mice. Ingress onset defined as the first sample in which displacement exceeded 0.75 mm

following stimulus onset. (B) Ingress onset latency for all mice as a function of trial number. Dashed line indicates

threshold for high latency ingresses (1 s). (C) Percentage of ingresses whose latency exceeded 1 s. The Spearman’s

rank correlation coefficient was computed to measure the strength of the relationship between the fraction of

high-latency ingress and trial number (rs = 0.72, p=0.013).

DOI: https://doi.org/10.7554/eLife.45658.016
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Figure 7. Simultaneous measurement of behavior and neuronal activity. (A) Top to bottom: position, velocity,

force, mean firing rate and raster plot of 133 simultaneously recorded single-units in anterior piriform cortex of an

awake mouse in the VBA. Left; 2 min epoch that includes the first pullback following transition to closed-loop

mode at approximately T = 10 s; grayed-out box at left demarcates epoch in which time scale is expanded at

right; blue portions of position trace correspond to pullbacks, red portions to spontaneous ingresses that

exceeded �p, resulting in pullback. (B) Top: three-dimensional histograms of mean firing rate vs. position (left),

absolute velocity (middle) and force (right) during an 89-mn recording. Bottom, R2 of linear regressions of firing

rate on position, absolute velocity, and force for individual single-units.

DOI: https://doi.org/10.7554/eLife.45658.017
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(neophobia), or both in sequence, in a manner that depends on context (Berlyne, 1950;

Gershman and Niv, 2015).

Many standard assays of rodent behavior in the laboratory measure events that unfold over sec-

onds or minutes. These include time spent freezing (Bouton and Bolles, 1980; Griffith, 1920), con-

ditioned suppression (Estes and Skinner, 1941), habituation (Groves and Thompson, 1970;

Thompson and Spencer, 1966), approach versus avoidance (Young, 1959), conditioned place pref-

erence (Garcia et al., 1957), and exploration (Ennaceur and Delacour, 1988). The VBA measures

the onset of ingress and egress with millisecond precision, thus permitting fine alignment of behav-

ior with neural dynamics. Such alignment to sharp transitions in behavioral state has proven fruitful in

primate neurophysiology: for instance, alignment to the precise time of eye saccades indicating a

perceptual decision permits the investigation of the neuronal events underlying a decision process

(Roitman and Shadlen, 2002).

The VBA can exploit stimulus-selective habituation to implement a discrimination assay without

training. This strategy has been employed across many experimental systems, ranging from the

olfactory system of freely moving rodents (Cleland et al., 2002) to the visual system of human

infants (Friedman, 1972), and can be exploited to construct psychometric curves for detection or

discrimination. Many head-fixed assays are capable of measuring detection and discrimination (e.g.

Guo et al., 2014), but these typically depend upon instrumental conditioning, requiring acclimation

to head-fixation and training in the sensorimotor contingencies of the task; moreover, these are

likely to result in perceptual learning (Fahle and Poggio, 2002), causing overestimation of default

perceptual performance.

In Figure 5, we demonstrate that the VBA can be employed to measure fear conditioning. Previ-

ously-described paradigms (such as Lovett-Barron et al., 2014) have successfully translated condi-

tioned lick-suppression (Bouton and Bolles, 1980) to a head-fixed preparation, but this

measurement is characterized by relatively low temporal resolution both in freely moving and in

head-fixed mice. In Figure 6 we leverage the VBA’s fine temporal resolution to measure the precise

latency of ingress in response to CS+ presentation. We observed a median latency of 709 msec,

with over one quarter of responses initiating after longer than 1 s. These latencies cannot be

explained in terms of delays in sensory detection (Resulaj and Rinberg, 2015) or ingress motor pat-

tern generation (Figure 2). A circuit centered around the amygdala has been proposed to orches-

trate Pavlovian learning and the resultant expression of conditioned responses (Johansen et al.,

2011), but these results suggest that the expression of Pavlovian fear conditioning engages addi-

tional processing not accounted for in this model. Furthermore, it does not explain how the proba-

bility of long (>1 s) latencies might increase over the course of extinction.

The wide range of responses measurable by the VBA yields sensitive indicators of sensory detec-

tion and discrimination thresholds, exploration, neophobia, memory, and motor function—behav-

ioral features that may be affected in models of psychiatric and neurological diseases. For example,

in preliminary experiments we have found that animals habituate to odorant stimuli more rapidly

when administered anxiolytics; and moreover, we have observed that the rate at which chronically

stressed mice acclimate to the closed loop contingencies is diminished by the administration of

selective serotonin reuptake inhibitors. Moreover, key features of motor function—including balance,

tremor, chorea, limb and core strength, movement initiation, and movement velocity—can be pre-

cisely measured by tracking the position of the burrow and the force exerted against the tether.

Materials and methods

Subjects and surgery
All procedures were approved by the Columbia University Institutional Animal Care and Use Com-

mittee (protocols AC-AAAI8650 and AC-AAAT5466). 8–17 week old, male C57BL/6J mice (Jackson

laboratories, Bar Harbor, ME) were fitted with a titanium head plate (27.4 mm x 9.0 mm x 0.8 mm,

G. Johnson, Columbia University). Animals were anesthetized with isoflurane (3% induction, 1.5–2%

maintenance) and placed within a stereotaxic frame (David Kopf Instruments, Tujunga, CA) on a

feedback-controlled heating pad (Fine Science Tools, Foster City, CA). Carprofen (5 mg/kg) was

administered via subcutaneous injection as a preoperative analgesic and bupivacaine (2 mg/kg) was

delivered underneath the scalp to numb the area of the incision. The skull was exposed, cleaned
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with sterile cotton swabs and covered in a thin layer of cyanoacrylate adhesive (Krazy Glue, Elmer’s

Products, Atlanta, GA). After applying a coating of adhesive luting cement (C and B-Metabond, Par-

kell, Inc., Edgewood, NY) onto the layer of cyanoacrylate adhesive, the titanium head plate was low-

ered atop the skull and secured with additional application of luting cement. The headplate was

centered about the body’s anterior-posterior axis and equally spaced between bregma and lambda.

For mice exposed to visual stimuli, however, head plate position was sufficiently posterior to prevent

occlusion of the visual stimuli by the head plate. Mice were allowed at least one full week and typi-

cally greater than 4 weeks to recover before any testing was performed (Table 1). All animals were

singly housed on a 12 hr/12 hr light/dark cycle and were tested during their dark phase.

Design of the Virtual Burrow Assay (Figure 1)
The hardware design and control software are freely available for noncommercial use under the Cre-

ative Commons License at git.io/vA47E. The Virtual Burrow Assay (VBA) consists of a tube enclosure

(virtual burrow) constructed out of a cardboard tube (looming experiments in Figure 3, and aversive

learning experiments in Figure 5) or a 3D-printed polylactic acid tube (all other experiments, 45.5

mm inner diameter, 49 mm outer diameter, 7 cm long). In 3D-printed variants, the back of the tube

is sealed and a trimmed absorbent underpad (Fisher Scientific, Hampton, NH) is affixed to the bot-

tom. For the air puff (Figure 2), habituation (Figure 4) and aversive learning experiments (Figure 5)

the tube included a 1 cm wide extension spanning approximately 1/3 of the tube’s bottom circum-

ference. In all designs, a 4 cm long, 0.5 mm diameter wooden rod is adhered to the front tip of the

tube, 1 cm from the bottom, in order for animals to grip and rest their forelimbs. The diversity in

tube material and geometry reflects the fact that assay design evolved concurrent with the sequence

of experiments described in this manuscript. The final design of the tube (mark 21) can be consulted

in the CAD folder on the GitHub repository: 3D-printed, including 1 cm extension (Fink and Schoon-

over, 2018; copy archived at https://github.com/elifesciences-publications/VBAcmd).

The virtual burrow is coupled to near-frictionless air bushings at 14 psi input pressure (New Way

Air Bearings, Aston, PA), which slide along two rails in order to constrain movement to one dimen-

sion (rail design and assembly: T. Tabachnik, ZMBBI Advanced Instrumentation, Columbia University:

fabrication: Ronal Tool Company, Inc., York, PA) (Figure 1A, right and Figure 1B). The animal is

head-fixed via custom-machined stainless steel headplate holders (G. Johnson, Columbia University)

that secure the titanium headplate. The entire VBA apparatus rests atop an adjustable platform

(Thorlabs, Newton, NJ) to permit precise translation of the position of the tube with respect to the

head. With t head thus secured, the animal’s body rests freely inside the virtual burrow, its forepaws

resting on the horizontal bar placed at the burrow’s threshold, its hind limbs gripping the burrow’s

interior

A linear actuator (Part number: L12-30-50-12-I, Firgelli Automations, Ferndale, WA), tethered to

the virtual burrow with fishing line (0.15 mm diameter nylon tippet, 4.75 pound test, Orvis, Sunder-

land, VT) constrains how far the animal may ingress into the burrow at any given time (Figure 1B,C).

This parameter can be manually or programmatically varied over the course of the experiment. A

force sensor (Futek FSH02664 load cell with Futek QSH00602 signal conditioner, Futek, Irvine, CA)

reports whether, and how strongly, the animal is pulling against the linear actuator in its effort to

ingress. Upon head-fixation in the VBA, mice invariably ingress as far as the linear actuator command

position permits (Figure 1C). When the linear actuator retracts the burrow away from the ingress

position (egress position, 10–20 mm posterior to ingress position), mice resist the translation, pulling

against the tether in an effort to move the burrow back up around their body (Figure 1D). This effort

typically generates between 0.4 and 1 N of force, corresponding in some cases to more than three

times animal’s own body weight (in grams-force). We have not observed any mice that fail to resist

retraction of the virtual burrow.

A laser displacement sensor (Part number: ILD1302-50, Micro-Epsilon, Dorfbach, Germany) is

aimed at a flag affixed to the horizontal bar that joins the air bearings in order to measure the linear

displacement of the tube along its axis of motion. The readout of the laser displacement sensor

yields a continuous, time-dependent, one-dimensional variable. It is this quantity – how far the ani-

mal has pulled the virtual burrow around its body – that tracks ingress in response to a given cue.

For all experiments reported here the analog voltage signals from the laser displacement sensor

and the force meter were acquired and digitized at 10 kHz using a Cerebus Neural Signal Processor

(Blackrock Microsystems, Salt Lake City, UT).
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Table 1. Animals used in this study.

Identifying information for all animals used in this study.

Animal number Age at surgery Age at expt. Data Notes

2017022711 17 wks 31 wks Ingress, Figure 1C,D -

2017022712 17 wks 31 wks Ingress, Figure 1C,D Also used for air puff expt.

2017031302 10 wks 22 wks Ingress, Figure 1C,D Also used for air puff expt.

2017032101 11 wks 22 wks Ingress, Figure 1C,D -

2017032401 8 wks 19 wks Ingress, Figure 1C,D -

2017032402 11 wks 22 wks Ingress, Figure 1C,D -

2017033001 9 wks 20 wks Ingress, Figure 1C,D Also used for air puff expt.

2017033002 9 wks 20 wks Ingress, Figure 1C,D Also used for air puff expt.

2017042103 12 wks 20 wks Ingress, Figure 1C,D -

2017042105 12 wks 20 wks Ingress, Figure 1C,D Also used for air puff expt.

2018032602 8 wks 14–16 wks Figure 1—figure supplement 1

2018040204 9 wks 15–17 wks Figure 1—figure supplement 1

2018040206 9 wks 15–17 wks Figure 1—figure supplement 1

2018040208 9 wks 15–17 wks Figure 1—figure supplement 1

2018040212 9 wks 15–17 wks Figure 1—figure supplement 1

2016082207 11 wks 18 wks Air puff, Figure 2 Figure 2B,C from this animal

2017022712 17 wks 31 wks Air puff, Figure 2 Also used for Figure 1C,D

2017031302 10 wks 22 wks Air puff, Figure 2 Also used for Figure 1C,D

2017033001 9 wks 20 wks Air puff, Figure 2 Also used for Figure 1C,D

2017033002 9 wks 20 wks Air puff, Figure 2 Also used for Figure 1C,D

2017042105 12 wks 20 wks Air puff, Figure 2 Also used for Figure 1C,D

2018061501 7 wks 15 wks Air puff, Figure 2 -

2018061201 7 wks 15 wks Air puff, Figure 2 -

2018061202 7 wks 15 wks Air puff, Figure 2 -

2018061301 7 wks 15 wks Air puff, Figure 2 -

2016071401 15 wks 21 wks Visual stimuli, Figure 3 Expanding disk

2016072401 16 wks 21 wks Visual stimuli, Figure 3 Expanding disk

2016072702 17 wks 21 wks Visual stimuli, Figure 3 Expanding disk

2016081901 10 wks 11 wks Visual stimuli, Figure 3 Receding disk

2016081902 10 wks 11 wks Visual stimuli, Figure 3 Receding disk

2016081903 10 wks 11 wks Visual stimuli, Figure 3 Receding disk

2015111301 15 wks 56 wks Visual stimuli, Figure 3 Sweeping disk

2015111602 12 wks 52 wks Visual stimuli, Figure 3 Sweeping disk

2015111701 12 wks 52 wks Visual stimuli, Figure 3 Sweeping disk

2016082302 11 wks 18 wks Odor habituation, Figure 4A–D O1: Lim. O2: Oct. O3: Hex.

2016082401 14 wks 21 wks Odor habituation, Figure 4A–D O1: Oct. O2: Hex. O3: Lim.

2016082402 14 wks 21 wks Odor habituation, Figure 4A–D O1: Hex. O2: Oct. O3: Lim.

2016082404 14 wks 21 wks Odor habituation, Figure 4A–D O1: Hex. O2: Oct. O3: Lim

2016082405 14 wks 21 wks Odor habituation, Figure 4A–D O1: Oct. O2: Hex. O3: Lim.

2017071603 13 wks 34 wks Odor habituation, Figure 4E–H -

2017071401 13 wks 34 wks Odor habituation, Figure 4E–H -

2017071605 13 wks 34 wks Odor habituation, Figure 4E–H -

2017071601 13 wks 34 wks Odor habituation, Figure 4E–H -

Table 1 continued on next page
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Trial structure and closed loop control
Before each trial the control system pulls the virtual burrow back to the egress position and waits

until the force measured by the force meter drops below a user-specified threshold, indicating that

the animal has ceased to resist burrow retraction (Figure 1—figure supplement 2). The linear actua-

tor is then advanced to the ingress position, slackening the tether and permitting free movement of

the burrow. If the animal spontaneously ingresses prior to stimulus onset, as measured by the laser

displacement sensor, the trial is aborted, the burrow is again retracted to the egress position, and

the sequence repeats. Once the mouse has maintained the free, egress position without attempting

to ingress within a specified duration, and has maintained the standard deviation of the tube posi-

tion below a user-specified threshold for a specified delay period, the stimulus is delivered. During

stimulus presentation, and a set duration following stimulus offset, the control system is switched to

open loop, permitting the mouse to pull the burrow up to the ingress position if it wishes.

The burrow position (measured by the laser displacement sensor), burrow force (measured by the

force sensor), and the servo position (state of the linear actuator) are analog inputs to a National

Instruments card with analog and digital in/out (USB-6008, National Instruments, Austin, TX). The

servo position is controlled by the same National Instruments card. (The position and force signals

are simultaneously acquired on a separate DAQ, as described in the previous section.)

Prior to testing, naı̈ve mice are head-fixed in the VBA and given 2–10 mn to acclimate to the con-

tingencies in open loop (free movement of the burrow). Without exception, mice maintain the bur-

row in the ingress position throughout this acclimation period (Figure 1C). Then they are acclimated

to the closed loop mode; after an initial period of sustained struggle to maintain the burrow in the

ingress position (Figure 1D), mice cease resisting and eventually consent to holding the burrow in

the egress position even after the linear actuator has advanced, slackening the tether and granting

the mouse control over the burrow. The duration of the closed-loop acclimation period varied across

mice in these experiments (1–20 mn) as the experimenters improved upon and acquired experience

withthe assay; presently mice do not require more than ~5 mn total acclimation time (typically two

mn for open loop and ~3 mn for closed loop). Trial blocks begin once the animal reliably holds the

burrow in the egress position for >30 s between spontaneous ingresses. Trial initiation is delayed

until after the mouse has held the burrow in the egress position with minimal movement for several

seconds so as to ensure that the animal is in a comparable behavioral state prior to each trial.

Air puff stimulus
Characterization of ingress (Figure 2A–C)
Animals were head-fixed in the VBA and permitted to acclimate to head fixation for 2–4 mn with the

VBA on open loop, after which the VBA was switched to the closed loop configuration; stimuli were

administered once the animal readily gave trials (after approximately 1–2 mn). An 18-gauge, blunt

Table 1 continued

Animal number Age at surgery Age at expt. Data Notes

2017071602 13 wks 34 wks Odor habituation, Figure 4E–H -

2016082006 11 wks 21 wks Aversive odor learning, Figure 5, 6 -

2016082005 11 wks 21 wks Aversive odor learning, Figure 5, 6 -

2016082003 11 wks 21 wks Aversive odor learning, Figure 5, 6 -

2016082001 11 wks 21 wks Aversive odor learning, Figure 5, 6 -

2016071401 15 wks 30 wks Aversive odor learning, Figure 5, 6 Also used for Figure 3

2016081903 10 wks 20 wks Aversive odor learning, Figure 5, 6 Also used for Figure 3

2016081902 10 wks 20 wks Aversive odor learning, Figure 5, 6 Also used for Figure 3

2016081901 10 wks 20 wks Aversive odor learning, Figure 5, 6 Also used for Figure 3

2016082602 14 wks 23 wks Aversive odor learning, Figure 5, 6 -

2017092101 15 wks 26 wks Neurophysiology recording, Figure 7

DOI: https://doi.org/10.7554/eLife.45658.018
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syringe needle delivered air puff stimuli to elicit either ingress (Figure 2B, needle tip 2 mm from

snout, air pressure 80 psi, puff duration 200 msec, ITI 180 s, 15 trials per animal), or flinch

(Figure 2C, needle tip 150 mm from nose, air pressure 2 psi, puff duration 20 msec). The example

traces in Figure 2B,C depict responses to 15 consecutive strong air puff stimuli (2B) and one weak

air puff stimulus (2C) delivered to a single, representative animal. The population statistics reported

in the results section were measured in a separate cohort of 5 mice (three trials each) that had previ-

ously been exposed to odor stimuli in the course of an unrelated experiment in which they were

administered a saline vehicle subcutaneously approximately 45mn prior to data acquisition.

Tube/platform variants (Figure 2D–F)
We employed the same protocol as above, except using 250 msec puff duration and >90 s ITI, four

animals per condition, three trials per animal; because mice occasionally bumped the tip of the blunt

syringe needle when it was positioned close to their hindquarters, a distance of 10 mm was

employed when puffing both the hindquarters and the snout. In order to deliver air puffs to the hind-

quarters a variant of the 3D-printed tube was designed such that the top portion (10 mm) of the

tube’s back ‘wall’ was left open. We note that it took great effort and time for animals to maintain a

stable position on the open platform as they initially tended to thrash around and occasionally rotate

their bodies at a > 45 degree angle with respect to the axis of their heads; this contrasts sharply

with the apparently calm demeanor and stable posture characteristic of animals standing inside of

tubes. Puffs were administered to the snout after animals had maintained a stable posture in which

the body axis was aligned with the head’s for >5 s.

To determine latency of the air puff, we measured the time between the TTL pulse controlling

valve opening and the displacement of a small polystyrene weighing boat placed 2 mm distant from

the blunt syringe needle (data not shown). We then subtracted the time between TTL pulse and

measured displacement to determine the latency between TTL command and air puff stimulus at the

nose. To account for variability in the position of the nose of the mouse with respect to the needle

tip, we varied the precise location of the syringe needle over a range of distances similar to variabil-

ity in distance between the syringe needle and the animal’s nose across experiments. We observed

negligible variability in latencies across this distance range.

For this and all experiments, a background of bandpass-filtered acoustic white noise (1000–45000

Hz; approximately 7 dB) was played throughout. The VBA apparatus was placed inside a custom-

made sound attenuating chamber resting on an air table (TMC, Peabody, MA). All experiments were

conducted under conditions of darkness, except when visual stimuli were presented, in which case

the visual stimuli themselves provided the only source of visible illumination. The VBA was illumi-

nated with infrared light to permit simultaneous video recording. For the experiments studying

responses to visual stimuli, the chamber was open to accommodate the display screen but the lights

in the room were off and the door was closed.

Visual stimulus (Figure 3)
For experiments examining responses to visual stimuli, nine mice (three per condition) were accli-

mated to head fixation in the VBA for 3 mn in the open loop configuration. Following a subsequent

10-mn acclimation period with the VBA in the closed loop configuration, the animal was again per-

mitted to freely ingress in open loop for 3–5 mn. The VBA was then returned to the closed loop con-

figuration and once the animal did not spontaneously ingress for periods greater than 30 s (typically

after approximately 1–3 mn) visual stimuli were delivered.

The visual stimuli employed were based on those described in De Franceschi et al. (2016).

Briefly, the stimuli were presented on a Dell 1707FP 17’ LCD monitor, 1280 � 1024, 60 Hz, elevated

30 cm and centered above the animal’s head. The three stimuli, generated using the Psychophysics

Toolbox Version 3 in MATLAB (Mathworks, Natick, MA), consisted of a black disk presented against

a gray background: expanding disk (‘loom’), widening from 2˚ to 50˚ over 250 msec, holding the 50˚
disk for 500 msec; contracting disk (‘recede’), diminishing from 50˚ to 2˚ over 250 msec, holding the

2˚ disk for 500 msec; and sweeping disk (‘sweep’), a 5˚ disk sweeping smoothly across the diagonal

of the screen at a rate of 21˚/sec. In order to permit synchronization of stimulus timing with burrow

position measurement, the software controlling the visual stimulus also controlled a PWM signal

(generated by an Arduino Uno, Adafruit, New York, NY; acquired as an analog voltage input
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digitized at 10 KHz simultaneous to the position and force signals) that encoded the identity and

timing of the visual stimuli.

We divided nine mice into three groups of three animals, one group per stimulus type, and pre-

sented each mouse only one of the stimulus types in a single session of five stimulus presentations

separated by a 10-mn ITI. The data for each stimulus type are pooled across animals for each group.

Odorant stimuli
In all experiments involving odorant stimuli we avoided using molecules known to elicit systematic

attraction or aversion in freely moving animals, such as trimethyl-thiazoline, a volatile cue secreted

from the anal gland of fox that elicits avoidance and fear responses (Hebb et al., 2004) or 2-phenyl-

ethanol, a component of rose oil that elicits attraction (Root et al., 2014).

We used a custom-built olfactometer to deliver odorant stimuli. Briefly, a nose port constructed

of polyether ether ketone (PEEK) was placed approximately 1 mm away from the animal’s nose.

When no odorant stimulus was given, the port delivered a steady stream of air (one liter per minute,

controlled by a mass flow controller, GFCS-010201 from Aalborg, Orangeburg, New York) that had

bubbled through a 50 ml glass bottle containing 15 ml dipropylene glycol (DPG, Part number:

D215554, Sigma-Aldrich, St. Louis, MO). To deliver an odorant stimulus, a four-way valve (Part num-

ber: LSH360T041, NResearch Inc., West Caldwell, NJ) routed the air stream to exhaust, replacing it

with a stream of odorized air; the odorant stimulus was switched off by the four-way valve routing

the odorized air back to exhaust. Monomolecular odorants (cis-3-Hexen-1-ol, catalog number

W256307; (R)-(+)-Limonene, catalog number 183164; Octanal, catalog number O5608; Ethyl trans-3-

hexenoate, catalog number W334200, all from Sigma-Aldrich, St. Louis, MO) were dissolved in 15 ml

DPG at a concentration of 2% volume/volume for Hexenol, Limonene, and Octanal and 4% volume/

volume for Ethyl trans-3-hexenoate in separate 50 ml glass bottles. After passing through the nose

port all gas was routed to a photo-ionization detector (miniPID, Aurora Scientific, Aurora, ON, Can-

ada) to permit constant monitoring of odorant concentration. To avoid contamination, all material in

contact with the odorized air stream was constructed in either Teflon, Tefzel, or PEEK. The flow of

the air and odor streams were equalized before each experiment (using mass flow meter GFMS-

010786 from Aalborg, Orangeburg, NY) and the tubing carrying the two streams from the four way

valve was set to equal length and impedance to minimize variation in flow rate upon switching

between the air and odor streams.

Odor habituation (Figure 4)
For odor habituation experiments, five mice were head-fixed in the VBA and allowed to acclimate in

the open loop configuration for 5 mn. In order to promote all-or-nothing behavioral responses, we

reduced the input pressure to the air bushings from the customary 14 psi to 2 psi, thereby requiring

the animal to generate greater force to initiate an ingress than under near-frictionless conditions.

After acclimation the VBA was set to closed loop for 10–15 mn. Following acclimation to the closed-

loop mode, the animal was then presented with odorant stimuli with the VBA in the closed loop

mode. A single odorant, Odor 1 was presented 15 times. Then, a second odorant, Odor 2, was intro-

duced and the two odorants were presented 15 times each, pseudo-randomly interleaved within

blocks in which each of the two odorants was presented in every block. Finally, a third odorant,

Odor 3, was added and all three odorants were presented in 15 final blocks of three trials each.

Each odorant stimulus was presented once per block. All odorant stimuli were 8 s in duration and

the ITI was 40 s. Limonene, Octanal, and Hexenol were used as odorant stimuli with different animals

receiving different odorants for the Odor 1, Odor 2, and Odor three stimuli (Table 1). Because we

refrained from using odors known to elicit innate attraction or aversion such as trimethyl-thiazoline,

or 2-phenylethanol, it is unlikely that the egress and ingress responses we observed in early trials

were due to the odorants having an innately attractive or aversive quality beyond their novelty.

We noted that we did not observe renewed ingress to familiar odorants following presentation of

unexpected ones. This absence of dishabituation (Groves and Thompson, 1970; Thompson and

Spencer, 1966) may reflect the use of lower input pressure to the air bushings in this experiment,

which promotes all-or-nothing responses by increasing friction between the bearings and the rails

but also dramatically decreases the sensitivity of the assay.

Fink et al. eLife 2019;8:e45658. DOI: https://doi.org/10.7554/eLife.45658 17 of 21

Tools and resources Neuroscience

https://doi.org/10.7554/eLife.45658


For the exploration experiments, the VBA control software was set to open loop mode and the

fixed odor port was replaced with an odor port coupled to the virtual burrow, such that the animal

was required to egress approximately 30 mm from the fully ingressed position to touch the port

with its nose. The odorant stimuli (Ethyl trans-3-hexenoate) were 8 s in duration and the ITI was 60–

120 s. In the rare instances during which the animal was not ingressed at the conclusion of the ITI,

stimulus delivery was delayed until the animal had resumed a fully ingressed position.

Odor-shock conditioning and testing (Figures 5,6)
1: Pre-test
The nine mice used in odor-conditioning experiments were first habituated to the three odorant

stimuli employed (CS+: Limonene, CS-: Hexenol, Odor3: Octanal). Animals were placed in the VBA

and acclimated to head fixation for 5 mn with the VBA in open loop, after which the VBA was

switched to closed loop for 10 mn. Following the 10-mn closed loop acclimation period, the VBA

was restored to the open loop configuration for 5 mn to permit the animal to freely ingress before

testing, and then returned to closed loop immediately before commencing odorant stimulus deliv-

ery. Odorant stimuli (8 s duration) were presented in 10 blocks of three pseudo-randomly interleaved

trials (60 s ITI) such that each stimulus was presented once per block. Following completion of the

10 stimulus blocks, animals were immediately removed from the VBA and returned to their home

cage. Air pressure in the air bearings was set to 3 psi during habituation.

Day 2: Conditioning
Conditioning was performed one day after odor habituation. A fear conditioning chamber (14.2 mm

wide, 16.2 mm long, 12.6 mm high, Med Associates, Fairfax, VT) was employed. Under conditions of

darkness with an acoustic background of white noise, mice were placed inside the fear conditioning

chamber on the open, gloved hand of the experimenter. Once the animal had freely entered the

fear conditioning chamber, the door was closed and the animal was allowed to acclimate for 5 mn.

Eight blocks of CS+ and CS- odorant stimuli were presented in pairs of pseudo-randomly interleaved

trials. The odorant stimuli were 10 s in duration with a 5-mn ITI. During the final 2 s of presentation

of the CS+ stimulus only, the floor of the fear conditioning chamber was electrified (intensity 0.70–

0.73 mAmp). Upon completion of all eight trials, the mouse was permitted to recover for 5 mn in the

fear conditioning chamber and then returned to its home cage.

Day 3: Test
One day after conditioning animals were returned to the VBA to test responses to all odorant stim-

uli. Test was identical to pre-test except that eleven stimulus blocks were presented and air pressure

in the VBA air bearings was set to 15 psi.

Neurophysiological recording (Figure 7)
Electrophysiology was performed using silicon probes (A1 � 32-Poly3-5mm-25s-177-H32_21 mm,

NeuroNexus, Ann Arbor, MI) chronically implanted into anterior piriform cortex (APC). At least one

week following headplate attachment, mice were anesthetized with ketamine/xylezine and a craniot-

omy centered 1,150 mm posterior to the rostral confluence of the dorsal sinuses and 2,250 mm lateral

to the midline was performed using a dental drill (Osada Success 40, Osada Electric Company,

Tokyo, Japan). The probe was lowered until the dense spiking characteristic of layer 2 of APC was

detected, at which point it was cemented in place. Animals were allowed to recover for at least four

weeks before any recording took place to allow for the tissue to fully settle around the implanted

probe.

Neural signals were acquired simultaneous to behavior using a Cerebus Neural Signal Processor

(Blackrock Microsystems, Salt Lake City, UT). Custom written scripts in Matlab were then used to fil-

ter and preprocess the data, which were then automatically spike sorted using Kilosort

(Pachitariu et al., 2016) and manually curated using phy (https://github.com/kwikteam/phy).

Statistics
To determine whether responses in the VBA differed across experimental conditions, we asked

whether the likelihood of ingress was larger in one condition than another. For the purposes of this
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test we define an ingress as a maximum change in burrow position greater 2 mm (the results of the

statistical tests are robust to the choice of threshold; see Figure 5—figure supplement 2). For each

condition we pooled all ingress responses across mice and used a two-proportion z-test with the null

hypothesis that the probability of ingress in the tested condition was less than or equal to the proba-

bility of ingress in the other condition. In figures, one star (*) indicates p<0.05, two stars (**) indicate

p<0.01, and three stars (***) indicate p<0.001.
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