
*For correspondence:

steven.spoel@ed.ac.uk

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 22

Received: 19 March 2019

Accepted: 05 October 2019

Published: 07 October 2019

Reviewing editor: Jian-Min

Zhou, Chinese Academy of

Sciences, China

Copyright Skelly et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Dynamic ubiquitination determines
transcriptional activity of the plant
immune coactivator NPR1
Michael J Skelly, James J Furniss, Heather Grey, Ka-Wing Wong, Steven H Spoel*

Institute of Molecular Plant Sciences, School of Biological Sciences, University of
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Abstract Activation of systemic acquired resistance in plants is associated with transcriptome

reprogramming induced by the unstable coactivator NPR1. Immune-induced ubiquitination and

proteasomal degradation of NPR1 are thought to facilitate continuous delivery of active NPR1 to

target promoters, thereby maximising gene expression. Because of this potentially costly sacrificial

process, we investigated if ubiquitination of NPR1 plays transcriptional roles prior to its

proteasomal turnover. Here we show ubiquitination of NPR1 is a progressive event in which initial

modification by a Cullin-RING E3 ligase promotes its chromatin association and expression of

target genes. Only when polyubiquitination of NPR1 is enhanced by the E4 ligase, UBE4, it is

targeted for proteasomal degradation. Conversely, ubiquitin ligase activities are opposed by UBP6/

7, two proteasome-associated deubiquitinases that enhance NPR1 longevity. Thus, immune-

induced transcriptome reprogramming requires sequential actions of E3 and E4 ligases balanced

by opposing deubiquitinases that fine-tune activity of NPR1 without strict requirement for its

sacrificial turnover.

DOI: https://doi.org/10.7554/eLife.47005.001

Introduction
Immune responses must be tightly controlled to provide appropriate, efficient and timely resistance

to pathogenic threats. A major hallmark of eukaryotic immune responses is dramatic reprogramming

of the transcriptome to prioritise defences over other cellular functions. In plants transcriptional

reprogramming is largely orchestrated by the immune hormone salicylic acid (SA) that accumulates

upon recognition of biotrophic pathogens. SA not only induces resistance in infected local tissues, it

is also required for establishment of systemic acquired resistance (SAR), a form of induced resistance

with broad-spectrum effectiveness that is long-lasting and protects the entire plant from future path-

ogen attack (Spoel and Dong, 2012). Establishment of SAR and associated transcriptome reprog-

ramming are mediated by the transcriptional coactivator NPR1 (nonexpressor of pathogenesis-

related (PR) genes 1). The majority of SA-induced genes are NPR1 dependent, indicating NPR1 is a

master regulator of plant immunity (Wang et al., 2006). Consequently, loss of NPR1 function results

in severely immune-compromised plants unable to activate SAR.

Since NPR1 exerts its activity in the nucleus (Kinkema et al., 2000), controlling its nuclear entry

provides a means to prevent spurious activation of immune responses. Indeed, in resting cells NPR1

is sequestered in the cytoplasm as a large redox-sensitive oligomer that is formed by intermolecular

disulphide linkages between conserved cysteine residues (Mou et al., 2003). NPR1 monomers that

escape oligomerization and enter the nucleus are ubiquitinated by a Cullin-RING Ligase 3 (CRL3), a

modular E3 ubiquitin ligase, resulting in their degradation by the 26S proteasome (Spoel et al.,

2009). Importantly, constitutive clearance of NPR1 from nuclei of resting cells by concerted action of
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CRL3 and the proteasome is necessary to prevent untimely activation of its target genes and associ-

ated autoimmunity.

Upon activation of SAR, NPR1 is subject to an array of post-translational modifications. A combi-

nation of alterations in redox-based modifications, phosphorylation and SUMOylation of NPR1 result

in the formation of a transactivation complex that induces the transcription of immune-responsive

target genes (Skelly et al., 2016; Withers and Dong, 2016). Subsequent to these post-translational

control points, NPR1 becomes phosphorylated at Ser11 and Ser15, which surprisingly results in

recruitment of CRL3 followed by its degradation (Spoel et al., 2009). Pharmacological inhibition of

the proteasome, genetic mutation of CRL3, and mutation of Ser11/15 all stabilised NPR1 protein,

yet impaired the expression of SA-induced NPR1 target genes (Spoel et al., 2009). These findings

indicate that paradoxically, ubiquitination and degradation of NPR1 are required for the full expres-

sion of its target genes. We previously proposed a proteolysis-coupled transcription model in which

activation of target gene transcription results in NPR1 being marked as ‘spent’ by Ser11/15 phos-

phorylation (Spoel et al., 2009). SUMOylation of NPR1 was required for Ser11/15 phosphorylation

and facilitates its interaction with other transcriptional activators (Saleh et al., 2015), suggesting

that NPR1 becomes inactivated only after it has initiated gene transcription. Removal of inactive

NPR1 from target promoters may be necessary to allow binding of new active NPR1 protein that can

reinitiate transcription, thereby correlating the rate of NPR1 turnover to the level of target gene

expression (Spoel et al., 2009). This type of transcriptional control by unstable (co)activators has

also been reported in other eukaryotes, including for key transcriptional regulators such as the nutri-

ent sensor GCN4 in yeast and the estrogen receptor ERa as well as oncogenic cMyc and SRC-3 acti-

vators in humans (Kim et al., 2003; Lipford et al., 2005; Métivier et al., 2003; Reid et al., 2003;

von der Lehr et al., 2003; Wu et al., 2007). This suggests that the use of unstable transcriptional

(co)activators may be an evolutionary conserved mechanism for fine-tuning gene expression

(Geng et al., 2012; Kodadek et al., 2006).

eLife digest Plant diseases cause devastating crop losses around the world and threaten the

food supply of millions of people. Over time, plants have developed various mechanisms for fighting

off infections caused by pests and other pathogens such as viruses and bacteria. When plants

become infected they kick their immune system into action by rapidly switching on and off certain

genes. They do this by activating the protein NPR1 which regulates the plant’s immune genes. NPR1

is essential for fighting off infections and plants that do not have this protein are highly susceptible

to disease.

Peculiarly, once the plant has detected an infection it builds resistance by destroying the NPR1

protein. A previous study suggested that plants do this to replace old ‘inactive’ NPR1 with newer

versions that can activate the genes needed to stop the disease developing. This process, however,

requires a lot of energy that could be re-directed to other aspects of the immune response. Now,

Skelly et al. – including one of the researchers involved in the previous study – have explored

whether there may be other reasons for why plants destroy the NPR1 protein.

Plant cells target NPR1 for destruction by repeatedly tagging it with molecules called ubiquitin to

form ubiquitin chains. The length of these chains determines whether a protein is stable and ready

for action, or whether it is ready to be destroyed. In experiments with a commonly studied plant

known as Arabidopsis thaliana, Skelly et al. found that the length of ubiquitin chains attached to the

NPR1 protein could fine-tune its level of activity: short ubiquitin chains activate NPR1, while longer

chains lead to its destruction and shut down the protein. This suggests that the steps leading to the

destruction of NPR1 regulate the immune genes needed to fight off disease.

This work has uncovered important new components of how plants defend themselves from

infection. If these findings translate to crop plants they could inform future agricultural strategies for

enhancing the plant’s own defences to increase crop yields, which would provide more food for a

rapidly growing population.

DOI: https://doi.org/10.7554/eLife.47005.002
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While transcription-coupled degradation of unstable (co)activators is an attractive model for con-

trolling transcriptional outputs in eukaryotes, it is potentially also a costly sacrificial process. There-

fore we explored the alternative possibility that prior to degradation, ubiquitination itself might act

as a transcriptional signal. As chains of four or more ubiquitin molecules are thought to be necessary

for recruitment of most substrates to the proteasome (Thrower et al., 2000), it is plausible that

processive ubiquitination could provide a window of opportunity for NPR1 to activate its target

genes. In this study we demonstrate that the transcriptional activity of NPR1 is controlled by several

ubiquitin chain modifying enzymes. Both stepwise ubiquitin chain extension and trimming activities

contribute to the regulation of NPR1 target genes and establishment of plant immunity. Our findings

imply that in eukaryotes transcriptional outputs of unstable (co)activators may not be fine-tuned by

their proteasomal turnover per se but rather by conjugated ubiquitin chains of dynamic variable

length.

Results

The E4 ligase UBE4 regulates SA- and NPR1-mediated plant immunity
To examine if stepwise ubiquitination of NPR1 plays a role in plant immune responses we examined

a potential role for E4 ligases. Unlike E3 ligases, the E4 class do not contribute towards initial ubiqui-

tination of substrates but rather extend pre-existing ubiquitin chains (Hoppe, 2005; Koegl et al.,

1999). In Arabidopsis the E4 ligase UBE4/MUSE3 has been implicated in the degradation of NLR

(nucleotide binding and leucine-rich repeat) immune receptors. Mutant ube4/muse3 plants exhibited

enhanced disease resistance but this phenotype could only be explained in part by the increased sta-

bility of an NLR receptor (Huang et al., 2014). Therefore we investigated if UBE4 is involved in

downstream NPR1-dependent immune signalling by acquiring a loss-of-function T-DNA insertion

mutant (Figure 1—figure supplement 1). Like mutants in CRL3 ligase that fail to degrade NPR1

(Spoel et al., 2009), adult ube4 plants displayed enhanced expression of immune genes in absence

of pathogen challenge (Figure 1A). In agreement with this, when the potential for enhanced disease

resistance was examined by using a high inoculum of Psm ES4326, adult ube4 mutants showed auto-

immunity (Figure 1B). To establish if these phenotypes were dependent on SA signalling, ube4

mutant plants were crossed with SA-deficient ics1 mutants (Wildermuth et al., 2001). The constitu-

tive immune gene expression observed in ube4 was abolished in ube4 ics1 double mutant plants

(Figure 1C). Furthermore, a low inoculum dosage of Psm ES4326 that does not cause disease in

wild-type (WT) and mutant ube4 plants, did result in bacterial proliferation in mutant ics1 plants. In

agreement with the gene expression data, enhanced susceptibility was maintained in ube4 ics1 dou-

ble mutants (Figure 1D), indicating the autoimmune phenotype of adult ube4 plants is completely

dependent on SA. Because SA-dependent immunity is largely regulated by the transcription coacti-

vator NPR1 (Cao et al., 1997), we crossed ube4 with npr1-1 mutant plants. Constitutive immune

gene expression in ube4 plants was abolished in ube4 npr1 plants (Figure 1E) and this double

mutant was equally susceptible to a low Psm ES4326 inoculum as npr1 single mutants (Figure 1F).

Collectively, these data suggest that in unchallenged plants UBE4 suppresses the expression of SA-

mediated NPR1 target genes and prevents autoimmunity, conceivably by altering the stability of

upstream NLR immune receptors as well as the downstream NPR1 coactivator.

UBE4 polyubiquitinates NPR1 coactivator and targets it for
degradation
Because ube4 mutant phenotypes resemble those of mutants in CRL3 ligase (Spoel et al., 2009), we

investigated if UBE4 also controls NPR1 stability in the nucleus. Expression of a YFP-UBE4 fusion

protein in Arabidopsis protoplasts confirmed it is indeed partly localised to the nucleus (Figure 2—

figure supplement 1A). We used the protein synthesis inhibitor cycloheximide to examine if UBE4

controls the stability of SA-induced NPR1.Both SA-induced constitutively expressed NPR1-GFP (Fig-

ure 2—figure supplement 1B) (Kinkema et al., 2000) and endogenous NPR1 from WT plants were

degraded within a few hours after exposure to cycloheximide (Figure 2A and B). By contrast, both

proteins were considerably more stable in the ube4 mutant genetic background. These findings

were further confirmed by quantifying the amount of NPR1-GFP or endogenous NPR1 protein

remaining after exposure to cycloheximide (Figure 2—figure supplement 1C and D). Stabilisation
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of endogenous NPR1 also occurred in the previously described muse3 mutant allele of UBE4 (Fig-

ure 2—figure supplement 1E) (Huang et al., 2014). Taken together these results indicate that

UBE4 promotes NPR1 degradation. Recruitment of NPR1 to CRL3 for ubiquitination and subsequent

degradation requires phosphorylation at residues Ser11 and Ser15 (Spoel et al., 2009). Therefore

we examined if ube4 mutants were impaired in NPR1 Ser11/15 phosphorylation. However, Ser11/15

phosphorylation of NPR1-GFP was unaffected by the ube4 mutation (Figure 2C), indicating UBE4

mediates NPR1 turnover downstream of CRL3-mediated ubiquitination.

We then investigated if UBE4 is involved in polyubiquitination of NPR1. Pulldown of polyubiquiti-

nated proteins using tandem-repeated ubiquitin-binding entities (TUBE) (Hjerpe et al., 2009) fol-

lowed by detection of NPR1-GFP, revealed that SA stimulated polyubiquitination of NPR1-GFP

(Figure 2D). By contrast, SA-induced polyubiquitination of NPR1-GFP was compromised in ube4

mutants (Figure 2D), but ubiquitinated NPR1 was still detected at high-molecular weight. Therefore

0.0

0.5

1.0

1.5

P
R
1
/U
B
Q

0.00

0.02

0.04

0.06

0.08

W
R
K
Y
1
8
/U
B
Q

0.00

0.02

0.04

0.06

W
R
K
Y
3
8
/U
B
Q

0.000

0.005

0.010

W
R
K
Y
6
2
/U
B
Q

4

5

6

7

8

lo
g
 c

fu
/le

a
f 
d
is

c

0.00

0.04

0.08

0.12

0.16

P
R
1
/U
B
Q

0

2

4

6

8

10

P
R
2
/U
B
Q

0.000

0.002

0.004

0.006

0.008

0.010

W
R
K
Y
3
8
/U
B
Q

0.000

0.002

0.004

0.006

W
R
K
Y
6
2
/U
B
Q

3

4

5

6

7

8

lo
g
 c

fu
/le

a
f 
d
is

c

0.00

0.05

0.10

0.15

P
R
1
/U
B
Q

0

1

2

3

4

5

P
R
2
/U
B
Q

0.000

0.005

0.010

W
R
K
Y
3
8
/U
B
Q

0.000

0.001

0.002

0.003

0.004

0.005

W
R
K
Y
6
2
/U
B
Q

3

4

5

6

7

8

lo
g
 c

fu
/le

a
f 
d
is

c

! "

#

$

%

&

!
"
!"
#$

"%
&'
()
*+

!
"
!"
#$

"%
&'
()
*+

!
"
!"
#$

"%
&'
()
*+

!
"
!"
#$

"%
&'
()
*+

!
"
!"
#$

"%
&'
()
*+

#

$
%

&

!
"
,!
-+

"%
&'

"%
&'
.,!
-+

!
"
,!
-+

"%
&'

"%
&'
.,!
-+

!
"
,!
-+

"%
&'

"%
&'
.,!
-+

!
"
,!
-+

"%
&'

"%
&'
.,!
-+

!
"
,!
-+

"%
&'

"%
&'
.,!
-+

#

$

#

$

!
"
()
*+

"%
&'

"%
&'
.(
)*
+

!
"
()
*+

"%
&'

"%
&'
.(
)*
+

!
"
()
*+

"%
&'

"%
&'
.(
)*
+

!
"
()
*+

"%
&'

"%
&'
.(
)*
+

!
"
()
*+

"%
&'

"%
&'
.(
)*
+

#'

$

#

$

#

$

%

&

#

$

%

&
#

$

%

&

#

$ $

%

#
#($

%

$
# #

$

#

#

$

%

#($

#
#

$

#
# #

$

%

#($

%

#(&

$(%

#

#

$

#

Figure 1. The E4 ubiquitin ligase UBE4 regulates SA-mediated plant immunity. (A) Expression of NPR1 target genes normalised relative to

constitutively expressed UBQ5 in four-week old plants of the indicated genotypes. Data points represent mean ± SD while letters denote statistically

significant differences between samples (Tukey Kramer ANOVA; a = 0.05, n = 3). (B) Adult plants were treated with or without 0.5 mM SA 24 hr prior to

inoculation with 5 � 106 colony forming units (cfu)/ml Psm ES4326. Leaf discs were analysed for bacterial growth 4 days post-infection (dpi). Error bars

represent 95% confidence limits, while letters denote statistically significant differences between samples (Tukey Kramer ANOVA; a = 0.05, n = 8). (C)

Expression of NPR1 target genes was analysed as in (A). (D) Adult plants were inoculated with 5 � 105 cfu/ml Psm ES4326 and leaf discs were analysed

for bacterial growth at four dpi. Error bars represent 95% confidence limits, while letters denote statistically significant differences between samples

(Tukey Kramer ANOVA; a = 0.05, n = 8). (E) Basal expression of NPR1 target genes were analysed as in (A). (F) Adult plants of indicated genotypes

were infected and analysed as in (D).

DOI: https://doi.org/10.7554/eLife.47005.003

The following figure supplement is available for figure 1:

Figure supplement 1. UBE4 knockout.

DOI: https://doi.org/10.7554/eLife.47005.004
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we sought to distinguish if in ube4 mutants, NPR1 was modified by long ubiquitin chains or multiple

shorter chains, both of which yield high-molecular weights on SDS-PAGE. Thus, we performed pull

down experiments with recombinant S5a ubiquitin interacting motifs (S5aUIM) that preferentially

bind chains of four or more ubiquitin molecules (Deveraux et al., 1994; Young et al., 1998). Com-

pared to plants carrying wild-type UBE4 alleles, the amount of SA-induced polyubiquitinated NPR1-

GFP pulled down with recombinant S5aUIM was strikingly lower in ube4 mutants (Figure 2E),
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Figure 2. UBE4 facilitates polyubiquitination and degradation of NPR1 coactivator. (A) Seedlings expressing 35S::NPR1-GFP in the indicated genetic

backgrounds were treated with 0.5 mM SA for 24 hr before addition of 100 mM CHX to inhibit protein synthesis. NPR1-GFP protein levels were

monitored by immunoblot analysis, while S5a levels confirmed equal loading. (B) Seedlings were treated with 0.5 mM SA for 24 hr before addition of

100 mM CHX. Endogenous NPR1 protein levels were then monitored at the indicated times by immunoblot analysis, while GAPDH levels confirmed

equal loading. (C) Seedlings expressing 35S::NPR1-GFP in the indicated genetic backgrounds were pre-treated with 0.5 mM SA for 2 hr followed by

addition of vehicle (DMSO) or 100 mM MG132 for an additional 4 hr. Phosphorylated Ser11/15 (pS11/15) and total NPR1-GFP levels were then

determined by immunoblotting. (D) Seedlings expressing 35S::NPR1-GFP in the indicated genetic backgrounds were pre-treated with 0.5 mM SA for 6

hr followed by addition of 100 mM MG132 for an additional 18 hr before ubiquitinated proteins were pulled down using GST-TUBEs. Input and

ubiquitinated NPR1-GFP (NPR1-Ubn) were detected by immunoblotting with a GFP antibody. (E) Seedlings expressing 35S::NPR1-GFP in the indicated

genetic backgrounds were pre-treated with 0.5 mM SA for 2 hr followed by addition of 100 mM MG132 for an additional 4 hr before ubiquitinated

proteins were pulled down (PD) using His6-V5-S5a-UIMs. Unmodified and long-chain polyubiquitinated NPR1-GFP (NPR1-Ubn>4) were detected by

immunoblotting with GFP antibodies. (F) Seedlings expressing 35S::NPR1-GFP in the indicated genetic backgrounds were treated for 6 hr with 0.5 mM

SA followed by addition of 100 mM MG132 for a further 18 hr. Polyubiquitinated NPR1-GFP protein was then purified with GFP-Trap agarose and

incubated for 2 hr with in vitro synthesised FLAG-UBE4. NPR1-GFP was detected by immunoblotting with GFP antibodies, while FLAG-UBE4 was

detected using FLAG antibodies.

DOI: https://doi.org/10.7554/eLife.47005.005

The following figure supplement is available for figure 2:

Figure supplement 1. UBE4 cellular localisation and effect on NPR1 stability.

DOI: https://doi.org/10.7554/eLife.47005.006
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indicating that UBE4 promotes formation of long ubiquitin chains on NPR1 leading to its proteaso-

mal degradation. To determine if UBE4 may act directly on NPR1, we assessed the ability of UBE4

to physically interact with ubiquitinated NPR1. We isolated ubiquitinated NPR1-GFP from SA and

MG132-treated ube4 mutants and subsequently incubated with recombinant FLAG-UBE4. As shown

in Figure 2F, NPR1-GFP specifically pulled down FLAG-UBE4, indicating that UBE4 physically binds

to polyubiquitinated NPR1 to facilitate ubiquitin chain extension.

Progressive ubiquitination controls transcriptional activity of NPR1
Because UBE4 enhanced polyubiquitination of NPR1 and controlled its stability (Figure 2), we inves-

tigated if similar to CRL3 (Spoel et al., 2009), it also promotes transcriptional activity of NPR1. In

stark contrast to cul3a cul3b mutants that were compromised in SA-induced expression of NPR1 tar-

get genes, plants carrying two different ube4 mutant alleles exhibited elevated expression levels

that were much higher than in WT (Figure 3A and B, Figure 3—figure supplement 1A). To explore

the effect of UBE4 on the NPR1-dependent transcriptome, we performed RNA Seq on SA-treated

WT, ube4 and npr1 plants. Among 2612 genes whose expression changed by �2 fold in response to

SA in WT or ube4 mutants, 75% were stringently dependent on NPR1 (i.e. �1.5 fold difference com-

pared to npr1) (Figure 3—source data 1). We separated these genes into two categories: (1) genes

that were regulated by SA in both WT and mutant ube4 plants, and (2) genes that did not make

the �2 fold change cut-off in WT but were highly regulated by SA in ube4 mutants. The majority of

SA-induced genes in category 1, including PR1 and WRKY marker genes, received a boost in expres-

sion when UBE4 was knocked out (Figure 3C). This positive effect was even clearer for category two

genes (Figure 3C and D). Similarly, genes suppressed by SA treatment displayed further downregu-

lation in ube4 mutants compared to WT (Figure 3C). By contrast, SA-regulated genes that were not

dependent on NPR1 behaved similarly in WT and mutant ube4 plants (Figure 3—figure supplement

1B), suggesting UBE4 exerts its effects predominantly through NPR1. Together these data suggest

that in absence of UBE4-mediated long-chain polyubiquitination, NPR1 remains in a highly active

transcriptional state.

To understand the opposing effects of CRL3 and UBE4 on transcriptional activity of NPR1, we

examined endogenous NPR1 protein levels. Compared to WT plants, SA-induced NPR1 accumu-

lated to elevated levels in both cul3a/b and ube4 mutants (Figure 3E). Thus, NPR1 protein levels

cannot explain differences in transcriptional output of NPR1. We then examined if changes in polyu-

biquitin chain length regulate NPR1 association with its target promoters. To that end we performed

chromatin immunoprecipitation experiments on plants that constitutively expressed NPR1-GFP,

thereby eliminating genotype-dependent differences in NPR1 protein level. Coinciding with elevated

PR1 gene expression, at 8 hr after SA treatment more NPR1-GFP was bound to the PR1 promoter in

ube4 mutants compared to plants carrying wild-type UBE4 alleles (Figure 3F). This indicates that in

absence of long polyubiquitin chains, early occupancy by transcriptionally competent NPR1 is

increased at target promoters. We also examined a later time point after SA treatment (24 hr) and

found that NPR1-GFP was still associated with the PR1 promoter in plants expressing wild-type

UBE4, but not in ube4 mutants (Figure 3G). Nonetheless, PR1 gene expression remained at elevated

levels in these mutants (Figure 3G), implying that in absence of long-chain polyubiquitination NPR1

strongly switches on target genes without the need for long-term residency at their promoters.

To investigate if CRL3 and UBE4 act independently or in tandem, we crossed ube4 single with

cul3a cul3b double mutants and analysed the expression of NPR1 target genes in the resulting triple

mutant. Strikingly, cul3a cul3b ube4 mutants showed severe developmental defects, including

stunted growth and complete sterility (Figure 3—figure supplement 1C and D). Very few viable

homozygous plants were recovered, perhaps suggesting these two ligases work together and share

substrates. Nonetheless we were able to select just enough plants to examine the behaviour of

NPR1 target genes. In cul3a cul3b ube4 mutants the SA-induced expression of several genes, includ-

ing PR genes, was impaired to a similar extend as in cul3a cul3b double mutants, indicating that ele-

vated gene expression observed in ube4 plants is dependent on CRL3 (Figure 3H and I). However,

a subset of NPR1 target genes (i.e. WRKY18, WRKY38, WRKY62) were dramatically upregulated in

cul3a cul3b ube4 mutants to a level higher than in any of the other genotypes. This suggests that in

absence of CRL3 and UBE4, these genes were activated through another pathway or were highly

responsive to elevated homeostatic levels of NPR1 protein and may therefore not be suitable read-

outs for this particular epistatic analysis (Figure 3I). Regardless of this specific, our broader findings
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Figure 3. Progressive ubiquitination controls transcriptional activity of NPR1. (A) WT, cul3a cul3b (cul3), ube4 and npr1 seedlings were treated with 0.5

mM SA for 6 hr before determining PR1 gene expression normalised relative to constitutively expressed UBQ5. Data points represent mean ± SD while

letters denote statistically significant differences between samples (Tukey Kramer ANOVA; a = 0.05, n = 3). (B) Heat map of the expression of additional

NPR1 target genes analysed as in (A). (C) Seedlings treated with water (Ctrl) or 0.5 mM SA for 12 hr were analysed by RNA-Seq. Only genes that were

induced �2 fold by SA in WT and/or ube4 plants and showed �1.5 fold difference in expression in npr1 mutants are shown (Benjamini Hochberg FDR,

Figure 3 continued on next page
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suggest that CRL3 and UBE4 function sequentially in the stepwise addition or extension of ubiquitin

chains on NPR1 but with opposing effects on its transcriptional activity.

We then examined if in ube4 mutants NPR1 lingered in a highly transcriptional active state that

does not require proteasome-mediated turnover. To negate any feedback effects of loss of UBE4

activity on endogenous NPR1 expression, seedlings constitutively expressing NPR1-GFP were

treated with SA plus a range of MG132 concentrations. SA-induced PR1 and WRKY gene expression

was inhibited by increasing concentrations of MG132 in NPR1-GFP (in npr1) plants (Figure 3J and

Figure 3—figure supplement 1E). By contrast, the SA-induced expression of these NPR1 target

genes was largely unresponsive to MG132 in ube4 mutants, especially at lower concentrations. Thus,

loss of UBE4 largely uncoupled NPR1 target gene expression from proteasome activity, demonstrat-

ing the importance of progressive ubiquitination for NPR1 activity. In summary, our findings indicate

that initial CRL3-mediated ubiquitination is required for NPR1 to attain its full transcriptional activity,

while the stepwise formation of long ubiquitin chains mediated by UBE4 inactivates NPR1 and pro-

motes its degradation by the proteasome.

Deubiquitinases regulate NPR1-dependent transcription
Trimming or removal of ubiquitin chains is performed by deubiquitinases (DUBs) and may provide

another layer of regulation of NPR1 activity. The Arabidopsis genome is predicted to encode for at

least 65 DUBs (Vierstra, 2009; Yang et al., 2007) with high likelihood of redundancy among gene

families. Therefore identifying candidate genes that potentially regulate NPR1 by genetically screen-

ing mutant collections was not feasible. Instead, we used a range of pharmacological broad-spec-

trum and selective DUB inhibitors and assessed their effect on SA-induced gene expression. The

broad-spectrum inhibitors PR-619 (Altun et al., 2011) and NSC632839 (Aleo et al., 2006) strongly

impaired SA-induced gene expression across all NPR1 target genes tested (Figure 4A), suggesting

that DUB activity is required for their optimal expression. Furthermore, while treatment with PR-619

or NSC632839 did not affect SA-induced transcription of the NPR1 gene, it depleted NPR1 protein

levels (Figure 4B). Thus, DUB activity may not only be required for NPR1-dependent gene expres-

sion but also for increasing NPR1 stability.

Next we tested more selective inhibitors that more specifically target one or a few DUBs. First we

treated WT seedlings with various DUB inhibitors and compared the cellular levels of global ubiqui-

tin conjugates with control-, and MG132-treated seedlings. While NSC632839 and MG132 treat-

ments dramatically enhanced accumulation of ubiquitin conjugates, especially in combination with

SA treatment, all other inhibitors had little effect on cellular ubiquitination levels (Figure 4C). We

Figure 3 continued

2-way ANOVA p�0.05). Graphs indicate genes that are up or down regulated in both WT and ube4 or only in ube4. PR-1, WRKY18, WRKY38 and

WRKY62 marker genes are indicated by green lines, whereas mean expression patterns are indicated by black lines. (D) Heat map representation of

genes from (C) that were upregulated by SA. (E) WT, cul3a cul3b (cul3), ube4 and npr1 seedlings were treated with water (-) or 0.5 mM SA (+) for 6 hr.

Endogenous NPR1 protein levels were monitored by immunoblot analysis, while GAPDH levels confirmed equal loading. (F) Adult plants expressing

35S::NPR1-GFP in the indicated genetic backgrounds were treated with 0.5 mM SA for 8 hr before analysing either PR1 gene expression (left panel) or

NPR1-GFP binding to the as-1 motif of the PR1 promoter (right panel). Mutant npr1 plants served as a negative control. Data points represent

mean ± SD while letters denote statistically significant differences between samples (Tukey Kramer ANOVA; a = 0.05, n = 3). (G) As in (F) except plants

were treated with 0.5 mM SA for 24 hr. (H) WT, cul3a cul3b (cul3) double, ube4 single, cul3a cul3b ube4 (cul3 ube4) triple and npr1 single mutant

seedlings were treated with 0.5 mM SA for 6 hr and PR1 gene expression determined by normalising against constitutively expressed UBQ5. Data

points represent mean ± SD while letters denote statistically significant differences between samples (Tukey Kramer ANOVA; a = 0.05, n = 3). (I) Heat

map of the expression of additional NPR1 target genes analysed as in (H). (J) WT (closed circles) and mutant ube4 (open circles) seedlings expressing

35S:NPR1-GFP were treated with 0.5 mM SA for 4 hr followed by the addition of indicated concentrations of MG132 for an additional 2 hr. PR1 gene

expression was determined and normalised relative to constitutively expressed UBQ5. MG132 treatments as well as a control (Ctrl) that received 4 hr of

water treatment followed by the addition of vehicle (DMSO), were plotted relative to maximal SA-induced PR1 expression. Data points represent

mean ± SD (n = 3).

DOI: https://doi.org/10.7554/eLife.47005.007

The following source data and figure supplement are available for figure 3:

Source data 1. SA-induced genes in WT, ube4 and npr1 plants determined by RNA-Seq.

DOI: https://doi.org/10.7554/eLife.47005.009

Figure supplement 1. Progressive ubiquitination controls transcriptional activity of NPR1.

DOI: https://doi.org/10.7554/eLife.47005.008
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Figure 4. Deubiquitinases regulate NPR1-dependent transcription. (A) WT seedlings were treated for 6 hr with either vehicle control (DMSO) or the

indicated DUB inhibitors (50 mM) in presence or absence of 0.5 mM SA before analysing the expression of NPR1 target genes. Data points represent

mean ± SD while letters denote statistically significant differences between samples (Tukey Kramer ANOVA; a = 0.05, n = 3). (B) WT seedlings were

treated as in (A) before endogenous NPR1 and GAPDH (loading control) protein levels were analysed by immunoblotting (top panel). NPR1 gene

expression was also analysed from the same samples (bottom panel). Data points represent mean ± SD while letters denote statistically significant

differences between samples (Tukey Kramer ANOVA; a = 0.05, n = 3). (C) WT seedlings were treated for 6 hr with vehicle (DMSO) or either the

indicated DUB inhibitors (50 mM) or MG132 (100 mM) in presence or absence of 0.5 mM SA before immunoblotting against conjugated ubiquitin (FK2).

Ponceau S staining indicated equal loading. (D) WT seedlings were treated as in (C) and NPR1 target gene expression analysed. Data points represent

mean ± SD while asterisks denote statistically significant differences between the indicated samples and the DMSO + SA treated sample (Tukey Kramer

ANOVA; a = 0.05, n = 3).

DOI: https://doi.org/10.7554/eLife.47005.010

Figure 4 continued on next page

Skelly et al. eLife 2019;8:e47005. DOI: https://doi.org/10.7554/eLife.47005 9 of 26

Research article Plant Biology

https://doi.org/10.7554/eLife.47005.010
https://doi.org/10.7554/eLife.47005


then examined the effect of these DUB inhibitors on SA-induced gene expression. All inhibitors

strongly suppressed SA-induced expression of NPR1 target genes (Figure 4D). Furthermore, most

inhibitors were effective at low micromolar concentrations and suppressed NPR1 target genes in a

dose-dependent manner (Figure 4—figure supplement 1). Collectively these data provide a first

indication that DUB activity may be crucial for NPR1 stability and efficient activation of SA-induced

NPR1 target genes.

Identification of DUBs that regulate NPR1-dependent transcription
The more selective inhibitors used in experiments described above have been shown to target DUBs

in mammalian cells (Figure 5—figure supplement 1A) (Altun et al., 2011; Kapuria et al., 2010;

Liu et al., 2003). To find potential homologues we used the sequences of these mammalian DUBs

to search the Arabidopsis genome using BLASTp. The identified Arabidopsis DUBs included mem-

bers of the ubiquitin-specific protease (UBP) and ubiquitin C-terminal hydrolase (UCH) multi-gene

families (Figure 5—figure supplement 1A). We then searched mutant collections to identify T-DNA

knockouts for each of these DUBs. UBP14 knockouts are lethal in Arabidopsis (Doelling et al.,

2001), while no T-DNA insertions were identified for either UCH1 or UCH2 in mutant collections of

the Col-0 genetic background. Therefore we did not pursue these DUBs further. The DUB inhibitor

TCID is thought to target mammalian UCH-L3 for which we identified a single Arabidopsis homo-

logue, UCH3. We acquired a T-DNA insertion line that displayed complete knockout of UCH3

expression (Figure 5—figure supplement 1B) and analysed SA-induced NPR1 target gene expres-

sion. Figure 5A shows that SA-induced PR1 and WRKY gene expression was generally comparable

between uch3 and WT plants, indicating UCH3 is unlikely to play a major role. Next we identified

UBP12 and UBP13 as potential plant targets of both WP1130 and P22077 inhibitors (Figure 5—fig-

ure supplement 1A). Previous research has suggested a role for these two proteins in plant immu-

nity, as ubp12 ubp13 double knockdown RNAi plants exhibited elevated expression of PR1 and

increased resistance to the virulent pathogen P. syringae pv. tomato (Ewan et al., 2011). Single

knockout mutants of UBP12 and UBP13 have no observable phenotype and double knockouts are

seedling lethal (Cui et al., 2013; Ewan et al., 2011). However we acquired the ubp12-2w allele, pre-

viously described as a weak ubp12 ubp13 double mutant (Cui et al., 2013), and analysed this mutant

for SA-induced gene expression. Similar to a previous report (Ewan et al., 2011), we observed ele-

vated PR1 expression in ubp12-2w plants but other NPR1 target genes were activated to a slightly

lesser extent as in WT (Figure 5B). This phenotype does not explain the suppressive effects we

observed with pharmacological DUB inhibitors. Finally, we acquired T-DNA knockout lines for the

mammalian USP14 homologues, UBP6 and UPB7 that are potentially targeted by the WP1130 inhibi-

tor (Figure 5—figure supplement 1A and C). SA-induced expression of PR1 was slightly lower in

these mutants but WRKY gene expression was largely comparable to WT plants (Figure 5C). Since

UBP6 and UBP7 are close homologues (Figure 5—figure supplement 2A and B), we generated

ubp6 ubp7 double knockout mutants (Figure 5—figure supplement 1C) that were viable and

showed no observable developmental phenotypes. However, ubp6 ubp7 mutants were impaired in

activation of SA-induced gene expression (Figure 5D). This indicates that UBP6 and UBP7 are func-

tionally redundant and required for NPR1 target gene expression.

UBP6 is a proteasome-associated DUB that deubiquitinates NPR1
Human USP14 and its yeast homologue Ubp6 have both been shown to associate with the 26S pro-

teasome, which is necessary for their activity (Borodovsky et al., 2001; Leggett et al., 2002). We

tested if this is also the case for Arabidopsis UBP6 by constitutively expressing FLAG-tagged UBP6

in the ubp6 ubp7 double mutant background followed by co-immunoprecipitation experiments. The

proteasomal subunits S5a and RPN6 both co-immunoprecipitated with FLAG-tagged UBP6

(Figure 6A), indicating UBP6 is also a proteasome-associated DUB in plants.

Figure 4 continued

The following figure supplement is available for figure 4:

Figure supplement 1. DUB inhibitors suppress NPR1 target gene expression.

DOI: https://doi.org/10.7554/eLife.47005.011
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Next we examined if UBP6 exhibits typical DUB activity. We produced recombinant T7-tagged

UBP6 and incubated it with HA-tagged ubiquitin vinyl sulfone (HA-UbVS), an ubiquitin mimic that

cannot be hydrolysed upon irreversible binding to DUB active sites (Borodovsky et al., 2001). HA-

UbVS readily labelled T7-UBP6 but only upon addition of 26S proteasomes (Figure 6B), indicating
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Figure 5. UBP6 and UBP7 deubiquitinases are required for SA-induced expression of NPR1 target genes. (A) WT

and uch3-1 seedlings were treated for 6 hr with 0.5 mM SA followed by analysis of NPR1 target gene expression.

Data points represent mean ± SD while letters denote statistically significant differences between samples (Tukey

Kramer ANOVA; a = 0.05, n = 3). (B) WT and ubp-12–2 w seedlings were treated and analysed as in (A). (C) WT,

ubp6-1 and ubp7-1 plants were treated with 0.5 mM SA for 24 hr before analysis of NPR1 target gene expression.

Data points represent mean ± SD while letters denote statistically significant differences between samples (Tukey

Kramer ANOVA; a = 0.05, n = 3). (D) WT and ubp6-1 ubp7-1 double mutant plants were treated and analysed as

in (C).

DOI: https://doi.org/10.7554/eLife.47005.012

The following figure supplements are available for figure 5:

Figure supplement 1. DUB inhibitor targets in Arabidopsis.

DOI: https://doi.org/10.7554/eLife.47005.013

Figure supplement 2. Domain structure and sequence of UBP6 and UBP7.

DOI: https://doi.org/10.7554/eLife.47005.014
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Figure 6. Deubiquitination by UBP6/7 regulates transcriptional activity of NPR1. (A) FLAG-UBP6 was immunoprecipitated (IP) from ubp6 ubp7 plants

transformed with or without 35S::FLAG-UBP6. Co-immunoprecipitates were analysed by immunoblotting against FLAG as well as the proteasome

subunits S5a and RPN6. Input protein levels are shown in the bottom panel. (B) Purified recombinant His6-T7-UBP6 was preincubated with or without

WP1130 and 26S proteasomes before labelling with HA-UbVS. Immunoblotting with HA antibodies detected active, labelled UBP6 while

immunoblotting with T7 antibodies detected total levels of UBP6. (C) 35S::NPR1-GFP seedlings were treated for 6 hr with 0.5 mM SA followed by

Figure 6 continued on next page
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UBP6 has proteasome-activated DUB activity. Moreover, addition of WP1130 inhibitor completely

blocked HA-UbVS labelling (Figure 6B), illustrating the effectiveness of this inhibitor on Arabidopsis

UBP6.

To examine if UBP6 can cleave ubiquitin chains we incubated recombinant UBP6 with free ubiqui-

tin chains or with di-ubiquitin of different linkage types and compared it to activity of recombinant

human USP14. Similar to human USP14, Arabidopsis UBP6 displayed very little deubiquitination

activity on free ubiquitin chains or di-ubiquitin of K48 and K63 linkage types (Figure 6—figure sup-

plement 1A–1C). Only wild-type UBP6 but not UBP6(C113S) in which the catalytic cysteine residue

was mutated, was weakly capable of trimming K63-linked chains in presence of 26S proteasomes,

although this activity required very long incubation times (Figure 6—figure supplement 1B). These

findings mirror the poor in vitro activity of human USP14 on free ubiquitin chains (Lee et al., 2016).

Instead, human USP14 deubiquitinates anchored ubiquitin chains of various linkage types, including

K48 linkages that target proteins for proteasome-mediated degradation (Lee et al., 2016). There-

fore we proceeded to investigate if UBP6 activity cleaves ubiquitin chains anchored to NPR1.

Indeed, incubation of purified polyubiquitinated NPR1-GFP with recombinant UBP6 and 26S protea-

somes led to the release of ubiquitin conjugates of approximately hexa-ubiquitin chain length

(Figure 6C). This release of ubiquitin conjugates was dependent on SA treatment, suggesting that

UBP6 counteracts SA-induced polyubiquitination of NPR1 (Figure 6—figure supplement 1D).

Together, these results demonstrate that UBP6 is an active DUB capable of removing ubiquitin

chains en bloc from NPR1.

Deubiquitination by UBP6 and UBP7 regulates NPR1 stability and
transcriptional activity
So what is the effect of UBP6- and UBP7-mediated deubiquitination on NPR1 function? We found

that treatment of NPR1-GFP (in npr1) seedlings with WP1130 inhibitor increased the levels of SA-

induced polyubiquitinated NPR1-GFP while reducing the unmodified amount of this protein

(Figure 6D). This suggests that UBP6 and UBP7 activities are required for deubiquitination of SA-

induced NPR1-GFP, thereby rescuing it from degradation. To further examine this possibility, we

analysed the stability of endogenous NPR1 protein in SA-treated ubp6 ubp7 double mutants. CHX

chase experiments revealed that compared to WT plants, NPR1 was destabilised in ubp6 ubp7

mutants (Figure 6E). Accordingly, expression of FLAG-tagged UBP6 in the ubp6/7 mutant back-

ground restored NPR1 stability (Figure 6—figure supplement 1E). These results demonstrate that

UBP6 and UBP7 serve to stabilise NPR1 by removing ubiquitin chains that signal for its proteasome-

mediated degradation.

Figure 6 continued

addition of 100 mM MG132 for a further 18 hr. Polyubiquitinated NPR1-GFP protein was then purified with GFP-Trap agarose and incubated for the

indicated times with recombinant UBP6 in presence or absence of 26S proteasomes. Remaining polyubiquitinated NPR1-GFP and released ubiquitin

species were detected by immunoblotting using an antibody against ubiquitin (P4D1), while unmodified NPR1-GFP was detected with an anti-GFP

antibody. (D) 35S::NPR1-GFP seedlings were treated for 2 hr with 0.5 mM SA followed by addition of 50 mM WP1130 or DMSO vehicle for a further 4 hr.

Ubiquitinated proteins were pulled down using GST-TUBEs. Input and ubiquitinated NPR1-GFP (NPR1-Ubn) were detected by immunoblotting with a

GFP antibody. (E) Seedlings were treated with SA for 24 hr to induce NPR1 before addition of 100 mM CHX. Endogenous NPR1 protein levels were

monitored by immunoblotting and GAPDH levels confirmed equal loading. (F) 35S::NPR1-GFP seedlings were treated for 2 hr with 0.5 mM SA followed

by addition of 50 mM WP1130 or DMSO vehicle for a further 4 hr. NPR1-GFP binding to the as-1 motif of the PR1 promoter element was quantified by

ChIP with npr1 seedlings serving as a negative control. Data points represent mean ± SD while letters denote statistically significant differences

between samples (Tukey Kramer ANOVA; a = 0.05, n = 3). (G) Plants of the stated genotypes were treated with 0.5 mM SA for 24 hr before the

expression of NPR1 target genes was analysed by qPCR. Data points represent mean ± SD while letters denote statistically significant differences

between samples (Tukey Kramer ANOVA; a = 0.05, n = 3). (H) Plants were treated with or without 0.5 mM SA 24 hr prior to inoculation with 5 � 106

colony forming units (cfu)/ml Psm ES4326. Leaf discs were analysed for bacterial growth at three dpi. Error bars represent 95% confidence limits, while

letters denote statistically significant differences between samples (Tukey Kramer ANOVA; a = 0.05, n = 8).

DOI: https://doi.org/10.7554/eLife.47005.015

The following figure supplement is available for figure 6:

Figure supplement 1. Deubiquitinating activity of UBP6.

DOI: https://doi.org/10.7554/eLife.47005.016
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Given the importance of progressive ubiquitination for the transcriptional activity of NPR1, we

explored how UBP6- and UBP7-mediated deubiquitination might affect NPR1 coactivator function.

Because UBP6 and UBP7 were required for NPR1-dependent PR1 gene expression (Figure 5D), we

questioned if NPR1 was still associated with the PR1 promoter in absence of UBP6 and UBP7 activi-

ties. Surprisingly, ChIP experiments showed that SA-induced association of NPR1-GFP with the PR1

promoter was strongly enhanced in presence of WP1130 inhibitor (Figure 6F). This suggests that

UBP6 and UBP7 prevent the build-up of long polyubiquitin chains that block the transcriptional activ-

ity of NPR1. It also implies that similar to their yeast homologue, UBP6 and UBP7 exhibit protea-

some inhibitory activity (Hanna et al., 2006). This activity is thought to delay degradation of

proteasome substrates, thereby creating a window of opportunity for DUBs to deubiquitinate sub-

strates and pardon them from proteolysis. Importantly, proteasome inhibitory activity does not

require the catalytic active site (Hanna et al., 2006). Thus, to investigate how deubiquitination and

proteasome inhibitory activities of UBP6 contribute to the regulation of NPR1 coactivator activity,

we expressed FLAG-tagged wild-type UBP6 (FLAG-UBP6) and catalytically inactive UBP6(C113S)

(FLAG-UBP6m) in ubp6 ubp7 double mutants. While ubp6 ubp7 mutants were compromised in SA-

induced activation of all NPR1 target genes tested, expression of FLAG-UBP6 fully restored SA-

responsiveness (Figure 6G). By contrast, FLAG-UBP6m restored SA-induced expression of only a

subset, but not all NPR1 target genes. A distinction was observed between WRKY and PR genes,

with the former requiring catalytic DUB activity of UBP6 while the latter did not (Figure 6G). These

data indicate that catalytic and non-catalytic activities of UBP6 regulate distinct NPR1-dependent

gene sets.

Finally we examined what the relevance is of UBP6- and UBP7-regulated transcriptional activity of

NPR1 in context of plant immunity. We first treated plants with or without SA before challenge inoc-

ulation with virulent Psm ES4326. SA treatment induced resistance in WT plants but did not block

bacterial propagation in ubp6/7 plants (Figure 6H). Collectively, these data clearly demonstrate that

UBP6 and UBP7 are required for NPR1 coactivator activity and associated development of SA-

dependent immunity.

Discussion
The ubiquitin-mediated proteasome system plays vital roles in the regulation of eukaryotic gene

expression, in large part by controlling the abundance of transcriptional regulators. Paradoxically,

proteasome-dependent instability of selected potent eukaryotic transcriptional activators is neces-

sary for the expression of their target genes. It is thought that their transcription-coupled degrada-

tion ensures the target promoter is continuously supplied with fresh activators that reinitiate

transcription, thereby maximising gene expression (Geng et al., 2012; Kodadek et al., 2006). How-

ever, this sacrificial process is energy-expensive (Collins and Goldberg, 2017; Peth et al., 2013),

raising a dilemma of why such mechanisms evolved to regulate transcriptional activators. Our study

on the immune coactivator NPR1, however, indicates that ubiquitin chain extension and trimming

activities can fine-tune transcriptional outputs of unstable eukaryotic activators without strict require-

ment for sacrificial turnover.

We discovered that ubiquitination of NPR1 is a stepwise event, requiring the actions of CRL3 and

the E4 ligase UBE4. In resting cells, CRL3-mediated turnover of NPR1 is important for preventing

autoimmunity in absence of pathogen threat (Spoel et al., 2009). The NPR1-dependent autoimmune

phenotype of ube4 mutants is reminiscent of that observed in cul3a cul3b mutants (Figure 1)

(Spoel et al., 2009), suggesting that in addition to CRL3 ligase, UBE4 is required to clear NPR1

from the nucleus and prevent untimely activation of immunity. In presence of SA, however, CRL3-

mediated ubiquitination induced NPR1 coactivator activity, whereas formation of polyubiquitin

chains by UBE4 blocked its activity and ultimately led to proteasome-mediated turnover (Figures 2

and 3). Rather than initiating substrate ubiquitination, E4 ligases are thought to extend existing

ubiquitin chains (Crosas et al., 2006; Koegl et al., 1999), thereby determining substrate commit-

ment to proteasome-mediated degradation and contributing to proteasome processivity

(Aviram and Kornitzer, 2010; Koegl et al., 1999). Functionally these enzymes are emerging as

important players in limiting the activity of NLR immune receptors as well as potent eukaryotic tran-

scriptional regulators. Arabidopsis UBE4/MUSE3 works in concert with a CRL1/SCFCPR1 ligase to

regulate stability of the intercellular immune receptors SNC1 and RPS2 that recognise pathogen
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invasion (Cheng et al., 2011; Gou et al., 2012; Huang et al., 2014). Taken together with our finding

that UBE4 acts in concert with CRL3 (Figure 3 and Figure 3—figure supplement 1), this suggests a

single E4 enzyme may assist in diverse ubiquitin-mediated pathways controlled by different E3

ligases.

The role of Arabidopsis UBE4 in ubiquitination and degradation of NPR1 are reminiscent of step-

wise ubiquitination of the mammalian tumour suppressor p53, a potent transcriptional activator of

genes involved in apoptosis, cell cycle arrest and cellular senescence. The stability of p53 is regu-

lated by amongst others the E3 ligase MDM2 (or HDM2 in humans) (Pant and Lozano, 2014).

Although MDM2 limits p53 activity by promoting its turnover, MDM2 only catalyses multi-monoubi-

quitination of p53, which is insufficient for recognition by the proteasome (Lai et al., 2001). Progres-

sion to the polyubiquitinated form of p53 in the nucleus is carried out by the U-box E4 ligase UBE4B

that interacts with both MDM2 and p53 (Li et al., 2003; Wu and Leng, 2011; Wu et al., 2011).

Although this is similar to the proposed roles of CRL3 and UBE4 in controlling NPR1 stability, initial

ubiquitination has different effects on p53 and NPR1. While MDM2-mediated monoubiquitination

controls nucleocytoplasmic trafficking of p53 (Li et al., 2003), it probably does not have a direct

effect on intrinsic p53 activator activity. Instead, initial ubiquitination boosts NPR1 transcriptional

coactivator activity, at least in part by enhancing target promoter occupancy in the short term and

potentially also by promoting genomic mobility of NPR1 in the longer term (Figure 3). Although it

remains unclear if CRL3 adds only monoubiquitin or generates short chains shy of tetraubiquitin, the

minimal signal required for proteasome recognition (Thrower et al., 2000), progression to polyubi-

quitin chain formation by UBE4 results in transcriptional shut down as polyubiquitinated NPR1 still

occupied target promoters but lacked transcriptional potency (Figure 6D and F). This type of step-

wise ubiquitination may be a general mechanism to control unstable transcriptional (co)activators in

eukaryotes. For example, multi-monoubiquitination of the oncogenic growth coactivator SRC-3

results in its transcriptional activation, while subsequent chain extension targets it for degradation,

but E4 ligases have not yet been implicated. We propose here that stepwise ubiquitination estab-

lished by the sequential actions of E3 and E4 ligases may generate a transcriptional timer that con-

trols the activity and lifetime of unstable (co)activators (Figure 7).

The complexity of the ubiquitin-dependent transcriptional timer was further revealed by the iden-

tification of UBP6 and UBP7 that deubiquitinated NPR1, thereby regulating its transcriptional activity

and lifetime (Figures 5 and 6). Several unstable mammalian transcription activators, including p53

and the immune activator NF-kB, are also regulated by diverse DUBs (Colleran et al., 2013;

Pant and Lozano, 2014; Schweitzer and Naumann, 2015). In these cases DUBs promote transcrip-

tion by stabilising p53 and NF-kB at their target promoters. For example, loss of USP7-mediated

deubiquitination of NF-kB resulted in increased turnover and decreased promoter occupancy of NF-

kB (Colleran et al., 2013). Similarly, we found that knockout of UBP6 and UBP7 resulted in

enhanced turnover and decreased transcriptional output of NPR1 (Figure 6). However, inhibition of

UBP6/7 deubiquitination activities with WP1130 resulted in enhanced occupancy of transcriptionally

inactive NPR1 at the PR1 target promoter (Figure 6F). These data suggest that (i) like their yeast

and mammalian counterparts (Hanna et al., 2006; Lee et al., 2016), UBP6 and UBP7 exhibit protea-

some inhibitory activities that at least temporarily prolong promoter occupancy by NPR1, and (ii)

UBP6 and UBP7 prevent inactivation of NPR1 by opposing the formation of long ubiquitin chains.

UBP6 showed a similar DUB activity as its mammalian homologue USP14 (Lee et al., 2016), in

that it appeared to deubiquitinate NPR1 by removing ubiquitin chains en bloc (Figure 6C and D).

Such activity places this DUB in direct opposition to UBE4-mediated chain extension activity. In yeast

Ubp6 was previously reported to oppose ubiquitin chain extension activity of the E4 ligase Hul5,

thereby regulating substrate recruitment to the proteasome (Crosas et al., 2006). Similarly, Arabi-

dopsis UBP6 and UBP7 opposed ubiquitin ligase activities to extend the lifetime of transcriptionally

active NPR1. Although we cannot completely rule out that these DUBs function in opposition to

CRL3, their en bloc ubiquitin removal activity suggests they more likely remove longer ubiquitin

chains generated by UBE4 (Figure 7).

Other DUBs may also play a role in regulating SA-responsive gene expression. This is illustrated

by our findings that all tested DUB inhibitors blocked NPR1 target gene expression, while mutation

of exclusively UBP6 and UBP7 had a similar effect. This discrepancy is expected because the specific-

ity of DUB inhibitors has well-recognised limitations in that they often target multiple related DUBs

(Figure 5—figure supplement 1A). This is likely especially true for Arabidopsis thaliana which
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encodes for >60 DUB enzymes, many of which cluster into related sub-groups (Liu et al., 2008;

March and Farrona, 2017). Besides UBP6/7 other DUBs may therefore also play a role in regulating

SA-responsive gene expression but their precise functions remain unknown.

In summary, we report that disparate ubiquitin modifying enzymes play important roles in estab-

lishment of plant immune responses. We demonstrate that the opposing actions of an E3 and E4

ligase pair and two DUBs can fine-tune transcriptional outputs of the unstable immune coactivator

NPR1 without strict requirement for its sacrificial turnover. Dynamicity in conjugated ubiquitin chain

length may be a powerful mechanism for controlling the activity of unstable eukaryotic (co)activators

in general.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(Arabidopsis thaliana)

cul3a cul3b (Spoel et al., 2009) SALK_046638
SALK_098014

Genetic reagent
(Arabidopsis thaliana)

ics1/sid2-2 (Wildermuth et al., 2001) N/A

Genetic reagent
(Arabidopsis thaliana)

ube4-2 (Sessions et al., 2002) SAIL_713_A12

Continued on next page

!"#$

!"#$

!"#$

%&'

%&'

()*+

()"&,-

.#/0

Figure 7. Working model for how dynamic ubiquitination regulates transcriptional outputs of NPR1. NPR1

occupancy at target gene promoters initiates low-level transcription (dashed green arrow). Initial ubiquitin (grey

circles) modifications mediated by CRL3 ligase enhances target gene expression to maximum levels (solid green

arrow), while progression to long-chain polyubiquitination mediated by UBE4 promotes the proteasome-mediated

degradation of NPR1 and inactivates target gene expression. UBP6/7 activity at the proteasome serves to limit the

degradation of NPR1, thereby promoting its active state.

DOI: https://doi.org/10.7554/eLife.47005.017
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic reagent
(Arabidopsis thaliana)

npr1-1 (Cao et al., 1994) N/A

Genetic reagent
(Arabidopsis thaliana)

npr1-0 This paper,
(Alonso et al., 2003)

SALK_204100

Genetic reagent
(Arabidopsis thaliana)

35S::NPR1-GFP npr1-1 (Kinkema et al., 2000) N/A

Genetic reagent
(Arabidopsis thaliana)

ubp12-2w (Cui et al., 2013) GABI_742C10

Genetic reagent
(Arabidopsis thaliana)

uch3-1 This paper,
(Alonso et al., 2003)

SALK_140823

Genetic reagent
(Arabidopsis thaliana)

ubp6-1 This paper,
(Alonso et al., 2003)

SALK_108832

Genetic reagent
(Arabidopsis thaliana)

ubp7-1 This paper,
(Alonso et al., 2003)

SALK_014223

Genetic reagent
(Arabidopsis thaliana)

35S::FLAG-UBP6 ubp6/7 This paper SALK_108832
SALK_014223

Antibody Mouse monoclonal
anti-GFP

Roche Cat# 11814460001 (1:1000 – 1:2000)

Antibody Rabbit polyclonal
anti-S5a

Abcam Cat# ab60101 (1:10000)

Antibody Rabbit polyclonal
anti-NPR1

This paper N/A (1:1000)

Antibody Rabbit polyclonal
anti-GAPDH

Sigma-Aldrich Cat# G9545 (1:5000)

Antibody Rabbit polyclonal
anti-pS11/15 NPR1

(Spoel et al., 2009) N/A (1:1000)

Antibody Rabbit polyclonal
anti-GFP (ChIP grade)

Abcam Cat# ab290 (1:500 for ChIP)

Antibody Mouse monoclonal
anti-Ubiquitin (FK2)

Millipore Cat# 04–263 (1:2000)

Antibody Mouse monoclonal
anti-FLAG M2 affinity gel

Sigma-Aldrich Cat# A2220 N/A

Antibody Rabbit monoclonal
anti-FLAG

Sigma-Aldrich Cat# F7425 (1:2000)

Antibody Rabbit polyclonal
anti-RPN6

Upstate Cat# 11814460001 (1:2000)

Antibody Mouse monoclonal
anti-Ubiquitin (P4D1)

Santa Cruz
Biotechnology

Cat# sc-8017 (1:2000)

Antibody Mouse monoclonal
anti-HA

ThermoFisher Cat# 26183 (1:5000)

Antibody Mouse monoclonal
anti-T7

Millipore Cat# 69522 (1:5000)

Recombinant
DNA reagent

pENTR-D-TOPO Invitrogen Cat# K240020

Recombinant
DNA reagent

pEarleyGate 202 ABRC
(Earley et al., 2006)

Cat# CD3-688

Recombinant
DNA reagent

pGEX-6P-1 GE Healthcare Cat# 28-9546-48

Recombinant
DNA reagent

pET28a Novagen Cat# 69865

Peptide,
recombinant protein

USP2 Catalytic Domain Boston Biochem Cat# E-504

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Peptide,
recombinant protein

26S Proteasome
(Ub-VS treated)

Ubiquigent Cat# 65-1020-010

Peptide,
recombinant protein

Poly-ubiquitin
(Ub3-7) K48-linked

Boston Biochem Cat# UC-220

Peptide,
recombinant protein

Poly-ubiquitin
(Ub3-7) K63-linked

Boston Biochem Cat# UC-320

Peptide,
recombinant protein

Di-ubiquitin K48-linked Boston Biochem Cat# UC-200B

Peptide,
recombinant protein

Di-ubiquitin K63-linked Boston Biochem Cat# UC-300B

Peptide,
recombinant protein

HA-Ubiquitin
-Vinyl sulfone

Boston Biochem Cat# U-212

Commercial
assay or kit

SuperScript II Invitrogen Cat# 18064014

Commercial
assay or kit

QuikChange
Site-Directed
Mutagenesis Kit

Agilent Cat# 200519

Commercial
assay or kit

GFP-Trap A Chromotek Cat# gta-20

Chemical
compound, drug

PR-619 Abcam Cat# ab144641

Chemical
compound, drug

NSC632839 Abcam Cat# ab144599

Chemical
compound, drug

WP1130 Cayman
Chemical

Cat# 15227

Chemical
compound, drug

P2207 LifeSensors Cat# SI9699

Chemical
compound, drug

TCID LifeSensors Cat# SI9679

Chemical
compound, drug

MG132 Cayman
Chemical

Cat# 10012628

Software,
algorithm

Strand NGS Avadis N/A

Plant maintenance, transformation, chemical treatments and pathogen
infection
All Arabidopsis plants used in this study were in the Columbia genetic background, with WT refer-

ring to wild-type Col-0 throughout. Plants were grown under long day conditions (16 hr photope-

riod) on soil in controlled-environment growth chambers at 65% humidity and 22˚C unless otherwise

stated. Seeds were stratified at 4–8˚C in darkness for 2 days before moving to growth chambers.

Plants were grown in a soil mix composed of peat moss, vermiculite and sand at a ratio of 4:1:1

respectively, and illumination was provided by fluorescent tube lighting at an intensity of 70–100

mmol m�2sec�1. For experiments on seedlings, seeds were sterilised by washing in 100% ethanol for

2 mins before incubating in 50% household bleach for 20 mins. After removal of bleach, seeds were

washed at least 3 times with sterile H2O before use. Sterilised seeds were spotted on Murashige and

Skoog agar media and stratified before placing under lighting conditions as above. All T-DNA inser-

tion mutants used were genotyped by PCR using standard conditions with gene specific primers in

combination with left-border primers specific to each mutant collection (Supplementary file 1).

The coding sequences of the UBE4 (At5g15400) and UBP6 (At1g51710) genes were amplified

using Phusion polymerase (NEB) from WT Arabidopsis cDNA with the addition of CACC at the 5’

end required for TOPO cloning. The PCR products were gel-purified and cloned in to the pENTR/D-

TOPO vector (Invitrogen) according to manufacturers’ instructions. The active site residue of UBP6

was then mutagenised to serine (C113S) using QuikChange Site-Directed Mutagenesis Kit according
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to manufacturers’ instructions. Genes were then recombined into pEarleyGate 104 and 202 plasmids

by LR reaction (Invitrogen) as described previously (Earley et al., 2006) to generate 35S::YFP-UBE4,

35S::FLAG-UBP6 and 35S::FLAG-UBP6(C113S) constructs. These plasmids were used to transform

protoplasts or to transform Agrobacterium tumifaciens strain GV3101 (pMP90) as described previ-

ously (Kneeshaw et al., 2014). After selection of positive Agrobacterium clones carrying the trans-

genes, approximately 6 week old flowering ubp6/7 plants were transformed as previously described

(Clough and Bent, 1998). Selection of transformants was performed by spraying 10 day old seed-

lings with 120 mg/l BASTA at least three times. Further confirmation of transformation was per-

formed by immunoblotting. Segregation of BASTA resistance was analysed in the T2 generation to

confirm plants had single transgene insertions.

For SA treatments, adult plants were sprayed with, while seedlings were immersed in 0.5 mM SA

or H2O. CHX, MG132 and DUB inhibitors were all used to treat seedlings by immersion at the con-

centrations stated in respective figure legends. Vehicle controls consisted of DMSO at the appropri-

ate concentration for each chemical used.

Psm ES4326 was grown in LB media supplemented with 10 mM MgCl2 and 50 mg/ml streptomy-

cin. Cultures were grown overnight then centrifuged at 4,000 rpm for 10 mins. Cells were resus-

pended in 10 mM MgCl2 and absorbance was measured at 600 nm before necessary dilutions were

made to adjust concentrations to those indicated in figure legends. Plants were infected by pressure

infiltration with a syringe through the abaxial leaf surface. For measurement of bacterial growth, a

single leaf disc per plant was cut from infected leaves at the stated dpi and ground in 10 mM

MgCl2. Serial dilutions were plated on LB supplemented with 10 mM MgCl2 and 50 mg/ml strepto-

mycin and colonies were counted after 2 days incubation at 30˚C.

RNA extraction, cDNA synthesis and qPCR
Leaf tissue or whole seedlings were frozen and ground to a fine powder in liquid nitrogen. Samples

were homogenised in RNA extraction buffer (100 mM LiCl, 100 mM Tris pH 8, 10 mM EDTA, 1%

SDS) before addition of an equal volume of phenol/chloroform/isoamylalcohol (25:24:1). The homog-

enate was vortexed and centrifuged at 13,000 rpm for 5 min. The aqueous phase was transferred to

an equal volume of 24:1 chloroform/isoamylalcohol, vortexed and then centrifuged at 13,000 rpm

for 5 min. This step was repeated once before the aqueous layer was added to a 1/3 vol of 8 M LiCl

and incubated overnight at 4˚C. The extract was then centrifuged at 13,000 rpm for 5 min at 4˚C.

The resulting pellet was washed with ice cold 70% ethanol then rehydrated and dissolved in 400 ml

H2O for 30 min on ice. Finally, 40 ml of NaAc (pH 5.3) and 1 ml of ice cold 96% ethanol was added

before incubating for 1 hr at �20˚C. The precipitate was then centrifuged at 13,000 rpm for 5 min at

4˚C, the pellet was washed with ice cold 70% ethanol and resuspended in 50 ml of H2O. Before

cDNA synthesis, RNA samples were quantified using a NanoDrop spectrophotometer (Thermo Sci-

entific) and appropriate dilutions were made to ensure all samples contained equal amounts of RNA.

Reverse transcription was then performed using SuperScript II reverse transcriptase (Invitrogen)

according to the manufacturers’ instructions. qPCR was carried out on 20-fold diluted cDNA using

Power SYBR Green (Life Technologies) and gene-specific primers (Supplementary file 1) on a Ste-

pOne Plus Real Time PCR machine (Life Technologies).

RNA-Seq
RNA was extracted from biological duplicate samples as described above and further purified using

an RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. qPCR was carried out to

confirm appropriate induction of SA-responsive marker genes. RNA was then quantified and submit-

ted to GATC Biotech/Eurofins (Constance, Germany) for RNA sequencing. The RNA-Seq reads were

aligned to the Arabidopsis thaliana TAIR10 genome using Bowtie. TopHat identified potential exon-

exon splice junctions of the initial alignment. Strand NGS software in RNA-Seq workflow was used to

quantify transcripts. Raw counts were normalised using DESeq with baseline transformation to the

median of all samples. Data were then expressed as normalised signal values (i.e. log2[RPKM] where

RPKM is read count per kilobase of exon model per million reads) for all statistical tests and plotting.

Genes were then filtered by expression (20%–100%) and differentially expressed genes determined

by Benjamini Hochberg FDR with 2-way ANOVA (p=0.05). Additionally, we required SA-induced

genes to meet a � 2 fold change cut-off, whereas NPR1-dependent genes required �1.5 fold
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change in Col-0 or ube4 plants when compared to npr1 mutants. RNA Seq data have been depos-

ited in Array Express at EMBL-EBIunder accession code E-MTAB-7369.

Chromatin immunoprecipitation
Chromatin immunoprecipitation was performed on leaf tissue of 4 week-old soil-grown adult plants

essentially as described (Yamaguchi et al., 2014) but with minor modifications. 500 mg tissue was

crosslinked with 1% formaldehyde by vacuum infiltration for 30 mins at room temperature. Glycine

was added to a final concentration of 100 mM to quench crosslinking and vacuum infiltrated for a

further 10 mins. Crosslinked tissue was washed twice with ice-cold PBS before all liquid was removed

and tissue was frozen in liquid nitrogen. Nuclei were isolated and lysed as described

(Yamaguchi et al., 2014) while sonication was performed using a BioRuptor Plus (Diagenode). Soni-

cation consisted of 15 cycles of 30 s ON, 30 s OFF at high power. NPR1-GFP was immunoprecipi-

tated using ChIP grade anti-GFP (Abcam) before capture of immune complexes with Protein A

agarose (Millipore). Crosslink reversal and protein removal was performed as described previously

(Nelson et al., 2006), by boiling in the presence of Chelex 100 resin (BioRad) before incubation at

55˚C with Proteinase K. Finally, DNA was cleaned up using PCR purification columns (Qiagen) and

analysed by qPCR using primers listed in Supplementary file 1.

Protein analysis
For protein degradation assays and analysis of NPR1 levels, seedlings were frozen and ground to a

fine powder in liquid nitrogen before homogenising in protein extraction buffer (PEB) (50 mM Tris-

HCl (pH 7.5), 150 mM NaCl, 5 mM EDTA, 0.1% Triton X-100, 0.2% Nonidet P-40, and inhibitors: 50

mg/ml TPCK, 50 mg/ml TLCK, 0.6 mM PMSF) (Spoel et al., 2009). For analyses of NPR1 phosphoryla-

tion PEB buffer was supplemented with 1X phosphatase inhibitor cocktail 3 (Sigma). Samples were

centrifuged at 13,000 rpm for 15 min at 4˚C to clarify extracts, and the resulting supernatant was

used for SDS-PAGE and immunoblot analysis. All antibodies used are listed in the Key Resources

Table.

For analysis of polyubiquitination with TUBEs, seedlings were ground to a fine powder in liquid

nitrogen and homogenised in 1x PBS supplemented with 1% Triton X-100, 10 mM NEM, 40 mM

MG132, 50 mg/ml TPCK, 50 mg/ml TLCK, 0.6 mM PMSF, and 0.2 mg/ml GST-TUBE (Hjerpe et al.,

2009). Homogenates were centrifuged at 13,000 rpm at 4˚C for 20 mins to remove cellular debris

and filtered through 0.22 mm filters before overnight incubation with Protino Glutathione Agarose

4B (Machery Nagel), at 4˚C with rotation. The agarose beads were washed 5 times with 1X PBS +

1% Triton X-100 before elution by boiling in 1X SDS-PAGE sample buffer including 50 mM DTT.

NPR1-GFP was detected by immunoblotting with anti-GFP (Roche).

For analysis of long chain polyubiquitination, seedlings were ground to a fine powder in liquid

nitrogen and homogenised in 1X PBS, supplemented with 1% Triton X-100, 10 mM NEM, 80 mM

MG115, 50 mg/ml TPCK, 50 mg/ml TLCK, 0.6 mM PMSF, 1X phosphatase inhibitor cocktail 3 (Sigma).

Homogenates were centrifuged at 13,000 rpm at 4˚C for 20 mins to remove cellular debris and fil-

tered through 0.22 mm filters before overnight incubation with 300 mg His6-V5-S5aUIM protein

immobilised on agarose. Agarose beads were washed 5 times with extraction buffer before elution

at 80˚C for 15 mins in 1X SDS-PAGE sample buffer including 50 mM DTT. NPR1-GFP was detected

by immunoblotting with anti-GFP (Roche).

For proteasome co-immunoprecipitation with FLAG-UBP6, seedlings were frozen and ground to

a fine powder in liquid nitrogen before homogenising in proteasome extraction buffer (50 mM Tris-

HCl (pH 7.4), 25 mM NaCl, 2 mM MgCl2, 1 mM EDTA, 10 mM ATP, 5% glycerol, and inhibitors: 50

mg/ml TPCK, 50 mg/ml TLCK, 0.6 mM PMSF). Extracts were centrifuged at 13,000 rpm at 4˚C for 20

mins to remove cellular debris and filtered through 0.22 mm filters. Anti-FLAG M2 affinity gel was

washed with the above buffer before incubating with samples overnight with rotation at 4˚C. The

resin was washed 3 times with the same buffer before immunoprecipitated proteins were eluted by

boiling in 1X SDS-PAGE sample buffer including 50 mM DTT. FLAG-UBP6 was detected using rabbit

anti-FLAG antibodies while co-immunoprecipitating proteins were detected with indicated

antibodies.
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Recombinant protein and NPR1 antibody production
N-terminal GST-tagged TUBE was generated by cloning the coding sequence of hHR23A into

pGEX-6P-1 using EcoRI and SalI restriction sites. Primers used are listed in Supplementary file 1.

GST-TUBE expression was induced in BL21(DE3) E. coli cells with the addition of 1 mM IPTG and cul-

tures were incubated for a further 4 hr at 28˚C before collecting by centrifugation. Cells were then

lysed in 1X PBS supplemented with 1 mg/ml lysozyme, 25 U/ml Benzonase nuclease, 0.1% Triton-X-

100 and a protease inhibitor cocktail before GST-TUBE was purified using Protino Glutathione Aga-

rose 4B according to the manufacturers’ instructions. Purified GST-TUBE was dialysed against 1X

PBS and stored with the addition of 10% glycerol at �80˚C until use.

Recombinant S5aUIM protein was generated by synthesising residues 196–309 from human S5a

with codon optimisation for E. coli into pET151/D-TOPO. The resulting His6-V5-S5aUIM protein was

expressed in BL21(DE3) E. coli cells by addition of 1 mM IPTG and incubation for 24 hr at 28˚C

before collecting by centrifugation. Cells were then lysed in lysis buffer (50 mM KHPO4 pH 8, 100

mM NaCl, 10 mM Imidazole, 1X BugBuster (Merck), 25 U/ml Benzonase nuclease, 50 mg/ml TPCK,

50 mg/ml TLCK and 0.5 mM PMSF). His6-UBP6 was then purified using HisPur cobalt resin (Thermo

Fisher) according to manufacturers’ instructions. Purified His6-V5-S5aUIM was dialysed against 1X

PBS and covalently coupled to NHS-activated agarose to a final concentration of approximately 10

mg/ml following the manufacturer’s instructions (Thermo Fisher).

N-terminal His6-T7-tagged UBP6 was generated by cloning the coding sequence of Arabidopsis

UBP6 in to the expression vector pET28a using EcoRI and SalI restriction sites. Primers used are

listed in Supplementary file 1. Expression was induced in BL21(DE3) E. coli cells with the addition of

1 mM IPTG and cultures were incubated for a further 3 hr at 28˚C before collecting by centrifugation.

Cells were then lysed in lysis buffer (50 mM KHPO4 pH 8, 300 mM NaCl, 10 mM Imidazole, 1 mg/ml

lysozyme, 25 U/ml Benzonase nuclease, 0.1% Triton-X- 100, 10 mM b-mercaptoethanol, 50 mg/ml

TPCK, 50 mg/ml TLCK and 0.5 mM PMSF). His6-UBP6 was then purified using HisPur cobalt resin

(Thermo Fisher) according to manufacturers’ instructions. Purified His6-UBP6 was dialysed against 50

mM Tris-HCl pH 7.4, 5M NaCl and stored with the addition of 10% glycerol at �80˚C until use.

Recombinant FLAG-UBE4 was produced using cell-free synthesis via two-step PCR (Nomoto and

Tada, 2018) using the primers listed in Supplementary file 1.

The anti-NPR1 polyclonal antibody was generated by immunising rabbits with a synthetic peptide

based on a region of the NPR1 protein with the sequence N’-SALAAAKKEKDSNNTAAVKL-Cys. Rab-

bits were subsequently bled and antibodies were enriched by affinity purification (Proteintech, USA).

HA-UbVS labelling and in vitro deubiquitination assays
For HA-UbVS labelling, 10 ml reactions were prepared in 50 mM Tris-HCl pH 7.4, 5 mM MgCl2, 1

mM DTT and 1 mM ATP. Before labelling, 350 nM His6-T7-UBP6 was pre-incubated with 50 mM

WP1130 or DMSO control for 10 mins before addition of 10 nM Ub-VS treated 26S proteasomes

(Ubiquigent). Reactions were incubated for a further 20 mins before addition of 700 nM HA-UbVS

and further incubation for 30 mins. All steps were carried out at room temperature. Labelling was

terminated with the addition of SDS-PAGE sample buffer including 50 mM DTT. Samples were

heated at 70˚C for 10 mins before SDS-PAGE and immunoblot analyses.

All in vitro deubiquitination assays were performed in DUB buffer (50 mM Tris-HCl pH 7.4, 5 mM

MgCl2, 1 mM DTT, 5 mM ATP). Where indicated, 1.25 nM Ub-VS treated 26S proteasomes and 20

nM UBP6 were added. Di-ubiquitin and polyubiquitin chain substrates were included at 400 nM.

Reactions were incubated at 30˚C for the times indicated in figure legends before terminating with

addition of SDS-PAGE sample buffer including 50 mM DTT. Samples were heated at 70˚C for 10

mins before SDS-PAGE and immunoblot analyses.

For in vitro deubiquitination of NPR1-GFP isolated from plants, seedlings were treated with SA

and MG132 as described in figure legends. Seedlings were frozen and ground to a fine powder in

liquid nitrogen before homogenising in protein extraction buffer (PEB) (50 mM Tris-HCl (pH 7.5), 150

mM NaCl, 5 mM EDTA, 0.1% Triton X-100, 0.2% Nonidet P-40, and inhibitors: 50 mg/ml TPCK, 50

mg/ml TLCK, 0.6 mM PMSF). Extracts were centrifuged at 13,000 rpm at 4˚C for 20 mins to remove

cellular debris and filtered through 0.22 mm filters. GFP-Trap A agarose (Chromotek) was incubated

with extracts for 2 hr with rotation at 4˚C before washing 10 times with PEB (without inhibitors) then

twice with DUB buffer. Supernatant was completely removed before DUB reactions were set up as
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described above but with NPR1-GFP immobilised on GFP-Trap A as the substrate. Proteins were

eluted by boiling in 1X SDS-PAGE sample buffer including 50 mM DTT, before analysis by

immunoblotting.

Quantification and statistical analyses
For pathogen growth experiments confidence intervals that would allow acceptance or rejection of

the null hypothesis were used to estimate sample size, while no statistical methods were used to pre-

determine sample sizes elsewhere, nor were any methods of randomization. All experiments were

repeated a minimum of two times with similar results. For quantitative immunoblotting, band intensi-

ties were acquired using Image Studio software and a LI-COR Odyssey FC imaging device (LI-COR

Biosciences). NPR1 signal was normalised to GAPDH signal for three replicates, each of which con-

sisted of an independent pool of at least 50 seedlings. For qPCR and ChIP-qPCR experiments with

adult plants, samples consisted of a pool of at least six different plants while for seedlings, samples

consisted of a pool of at least 50 seedlings. qPCR data is shown for three technical replicates of a

representative repeated experiment. For pathogen growth experiments, replicates represent eight

separate plants. In all figure legends, the statistical tests applied are stated while n refers to sample

size.

Acknowledgements
We thank Dr. Xin Li and Dr Xia Cui for sharing muse3 and ubp12-2w seeds, respectively. This work

was supported by a Royal Society University Research Fellowship (UF090321), a BBSRC grant (BB/

L006219/1), and the European Research Council (ERC) under the European Union’s Horizon 2020

research and innovation programme (grant agreement No 678511).

Additional information

Funding

Funder Grant reference number Author

Royal Society UF090321 Steven H Spoel

Biotechnology and Biological
Sciences Research Council

BB/L006219/1 Steven H Spoel

H2020 European Research
Council

678511 Steven H Spoel

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Michael J Skelly, Conceptualization, Formal analysis, Supervision, Investigation, Visualization,

Methodology, Writing—original draft, Writing—review and editing; James J Furniss, Heather Grey,

Ka-Wing Wong, Investigation; Steven H Spoel, Conceptualization, Supervision, Funding acquisition,

Investigation, Visualization, Methodology, Writing—original draft, Project administration, Writing—

review and editing

Author ORCIDs

Michael J Skelly http://orcid.org/0000-0002-9024-0037

Steven H Spoel https://orcid.org/0000-0003-4340-7591

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.47005.023

Author response https://doi.org/10.7554/eLife.47005.024

Skelly et al. eLife 2019;8:e47005. DOI: https://doi.org/10.7554/eLife.47005 22 of 26

Research article Plant Biology

http://orcid.org/0000-0002-9024-0037
https://orcid.org/0000-0003-4340-7591
https://doi.org/10.7554/eLife.47005.023
https://doi.org/10.7554/eLife.47005.024
https://doi.org/10.7554/eLife.47005


Additional files

Supplementary files
. Supplementary file 1. List of oligonucleotides used.

DOI: https://doi.org/10.7554/eLife.47005.018

. Transparent reporting form DOI: https://doi.org/10.7554/eLife.47005.019

Data availability

RNA Seq data have been deposited in Array Express at EMBL-EBI under accession code E-MTAB-

7369.

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Skelly MJ, Furniss
JJ, Grey HL, Wong
KW, Spoel SH

2019 Salicylic acid-induced gene
expression in wild-type Col-0 and
mutant ube4 Arabidopsis thaliana
plants

https://www.ebi.ac.uk/ar-
rayexpress/experiments/
E-MTAB-7369/

ArrayExpress, E-
MTAB-7369

References
Aleo E, Henderson CJ, Fontanini A, Solazzo B, Brancolini C. 2006. Identification of new compounds that trigger
apoptosome-independent caspase activation and apoptosis. Cancer Research 66:9235–9244. DOI: https://doi.
org/10.1158/0008-5472.CAN-06-0702, PMID: 16982768

Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk
R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, et al.
2003. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657. DOI: https://doi.
org/10.1126/science.1086391, PMID: 12893945

Altun M, Kramer HB, Willems LI, McDermott JL, Leach CA, Goldenberg SJ, Kumar KG, Konietzny R, Fischer R,
Kogan E, Mackeen MM, McGouran J, Khoronenkova SV, Parsons JL, Dianov GL, Nicholson B, Kessler BM.
2011. Activity-based chemical proteomics accelerates inhibitor development for deubiquitylating enzymes.
Chemistry & Biology 18:1401–1412. DOI: https://doi.org/10.1016/j.chembiol.2011.08.018, PMID: 22118674

Aviram S, Kornitzer D. 2010. The ubiquitin ligase Hul5 promotes proteasomal processivity. Molecular and
Cellular Biology 30:985–994. DOI: https://doi.org/10.1128/MCB.00909-09, PMID: 20008553

Borodovsky A, Kessler BM, Casagrande R, Overkleeft HS, Wilkinson KD, Ploegh HL. 2001. A novel active site-
directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. The EMBO
Journal 20:5187–5196. DOI: https://doi.org/10.1093/emboj/20.18.5187, PMID: 11566882

Cao H, Bowling SA, Gordon AS, Dong X. 1994. Characterization of an Arabidopsis mutant that is nonresponsive
to inducers of systemic acquired resistance. The Plant Cell 6:1583–1592. DOI: https://doi.org/10.2307/
3869945, PMID: 12244227

Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. 1997. The Arabidopsis NPR1 gene that controls systemic
acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63. DOI: https://doi.org/10.
1016/S0092-8674(00)81858-9, PMID: 9019406

Cheng YT, Li Y, Huang S, Huang Y, Dong X, Zhang Y, Li X. 2011. Stability of plant immune-receptor resistance
proteins is controlled by SKP1-CULLIN1-F-box (SCF)-mediated protein degradation. PNAS 108:14694–14699.
DOI: https://doi.org/10.1073/pnas.1105685108, PMID: 21873230

Clough SJ, Bent AF. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of
Arabidopsis thaliana. The Plant Journal 16:735–743. DOI: https://doi.org/10.1046/j.1365-313x.1998.00343.x,
PMID: 10069079

Colleran A, Collins PE, O’Carroll C, Ahmed A, Mao X, McManus B, Kiely PA, Burstein E, Carmody RJ. 2013.
Deubiquitination of NF-kB by Ubiquitin-Specific Protease-7 promotes transcription. PNAS 110:618–623.
DOI: https://doi.org/10.1073/pnas.1208446110, PMID: 23267096

Collins GA, Goldberg AL. 2017. The logic of the 26S proteasome. Cell 169:792–806. DOI: https://doi.org/10.
1016/j.cell.2017.04.023, PMID: 28525752

Crosas B, Hanna J, Kirkpatrick DS, Zhang DP, Tone Y, Hathaway NA, Buecker C, Leggett DS, Schmidt M, King
RW, Gygi SP, Finley D. 2006. Ubiquitin chains are remodeled at the proteasome by opposing ubiquitin ligase
and deubiquitinating activities. Cell 127:1401–1413. DOI: https://doi.org/10.1016/j.cell.2006.09.051, PMID: 171
90603

Cui X, Lu F, Li Y, Xue Y, Kang Y, Zhang S, Qiu Q, Cui X, Zheng S, Liu B, Xu X, Cao X. 2013. Ubiquitin-specific
proteases UBP12 and UBP13 act in circadian clock and photoperiodic flowering regulation in Arabidopsis. Plant
Physiology 162:897–906. DOI: https://doi.org/10.1104/pp.112.213009, PMID: 23645632

Deveraux Q, Ustrell V, Pickart C, Rechsteiner M. 1994. A 26 S protease subunit that binds ubiquitin conjugates.
The Journal of Biological Chemistry 269:7059–7061. PMID: 8125911

Skelly et al. eLife 2019;8:e47005. DOI: https://doi.org/10.7554/eLife.47005 23 of 26

Research article Plant Biology

https://doi.org/10.7554/eLife.47005.018
https://doi.org/10.7554/eLife.47005.019
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7369/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7369/
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-7369/
https://doi.org/10.1158/0008-5472.CAN-06-0702
https://doi.org/10.1158/0008-5472.CAN-06-0702
http://www.ncbi.nlm.nih.gov/pubmed/16982768
https://doi.org/10.1126/science.1086391
https://doi.org/10.1126/science.1086391
http://www.ncbi.nlm.nih.gov/pubmed/12893945
https://doi.org/10.1016/j.chembiol.2011.08.018
http://www.ncbi.nlm.nih.gov/pubmed/22118674
https://doi.org/10.1128/MCB.00909-09
http://www.ncbi.nlm.nih.gov/pubmed/20008553
https://doi.org/10.1093/emboj/20.18.5187
http://www.ncbi.nlm.nih.gov/pubmed/11566882
https://doi.org/10.2307/3869945
https://doi.org/10.2307/3869945
http://www.ncbi.nlm.nih.gov/pubmed/12244227
https://doi.org/10.1016/S0092-8674(00)81858-9
https://doi.org/10.1016/S0092-8674(00)81858-9
http://www.ncbi.nlm.nih.gov/pubmed/9019406
https://doi.org/10.1073/pnas.1105685108
http://www.ncbi.nlm.nih.gov/pubmed/21873230
https://doi.org/10.1046/j.1365-313x.1998.00343.x
http://www.ncbi.nlm.nih.gov/pubmed/10069079
https://doi.org/10.1073/pnas.1208446110
http://www.ncbi.nlm.nih.gov/pubmed/23267096
https://doi.org/10.1016/j.cell.2017.04.023
https://doi.org/10.1016/j.cell.2017.04.023
http://www.ncbi.nlm.nih.gov/pubmed/28525752
https://doi.org/10.1016/j.cell.2006.09.051
http://www.ncbi.nlm.nih.gov/pubmed/17190603
http://www.ncbi.nlm.nih.gov/pubmed/17190603
https://doi.org/10.1104/pp.112.213009
http://www.ncbi.nlm.nih.gov/pubmed/23645632
http://www.ncbi.nlm.nih.gov/pubmed/8125911
https://doi.org/10.7554/eLife.47005


Doelling JH, Yan N, Kurepa J, Walker J, Vierstra RD. 2001. The ubiquitin-specific protease UBP14 is essential for
early embryo development in Arabidopsis thaliana. The Plant Journal 27:393–405. DOI: https://doi.org/10.
1046/j.1365-313X.2001.01106.x, PMID: 11576424

Earley KW, Haag JR, Pontes O, Opper K, Juehne T, Song K, Pikaard CS. 2006. Gateway-compatible vectors for
plant functional genomics and proteomics. The Plant Journal 45:616–629. DOI: https://doi.org/10.1111/j.1365-
313X.2005.02617.x, PMID: 16441352

Ewan R, Pangestuti R, Thornber S, Craig A, Carr C, O’Donnell L, Zhang C, Sadanandom A. 2011.
Deubiquitinating enzymes AtUBP12 and AtUBP13 and their tobacco homologue NtUBP12 are negative
regulators of plant immunity. New Phytologist 191:92–106. DOI: https://doi.org/10.1111/j.1469-8137.2011.
03672.x, PMID: 21388379

Geng F, Wenzel S, Tansey WP. 2012. Ubiquitin and proteasomes in transcription. Annual Review of Biochemistry
81:177–201. DOI: https://doi.org/10.1146/annurev-biochem-052110-120012, PMID: 22404630

Gou M, Shi Z, Zhu Y, Bao Z, Wang G, Hua J. 2012. The F-box protein CPR1/CPR30 negatively regulates R protein
SNC1 accumulation. The Plant Journal 69:411–420. DOI: https://doi.org/10.1111/j.1365-313X.2011.04799.x,
PMID: 21967323

Hanna J, Hathaway NA, Tone Y, Crosas B, Elsasser S, Kirkpatrick DS, Leggett DS, Gygi SP, King RW, Finley D.
2006. Deubiquitinating enzyme Ubp6 functions noncatalytically to delay proteasomal degradation. Cell 127:99–
111. DOI: https://doi.org/10.1016/j.cell.2006.07.038, PMID: 17018280

Hjerpe R, Aillet F, Lopitz-Otsoa F, Lang V, England P, Rodriguez MS. 2009. Efficient protection and isolation of
ubiquitylated proteins using tandem ubiquitin-binding entities. EMBO Reports 10:1250–1258. DOI: https://doi.
org/10.1038/embor.2009.192, PMID: 19798103

Hoppe T. 2005. Multiubiquitylation by E4 enzymes: ’one size’ doesn’t fit all. Trends in Biochemical Sciences 30:
183–187. DOI: https://doi.org/10.1016/j.tibs.2005.02.004, PMID: 15817394

Huang Y, Minaker S, Roth C, Huang S, Hieter P, Lipka V, Wiermer M, Li X. 2014. An E4 ligase facilitates
polyubiquitination of plant immune receptor resistance proteins in Arabidopsis. The Plant Cell 26:485–496.
DOI: https://doi.org/10.1105/tpc.113.119057, PMID: 24449689

Kapuria V, Peterson LF, Fang D, Bornmann WG, Talpaz M, Donato NJ. 2010. Deubiquitinase inhibition by small-
molecule WP1130 triggers aggresome formation and tumor cell apoptosis. Cancer Research 70:9265–9276.
DOI: https://doi.org/10.1158/0008-5472.CAN-10-1530, PMID: 21045142

Kim SY, Herbst A, Tworkowski KA, Salghetti SE, Tansey WP. 2003. Skp2 regulates Myc protein stability and
activity. Molecular Cell 11:1177–1188. DOI: https://doi.org/10.1016/S1097-2765(03)00173-4, PMID: 12769843

Kinkema M, Fan W, Dong X. 2000. Nuclear localization of NPR1 is required for activation of PR gene expression.
The Plant Cell 12:2339–2350. DOI: https://doi.org/10.1105/tpc.12.12.2339, PMID: 11148282

Kneeshaw S, Gelineau S, Tada Y, Loake GJ, Spoel SH. 2014. Selective protein denitrosylation activity of
Thioredoxin-h5 modulates plant immunity. Molecular Cell 56:153–162. DOI: https://doi.org/10.1016/j.molcel.
2014.08.003, PMID: 25201412

Kodadek T, Sikder D, Nalley K. 2006. Keeping transcriptional activators under control. Cell 127:261–264.
DOI: https://doi.org/10.1016/j.cell.2006.10.002, PMID: 17055428

Koegl M, Hoppe T, Schlenker S, Ulrich HD, Mayer TU, Jentsch S. 1999. A novel ubiquitination factor, E4, is
involved in multiubiquitin chain assembly. Cell 96:635–644. DOI: https://doi.org/10.1016/S0092-8674(00)80574-
7, PMID: 10089879

Lai Z, Ferry KV, Diamond MA, Wee KE, Kim YB, Ma J, Yang T, Benfield PA, Copeland RA, Auger KR. 2001.
Human mdm2 mediates multiple mono-ubiquitination of p53 by a mechanism requiring enzyme isomerization.
Journal of Biological Chemistry 276:31357–31367. DOI: https://doi.org/10.1074/jbc.M011517200, PMID: 113
97792

Lee BH, Lu Y, Prado MA, Shi Y, Tian G, Sun S, Elsasser S, Gygi SP, King RW, Finley D. 2016. USP14
deubiquitinates proteasome-bound substrates that are ubiquitinated at multiple sites. Nature 532:398–401.
DOI: https://doi.org/10.1038/nature17433, PMID: 27074503

Leggett DS, Hanna J, Borodovsky A, Crosas B, Schmidt M, Baker RT, Walz T, Ploegh H, Finley D. 2002. Multiple
associated proteins regulate proteasome structure and function. Molecular Cell 10:495–507. DOI: https://doi.
org/10.1016/S1097-2765(02)00638-X, PMID: 12408819

Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W. 2003. Mono- versus polyubiquitination: differential control of
p53 fate by Mdm2. Science 302:1972–1975. DOI: https://doi.org/10.1126/science.1091362, PMID: 14671306

Lipford JR, Smith GT, Chi Y, Deshaies RJ. 2005. A putative stimulatory role for activator turnover in gene
expression. Nature 438:113–116. DOI: https://doi.org/10.1038/nature04098, PMID: 16267558

Liu Y, Lashuel HA, Choi S, Xing X, Case A, Ni J, Yeh LA, Cuny GD, Stein RL, Lansbury PT. 2003. Discovery of
inhibitors that elucidate the role of UCH-L1 activity in the H1299 lung Cancer cell line. Chemistry & Biology 10:
837–846. DOI: https://doi.org/10.1016/j.chembiol.2003.08.010, PMID: 14522054

Liu Y, Wang F, Zhang H, He H, Ma L, Deng XW. 2008. Functional characterization of the Arabidopsis ubiquitin-
specific protease gene family reveals specific role and redundancy of individual members in development. The
Plant Journal 55:844–856. DOI: https://doi.org/10.1111/j.1365-313X.2008.03557.x, PMID: 18485060

March E, Farrona S. 2017. Plant deubiquitinases and their role in the control of gene expression through
modification of histones. Frontiers in Plant Science 8:2274. DOI: https://doi.org/10.3389/fpls.2017.02274,
PMID: 29387079
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