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Abstract RET is a receptor tyrosine kinase (RTK) that plays essential roles in development and

has been implicated in several human diseases. Different from most of RTKs, RET requires not only

its cognate ligands but also co-receptors for activation, the mechanisms of which remain unclear

due to lack of high-resolution structures of the ligand/co-receptor/receptor complexes. Here, we

report cryo-EM structures of the extracellular region ternary complexes of GDF15/GFRAL/RET,

GDNF/GFRa1/RET, NRTN/GFRa2/RET and ARTN/GFRa3/RET. These structures reveal that all the

four ligand/co-receptor pairs, while using different atomic interactions, induce a specific

dimerization mode of RET that is poised to bring the two kinase domains into close proximity for

cross-phosphorylation. The NRTN/GFRa2/RET dimeric complex further pack into a tetrameric

assembly, which is shown by our cell-based assays to regulate the endocytosis of RET. Our analyses

therefore reveal both the common mechanism and diversification in the activation of RET by

different ligands.

DOI: https://doi.org/10.7554/eLife.47650.001

Introduction
Signaling through RET plays essential regulatory roles in the development of the nervous system and

kidney (Ibáñez, 2013). Dysregulation of RET signaling is linked to many human diseases, such as

Hirschsprung’s disease, a disorder characterized by lack of enteric ganglia in parts of the intestine,

and multiple endocrine neoplasia type 2 (MEN 2A and 2B) (Ibáñez, 2013). Glia cell line-derived

growth factor (GDNF), Neurturin (NRTN), Artemin (ARTN) and Persephin are four ligands that induce

dimerization of RET through assembling 2:2:2 ternary complexes with RET and the co-receptors

GDNF receptor-a family proteins (GFRa1–4) (Ibáñez, 2013; Baloh et al., 1998; Durbec et al., 1996;

Kotzbauer et al., 1996; Milbrandt et al., 1998; Trupp et al., 1996). The kinase domain of dimer-

ized RET mediates trans-phosphorylation of a number of tyrosine residues in the cytoplasmic region,

leading to activation of downstream signaling pathways, including the Ras/MAP kinase cascade and

the PI3 kinase/AKT pathway (Ibáñez, 2013). Recently, growth and differentiation factor 15 (GDF15)

and GFRa-like protein (GFRAL) have been identified as a new ligand/co-receptor pair for RET

(Emmerson et al., 2017; Hsu et al., 2017; Mullican et al., 2017; Yang et al., 2017). GFRAL expres-

sion is largely restricted to the area postrema and nucleus tractus solitarius in the hindbrain. Activa-

tion of RET by GDF15 and GFRAL in these regions leads to suppression of food intake and
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reduction of body weight in response to environmental stresses (Emmerson et al., 2017; Hsu et al.,

2017; Mullican et al., 2017; Yang et al., 2017; Johnen et al., 2007). More recently, GDF15-pro-

moted metabolic adaption has been shown to have tissue protective effects during systemic inflam-

mation caused by bacterial and viral infections (Luan et al., 2019). Therefore, this newly discovered

GDF15/GFRAL/RET signaling pathway may be targeted for treating obesity and preventing infec-

tion-induced tissue damage. In addition, GDF15 is known to be highly expressed in placenta tropho-

blasts and many cancers, likely contribute to anorexia in pregnant women and cancer patients,

respectively (Fejzo et al., 2018). The identification of the GDF15/GFRAL/RET pathway provides the

mechanism and new therapeutic targets for these conditions.

Both RET and the co-receptors are expressed on the cell surface and use their extracellular

domains to interact with the ligands. Several structures of the complexes between ligands and co-

receptors of RET have been solved by X-ray crystallography, which all display a 2:2 architecture

where each subunit in the dimeric ligands binds the second domain (D2) of one co-receptor mole-

cule (Hsu et al., 2017; Sandmark et al., 2018; Wang et al., 2006; Parkash and Goldman, 2009).

The angle between the two halves of these 2:2 complexes however differ substantially (Hsu et al.,

2017; Parkash and Goldman, 2009), raising the question how such different configurations of the

ligands/co-receptors are all capable of inducing the activation of the RET kinase. The extracellular

region of RET contains four atypical cadherin-like domains (CLD1-4) followed by a cysteine-rich

domain (CRD) (Figure 1A), which have all been implicated in interacting with ligands or co-receptors

(Goodman et al., 2014; Amoresano et al., 2005). The crystal structure of the CLD1-2 tandem shows

an unusual clamshell-like arrangement (Kjaer et al., 2010), whereas high-resolution structures of the

other domains in the RET extracellular region are not available. The structure of the intact RET extra-

cellular region in complex with GDNF and GFRa1 has been determined at low resolution by nega-

tive-stain electron microscopy (EM), showing an overall batwing-like shape in which the two wing-

shaped RET molecules are tethered together by the dimeric GDNF/GFRa1 complex in the middle,

and suggesting that the CRD is important for the dimerization and activation of RET

(Goodman et al., 2014). This structure however does not clearly resolve the individual domains in

RET or their interactions with GDNF and GFRa1. In particular, the conformation and location of the

membrane proximal domain CRD in RET remain unclear. High-resolution structures of RET ternary

complexes are required for addressing the questions how the different ligands and co-receptors

interact with RET and whether they can lead to different downstream signaling.

Here, we report the cryo-EM structures of four extracellular 2:2:2 ligand/co-receptor/RET com-

plexes, including GDF15/GFRAL/RET, GDNF/GFRa1/RET, NRTN/GFRa2/RET and ARTN/GFRa3/

RET, at near-atomic resolution. The structures show that the extracellular region of RET adopts a ‘C-

clamp’ shape, which is stabilized by extensive inter-domain interactions as well as binding of calcium

ion at multiple sites. Due to this unique C-clamp shape, the recruitment of two RET molecules onto

dimeric ligand/co-receptor complexes brings the two RET-CRDs to close proximity to promote the

dimerization and trans-autophosphorylation of the intracellular kinase domain. Surprisingly, our cryo-

EM results reveal that two 2:2:2 NRTN/GFRa2/RET complexes can dimerize to form a 4:4:4 complex

through a novel ligand/receptor interface. We found that the 4:4:4 complex suppresses RET endocy-

tosis. These findings suggest that, while activating RET through a common mechanism, the different

ligands can use distinct interactions and mechanisms to fine-tune RET activity, which may lead to dif-

ferent signaling outcomes.

Results

Structure determination of RET extracellular ternary complexes
To understand the activation mechanisms of RET by different ligands, we successfully reconstituted

four RET extracellular ternary complexes, GDF15/GFRAL/RET, GDNF/GFRa1/RET, NRTN/GFRa2/

RET and ARTN/GFRa3/RET, for cryo-EM structure determination (Figure 1—figure supplement 1).

The initial 3D reconstruction of the 2:2:2 GDF15/GFRAL/RET complex with 2-fold symmetry applied

was determined at relatively low-resolution (4.0 Å), partly due to the relative movement between the

two wings in the batwing-shaped complexes. To improve the resolution, we used the symmetry

expansion approach as well as focused refinement with signal subtraction as described in our previ-

ous work (Figure 1—figure supplements 2–4) (Bai et al., 2015; Zhou et al., 2015). The resulting
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reconstruction comprising one RET and GFRAL with the GDF15 dimer bound reached 3.7 Å resolu-

tion. This reconstruction in combination with the intact map with the 2-fold symmetry allowed us to

build an accurate atomic model for the entire 2:2:2 complex (Figure 1 and Figure 1—figure supple-

ment 4). The same procedure was used for the structure determination of the 2:2:2 NRTN/GFRa2/

RET and ARTN/GFRa3/RET complexes, leading to reconstructions to 3.4 Å and 3.5 Å resolution,
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Figure 1. Overall structures of four different RET ternary complexes. (A) Domain organization of the ligands, co-receptors and RET. The domains in

gray are absent in the cryo-EM structures. (B) Cartoon representations of the four RET ternary complexes. The angles between the two wings are

indicated -in the side views. Dotted lines indicate the connection from the CRD to the transmembrane region of RET.

DOI: https://doi.org/10.7554/eLife.47650.002

The following figure supplements are available for figure 1:

Figure supplement 1. Purification of the four RET ternary complexes.

DOI: https://doi.org/10.7554/eLife.47650.003

Figure supplement 2. Flowchart of data processing.

DOI: https://doi.org/10.7554/eLife.47650.004

Figure supplement 3. Cryo-EM analyses of four RET ternary complexes.

DOI: https://doi.org/10.7554/eLife.47650.005

Figure supplement 4. Representative- cryo-EM density of various parts of the four ternary RET complexes.

DOI: https://doi.org/10.7554/eLife.47650.006

Figure supplement 5. Additional cryo-EM maps.

DOI: https://doi.org/10.7554/eLife.47650.007

Figure supplement 6. Expanded view of the different ligands/co-receptors.

DOI: https://doi.org/10.7554/eLife.47650.008
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respectively (Figure 1—figure supplement 3). The reconstruction of the GDNF/GFRa1/RET com-

plex reached lower resolution (4.4 Å) due to preferred orientation of particles (see

Materials and methods for details) (Figure 1—figure supplement 3).

Overall architecture of RET extracellular ternary complexes
All four complexes show the same batwing-like architecture as shown in the previously reported neg-

ative-stain EM structure of the GDNF/GRFa1/RET (Goodman et al., 2014), with the dimeric ligands

located at the center connecting the two wings formed together by RET and the co-receptors (Fig-

ure 1). A recently published medium resolution (5.7 Å) cryo-EM structure of the NRNT/GFRa2/RET

complex displays a similar overall architecture (Bigalke et al., 2019). The outer edge of the wing is

defined by RET, which assumes an overall ‘C’-shape to clamp on both the ligands and co-receptors.

Low-resolution reconstructions of RET in the apo-state with cryo-EM by us (Figure 1—figure supple-

ment 5C) and with small-angle X-scattering reported previously both show a similar C-clamp shape

(Goodman et al., 2014), suggesting that the RET extracellular region is relatively rigid and does not

undergo substantial conformational changes upon binding of the ligands/co-receptors. Extensive

interactions are formed between the consecutive domains in the RET extracellular region, explaining

this rigidity (Figure 2A–2D). As expected, all the four CLDs in RET adopt the cadherin-like fold char-

acterized by a two-layered b-sandwich. CLD1 and CLD2 pack tightly against each other to form the

clamshell-like structure as shown in the published crystal structure of these two domains (Figure 2A)

(Kjaer et al., 2010). CLD3 is connected to CLD2 with an inter-domain angle of ~ 144˚, which is main-

tained by binding of three calcium ions at the inter-domain junction (Figure 2B). The calcium ions

are coordinated by a number of conserved negatively charged residues from CDL2 and CLD3 that

have been identified as classical cadherin calcium-binding motifs and important for the correct fold-

ing of RET (Figure 2B) (Goodman et al., 2014; van Weering et al., 1998; Kjaer and Ibáñez, 2003;

Anders et al., 2001). The inter-domain angle between CLD3 and CLD4 is ~ 130˚, leading to a

smooth curved shape of CLD2, CLD3 and CLD4. The interface between CLD3 and CLD4 is domi-

nated by hydrophobic residues (Figure 2C). CRD docks onto CLD4 in an orthogonal orientation

through an extensive interface containing both hydrophobic and polar interactions, completing the

bottom portion of the C-clamp (Figure 2D).

Structure of CRD in RET
Notably, CRD in RET adopts a new fold that does not show significant similarity to other proteins in

the PDB database. This small globular domain is composed of three small 2-or 3-stranded b-sheets

and two short helices, which are connected by extensive loops (Figure 2E and F). These structural

elements are stapled together by seven disulfide bonds. Cys630 and Cys634 in the linker between

CRD and the transmembrane region of RET have been shown to form another disulfide bond, but

the corresponding density is not well-resolved in our cryo-EM maps (Chappuis-Flament et al.,

1998). There is a strong blob of density in a pocket surrounded by a number of conserved acidic res-

idues in CRD, including Asp567, Glu574 and Asp584, as well as several backbone carbonyl groups

(Figure 2E and H). The arrangement of the oxygen atoms around the site resembles closely the cal-

cium binding site in calmodulin (Figure 2G). We therefore tentatively assign this as a new calcium

binding site in RET.

The structure of the RET extracellular region provides a basis for understanding disease-causing

mutations of some cysteine residues in RET-CRD. For example, mutations of Cys609, Cys611,

Cys618, Cys620 and Cys634 cause MEN2A (Figure 2—figure supplement 1) (Mulligan et al., 1993;

Mulligan, 2014). These cysteine residues sit either at the periphery of CRD or in the linker between

CRD and the transmembrane region of RET (Figure 2E and Figure 2—figure supplement 1). Muta-

tions of these residues may not dramatically affect the folding or cell surface localization of RET, but

leave one unpaired cysteine residue at the periphery of the protein, which can subsequently induce

ligand-independent dimerization and constitutive activation of RET by forming an inter-chain disul-

fide bond (Chappuis-Flament et al., 1998; Kjaer et al., 2006). On the other hand, loss-of-function

mutations throughout the RET extracellular region have been associated with Hirschsprung’s disease

(Edery et al., 1994; Pelet et al., 1998; Iwashita et al., 1996). Many of these mutations are distrib-

uted in the core of the protein, the co-receptor binding site or the calcium binding sites, thus likely
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Figure 2. Structure of the RET extracellular domain. (A–D) Overall structure and the inter-domain interactions in the RET extracellular region. (E)

Structure of the CRD domain of RET. The expanded view shows the details of the putative calcium binding site. The density for the calcium ion is very

strong, displayed as blue mesh at the 20s threshold. (F) Topology diagram of the CRD domain. (G) Calcium binding site in calmodulin (PDB ID: 1cll).

Figure 2 continued on next page
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affecting the stability or co-receptor binding of RET (Manié et al., 2001) (Figure 2—figure supple-

ment 1).

Inter-subunit interactions in the RET ternary complexes
In all of the four ternary complex structures, the ligands use the convex face formed mostly by the

two ‘finger’ loops to bind to the second domain (D2) of their respective co-receptors, similar to

those shown by the previously determined X-ray structures of the ligand/co-receptor complexes

(Hsu et al., 2017; Sandmark et al., 2018; Wang et al., 2006; Parkash and Goldman, 2009); there-

fore, we will not describe the ligand/co-receptors interface in detail here.

RET makes contacts with the co-receptors and ligands by its N-terminal and C-terminal domains,

respectively. The D3 domain of the co-receptors forms bipartite interfaces (denoted as interface I

and II) with the N-terminal portion of the RET C-clamp in all of our reconstructions, although the

detailed interactions are different in each (Figure 3A, Figure 3—figure supplement 1A, C and E).

In the GDF15/GFRAL/RET complex, interface I is formed between a helix-loop-helix-loop motif (resi-

dues 246–265) in the D3 domain of GFRAL and the concave surface on CLD1 and CLD2 in RET

(Figure 3A). The interface includes Trp37, Ala35, Thr120, Tyr146 and Thr170 from RET, Lys251,

Thr261 and Ser263 from GFRAL. Interface II is made between a short loop (residues 295–299) in

GFRAL and the CLD2-CLD3 junction near the calcium binding sites (Figure 3A). The segments in

GFRa1, GFRa2 and GFRa3 corresponding to the helix-loop-helix-loop motif in GFRAL are much

shorter and adopt extended loop conformations (Figure 3—figure supplement 1A, C and E). As a

result, interfaces I in GFRa1/RET, GFRa2/RET and GFRa3/RET are much smaller (buried surface

areas less than 700 Å2) and likely weaker than that in GFRAL/RET (buried surface area ~ 1500 Å2).

Interfaces II of GFRa1, GFRa2 and GFRa3 with RET (buried surface areas ~ 730–1010 Å2) however

are more extensive than that in GFRAL/RET (buried surface areas ~ 680 Å2), which may partially com-

pensate for their weaker interfaces I. The D1 domain of the co-receptors is invisible in the 3D recon-

structions of GDF15/GFRAL/RET, GDNF/GFRa1/RET, and ARTN/GFRa3/RET, suggesting that it is

not involved in the binding to either RET or the ligands in these three complexes. In contrast, the D1

domain of GFRa2 is resolved in the cryo-EM map of the NRTN/GFRa2/RET complex, and packs

closely with the D3 domain as seen in the crystal structure of the NRTN/GFRa2 complex

(Sandmark et al., 2018). The D1 domain of GFRa2 makes a few contacts with RET-CLD1, which may

help stabilize the ternary complex.

At the C-terminal portion of the RET C-clamp, RET-CRD interacts directly with the concave sur-

face of the finger loops in the ligands, opposite to the side that binds the co-receptors (Figure 3B).

As a result, the finger loops in the ligands appear to wedge between RET-CRD and the co-receptors.

In the GDF15/GFRAL/RET complex, GDF15 embraces the surface formed by strands b3–7 along

with several inter-strand loops in RET-CRD, through mainly hydrophobic interactions, burying

Trp228, Met253 and Tyr297 in GDF15 and Ile551, Val591, Gly593, Tyr606 and Phe619 of CRD

(Figure 3B). The interface also contains polar residues, such as Gln247 and Gln256 in GDF15. Similar

ligand/CRD interfaces are formed in the other three ternary complexes (Figure 3—figure supple-

ment 1B, D and F).

The simultaneous binding of RET to both the ligand and co-receptor explains the cooperativity in

the formation of the ternary complexes, while neither the ligand nor co-receptor alone is sufficient

for activation of RET (Schlee et al., 2006). To confirm the binding mode as shown in our structures,

we introduced a T261R mutations in GFRAL to disrupt its interface I with RET. Our pull-down assay

results showed that wild-type GFRAL was able to pull down RET and GDF15 simultaneously, indicat-

ing the formation of the ternary complex (Figure 3C). In contrast, the T261R mutant of GFRAL failed

Figure 2 continued

(H) Sequence alignment of the calcium binding segment in the CRD domain of RET from human (h), mouse (m), chicken (c) and Drosophila (d). Circles

and triangles highlight residues coordinating the calcium ion with sidechains and backbone carbonyl, respectively.

DOI: https://doi.org/10.7554/eLife.47650.009

The following figure supplement is available for figure 2:

Figure supplement 1. Mapping of the disease-associated point mutations onto the RET extracellular domain.

DOI: https://doi.org/10.7554/eLife.47650.010

Li et al. eLife 2019;8:e47650. DOI: https://doi.org/10.7554/eLife.47650 6 of 26

Research article Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.47650.009
https://doi.org/10.7554/eLife.47650.010
https://doi.org/10.7554/eLife.47650


to support the formation of the GDF15/GFRAL/RET ternary complex (Figure 3C). Similarly, the

mutations W228E and Y297E in GDF15, which target the interaction with RET-CRD, also abolished

the formation of the ternary complex (Figure 3C). Furthermore, we examined the effects of these

mutations on RET signaling by monitoring ERK phosphorylation in cells. Treatment of cells stably

expressing both RET and GFRAL with wild-type GDF15 induced robust phosphorylation of ERK

(Figure 3D). However, the W228E and Y297E mutations in GDF15 led to dramatically decreased

phosphorylation of ERK (Figure 3D). Similarly, cells expressing wild-type RET but the T261R mutant

of GFRAL showed lower levels of ERK phosphorylation when stimulated with wild-type GDF15

(Figure 3D). These results together confirm that the interfaces as seen in the structure are important

for the formation of the GDF15/GFRAL/RET ternary complex as well as the activation of RET in cells.

Activation mechanism of RET
In all of the four ternary complex structures, the ligand dimer directly interacts with the two CRDs

from the two RET molecules and thereby bring them into close proximity. In addition, clear but
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DOI: https://doi.org/10.7554/eLife.47650.011

The following figure supplement is available for figure 3:

Figure supplement 1. Binding interfaces in the GDNF/GFRa1/RET, NRTN/GFRa2/RET and ARTN/GFRa3/RET complexes.

DOI: https://doi.org/10.7554/eLife.47650.012
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relatively weak cryo-EM densities at the bottom faces of the ligands were observed for the linker

between CRD and the transmembrane region of RET (Figure 1—figure supplement 5A and B).

These observations suggest that the two copies of the linker converge near the plasma membrane.

This configuration of the two RET molecules is poised to induce the dimerization of the transmem-

brane region and intracellular kinase domain, leading to cross-autophosphorylation of RET and sub-

sequent activation of the downstream signaling cascades. Therefore, all the ligand/co-receptor pairs

use the same general mechanism to activate RET. However, there are large differences in the angle

between the two wings of the batwing-shaped complexes (Figure 1B), which mainly originate from

the different conformations of the ligand dimers and their different interfaces with the co-receptors

as noted previously (Figure 1—figure supplement 6) (Hsu et al., 2017; Sandmark et al., 2018;

Parkash and Goldman, 2009). This angle in the GDF15/GFRAL/RET complex (~60˚) is much more

acute than that in the complexes of GDNF/GFRa1/RET (130˚), NRTN/GFRa2/RET (105˚) and ARTN/

GFRa3/RET (108˚) (Figure 1B). Associated with this angular variation, the distances between two

CRDs in the complexes also differ to some extent. It is appealing to speculate that the differences in

the angle and distance between the two RET molecules in the complexes may provide a mechanism

in defining RET signaling specificity, which could potentially allow the five different ligands of RET to

generate distinct signaling outputs from the same but versatile receptor.

Figure 4. Higher-order oligomerization of the NRTN/GFRa2/RET complex. (A) Refined map of the 4:4:4 NRTN/GFRa2/RET complex. (B) Atomic model

of the 4:4:4 NRTN/GFRa2/RET complex shown in the surface representation. (C) Distance of the four RET molecules in the 4:4:4 complex to the plasma

membrane. The gray box represents the plasma membrane. NRTN and GFRa2 are rendered semi-transparent to clearly show the position of the four

RET molecules relative to the membrane. (D) Detailed view of the new interface between NRTN and RET that mediate the formation of the 4:4:4

complex. The view is expanded from the boxed region in the left panel of (B). (E) 3D class averages of the NRTN(WT)/GFRa2/RET and NRTN(R101E/

R155E)/GFRa2/RET complexes. Wild-type NRTN formed complexes with RET and GFRa2 larger than the 2:2:2 stoichiometry, which were eliminated by

the R101E/R155E mutation.

DOI: https://doi.org/10.7554/eLife.47650.013

The following figure supplement is available for figure 4:

Figure supplement 1. Model building procedure for the 4:4:4 NRTN/GFRa2/RET complex.

DOI: https://doi.org/10.7554/eLife.47650.014
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RET can form higher-order oligomeric complexes
Surprisingly, some 2D class averages of the NRTN/GFRa2/RET and ARTN/GFRa3/RET complexes

appear to be larger than the 2:2:2 complexes. With further 3D classification for the dataset of the

NRTN/GFRa2/RET complex, we identified one class showing two 2:2:2 complexes arranged in a

staggered fashion to form a 4:4:4 complex that resembles a four-bladed propeller. Subsequent 3D

refinement yielded a map at 4.3 Å resolution, allowing us to build a complete model of the 4:4:4

complex by rigid-body fitting the atomic models of the protein components into cryo-EM map (Fig-

ure 4, Figure 4—figure supplement 1 and Video 1). We performed the same image processing

procedure for the dataset of the ARTN/GFRa3/RET complex, but the 3D reconstruction failed due

to inadequate number of particles.

Simple modeling of the 4:4:4 NRTN/GFRa2/RET complex on the surface of the plasma membrane

shows that the distances of the four RET molecules to the membrane surface are different, due to a

relative rotation of ~ 50˚ between the two 2:2:2 complexes (Figure 4C). As shown in Figure 4C, the
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Figure 5. The 4:4:4 NRTN/GFRa2/RET complex delays RET endocytosis. (A) Endocytosis of the NRTN/GFRa2/RET and GDF15/GFRAL/RET

complexes. Fluorescently labeled NRTN (wild-type or the R101E/R155E mutant) and GDF15 were incubated with COS7 cells expressing GFRa2/RET

and GFRAL/RET, respectively, and imaged at indicated time points. EEA1 were immuno-stained to serve as an early endosome marker. (B)

Quantification of the colocalization of NRTN wild-type, the R101E/R155E mutant and GDF15 with EEA1. Pearson’s correction coefficients between the

ligands and EEA1 were calculated for 35 cells in each group from two biological repeats. Each dot in the scatter plot represent one cell. The bars

represent mean and standard deviation. P-values were calculated using the two-tailed Welch’s t-test. ****p<0.0001.

DOI: https://doi.org/10.7554/eLife.47650.016

The following source data is available for figure 5:

Source data 1. Source data for Figure 5B.

DOI: https://doi.org/10.7554/eLife.47650.017
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distance between the end of the CRD in the two centrally located RET molecules (RET1 and RET2’)

and the membrane is ~ 35 Å, whereas that of the two peripheral RET molecules (RET2 and RET1’)

is ~ 15 Å. The linker (residues 623–636) between the last residue in RET-CRD and the N-terminus of

transmembrane region is 14-residue long, but its linear span is shortened by the disulfide linkage

between Cys630 and Cys634 to approximately equivalent to a 11-residue linker. This linker can read-

ily bridge the 15 Å distance for the peripheral RET2 and RET1’, but may be stretched to some extent

in order to span the 35 Å distance for the central RET1 and RET2’. These analyses together suggest

that the 4:4:4 complex can be formed by full-length RET on the cell surface, but it may display pref-

erence for membrane areas with a positive curvature.

The 4:4:4 NRTN/GFRa2/RET complex is mediated by a novel interface, formed between the pro-

truding ‘elbow’ at the CLD4-CRD junction of RET and the convex face of NRTN near the GFRa2-

binding site (Figure 4D). Particularly, the loop connecting CLD4 and CRD (residues 507–513) in RET

makes a number of interactions with the surface of the major b-sheet in NRTN. Several charged resi-

dues in NTRN, including Arg101, Arg106, Glu107, Arg128, and Arg155, contribute to the interac-

tion. We introduced an R101E/R155E double mutation to NRTN, and imaged the NRTN(R101E/

R155E)/GFRa2/RET complex with cryo-EM. 3D classification result of this mutant complex clearly

showed that the double mutations in NRTN exclusively abolished the formation of the 4:4:4 com-

plex, but not the 2:2:2 complex, verifying that the novel NRTN/RET interface is responsible merely

for the formation of the higher-order oligomer (Figure 4E).

In the 4:4:4 NRTN/GFRa2/RET complex, two of the RET molecules (RET1 and RET2’ in Figure 4)

are sandwiched between the two wings of the adjacent 2:2:2 complex. This configuration is only

compatible with the structures of the NRTN/GFRa2/RET, GDNF/GFRa1/RET and ARTN/GFRa3/RET

complexes where the angle between the two wings is large (Figure 1B). The angle between the two

wings in the GDF15/GFRAL/RET complex is however much tighter, and therefore cannot accommo-

date the third RET molecule for the formation of the 4:4:4 complex. Indeed, no class averages of the

4:4:4 complex can be identified in the cryo-EM dataset of the GDF15/GFRAL/RET complex. Thus,

assembling distinct signaling complexes of different oligomeric states may be a mechanism for the

five ligands of RET to trigger distinct signaling outcomes through the same receptor. This difference

seems to be in line with the fact that the signaling of the GDF15/GFRAL/RET complex is mostly

involved in regulating metabolic responses, whereas the other RET complexes control cell growth,

proliferation and survival.

Higher-order oligomerization regulates RET - endocytosis
Ligand-induced RET internalization through clathrin-mediated endocytosis plays a role in regulating

signaling (Crupi et al., 2015; Richardson et al.,

2012; Richardson et al., 2006). We speculated

that the potential preference of the 4:4:4 NRTN/

GFRa2/RET complex for positive membrane cur-

vature mentioned above might impede its

entrance to clathrin-coated pits, which have neg-

ative membrane curvature. It has been shown

that the geometry and size of proteins can regu-

late vesicle secretion or endocytosis by changing

the curvature of membrane, through mechanisms

that are distinct from the membrane-bending

effects of the BAR domains (DeGroot et al.,

2018; Shurer et al., 2019). To examine the effect

of the 4:4:4 complex on RET endocytosis, we

treated COS7 cells stably expressing full length

RET and GFRa2 with fluorescence-labeled NRTN

and monitored its endocytosis. The results

showed that most wild-type NRTN remained on

the cell surface as long as 15 min (Figure 5A).

Very few intracellular puncta of NRTN were

formed and co-localized with the early endosome

marker EEA1 (early endosome antigen 1)

Video 1. The assembly of the NRTN/GFRa2/RET 2:2:2

and 4:4:4 complexes.

DOI: https://doi.org/10.7554/eLife.47650.015
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(Figure 5A). In contrast, the NRTN(R101E/R155E) mutant were internalized quickly and formed

many puncta co-localizing with EEA1 at the 5 min time point, which progressed to higher levels at

10 and 15 min (Figure 5A). For comparison, we carried out similar experiments for the GDF15/

GFRAL/RET complex, which does not form higher-order oligomers. GDF15 underwent quick inter-

nalization, even faster than the NRTN(R101E/R155E) mutant (Figure 5A). We used the Pearson’s cor-

relation coefficient between the ligands and EEA1 as a quantitative indicator of the internalization of

NRTN and GDF15 (Manders et al., 1992). The quantification results show that the colocalization of

wild-type NRTN with EEA1 remained at low levels at all of the three time points (Figure 5B). The

NRTN(R101E/R155E) mutant displayed significantly higher levels of co-localization with EEA1, but

lower than that of GDF15 (Figure 5B). These results together support the idea that the different

oligomeric states of RET induced by the ligands can regulate the internalization. The slower endocy-

tosis of the 4:4:4 NRTN/GFRa2/RET complex allows it to maintain the active state on the cell surface

for a longer period of time, which may lead to distinct signaling outcomes as compared with the

GDF15/GFRAL/RET complex that undergoes fast endocytosis.

Oligomerization of RET in the apo-state
Some RTKs such as the epidermal growth factor receptor (EGFR), insulin-like growth factor receptor

and insulin receptor (Kavran et al., 2014; Kovacs et al., 2015) can form inactive dimers on the cell

surface in the absence of ligand. Using analytical ultracentrifugation (AUC), we found that the extra-

cellular region of apo-RET exhibits an intrinsic ability to oligomerize, existing in an equilibrium favor-

ing the monomeric (4.8 S) form at the concentrations used, but evincing higher-order oligomers

ranging from dimers (ca. 8 S) to perhaps tetramers or pentamers (13.5 S) (Figure 6E). This solution

behavior comports with the appearance in apo-RET cryo-EM micrographs of elongated entities that

were clearly larger than monomeric apo-RET (2D class averages are shown in Figure 6D). We were

unable to determine the structures of these oligomers due to conformational heterogeneity. Inter-

estingly, a crystallographic dimer of the CLD1-2 domains of RET has been reported previously

(Figure 6A) (Kjaer et al., 2010). We constructed a dimer of the full-length extracellular region of

RET by superimposing two protomers of our RET model with the CLD1-2 crystallographic dimer,

which resembles some of the 2D class averages (Figure 6B and D). This dimer model is further sup-

ported by the AUC results showing that a double mutation of Arg77 and Arg144 in the dimer inter-

face abolished the oligomerization of the RET extracellular region (Figure 6E). In this ligand-free

RET dimer model, the C-termini of the two CRD domains point to the same direction, consistent

with their connection to the transmembrane region of RET expressed on the cell surface. However,

the two CRDs in this dimer are placed far apart (~120 Å), suggesting that it is in an inactive state of

RET, because it imposes a large spatial separation of the two kinase domains that is unfavorable for

cross-phosphorylation. The interface of the apo-RET dimer partially overlaps with the binding inter-

face for the co-receptors (Figure 6C). Therefore, binding of a co-receptor to RET can both disrupt

the inactive dimer and facilitate the ligand/RET interaction, eventually leading to the active dimer

conformation of RET as seen in the structures of the ternary complexes.

Discussion
Based on our structural analyses and previous studies, we propose a multi-state model for the regu-

lation of RET signaling (Figure 7). This overall model and the structural details revealed by our cryo-

EM structures provide a basis for understanding many mutations in RET that are associated with

human diseases. The batwing-shaped dimeric complexes is the common mechanism for RET activa-

tion by the ligands and their respective co-receptors, while using quite different atomic interaction

for the formation of the complex. The precise role of the apo-dimer of RET is not clear at present. It

may help keep the kinase from cross-phosphorylation in the absence of the ligand. On the other

hand, the existing dimer of RET on the cell membrane may facilitate the ligand-induced activation,

as it enables a simple switch from the inactive to the active dimer as seen in some other RTKs such

as EGFR and the insulin receptor (Kavran et al., 2014; Kovacs et al., 2015). The formation of the

higher-order oligomer of the NRTN/GFRa2/RET complex suggests an unanticipated novel layer of

regulation for RET. Our data suggest that the formation of the 4:4:4 NRTN/GFRa2/RET complex

delays RET endocytosis, likely leading to more sustained signaling. Along this line, previous studies

have shown that RET endocytosis regulates both the duration and choice of pathway of signaling
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Figure 6. Ligand-independent dimerization of RET. (A) The dimer of RET-CLD1/CLD2 in a previously reported crystal structure (PDB ID: 2X2U) (B) The

dimeric model of the full-length extracellular region of RET in the apo-state based on the dimer in (A). (C) The co-receptor binding interface overlaps

with the apo-RET dimer interface. The two protomers in the RET dimer are shown in surface (cyan) and cartoon (blue) representations, respectively.

GFRAL (green) bound to RET in cyan clashes with RET in blue, suggesting that binding of GFRAL can disrupt the dimer of apo-RET. (D) 2D class

averages of RET in the apo-state. (E), Analysis of the oligomerization state of the apo-RET extracellular region by AUC. The peak with the

sedimentation coefficient of 4.8 S corresponds to the RET monomer. Wild-type RET also contains another species with the sedimentation coefficient

of ~ 7–9 S, suggesting higher-order oligomerization. The R77E/R144E mutant ran predominately as a monomer.
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(Richardson et al., 2012; Richardson et al., 2006). NRTN mutations have been associated with

Hirschsprung’s disease, implicating that the NRTN-induced signaling of RET plays a role in the

growth or guidance of enteric ganglia (Doray et al., 1998; Enomoto et al., 2001). The high-order

NRTN/GFRa2/RET complex may be a mechanism to maintain sustained signal of RET required for

these functions.

Our analyses suggest that the formation of the high-order oligomeric complex is a specialized

function of a subset of ligands of RET, as GDF15 and GFRAL cannot form similar 4:4:4 complex with

RET because of the tight angle between the two wings in the dimeric complex. Therefore, while the

batwing-shaped dimeric complex serves as the common basis for RET activation by all the ligands,

the variations in the angle between the two wings enable different ligands to induce different signal-

ing complexes of RET. This mechanism is reminiscent of the ‘biased agonism’ paradigm that is well-

established for G-protein-coupled receptors (GPCRs), where multiple ligands of the same receptor

can preferentially activate different downstream signaling pathways by inducing distinct activation

kinetics or conformations of the receptor (Wacker et al., 2017). Recent studies have shown that

some single-pass transmembrane receptors such as interferon-g receptor and the erythropoietin

receptor are also able to mediate biased signaling for certain ligands (Kim et al., 2017;

Mendoza et al., 2019). It is possible that the differences in endocytosis between the 2:2:2 versus

4:4:4 complexes of RET enable biased signaling and ultimately lead to profoundly different biologi-

cal effects in vivo. In line with this idea, a recent study has shown that different ligands of EGFR,

while inducing structurally similar active dimers of EGFR, can drive either cell proliferation or differ-

entiation depending on the kinetic stability of the EGFR dimer (Freed et al., 2017). In addition to

different signaling kinetics, the 4:4:4 complex of RET may signal through unique downstream effec-

tors that the 2:2:2 complex cannot bind. The distinct signaling pathways triggered by different

ligands through RET may allow it to control the diverse biological processes such as development

and appetite under different contexts.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Antibody Mouse monoclonal
anti-Myc tag

Cell Signaling
Technology

Cat# 2276S; RRID:
AB_331783

Dilution 1:1000

Antibody Rabbit monoclonal
anti-p44/42 MAPK (Erk1/2)

Cell Signaling
Technology

Cat# 4695; RRID:
AB_390779

Dilution 1:1000

Antibody Rabbit monoclonal
anti-Phospho-p44/42
MAPK (Erk1/2)
(Thr202/Tyr204)

Cell Signaling
Technology

Cat# 4370; RRID:
AB_2315112

Dilution 1:1000

Antibody Rabbit monoclonal
anti-EEA1(C45B10)

Cell Signaling
Technology

Cat# 3288; RRID:
AB_2096811

Dilution 1:1000

Antibody Goat anti-Mouse
IgG H and L (HRP)

Invitrogen Cat# 31430 Dilution 1:1000

Antibody Goat anti-Rabbit
IgG H and L (HRP)

Abcam Cat# ab6721; RRID:
AB_955447

Dilution 1:1000

Antibody Goat anti-Rabbit
IgG H and L
(Alexa Fluor 488)

Invitrogen Cat# A-11034 Dilution 1:1000

Cell line
(Homo sapiens)

FreeStyle 293 F Invitrogen Cat#R79007

Cell line
(Homo sapiens)

HEK293S
GnTI-

ATCC Cat#CRL-3022; RRID:
CVCL_A785

Cell line
(Homo sapiens)

HEK293 ATCC Cat# PTA-4488, RRID:
CVCL_0045

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Cell line
(Homo sapiens)

HEK293T ATCC Cat#CRL-3216; RRID:
CVCL_0063

Cell line
(Cercopithecus aethiops)

COS-7 ATCC Cat# CRL-1651, RRID:
CVCL_0224

Strain, strain
background
(Escherichia coli)

E. coli BL21
(DE3)

New England Biolabs Cat# C2527

Strain, strain
background
(Escherichia coli)

XL10-Gold
Ultracompetent Cells

Agilent Cat# 200315

Strain, strain
background
(Escherichia coli)

MAX Efficiency DH10Bac
Competent Cells

Invitrogen Cat# 10361012

Chemical
compound,
drug

isopropyl
b-D-thiogalatop
yranoside (IPTG)

Fisher Scientific Cat# BP1620-10

Chemical
compound,
drug

Imidazole Sigma-Aldrich Cat# I5513

Chemical
compound,
drug

L-Arginine Sigma-Aldrich Cat# A5006

Chemical
compound,
drug

L(-)-Glutathione,
oxidized

ACROS Organics Cat# AC320220050

Chemical
compound,
drug

Guanidine-HCl Thermo Scientific Cat# 24110

Chemical
compound,
drug

L-Glutathione
reduced

Sigma-Aldrich Cat# G4251

Chemical
compound,
drug

Urea RPI Cat# U20200

Chemical
compound,
drug

Puromycin InvivoGen Cat# ant-pr-1

Chemical
Compound,
drug

Blasticidin InvivoGen Cat# ant-bl-1

Chemical
compound,
drug

Antibiotic Antimycotic
Solution (100�)

Sigma-Aldrich Cat# A5955

Chemical
compound,
drug

Cellfectin II Reagent Gibco Cat# 10362100

Chemical
compound,
drug

Sodium Butyrate Sigma-Aldrich Cat# 303410

Chemical
compound,
drug

Halt Protease and
Phosphatase Inhibitor
Cocktail (100X)

Thermo Scientific Cat# 78442

Chemical
compound,
drug

SuperSignal West
Dura Extended
Duration Substrate

Thermo Scientific Cat# 34075

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

DAPI
(4’,6-Diamidino-2-
Phenylindole, Dihydrochloride)

Invitrogen Cat# D1306

Chemical
compound,
drug

Alexa Fluor 555
NHS Ester

Invitrogen Cat# A20009

Transfected
construct
(Homo sapiens)

pEZT-BM vector Ryan Hibbs Lab Addgene plasmid # 74099

Transfected
construct
(Homo sapiens)

pEZT-RET-ECD-His This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Homo sapiens)

pEZT-GFRAL-ECD-His This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Homo sapiens)

pEZT-GFRA1-ECD-His This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Homo sapiens)

pEZT-GFRA2-ECD-His This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Homo sapiens)

pEZT-GFRA3-ECD-His This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Escherichia coli)

pET-28a vector Novagen Millipore Cat# 69864

Transfected
construct
(Escherichia coli)

pET-15b vector Novagen Millipore Cat# 69661

Transfected
construct
(Escherichia coli)

pET-28a-GDF15-WT This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Escherichia coli)

pET-28a-GDF15-W228E This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Escherichia coli)

pET-28a-GDF15-Y297E This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Escherichia coli)

pET-28a-sumo-NRTN-WT This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Escherichia coli)

pET-28a-sumo-NRTN-R101E/R155E This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Escherichia coli)

pET-15b-GDNF-WT This paper Materials and methods
subsection: Protein
expression
and purification

Continued on next page
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Continued

Reagent type (species)
or resource Designation

Source or
reference Identifiers

Additional
information

Transfected
construct
(Escherichia coli)

pET-28a-sumo- ARTN-WT This paper Materials and methods
subsection: Protein
expression
and purification

Transfected
construct
(Homo sapiens)

pLVX-IRES-Puro Clontech Cat#632183

Transfected
construct
(Homo sapiens)

pLVX-RET-myc-IRES-Puro This paper Materials and methods
subsection: Cell-based
phosphorylation assay for RET

Transfected
construct
(Homo sapiens)

pLVX-myc-GFRAL-WT-IRES-Blast This paper Materials and methods
subsection: Cell-based
phosphorylation assay for RET

Transfected
construct
(Homo sapiens)

pLVX-myc-GFRAL-T261R-IRES-Blast This paper Materials and methods
subsection: Cell-based
phosphorylation assay for RET

Transfected
construct
(Homo sapiens)

pLVX-GFRA2-IRES-Blast This paper Materials and methods
subsection: Cell-based
phosphorylation assay for RET

Software,
algorithm

MotionCorr2 Zheng et al., 2017 http://msg.ucsf.edu/em/
software/motioncor2.html

Software,
algorithm

GCTF Zhang, 2016 https://www.mrc-lmb.
cam.ac.uk/kzhang/Gctf/

Software,
algorithm

EMAN2 Tang et al., 2007 https://blake.bcm.edu/
emanwiki/EMAN2

Software,
algorithm

RELION Scheres, 2012b https://www3.mrc-lmb.
cam.ac.uk/relion/
index.php/Download_%26_install

Software,
algorithm

Coot Emsley et al., 2010 https://www2.mrc-lmb.cam.
ac.uk/personal/pemsley/coot/

Software,
algorithm

Phenix.refine Afonine et al., 2018 https://www.phenix-online.
org/documentation/
reference/refinement.html

Software,
algorithm

Graphpad prism 7.04 Graphpad https://www.graphpad.com/
scientific-software/prism/

Software,
algorithm

Fiji Schindelin et al., 2012 https://imagej.net/Fiji

Software,
algorithm

mManager Open Imaging https://micro-manager.org/

Software,
algorithm

SEDFIT Schuck, 2000 http://www.analyticalult
racentrifugation.com/download.htm

Software,
algorithm

REDATE Zhao et al., 2013 http://biophysics.swmed.edu/
MBR/software.html

Software,
algorithm

GUSSI Brautigam, 2015 http://biophysics.swmed.edu/
MBR/software.html

Other Ni Sepharose
6 Fast Flow

GE Healthcare Cat# 17531802

Other Strep-TactinXT
Superflow

IBA Lifesciences Cat# 2-4010-025

Other Superdex 200 Increase
10/300 GL

GE Healthcare Cat# 28990944

Other Bolt 4–12% Bis-Tris
Plus Gels, 10-well

Invitrogen Cat# NW04120BOX
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Protein expression and purification
All the protein sequence information can be found in Supplementary file 1. The human Ret extracel-

lular region (residues 1–635) and GFRa1 (residues 1–426) with a C-terminal His8-tag were sub-cloned

into the pEZT-BM vector (Morales-Perez et al., 2016). GFRAL (residues 20–352), GFRa2 (residues

24–362) and GFRa3 (residues 32–363) with the alkaline phosphatase (AP) signal peptide fused at the

N-terminus and a C-terminal His8-tag were sub-cloned into the same vector. All of these proteins

were expressed as secreted proteins in FreeStyle 293 F cells (Invitrogen, #R79007) or HEK293S-

GnTI� cells (ATCC, #CRL-3022) using the BacMam system following the standard protocol (Morales-

Perez et al., 2016). Briefly, bacmids carrying the target genes was generated by transforming the

E. coli strain DH10BacY (Geneva Biotech). Baculoviruses were produced by transfecting Sf9 cells

with bacmids. Baculoviruses (at 1:50 ratio) were used to infect FreeStyleTM 293 F or HEK293S-GnTI�

cells at the density of ~ 2 � 106 cells/ml. Twelve hours later, 3 mM sodium butyrate was supple-

mented to boost protein expression. Culture medium was collected 3 days after infection by centri-

fugation at 3500 g at 4˚C. Proteins were first captured by Ni2+-Sepharose 6 Fast Flow resin (GE

healthcare) and then further purified by gel filtration chromatography with a Superdex S200 column

(GE healthcare). All of the mutants were expressed and purified in the same manner as the respec-

tive wild type proteins. A double strep-tagged version of GFRAL was expressed and purified for the

pull-down binding assays as well.

The genes coding the mature part of GDNF (residues 77-end) was inserted into pET-15b. The

genes coding the mature part of GDF15 (residues 197-end) were codon-optimized and inserted into

pET-28a, respectively. Genes coding the mature part of NRTN (residues 95-end) and ARTN (residues

108-end) were codon-optimized and inserted into a modified pET-28a vector encoding a SUMO-tag

following the His6-tag. Proteins expressed from these vectors all contain an N-terminal His6-tag. Pro-

teins were expressed in the E. coli strain BL21(DE3) as inclusion bodies and refolded according to

the published protocol (Zhang et al., 2002), but using reduced glutathione and oxidized glutathione

to help forming the disulfide bonds. Briefly, bacteria were cultured in 500 ml Terrific broth (TB)

medium at 37˚C. Protein expression was induced when the O.D. at 600 nm reached 2 by 1 mM IPTG

for 4 hr at 37˚C. Inclusion bodies were washed according to the published protocol and were dis-

solved in 10 ml 7 M Guanidine HCl, 0.15 M reduced glutathione, 30 mM Tris-HCL, 1 mM EDTA, pH

8.0. Solution was further clarified by centrifuge at 40,000 g for 30 min and 0.45 mm syringe filter. Sol-

ubilized inclusion bodies were added dropwise to 1 L refolding buffer containing 0.5 M L-arginine,

pH 8.0, 0.6 mM oxidized glutathione with stirring for 16 hr at room temperature. The refold solution

was then filtered by glass fiber prefilters (Minipore) and exchanged to a buffer containing 25 mM

Tris-HCl, 200 mM NaCl, pH 8.0 with a Vivoflow 200 system (Sartorius). The refolded proteins were

purified by a combination of Ni-NTA affinity and gel filtration chromatography. Urea at 3 M was

added to the purification buffer to improve the solubility of all the GDNF family proteins. All of the

purification steps were performed at 4˚C. All of the mutants were expressed and purified in the

same manners as the respective wild type proteins.

The RET protein was mixed with GDF15 protein and GFRAL protein at the molar ratio of 1:1:1 to

form the ternary complex. The proteins mixture was incubated for half an hour before being further

purified by gel filtration chromatography. In the gel filtration experiment, the superdex 200 increase

10/300 column was firstly equilibrated with two column volumes of buffer (10 mM Tris buffer with

150 mM NaCl and 1 mM CaCl2 (pH 7.4)) at 4˚C.~300 ml sample was injected into the column. A 96-

Well plate was placed at the fraction collector for the sample collection. The peak containing the ter-

nary complex was collected and concentrated to 1 mg/ml for cryo-EM analyses (Figure 1—figure

supplement 1). The GDNF/GFRa1/RET, NRTN/GFRa2/RET and ARTN/GFRa3/RET complexes were

obtained with the same method (Figure 1—figure supplement 1).

Cell lines
293FT, Human embryonic kidney: from Invitrogen, identifier: R70007. HEK293 GNT-, Human embry-

onic kidney. from ATC, identifier: CRL-3022. HEK293, Human embryonic kidney. from ATC, identi-

fier: PTA-4488. HEK293T, Human embryonic kidney. from ATC, identifier: CRL-3216. COS-7. from

ATC, identifier: CRL-1651. E. coli BL21(DE3). from New England Biolabs, identifier: C2527. XL10-

Gold Ultracompetent Cells. from Agilent, identifier: 200315. MAX Efficiency DH10Bac Competent
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Cells. from Invitrogen, identifier: 10361012. The identities of all these cell lines have been authenti-

cated. The mycoplasma contamination testing was performed and shown to be negative.

EM data acquisition
All cryo-EM grids were prepared by applying 3 ml of protein samples (1 mg/ml) to glow-discharged

Quantifoil R1.2/1.3 300-mesh gold holey carbon grids (Quantifoil, Micro Tools GmbH, Germany).

Grids were blotted for 5.0 s under 100% humidity at 4˚C before being plunged into liquid ethane

using a Mark IV Vitrobot (FEI). Micrographs were acquired on a Titan Krios microscope (FEI) oper-

ated at 300 kV with a K2 Summit direct electron detector (Gatan), using a slit width of 20 eV on a

GIF-Quantum energy filter. EPU software (FEI) was used for automated data collection following

standard FEI procedure. A calibrated magnification of 46,730X was used for imaging, yielding a pixel

size of 1.07 Å on images. The defocus range was set from �1.5 mm to �3 mm. Each micrograph was

dose-fractionated to 30 frames under a dose rate of 4 e-/pixel/s, with a total exposure time of 15 s,

resulting in a total dose of about 50 e-/Å2.

Image processing
For all the four datasets of the different RET ternary complexes, the image processing was carried

out with the same workflow, and the detailed data collection and processing statistic is summarized

in Table 1. Motion correction was performed using the MotionCorr2 program (Zheng et al., 2017),

and the CTF parameters of the micrographs were estimated using the GCTF

program (Zhang, 2016). Initially,~5000 particles were picked with EMAN2 from a few

micrographs (Tang et al., 2007). All other steps of image processing were performed using

RELION (Scheres, 2012b; Scheres, 2012a). Class averages representing projections in different ori-

entations selected from the initial 2D classification were used as templates for automatic particle

picking from the full datasets. Extracted particles were binned three times and subjected to 2D clas-

sification. Particles from the classes with fine structural feature were selected for 3D classification.

Approximately 20,000 particles were selected to generate the initial mode in RELION. Particles from

the 3D classes showing good secondary structural features were selected and re-extracted into the

original pixel size of 1.07 Å. 3D refinements with C2 symmetry imposed resulted in 3D

Table 1. Cryo-EM data collection and model statistics.

GDF15/GFRAL
/RET GDNF/GFRa1/RET NRTN/GFRa2/RET ARTN/GFRa3/RET

Data collection and processing

Magnification 46,730 46,730 46,730 46,730

Voltage (kV) 300 300 300 300

Electron exposure (e-/Å2) 50 50 50 50

Defocus range (mm) 1.6–3 1.6–3 1.6–3 1.6–3

Pixel size (Å) 1.07 1.07 1.07 1.07

Final particle number 520,480 37,098 247,157 114,344

Map resolution (Å) 3.7 4.4 3.4 3.5

Map Sharpening B factor �190 �200 �140 �140

Model Refinement
Rms deviations
Bonds (Å)
Angles (˚)
Validation
Molprobity score
Clashscore
Rotamer outliers (%)
Ramachandran plot
Favored (%)
Allowed (%)
Outliers (%)

0.006
0.978

1.59
4.43
0.12

94.6
5.3
0.1

0.005
0.994

2.02
8.53
0.41

89.5
10.4
0.1

0.005
0.797

1.45
2.74
0

94.2
5.8
0

0.007
1.040

1.73
4.35
0.12

91.1
8.9
0

DOI: https://doi.org/10.7554/eLife.47650.020
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reconstructions to relatively low resolution for all the 4 datasets of the different RET ternary com-

plexes. The density for the outer edge of RET appeared blurred, suggesting relative swinging

motions of the two wings in the complexes. To improve the resolution, we performed symmetry

expansion and focused refinement as described previously (Bai et al., 2015; Zhou et al., 2015;

Nguyen et al., 2016). To do so, all particles in the dataset were duplicated and rotated by 180˚

according to the C2 symmetry by using the ‘relion_particle_symmetry_expand’ command. The origi-

nal and rotated particles were combined to form the symmetry expanded dataset. Subsequently,

the density for one RET and one co-receptor from one wing was subtracted from the particles in the

symmetry expanded dataset. These operations resulted in a new particle set representing one RET,

one co-receptor and the ligand dimer from both the left and right wings of the original dataset. The

modified particle set was subjected to another round of 3D refinement with a soft mask around one

RET, one co-receptor and ligand dimer, leading to a markedly improved resolution for the entire sin-

gle wing complex. For the NRTN/GFRa2/RET data, we performed a separate 3D refinement with 2-

fold symmetry imposed for the particles corresponding to the 4:4:4 complex, resulting a map at 4.3

Å resolution.

All resolutions were estimated by applying a soft mask around the protein density using the gold-

standard Fourier shell correlation (FSC) = 0.143 criterion (Scheres and Chen, 2012). It worth men-

tioning that the resolution of the GDNF/GFRa1/RET complex estimated by the FSC between two

half maps (4.4 Å) is not consistent with the one measured by the FSC between the map and model

(7.5 Å), suggesting that the resolution of the cryo-EM map is overestimated, presumably due to the

preferred orientation issue in this dataset. Nevertheless, the map with clearly resolved secondary

structural features provides adequate quality for the rigid body docking and restrained refinement

of the model. The symmetry expansion and focused refinement approaches failed to significantly

improve the map quality of the GDNF/GFRa1/RET complex. Therefore, we only used the map

refined with C2 symmetry imposed for the model building and refinement.

The datasets of the complexes contained a subset of particles of RET without the ligand or core-

ceptor bound. We obtained a 3D reconstruction of apo-RET by refinement of these particles in the

GDF15/GFRAL/RET dataset by a procedure similar to that stated above. The resolution of this map

is low, due to the small size of the protein. However, it clearly shows the C-clamp shape of apo-RET

that is very similar to RET in the ternary complexes.

We also collected a dataset for the oligomeric peak of apo-RET, but could not obtain a reliable

3D reconstruction due to structural flexibility. Instead, we performed a 2D analysis for this data set

showing features of the inhibitory dimer of apo-RET.

Model building and refinement
Model building of the GDF15/GFRAL/RET complex was initiated by docking the crystal structures of

the GDF15/GFRAL complex (PDB ID: 5VZ4) (Hsu et al., 2017) and the CLD1/CDL2 domains of RET

(PDB ID: 2X2U) (Kjaer et al., 2010) into the high-resolution one-wing map from the focused refine-

ment in the program Coot (Emsley et al., 2010). CLD3, CLD4 and CRD of RET are built de novo in

Coot. While the D1 domain of GFRAL was present in the protein sample, it was completely disor-

dered and invisible in the density map. Density at the bottom of the GDF15 dimer for the linker (Res-

idues 623–635) between the CRD and transmembrane region of RET is weak but clearly visible when

the map is contoured at lower levels (Figure 1—figure supplement 5A). This part was not included

in the model because the map does not show enough features for reliable model building. The

model containing the GDF15 dimer, one GFRAL and one RET was manually adjusted in Coot and

refined against the map by using the real space refinement module with secondary structure and

non-crystallographic symmetry restraints in the Phenix package (Adams et al., 2010; Afonine et al.,

2018). Model geometries were assessed by using Molprobity as a part of the Phenix validation tools

and summarized in Table 1. The refined model was rotated by 180˚ according to the 2-fold symme-

try in the GDF15 dimer. The two models were combined to construct the entire 2:2:2 GDF15/

GFRAL/RET complex, which shows good agreement with the 3D reconstruction of the entire com-

plex. The model building of the 2:2:2 complexes of NRTN/GFRa2/RET and ARTN/GFRa3/RET was

initiated by docking the RET model refined above and the crystal structure of the NRTN/GFRa2

(PDB ID: 5MR4) (Sandmark et al., 2018) and ARTN/GFRa3 complexes (PDB ID: 2GH0) (Wang et al.,

2006) into the one-wing map. The rest of the process was the same as that for the GDF15/GFRAL/

RET complex. A model containing two 2:2:2 NRTN/GFRa2/RET complexes were built and refined
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based on the cryo-EM map of 4:4:4 NRTN/GFRa2/RET complex to generate the entire model of

4:4:4 NRTN/GFRa2/RET complex (Figure 4—figure supplement 1). The density for the GDNF/

GFRa1/RET complex was relatively poor, but sufficient for manual docking of the individual domains

of RET, GFRa1 and the GDNF dimer (PDB ID: 3FUB) (Parkash and Goldman, 2009). The entire 2:2:2

GDNF/GFRa1/RET complex was refined against the whole map in Phenix using the same methods

as above but with tighter geometric restraints.

Analytical ultracentrifugation
The sedimentation velocity centrifugation experiments were carried out for both of the two peaks of

the RET extracellular region from gel filtration chromatography by using a Beckman Coulter Optima

XL-I ultracentrifuge. The centrifugation buffer contained 20 mM HEPES pH 7.4, 300 mM NaCl, 4 mM

CaCl2. Proteins (400 mL) at three different concentrations (O.D. at 280 nm of 0.8, 0.25, 0.08) were

loaded into the ‘sample’ side of dual-sectored, charcoal-filled Epon centerpieces, while equal vol-

umes of the centrifugation buffer were loaded into the ‘reference’ sectors. Sapphire windows were

employed to sandwich the centerpieces. Filled cells were loaded into an An50Ti rotor and equili-

brated at 20˚C for about 2.5 hr under vacuum before centrifugation. Data were acquired at 50,000

rpm at 20˚C via absorbance at 280 nm running overnight. Data were analyzed by using the c(s) meth-

odology in the program SEDFIT (Schuck, 2000). A time-dilation factor was applied to the data using

the program REDATE (Zhao et al., 2013). The program GUSSI was used to generate the all figures

featuring c(s) distributions (Brautigam, 2015).

Pull-down assay
Streptavidin conjugated beads (IBA Lifesciences) (10 ml) are incubated with 2 mg GDF15 and 6 mg

double strep-tagged GFRAL by head-to-head rotation in 650 ml binding buffer (10 mM HEPES, pH

7.4, 150 mM NaCl, 2 mM CaCl2) for 1 hr at 4˚C. Beads were washed with 700 ml binding buffer for

three times, and then incubated with12 mg Ret in 650 ul binding buffer for 1 hr at 4˚C. Beads were

further washed with 700 ml binding buffer for three times and subjected to SDS-PAGE analyses.

Cell-based phosphorylation assay for RET
The coding sequence for full-length human RET with a C-terminal Myc-tag was inserted into the len-

tivirus vector pLVX-IRES-Puro with puromycin as the selection marker (Clontech). The coding

sequence for human GFRAL (wild-type and the T261R mutant) and GFRa2 with a N-terminal Myc-

tag were inserted into the lentivirus vector pLVX-IRES-Blast with blasticidin as the selection marker.

HEK293 Cells stably expressing RET and GFRAL were selected with 2 mg/ml puromycin and 10 mg/

ml blasticidin for 7 days. Cells were cultured in 6-well plates and then serum-starved for 12 hr before

treatment with GDF15 wild-type and mutants at 10 nM for 15 min at 37˚C. Cells were lysed in the

lysis buffer containing 50 mM Tris pH7.5, 5 mM EDTA and 150 mM NaCl, 1% Triton X-100, and pro-

tease and phosphatase inhibitor cocktails (Invitrogen). Cleared lysates were resolved on 4–20% Tris-

Glycine PAGE gels and subjected to western blot analyses. Images were acquired by using a Chemi-

Doc imaging system (Bio-Rad). The primary antibodies against Myc (cat. #2276), ERK1/2 (cat.

#4695), phosphor-ERK1/2 (cat. #4370) were purchased from Cell Signaling Technology.

Immuno-fluorescence imaging
RET endocytosis was analyzed with a protocol similar to that used for plexin in a previous study

(Shang et al., 2017). Briefly, COS-7 cells stably expressing RET/GFRAL or RET/GFRa2 were seeded

on coverslips in 6-well plates and cultured for 16 hr. Cells were washed with PBS three times, and

then treated with Alexa Fluor-555 labeled GDF15 or NRTN at 15 nM for 5, 10 or 15 min. Cells were

immediately put on ice, washed with ice-cold PBS buffer three times and fixed with 4% (w/v) parafor-

maldehyde (PFA) for 30 min at room temperature. Cells were permeabilized with 0.05% (w/v) sapo-

nin for 5 min and non-specific binding sites were blocked by a quenching buffer (0.01% (w/v)

saponin, 2% (w/v) BSA, 0.1% (w/v) lysine in PBS, pH7.4) for 20 min. Cells were stained with rabbit

anti-EEA1 antibody over night at 4˚C and goat anti-rabbit secondary antibody for 1 hr at room tem-

perature. Cells were imaged with a Plan Apo 60 � 1.4 objective (Nikon) on a spinning-disc confocal

system built around a Ti-E Perfect Focus microscope (Nikon) with an EM camera (c9100-13; Hama-

matsu) controlled by Micro-Manager software (Edelstein et al., 2010). Excitation wavelengths used
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were 405 nm (for DAPI), 488 nm (for EEA1), 561 nm (for Alexa Fluor-555 labeled ligands) with the

corresponding emission filters 460/50, 525/50 and 595/50, respectively. Confocal images were proc-

essed using the Fiji distribution of ImageJ (Schindelin et al., 2012). A central slice from the stack of

confocal images was chosen for calculating the Pearson’s correlation coefficient (PCC) between

EEA1 and NRTN or GDF15 by using the Coloc two plugin in Fiji. PCC values were calculated for indi-

vidual cells defined as regions of interest. P-values were calculated using two-tailed Welch’s t-test in

Prism 7.04.
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Manié S, Santoro M, Fusco A, Billaud M. 2001. The RET receptor: function in development and dysfunction in
congenital malformation. Trends in Genetics 17:580–589. DOI: https://doi.org/10.1016/S0168-9525(01)02420-
9, PMID: 11585664

Mendoza JL, Escalante NK, Jude KM, Sotolongo Bellon J, Su L, Horton TM, Tsutsumi N, Berardinelli SJ,
Haltiwanger RS, Piehler J, Engleman EG, Garcia KC. 2019. Structure of the ifng receptor complex guides design
of biased agonists. Nature 567:56–60. DOI: https://doi.org/10.1038/s41586-019-0988-7, PMID: 30814731

Milbrandt J, de Sauvage FJ, Fahrner TJ, Baloh RH, Leitner ML, Tansey MG, Lampe PA, Heuckeroth RO,
Kotzbauer PT, Simburger KS, Golden JP, Davies JA, Vejsada R, Kato AC, Hynes M, Sherman D, Nishimura M,
Wang LC, Vandlen R, Moffat B, et al. 1998. Persephin, a novel neurotrophic factor related to GDNF and
neurturin. Neuron 20:245–253. DOI: https://doi.org/10.1016/S0896-6273(00)80453-5, PMID: 9491986

Morales-Perez CL, Noviello CM, Hibbs RE. 2016. Manipulation of subunit stoichiometry in heteromeric
membrane proteins. Structure 24:797–805. DOI: https://doi.org/10.1016/j.str.2016.03.004, PMID: 27041595

Mullican SE, Lin-Schmidt X, Chin CN, Chavez JA, Furman JL, Armstrong AA, Beck SC, South VJ, Dinh TQ, Cash-
Mason TD, Cavanaugh CR, Nelson S, Huang C, Hunter MJ, Rangwala SM. 2017. GFRAL is the receptor for
GDF15 and the ligand promotes weight loss in mice and nonhuman primates. Nature Medicine 23:1150–1157.
DOI: https://doi.org/10.1038/nm.4392, PMID: 28846097

Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E, Love DR, Mole SE, Moore JK, Papi L. 1993.
Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A. Nature 363:458–460.
DOI: https://doi.org/10.1038/363458a0, PMID: 8099202

Mulligan LM. 2014. RET revisited: expanding the oncogenic portfolio. Nature Reviews Cancer 14:173–186.
DOI: https://doi.org/10.1038/nrc3680, PMID: 24561444

Nguyen THD, Galej WP, Bai XC, Oubridge C, Newman AJ, Scheres SHW, Nagai K. 2016. Cryo-EM structure of
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