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Abstract Categorizing and understanding other people’s actions is a key human capability.

Whereas there exists a growing literature regarding the organization of objects, the

representational space underlying the organization of observed actions remains largely unexplored.

Here we examined the organizing principles of a large set of actions and the corresponding neural

representations. Using multiple regression representational similarity analysis of fMRI data, in which

we accounted for variability due to major action components (body parts, scenes, movements,

objects, sociality, transitivity) and three control models (distance between observer and actor,

number of people, HMAX-C1), we found that the semantic dissimilarity structure was best captured

by patterns of activation in the lateral occipitotemporal cortex (LOTC). Together, our results

demonstrate that the organization of observed actions in the LOTC resembles the organizing

principles used by participants to classify actions behaviorally, in line with the view that this region

is crucial for accessing the meaning of actions.

Introduction
Humans can perform and recognize a striking number of different types of actions, from hammering

a nail to performing open heart surgery. However, most of what we know about the way we control

and recognize actions is based on a rich literature on prehension movements in humans and non-

human primates. This literature revealed a widespread network of fronto-parietal regions, with a

preference along the dorso-medial stream and the dorso-lateral stream for reaching and grasping

movements, respectively (for reviews see e.g. Culham and Valyear, 2006; Rizzolatti and Matelli,

2003; Turella and Lingnau, 2014). Less is known regarding the organization of more complex

actions (for exceptions, see Abdollahi et al., 2013; Jastorff et al., 2010; Wurm et al., 2017).

According to which principles are different types of actions organized in the brain, and do these

principles help us understand how we are able to tell that two actions, for example running and rid-

ing a bike, are more similar to each other than two other actions, for example riding a bike and read-

ing a book? Are observed actions that we encounter on a regular basis organized according to

higher-level semantic categorical distinctions (e.g. between locomotion, object manipulation, com-

munication actions) and further overarching organizational dimensions? Note that higher-level

semantic categories often covary with more basic action components (such as body parts, movement

kinematics, and objects) of perceived action scenes. As an example, locomotion actions tend to

involve the legs, consist of repetitive movements, can involve vehicles such as a bike and often take

place outdoors, whereas communicative actions often involve mouth/lip movements, consist of small

movements, can involve objects such as a mobile phone, and can take place in a variety of different

scenes. Disentangling these levels neurally presents an analytical challenge that has not been

addressed so far.

A number of recent studies used multivariate pattern analysis (MVPA) (Haxby et al., 2001) to

examine which brain areas are capable to distinguish between different observed actions (e.g.
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opening vs closing, slapping vs lifting an object, or cutting vs peeling) (Wurm et al., 2017;

Wurm et al., 2016; Wurm and Lingnau, 2015; Hafri et al., 2017; Oosterhof et al., 2010;

Oosterhof et al., 2012). The general results that emerged from these studies is that it is possible to

distinguish between different actions on the basis of patterns of brain activation in the lateral occi-

pito-temporal cortex (LOTC), the inferior parietal lobe (IPL) and the ventral premotor cortex (PMv).

In line with this view, LOTC has been shown to contain action-related object properties (Bracci and

Peelen, 2013). LOTC and IPL, but not the PMv, furthermore showed a generalization across the way

in which these actions were performed (e.g. performing the same action with different kinematics),

suggesting that these areas represent actions at more general levels and thus possibly the meaning

of the actions (Wurm and Lingnau, 2015). However, previous studies could not unambiguously

determine what kind of information was captured from observed actions: movement trajectories and

body postures (Wurm et al., 2017; Oosterhof et al., 2010; Oosterhof et al., 2012), certain action

precursors at high levels of generality (Wurm and Lingnau, 2015) (e.g. object state change), or

more complex semantic aspects that go beyond the basic constituents of perceived actions and that

represent the meaning of actions at higher integratory levels. In the latter case, the LOTC and the

IPL should also reflect the semantic similarity structure of a wide range of actions: Running shares

more semantic aspects with riding a bike than with reading; therefore, semantic representations of

running and riding a bike should be more similar with each other than with the semantic representa-

tion of reading.

To determine the structure of the similarity in meaning (which we will refer to as semantic similar-

ity in the remainder of this paper), we used inverse multidimensional scaling (MDS)

(Kriegeskorte and Mur, 2012) of a range of different actions (Figure 1). To test the prediction that

the LOTC and the IPL reflect the semantic similarity structure determined behaviorally (using inverse

MDS), we carried out an fMRI study in the same group of participants. To control for action compo-

nents that often covary with action semantics, we carried out inverse MDS in the same group of par-

ticipants for the similarity of actions with respect to (a) the body parts involved in the action (body

model), (b) the scenes in which these actions typically take place (scene model), (c) movement kine-

matics involved in the actions (movement model), and (d) objects involved in these actions (object

model).

To be able to relate our results to a previous study (Wurm et al., 2017) explicitly comparing

actions directed towards an object and actions directed towards another person, we included two

additional models capturing the transitivity and sociality of the actions, respectively (see

Materials and methods, section Construction of Representational Dissimilarity Matrices, for details).

Moreover, to account for the fact that some of the images depicting actions were photographed at

a shorter distance to the actor(s) than other images, and since some actions included two actors,

whereas the majority of actions depicted one actor only, we included additional models capturing

the distance to the actor (near, medium, far) and the number of actors involved in the action (one vs

two; see Materials and methods, section Construction of Representational Dissimilarity Matrices for

details). Finally, to be able to rule out that any differences obtained in the RSA are not due to low-

level differences between the actions, we included the second level (C1) of the HMAX model

(Riesenhuber and Poggio, 1999; Serre et al., 2007) (see Methods, section Construction of Repre-

sentational Dissimilarity Matrices, for details).

In the fMRI study, we examined which brain regions capture the semantic similarity structure

determined in the behavioral experiment, using representational similarity analysis

(Kriegeskorte et al., 2008a) (RSA). Moreover, to examine which brain areas capture semantic simi-

larity over and beyond the action components described above, and to control for potential con-

founds and low level differences in the stimulus material, we carried out a multiple regression RSA

for each of the models while accounting for all the remaining models (see Materials and methods,

section Representational Similarity Analysis, for details).
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Figure 1. Stimuli and behavioral task. (A) Stimuli used in the behavioral and the fMRI experiment, depicting static

images of 28 everyday actions. To increase perceptual variability, actions were shown from different viewpoints, in

different scenes, using two different actors (see text for details) and different objects (for actions involving an

object). For a full set of stimuli used in the fMRI experiment, see Figure 1—figure supplement 1. (B) Illustration of

the behavioral experiment used for inverse multidimensional scaling. In the first trial of the experiment,

participants were presented with an array of images arranged on the circumference of a gray circle (left panel). In

each subsequent trial, an adaptive algorithm determined a subset of actions that provided optimal evidence for

the pairwise dissimilarity estimates (see Kriegeskorte and Mur, 2012 and Materials and methods, for details). In

different parts of the experiment, participants were asked to rearrange the images according to their perceived

similarity with respect to a specific aspect of the action, namely, their meaning (or semantics), the body part(s)

involved, the scene/context in which the action typically takes place, movement kinematics, and objects involved

in the action. Right panel: Example arrangement resulting from the semantic task of one representative

participant. Using inverse multidimensional scaling, we derived a behavioral model (see Figure 2) from this

arrangement, individually for each participant, that we then used for the representational similarity analysis to

individuate those brain regions that showed a similar representational geometry (for details, see

Materials and methods section).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. All images used in the fMRI experiment.
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Results

Behavioral
Inverse multidimensional scaling experiment (Behavioral)
To obtain representational dissimilarity matrices (RDMs) for the semantic model, we extracted the

pairwise Euclidean distances from the participants’ inverse MDS arrangements (see

Materials and methods, section Inverse Multidimensional Scaling, for details). Figure 2 shows the

resulting RDM (averaged across participants).

We found significant (all p-values were smaller than p<0.0001 and survived false discovery rate

correction) inter-observer correlations, that is the individual RDMs significantly correlated with the

average RDM of the remaining participants (mean leave-one-subject-out correlation coefficient:

0.61, min individual correlation coefficient: 0.46, max individual correlation coefficient: 0.78), sug-

gesting that the participants’ arrangements were reliable and based on comparable principles.

Principal Component Analysis (PCA) and Clustering analysis: K-means
To better characterize the dimensions along which the actions were organized and the clusters

resulting from inverse MDS for the semantic task, we carried out a K-means clustering analysis and a
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Figure 2. Behavioral Representational Dissimilarity Matrix for the semantic model. Bluish colors indicate high

similarity between pairwise combinations of actions, whereas reddish colors indicate high dissimilarity.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Pairwise cross-correlation matrix across models.

Tucciarelli et al. eLife 2019;8:e47686. DOI: https://doi.org/10.7554/eLife.47686 4 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.47686


Principal Component Analysis (PCA; see Materials and methods for details). A Silhouette analysis

(see Materials and methods and Figure 3—figure supplement 1) revealed that the optimal number

of clusters for the semantic task was six. As can be seen in Figure 3—figure supplement 2, the first

three components account for the largest amount of variance. For ease of visualization, we show the

first two components in Figure 3. A visualization of the first three principal components is shown in

Figure 3—figure supplement 3. The analysis revealed clusters related to locomotion (e.g. biking,

running), social/communicative actions (e.g. handshaking, talking on the phone), leisure-related

actions (e.g. painting, reading), food-related actions (e.g. eating, drinking), and cleaning-related

actions (e.g. showering, washing the dishes).
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Figure 3. Cluster analysis. Clusters resulting from the K-means clustering analysis for the semantic task. The 2D-plot shows component 1 and 2, the

corresponding labels of individual actions and the suggested labels for the categories resulting from the K-means clustering. For a visualization of the

organization of these actions along the third component, which explained 23.4% of the variance, please refer to Figure 3—figure supplement 3.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Results silhouette analysis.

Figure supplement 2. Eigenvalues obtained from the PCA of the semantic model.

Figure supplement 3. Results cluster analysis.

Figure supplement 4. First two principal components of the control models.
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RSA
To identify neural representations of observed actions that are organized according to semantic sim-

ilarity, we performed a searchlight correlation-based RSA using the semantic model derived from

the behavioral experiment. We thereby targeted brain regions in which the similarity of activation

patterns associated with the observed actions matches the participants’ individual behavioral seman-

tic similarity arrangement. We identified significant clusters in bilateral LOTC extending ventrally

Figure 4. Standard RSA, Semantic model. Group results of the searchlight-based RSA using the semantic model (standard RSA, that is second order

correlation between neural data and behavioral model). Statistical maps only show the positive t values that survived a cluster-based nonparametric

analysis with Monte Carlo permutation (cluster stat: max sum; initial pval <0.001; Stelzer et al., 2013). The resulting individual correlation maps were

first Fisher transformed and then converted to t scores. After the correction, data were converted to z scores, and only values greater than 1.65 (one-

tailed test) were considered as significant. This analysis revealed clusters in bilateral LOTC, bilateral IPL and bilateral precentral gyrus (see

Supplementary file 1 for details).
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into inferior temporal cortex, bilateral posterior intraparietal sulcus (pIPS), and bilateral inferior fron-

tal gyrus/ventral premotor cortex (Figure 4, Supplementary file 1).

Given that a number of action components covary to some extent with semantic features (e.g.

locomotion actions typically take place outdoors, cleaning-related actions involve certain objects,

etc.; see also Figure 2—figure supplement 1), it is impossible to determine precisely what kind of

information drove the RSA effects in the identified regions on the basis of the correlation-based RSA

alone. Hence, to test which brain areas contain action information in their activity patterns that can

be predicted by the semantic model over and above the models for different action components

and the three control models, we conducted a multiple regression RSA. We hypothesized that if

actions were organized predominantly according to action components (captured in the body,

scene, movement, object, sociality and transitivity models) or due to low level differences between

conditions (captured in the distance, 1 vs 2 people and HMAX-C1 model; see Figure 5 and section

Construction of Representational Dissimilarity Matrices for details), this analysis should not reveal

any remaining clusters. Therefore, the multiple regression RSA included ten predictors (semantic,

body, scene, movement, object, sociality, transitivity, distance, 1 vs 2 people, HMAX-C1).

As can be seen in Figure 6, the semantic model explained significant amounts of variance over

and above the six models for the different action components and the three control models in the

left anterior LOTC at the junction to the posterior middle temporal gyrus (see also Figure 6—figure

supplement 1 and Supplementary file 2).

Figure 7 shows the results of the multiple regression RSA for the other models (for a visualization

of the same results together with the outlines of the Glasser multi-modal parcellation [Glasser et al.,

2016] superimposed on the flat maps, see Figure 6—figure supplement 1). All models except the

sociality and the scene model revealed significant clusters (see Supplementary file 2 for details).

The clusters obtained for the body, movement distance, and the 1 vs 2 people models that

explained significant amounts of variance over and above the remaining models partially overlapped

with the cluster revealed by the semantic model (Figure 6; outlines superimposed in black in Fig-

ure 7 for ease of comparison). For the body model (Figure 7A), the cluster was obtained predomi-

nantly in the left angular gyrus, slightly more dorsal than the cluster revealed by the semantic model,

and the right pMTG. Note that the cluster revealed by the body model in the left hemisphere was

more dorsal than Extrastriate Body Area (EBA) (Downing et al., 2001) (for a comparison with coordi-

nates revealed by previous studies that used a functional localizer to identify EBA, see Figure 6—fig-

ure supplement 2). The movement model revealed clusters in the left SPL, the left inferior occipital

gyrus (posterior to the cluster revealed by the semantic model) and the right MTG (Figure 7B). The

object model explained variance in the right intraparietal sulcus area 1 (IPS1; Hagler et al.,

2007) and the left fusiform gyrus area (Figure 7C). The transitivity model revealed a small cluster in

the left inferior occipital gyrus, posterior to the cluster revealed by the semantic cluster (Figure 7D).

The distance (Figure 7E) and the 1 vs 2 people model (Figure 7F) revealed a number of clusters,

mostly posterior to the cluster revealed by the semantic model, both in the left and right hemisphere

(for a full set of labels and peak coordinates, see Supplementary file 2). The HMAX-C1 model

revealed clusters (distinct from the cluster revealed by the semantic model) in the calcarine cortex

(left hemisphere), the right occipital fusiform gyrus, the right inferior occipital gyrus, the right lingual

gyrus and the left fusiform gyrus (Figure 7G and Supplementary file 2).

Note that the obtained RSA results are unlikely to be due to some low-level features of the

images we used. First, to minimize the risk that results could be driven by trivial pixel-wise

perceptual similarities, we introduced a substantial amount of variability for each of the 28 actions,

using different exemplars in which we varied the actor, the viewpoint, the background/scene (e.g.

kitchen A vs kitchen B), and the object (for actions that involved one). Second, as described above,

to account for low-level perceptual similarities, we included three control models (distance, one vs

two people, HMAX-C1) in the multiple regression analysis. The resulting clusters that show the vari-

ance explained by these control models can be seen in Figure 7 (E–G) and Figure 6—figure supple-

ment 1.

To have a better idea of the representational geometry encoded in the left LOTC cluster, we

extracted the beta estimates associated with the 100 features neighboring the vertex with the high-

est T score in the cluster in the left LOTC revealed by the multiple regression RSA for the semantic

model. For this visualization, we used exactly the same steps involved in the searchlight-based stan-

dard RSA (see Materials and methods section for details). We derived the RDM from the beta
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patterns extracted from the ROI and then correlated this neural RDM with the behavioral model

RDMs (semantic, body, scene, movement, object, sociality, transitivity) and the control model RDMs

(distance, 1 vs 2 People, HMAX-C1). The averaged correlations between the model RDMs and the

neural RDM in the LOTC obtained from this analysis are reported in Figure 8A. The bar plot con-

firmed that the semantic model is the model that best correlates with the neural RDM (shown in

Figure 8B). Not surprisingly, also the other models significantly correlated with the neural RDMs,

with the exception of the scene, sociality, object and HMAX-C1 models. Note that the averaged

Sociality Transitivity

Body Scene Movement

Object

HmaxC11vs2PeopleDistance

Figure 5. Model Representational Dissimilarity Matrices. Group representational dissimilarity matrices for body,

scene, movement, and object model, derived from inverse MDS carried out in the same group of participants after

the fMRI experiment. The sociality, transitivity and distance model were based on ratings in a separate group of

participants. For construction of the 1 vs 2 people and the HMAX-C1 model, and further details on the

construction of the remaining models, see Materials and methods, section Construction of Representational

Dissimilarity Matrices. Bluish colors indicate high similarity between pairwise combinations of actions, whereas

reddish colors indicate high dissimilarity. For ease of comparison, we used the ordering of actions resulting from

the semantic task (see Figure 2).

Tucciarelli et al. eLife 2019;8:e47686. DOI: https://doi.org/10.7554/eLife.47686 8 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.47686


Figure 6. Multiple regression RSA (semantic model). Group results of the searchlight-based multiple regression RSA, in which the ten different models

(see Materials and methods, section Construction of Representational Dissimilarity Matrices, for details) were used as regressors in a multiple regression

RSA conducted at the individual level. The resulting beta estimates were converted to t scores across participants and then corrected for multiple

comparisons using cluster-based nonparametric permutation analysis (Stelzer et al., 2013) (see Materials and methods for details). Accounting for the

behavioral (body, scene, movement, object, sociality, transitivity) and the control models (distance, 1 vs 2 People, HMAX-C1) in the multiple regression

analysis, the semantic model explained observed variance in the left LOTC. For ease of comparison, the black outlines in the bottom part of the figure

(flat maps) depict the clusters revealed by the standard RSA for the semantic model (Figure 4).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Multiple regression based RSA results, together with Glasser parcellation.

Figure supplement 2. Results for the body model, together with EBA coordinates.
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Figure 7. Searchlight-based multiple regression RSA. Searchlight-based multiple regression RSA results for the body (A), movement (B), object (C),

transitivity (D), distance (E), 1 vs 2 people (F) and the HMAX-C1 (G) model. The resulting beta estimates were converted to t scores across participants

and then corrected for multiple comparisons using cluster-based nonparametric permutation analysis (Stelzer et al., 2013) (see Materials and methods

Figure 7 continued on next page
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correlations were quite low (semantic model: 0.0645, distance model: 0.0608, 1vs2People: 0.0563;

all other models < 0.05), in line with a number of previous studies (e.g. Bracci and Op de Beeck,

2016; Magri et al., 2019). To visualize how the data are organized in a two-dimensional space and

thus to better understand the underlying representational geometry encoded in the LOTC, we con-

ducted a classical multidimensional scaling (MDS) analysis on the neural RDMs averaged across par-

ticipants. As shown in Figure 8C, the organization of the neural multidimensional patters associated

Figure 7 continued

for details). Results for the scene and the sociality model did not survive corrections for multiple corrections and thus are not shown here. Black outlines

on the inflated brains and the flat maps depict significant clusters revealed by the multiple regression RSA for the semantic mode (Figure 6).
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Figure 8. Neural RDM from LOTC. (A) Kendall rank correlation coefficient between neural and model RDMs in the cluster in the LOTC revealed by the

multiple regression RSA using the semantic model (see Figure 6). Error bars depict the standard error of the mean. Asterisks indicate that the

correlation was greater than zero (one-tailed t-test, FDR corrected). (B) Neural RDM from the LOTC used for the analysis shown in panel (A). Values

were separately rank-transformed and then rescaled to values between 0 and 100, as suggested in Nili et al. (2014). (C) Two-dimensional visualization

of the beta patterns of the cluster in the LOTC resulting from classical MDS. Actions were assigned to the clusters resulting from the behavioral analysis

as shown in Figure 3. (D). Dendrogram resulting from the hierarchical clustering analysis.
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with each action indeed resembles the clustering organization we observed for the behavioral

semantic task (see Figure 3). To facilitate the comparison with Figure 3, we assigned actions with

the same color code as the corresponding clusters identified from the behavioral analysis. A hierar-

chical clustering analysis showed a similar result (see Figure 8D).

Discussion
Here we aimed to investigate the organizational principles of everyday actions and the correspond-

ing neural representations. Using inverse MDS (Kriegeskorte and Mur, 2012), we identified a num-

ber of clusters emerging in the arrangement of actions according to their meaning that were

relatively stable across participants. These clusters corresponded to meaningful categories, namely

locomotion, communicative actions, food-related actions, cleaning-related actions, and leisure-

related actions (Figure 3). Using multiple regression RSA (Kriegeskorte et al., 2008a), we showed

that this semantic similarity structure of observed actions was best captured in the patterns of activa-

tion in the left LOTC.

PCA suggested that the five categories revealed in the behavioral experiment appear to be orga-

nized along three main components that together explained around 78% of the observed variance.

Whereas neither the PCA nor the k-means clustering provides objective labels of the main dimen-

sions that might underlie the organization of actions into categories, it appears that clusters corre-

sponding to semantic categories along the first principal component differed with respect to the

type of change induced by the action (negative side of component 1: change of location, positive

side of component 1: change of external/physical state, middle: change of internal/mental state).

The second component seemed to distinguish actions that fulfil basic (or physiological) needs such

as eating, drinking, cutting, or getting from one place to the other, and actions that fulfil higher

(social belonging, self-fulfillment) needs such as hugging, talking to someone, reading, listening to

music). Interestingly, this distinction shows some similarity with Maslow’s hierarchy structure of needs

(Maslow, 1943). The third component might capture the degree to which an action is directed

towards another person (hugging, holding hands, talking, etc.) or not (running, swimming, playing

video games, reading). To the best of our knowledge, the only study that explicitly examined

behavioral dimensions underlying the organization of actions focused on tools and the way they are

typically used. Using ratings of the use of tools depicted as static images, Watson and Buxbaum

(2014) found that the two components that best explained the variability of their ratings of tool-

related actions were related to ‘hand configuration’ and ‘magnitude of arm movement’.

In the language domain, there exists a rich literature on the semantic structure of action represen-

tations. As an example, based on the examination of the relationship between verb meaning (e.g. to

break, to appear) and verb behavior (e.g. whether or not a verb can be used transitively), a number

of authors including Talmy (1985), Levin (1993), and Pinker (1989) aimed to reveal the underlying

semantic structure of verbs (for related work on the use of semantic feature production norms see

for example Vinson and Vigliocco, 2008). Based on their analyses, these authors proposed a num-

ber of semantic categories (Talmy, 1985) or semantic fields (Levin, 1993). The latter include, but

are not limited to, change of location, communication, cooking, and change of state, which show

similarities to the action categories locomotion, communicative actions, food-related actions and

cleaning-related actions revealed in the current study. It is less clear how to map the category we

labeled leisure-related actions onto semantic fields proposed by Levin (1993) and others. Whereas

it is not surprising that action categories revealed on the basis of visual stimuli to some degree

resemble semantic fields derived from cross-linguistic comparisons, it is likely that there exist action

categories that can be revealed by visual stimuli but not by language, and vice versa (see also

Vinson and Vigliocco, 2008, and Watson and Buxbaum, 2014, for related discussions on this

topic). As an example, actions depicted by visual stimuli are concrete depictions, whereas actions

described by words by definition are symbolic and thus more abstract representations of actions.

Based on the existing literature on semantic categories, we expect that future studies, using a similar

approach as described in the current study with a wider range of actions, will reveal additional cate-

gories and overarching dimensions that show similarities, but are not necessarily identical to the

semantic categories described in the literature so far.

To identify brain regions that encoded the similarity patterns revealed by the behavioral experi-

ment, we conducted a searchlight-based RSA. We observed a significant correlation between the
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semantic model and the pattern of fMRI data in regions of the so-called action observation network

(Caspers et al., 2010), which broadly includes the LOTC, IPL, premotor and inferior frontal cortex.

Using multiple regression RSA, we found that only the left LOTC contains action information as pre-

dicted by the semantic model over and above the remaining models. In line with these results, it has

been demonstrated that it is possible to discriminate between observed actions based on the pat-

terns of activation in the LOTC, generalizing across objects and kinematics (Wurm et al., 2016), and

at different levels of abstraction (Wurm and Lingnau, 2015). Interestingly, studies using semantic

tasks on actions using verbal stimuli (Watson et al., 2013) or action classification across videos and

written sentences (Wurm and Caramazza, 2019a) tend to recruit anterior portions of the left LOTC.

By contrast, studies using static pictures (Hafri et al., 2017) or videos depicting actions (Hafri et al.,

2017; Wurm et al., 2017; Wurm et al., 2016; Wurm and Lingnau, 2015) find LOTC bilaterally and

more posteriorly, closer to the cluster in the MOG identified in the current study. Note that a previ-

ous study by Hafri et al. (2017), directly comparing areas in which it is possible to decode between

actions depicted by static pictures and by dynamic videos, found a far more widespread network of

areas decoding actions depicted by videos in comparison to static pictures. We thus cannot rule out

that more dynamic action components, for example movement kinematics, are not well captured in

the current study. At the same time, Hafri et al. (2017) demonstrated that it is possible to decode

actions across stimulus format in the posterior LOTC, in line with the view that action-related repre-

sentations in this area does not necessarily require visual motion. Together, our findings suggest

that this area captures semantic aspects of actions at higher-order visual levels, whereas anterior

portions of the left LOTC might capture these aspects at stimulus-independent or verbal levels of

representation (see also Lingnau and Downing, 2015 and Papeo et al., 2019).

Whereas the focus of the multiple regression RSA was to examine the results for the semantic

model while accounting for the variability explained by the remaining models, it is interesting to

compare the clusters revealed by the remaining models and how they relate to the semantic model.

Several models (body, movement, distance, 1 vs 2 people) revealed clusters that were partially dis-

tinct from and partially overlapped with the cluster revealed by the semantic model. By contrast, the

transitivity model revealed a cluster in the ventral portion of the LOTC that did not overlap with the

semantic model. The LOTC has been shown to be sensitive to categorical action distinctions, such as

whether they are directed towards persons or objects (Wurm et al., 2017). The results obtained for

the transitivity model are in line with the results reported by Wurm et al. (2017) and Wurm and Car-

amazza (2019b), whereas we failed to obtain reliable results for the sociality model. Note, however,

that the current study was not designed to test this model. In particular, only a small number of

actions were directed towards another person, and these actions co-varied with the presence of

another person, which was captured by the 1 vs 2 people model (which showed comparable results

to those obtained for the sociality model in the study by Wurm et al., 2017; see also Wurm and

Caramazza, 2019b for an experimental segregation of sociality and 1 vs. 2 people models).

Together, the results of the multiple regression RSA obtained for the different models are in line

with the view that the LOTC hosts a variety of different, partially overlapping representations of

action components that are likely to be integrated flexibly according to task demands (see also

Lingnau and Downing, 2015). Multiple, possibly overlapping basic dimensions have been proposed

to underlie the organization of these different action components within the LOTC, among them the

input modality (visual versus non-visual; Lingnau and Downing, 2015; Papeo et al., 2019), the pres-

ence and orientation of a person, and the directedness of actions toward persons or other targets

(Wurm et al., 2017; Wurm and Caramazza, 2019b).

Whereas the standard RSA revealed strong clusters not only in the LOTC but also in the IPL and

the precentral gyrus, the multiple regression RSA for the semantic model revealed a cluster in the

left LOTC only. This observation suggests that the results obtained in the IPL and the precentral

gyrus for the semantic model revealed by the standard RSA was due to some combination of the

models accounted for in the multiple regression RSA, even if no individual model alone revealed a

cluster in these two regions that survived corrections for multiple comparisons.

Our results call for a comparison with the object domain, where similar questions have been

addressed for decades. In line with the results of the multiple regression-based RSA, the LOTC has

been demonstrated to represent the similarity structure of object categories (Bracci and Op de

Beeck, 2016). Regarding the results of the cluster analysis, salient distinctions at the behavioral and

neural level have been found between animate and inanimate objects (for example
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Kriegeskorte et al., 2008b; Chao et al., 1999; Caramazza and Shelton, 1998) which have been

further segregated into human and nonhuman objects (Mur et al., 2013), and manipulable and non-

manipulable objects (Mecklinger et al., 2002), respectively. The division between animate and inani-

mate objects, supported by neuropsychological, behavioral and neuroimaging findings, has been

suggested to have a special status, likely due to evolutionary pressures that favored fast and accu-

rate recognition of animals (Caramazza and Shelton, 1998; Mur et al., 2013; New et al., 2007).

We conjecture that similar evolutionary mechanisms might have produced the distinction between

actions belonging to different categories, such as locomotion (which might indicate the approach of

an enemy), food-related actions (which might be critical for survival) and communicative actions (criti-

cal for survival within a group).

Conclusions
Using a combination of behavioral and fMRI data, we identified a number of meaningful semantic

categories according to which participants arrange observed actions. The corresponding similarity

structure was captured in left LOTC over and above the major components of perceived actions

(body parts, scenes, movements, and objects) and other related features of the observed action

scenes, in line with the view that the LOTC hosts a variety of different, partially overlapping action

components that can be integrated flexibly. Together, our results support the view that the LOTC

plays a critical role in accessing the meaning of actions beyond the mere perceptual processing of

action-relevant components.

Materials and methods

Participants
Twenty healthy participants (13 females; mean age: 28 years; age range: 20–46) took part in an fMRI

and a behavioral experiment carried out at the Combined Universities Brain Imaging Centre (CUBIC)

at Royal Holloway University of London (RHUL). The experiment was approved by the ethics commit-

tee at the Department of Psychology, RHUL (REF 2015/088). Participants provided written informed

consent before starting the experiment. All participants were right-handed with normal or cor-

rected-to-normal vision and no history of neurological or psychiatric disease. All participants but one

(RT, one of the authors) were naı̈ve to the purpose of the study.

Inverse multidimensional scaling
Participants sat in front of a monitor (LCD 16.2 � 19.2 inches; distance 60 cm). In trial 1, all action

images (one exemplar per action) appeared on the screen in a circular arrangement (with the order

of actions randomly selected; see Figure 1B). Participants were instructed to arrange the pictures by

drag-and-drop using the mouse according to their perceived similarity in meaning (e.g. walking and

running would be placed closer to each other than walking and drinking) and to press a button once

they were satisfied with the arrangement. In each subsequent trial (trial two to Np, where Np is the

total number of trials for participant p), a subset of stimuli was sampled from the original stimulus

set. The subset of actions was defined using an adaptive algorithm that provided the optimal evi-

dence for the pairwise dissimilarity estimates (which are inferred from the 2D arrangement of the

items on the screen, see Kriegeskorte and Mur, 2012 for details). Participants were given 15

minutes in total to complete the task.

Stimulus selection
In contrast to previous studies that used a small set of actions, we aimed to cover a wide range of

actions that we encounter on a daily basis. To this aim, we initially carried out an online survey using

Google Forms. The aim of the survey was to identify actions that are considered common by a large

sample of people. We thus asked 36 participants (different from those that took part in the fMRI

study) to spontaneously write down all the actions that came to their mind within 10 min that they or

other people are likely to do or observe. As expected, participants often used different words to

refer to similar meanings (e.g. talking and discussing) or used different specific objects associated

with the same action (e.g. drinking coffee and drinking water). Two of the authors (EB, AL) thus

assigned these different instances of similar actions to a unique label. Actions were selected if they
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were mentioned by at least 20% of the participants. In total, we identified 37 actions (see

Supplementary file 3).

As a next step, we selected a subset of actions that were best suitable for the fMRI experiment.

Specifically, we aimed to choose a set of actions that were arranged consistently across participants

according to their perceived similarities in meaning. To this aim, we retrieved images depicting the

37 actions from the Internet. Using these images, we carried out inverse MDS (see corresponding

section and Kriegeskorte and Mur, 2012 for details) using 15 new participants. Each participant

had 20 min to complete the arrangement. In three additional 20 min sessions, participants were fur-

thermore instructed to arrange the actions according to the perceived similarity in terms of their

meaning, the scenes in which these actions typically take place, movement kinematics, and the

objects which are typically associated with these actions. The order in which these four tasks (seman-

tics, scenes, movements, objects) were administered to participants was counterbalanced across par-

ticipants. To rule out that any obtained arrangements were driven by the specific exemplars chosen

for each action, we repeated the same experiment with a new group of people (N = 15) and an inde-

pendent set of 37 images taken from the Internet.

To construct representational dissimilarity matrices (RDMs), we averaged the dissimilarity esti-

mates for each pair of actions (e.g. the dissimilarity between biking and brushing teeth, etc.), sepa-

rately for each participant and each task, across trials. For each participant and model, we then

constructed dissimilarity matrices based on the Euclidean distance between each pair of actions that

resulted from the inverse MDS experiment. The dissimilarity matrices were then normalized by divid-

ing each value by the maximum value of each matrix. Each row of this matrix represented the dissim-

ilarity judgment of one action with respect to every other action. To select the most suitable actions

for the fMRI experiment, we aimed to evaluate which of the 37 actions were arranged similarly

across participants in the different tasks. To this aim, we carried out a cosine distance analysis, which

allowed us to determine, for each action, the similarity across all participants. The cosine distance

evaluates the similarity of orientation between two vectors. It can be defined as one minus the

cosine of the angle between two vectors of an inner product space: a cosine distance of 1 indicates

that the two vectors are orthogonal to each other (maximum dissimilarity/minimum similarity); a

cosine distance of zero indicates that the two vectors have the same orientation (maximum similar-

ity/minimum dissimilarity). The cosine distance can therefore range between 0 and 1. In an RDM,

each row (or column) represents the dissimilarity score between one action and every other action,

ranging from 0 (minimum dissimilarity) to 1 (maximum dissimilarity). Therefore, each row of the

matrix of each single participant was used to compute the pairwise cosine distances between this

and the corresponding row of every other participant. For each action, a cosine distance

close to zero would indicate that participants agreed on the geometrical configuration of that action

with respect to every other action; a value close to one would indicate disagreement. For each

action, we computed the mean across the pairwise cosine distances of all participants in both behav-

ioral pilot experiments and kept only those actions that had a cosine distance within one standard

deviation from the averaged cosine distance in all tasks and both stimulus sets. Thirty-one actions

fulfilled this criterion, whereas five (getting dressed, cleaning floor, brushing teeth, singing and

watering plants) had to be discarded. We also decided to remove two additional actions (grocery

shopping and taking the train) because these could not be considered as single actions but implied

a sequence of actions (e.g. entering the shop, choosing between products, etc.; waiting for the train,

getting on the train, sitting on the train, etc.).

At the end of the procedure, we identified 30 actions that could be used for the next step, which

consisted in creating the final stimulus dataset. To this aim, we took photos of 29 of the 30 actions

using a Canon EOS 400D camera. To maximize perceptual variability within each action, and thus to

minimize low-level feature differences between actions, we varied the actors (2), the scene (2) and

perspectives (3), for a total of 12 exemplars per action. Exemplars for the action ‘swimming’ were

collected from the Internet because of the difficulties in taking photos in a public swimming pool.

The distance between the camera and the actor was kept constant within each action (across

exemplars). Since some actions consisted of hand-object interactions (such as painting, drinking) and

thus required finer details, while other actions involved the whole body (such as dancing, running)

and thus required a certain minimum distance to be depicted, it was not possible to maintain the

same distance across all the actions. The two actors were instructed to maintain a neutral facial

expression and were always dressed in similar neutral clothing. If an action involved an object, the
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actor used two different exemplars of the object (e.g. two different bikes for biking) or two different

objects (e.g. a sandwich or an apple for eating). Furthermore, some actions required the presence of

an additional actor (handshaking, hugging, talking). The brightness of all pictures was adjusted using

PhotoPad Image Editor (www.nchsoftware.com/photoeditor/). Pictures were then converted into

grayscale and resized to 400 � 300 pixels using FastOne Photo (www.faststone.org). In addition, we

made the images equally bright using custom written Matlab code available at: osf.io/cvrb2 (Tucciar-

elli, 2019) (mean brightness across all images was 115.80 with standard deviation equal to 0.4723).

To ensure that the final set of pictures were comprehensible and identified as the actions we

intended to investigate, we furthermore validated the stimuli through an online survey using Qual-

trics and Amazon Mechanical Turk involving 30 participants. Specifically, the 30*12 = 360 pictures

were randomly assigned to three groups of 120 images. Each group was assigned to ten participants

that had to name the actions depicted in the images. For each participant, the images were pre-

sented in a random sequence. Since most of the participants failed to correctly name some of the

exemplars of making coffee and switching on lights, these actions were excluded from the stimulus

set. Therefore, the final number of actions chosen for the main experiment was 28 (see

Supplementary file 3).

Note that we decided to use static images instead of videos of actions for two reasons. First of

all, we wished to avoid systematic differences between conditions based on the kinematic profiles of

videos of actions. Second, we aimed to use stimuli that are suitable both for the fMRI experiment

and for the inverse MDS experiment. We considered static stimuli more suitable for the latter, given

that the participant had to judge the similarity of a large set of actions simultaneously. We examine

the consequences of this choice in the discussion.

Experimental design and setup
The fMRI experiment consisted of twelve functional runs and one anatomical sequence halfway

through the experiment. Each functional run started and ended with 15 s of fixation. In between

runs, the participants could rest.

Stimuli were back-projected onto a screen (60 Hz frame rate) via a projector (Sanyo, PLC-XP-

100L) and viewed through a mirror mounted on the head coil (distance between mirror and eyes:

about 12 cm). The background of the screen was uniform gray. Stimulus presentation and response

collection was controlled using ASF (Schwarzbach, 2011), a toolbox based on the Matlab Psycho-

physics toolbox (Brainard, 1997).

Each functional run consisted of 56 experimental trials (28 exemplars of the action categories per-

formed by each of the two actors) and 18 null events (to enhance design efficiency) presented in a

pseudorandomized order (preventing that the same action was shown in two consecutive trials,

except during catch trials, see next paragraph). A trial consisted of the presentation of an action

image for 1 s followed by 3 s of fixation. A null event consisted of the presentation of a fixation cross

for 4 s. Within run 1–6, each possible combination of action types (28) x exemplars (12) was pre-

sented once, for a total of 336 trials. For runs 7–12, the randomization procedure was repeated such

that each possible combination was presented another time. In this way, each participant saw each

exemplar twice during the entire experiment (and thus each action was presented 24 times). A full

balancing of all combinations of action, scene, and actor within each run was not possible with 28

actions, therefore the experiment was quasi-balanced: in each run, if actor one performed an action

in scene A, actor two performed the same action in scene B, and vice versa.

To ensure that participants paid attention to the stimuli, we included seven (out of 63; 4.41%)

catch trials in each run which consisted in the presentation of an image depicting the same action

(but not the same exemplar) as the action presented in trial N-1 (e.g. eating an apple, actor A, scene

A, followed by eating a sandwich, actor B, scene B). Participants were instructed to press a button

with their right index finger whenever they detected an action repetition. Within the entire experi-

mental session, all 28 actions could serve as catch trials and each action was selected randomly with-

out replacement such that the same action could not be used as a catch trial within the same run.

After a set of 4 runs all 28 actions were used as catch trial once, thus the selection process started

from scratch. Catch trials were discarded from multivariate data analysis.

Before entering the scanner, participants received written instructions about their task and famil-

iarized with the stimulus material for a couple of minutes. Next, participants carried out a short prac-

tice run to ensure that they properly understood the task.
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MRI data acquisition
Functional and structural data were acquired using a Siemens TIM Trio 3T MRI scanner. For the

acquisition of the functional images, we used a T2*-weighted gradient EPI sequence. The repetition

time (TR) was 2.5 s, the echo time (TE) was 30 milliseconds, the flip angle was 85˚, the field of view

was 192 � 192 mm, the matrix size was 64 � 64, and the voxel resolution was 3 � 3 � 3 mm. A total

of 37 slices were acquired in ascending interleaved order. Each functional run lasted 5 min and 55 s

and consisted of 142 volumes.

For the structural data, we used a T1*-weighted MPRAGE sequence (image size 256 � 256 � 176

voxels, voxel size 1 � 1 � 1 mm, TR 1.9 s, TE 3.03, flip angle 11), lasting 5 min and 35 s.

MRI data preprocessing
Anatomical data were segmented using FreeSurfer (Fischl et al., 1999). Preprocessing of the func-

tional data was carried out using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). The sli-

ces of each functional volume were slice time corrected and then spatially realigned to correct for

head movements. Functional volumes were then coregistered to the individual anatomical image.

Analyses were conducted in individual volume space, but using the inner and outer surfaces

obtained with FreeSurfer as a constraint to select the voxels included in each searchlight as imple-

mented in CoSMoMVPA (Oosterhof et al., 2011; Oosterhof et al., 2016). The resulting maps were

resampled to the surface level on the Human Connectome Project common space FS_LR 32 k

(Glasser et al., 2013) using FreeSurfer and workbench connectome (Marcus et al., 2011). Multivari-

ate analyses were conducted using unsmoothed data.

Behavioral experiment
Following the fMRI experiment, either on the same or the next day, participants took part in an addi-

tional behavioral experiment in which they carried out an inverse MDS task using similar procedures

as described above (see Materials and methods section and Figure 1B). The actions were similar to

those used during the fMRI experiment. In separate blocks of the experiment, participants were

asked to arrange the actions according to their perceived similarity in terms of (a) meaning (referred

to as ’semantics’ in the remainder of the text), (b) the body part(s) involved, (c) scene, (d) movement

kinematics, (e) the object involved.

The order of blocks was counterbalanced across participants. Participants were provided with the

following written instructions:

. In the semantic similarity task, you will be asked to arrange the images with respect of their
meaning: for example, sewing and ironing should be placed closer to each other than sewing
and smoking.

. In the body parts task, actions typically involving the same/similar body parts, for example
kicking a ball and walking, should be placed closer to each other than kicking a ball and
smiling.

. In the context similarity task, actions typically taking place in the same/similar context,
for example cutting bread and preparing tea, should be placed closer to each other than cut-
ting bread and cutting hair.

. In the type of movement task, you will be asked to arrange the images with respect to the
type of movement usually involved in each action. For example, actions like grasping and
reaching would be more close to each other than grasping and kicking.

. In the type of object task, actions involving similar objects, for example catching a football and
throwing a tennis ball, should be placed closer to each other than throwing a tennis ball and
throwing a pillow at another person.

To further characterize the structure that emerged from the inverse MDS, we adopted principal

component analysis (PCA) as implemented in the R package cluster to individuate the principal com-

ponents along which the actions were organized. To characterize the observed clusters, we further-

more used a model-based approach using the K-means (Hartigan and Wang, 1979) clustering

method. The K-means method requires the number of clusters as an input, which was one of the

parameters we wished to estimate from the data. To this aim, we used the Silhouette method (Rous-

seeuw, 1987) as implemented in the R package factoextra to estimate the optimal number of
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clusters. Specifically, this method provides an estimate of the averaged distance between clusters as

a function of the number of clusters used and selects the value which provides the maximal distance.

Construction of representational dissimilarity matrices (RDMs)
To construct RDMs for the semantic, body, scene, movement, and object model used in the behav-

ioral experiment, we used the same procedure described in the section Stimulus selection, that is

we determined the Euclidean distance between each pair of actions that resulted from inverse MDS,

and normalized the dissimilarity matrices by dividing each value by the maximum value of each

matrix. Individual dissimilarity matrices were used as a model for the multiple regression-based rep-

resentational similarity analysis of fMRI data (see section Representational Similarity Analysis). We

found significant (all p-values were smaller than p<0.0001 and survived false discovery rate correc-

tion) inter-observer correlations, that is the individual RDMs significantly correlated with the average

RDMs of the remaining participants (mean leave-one-subject-out correlation coefficients [min – max

individual correlation coefficients]; semantic model: 0.61 [0.46–0.78], body model: 0.57 [0.31–0.70];

scene model: 0.63 [0.40–0.78]; movement model: 0.47 [0.26–0.67]; object model: 0.51 [0.22–0.71].

Clusters obtained from the body, scene, movement, and object model using PCA can be found in

Figure 3—figure supplement 4A–D.

To construct RDMs for the sociality and the transitivity models (Wurm et al., 2017), we con-

ducted an online experiment using Qualtrics and Amazon Mechanical Turn in which we asked a sep-

arate group of N = 20 participants to judge on a Likert scale (1: not at all; 7: very much) the sociality

(i.e. the interaction between the actors involved) and transitivity (i.e. the use of an object) of each

action. To construct the RDM for the distance model, we asked another group of N = 20 participants

to judge the distance (1: within reaching distance; 2: not within reaching distance, but <= 3 meters,

3:>3 meters) from the observer at which each action takes place. For each participant, we derived a

RDM from the judgment scores and then averaged the individual RDMs for the sociality, transitivity

and distance model.

The model controlling for the number of people depicted in the action was constructed by cod-

ing one person involved as 0 and two people involved as 1. The HMAX-C1 model (Serre et al.,

2007) was derived similarly to Connolly et al. (2012) in the following way: we computed the C1

representation of each stimulus image (i.e. each exemplar of an action) and then averaged across

the exemplar response vectors to obtain one C1 vector for each action. The 28 HMAX-C1 represen-

tations were then used to compute the RDM to be used as a predictor in the multiple regression

RSA.

To examine correlations between the different model representational dissimilarity matrices, we

computed correlations between each pairwise comparison of RDMs, both averaged across partici-

pants (Figure 2—figure supplement 1A) and separately for each participant (Figure 2—figure sup-

plement 1B,C). As can be seen, not surprisingly, there are modest correlations between the

different models (in particular when averaged across participants). However, as shown in the

Materials and methods section on multiple regression RSA, the Variance Inflation Factor indicated a

low risk of collinearity and thus justified the use of these models for multiple regression RSA.

Representational Similarity Analysis (RSA)
The aim of the RSA was to individuate those brain regions that were best explained by the models

obtained behaviorally and thus to infer the representational geometry that these areas encoded. We

therefore conducted an RSA over the entire cortical surface using a searchlight approach

(Kriegeskorte et al., 2006) at the individual brain space. Each searchlight consisted of 100 features

(one central vertex + 99 neighbors) and was approximately 12 mm in radius. All multivariate analyses

were carried out using custom written Matlab functions (available at: osf.io/cvrb2 ; Tucciarelli, 2019)

and CoSMoMVPA (Oosterhof et al., 2016).

For the multivariate analysis, the design matrix consisted of 142 volumes X 28 predictors of inter-

est (resulting from the 28 actions) plus nuisance predictors consisting of the catch trials, the parame-

ters resulting from motion correction, and a constant term. Thus, for each participant, we obtained

28 beta maps at the volume level. We adopted two approaches for the representational similarity

analysis, a standard and a multiple regression RSA approach.
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Standard RSA
First, to identify clusters in which the neural data reflected the dissimilarity pattern captured by the

semantic model, we conducted a standard RSA. For this analysis, the beta maps were averaged

across runs. For each searchlight, we derived the normalized RDM using squared Euclidian distance

as distance metric (note that we chose this distance metric, rather than Spearman correlation, for a

more straightforward comparison of the results of the standard and multiple regression RSA; see

also next paragraph). For each searchlight, the RDM was correlated with the normalized RDM of the

semantic model. The correlation values were assigned to the central node of each searchlight, thus

leading to a correlation map for the semantic model, separately for each participant. The correlation

maps of this first-level analysis were then resampled to the common space and Fisher transformed

to normalize the distribution across participants to run a second-level analysis. Specifically, the corre-

lation maps for the semantic model of all N participants were tested against zero using a one-tailed

t-test at each vertex. The resulting t maps were corrected using a cluster-based nonparametric

Monte Carlo permutation analysis (5000 iterations; initial threshold p<0.001 ; Stelzer et al., 2013).

Multiple regression RSA
To determine clusters in which the neural RDM correlated with a given RDM (with a specific focus on

the semantic model) while accounting for the remaining RDMs, we conducted a multiple regression

RSA at each searchlight. For this analysis, the beta patterns were first normalized across images and

then averaged across runs. Before computing the neural RDM, the betas of a searchlight were also

normalized across features. Following the procedure used by Bonner and Epstein (2018), the neural

RDM for each searchlight was computed using the squared Euclidean distance. Using the squared

Euclidian distance as distance metric for multiple regression RSA, which models distances from a

brain RDM as linear combinations of the distances from a number of predictor RDMs, guarantees

that the distance metric sums linearly.

As predictors of the multiple regression analysis, we used the RDMs described in the section Con-

struction of representational dissimilarity matrices (semantic, body, movement, object, scene, social-

ity, transitivity, distance, 1 vs 2 People, HMAX-C1; see also Figure 5).

To estimate potential risks of collinearity, we computed the Variance Inflation Factor (VIF) for

each participant to have a measure of the inflation of the estimated variance of the ith regression

coefficient (computed as 1/ (1�R2
i), where i indicates a variable and R2 is the coefficient of determi-

nation), assuming this coefficient being independent from the others. The VIFs were relatively small

(average VIF semantic model: 1.61, body model: 1.37, scene model: 1.63, movement model: 1.35,

object model: 1.38, sociality model: 1.54, transitivity model: 1.31, distance model: 1.22, 1 vs 2 Peo-

ple model: 1.37, HMAX-C1 model: 1.06), indicating a low risk of multicollinearity (Mason et al.,

2003) and thus justifying the use of multiple regression RSA.

For each participant, the multiple regression-based RSA provided us with beta maps for each of

the ten predictors that were then entered in a second-level (group) analysis to test the individual

beta maps against zero. The procedure for multiple comparisons correction was the same as

described in the section Standard RSA.
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