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Ten common statistical
mistakes to watch out for when
writing or reviewing a
manuscript
Abstract Inspired by broader efforts to make the conclusions of scientific research more robust, we

have compiled a list of some of the most common statistical mistakes that appear in the scientific

literature. The mistakes have their origins in ineffective experimental designs, inappropriate analyses

and/or flawed reasoning. We provide advice on how authors, reviewers and readers can identify and

resolve these mistakes and, we hope, avoid them in the future.

TAMAR R MAKIN* AND JEAN-JACQUES ORBAN DE XIVRY

Much has been written about the need to

improve the reproducibility of research

(Bishop, 2019; Munafò et al., 2017;

Open Science Collaboration, 2015;

Weissgerber et al., 2018), and there have been

many calls for improved training in statistical

analysis techniques (Schroter et al., 2008). In

this article we discuss ten statistical mistakes

that are commonly found in the scientific litera-

ture. Although many researchers have

highlighted the importance of transparency and

research ethics (Baker, 2016; Nosek et al.,

2015), here we discuss statistical oversights

which are out there in plain sight in papers that

advance claims that do not follow from the data

– papers that are often taken at face value

despite being wrong (Harper and Palayew,

2019; Nissen et al., 2016; De Camargo, 2012).

In our view, the most appropriate checkpoint to

prevent erroneous results from being published

is the peer-review process at journals, or the

online discussions that can follow the publication

of preprints. The primary purpose of this com-

mentary is to provide reviewers with a tool to

help identify and manage these common issues.

All of these mistakes are well known and

there have been many articles written about

them, but they continue to appear in journals.

Previous commentaries on this topic have

tended to focus on one mistake, or several

related mistakes: by discussing ten of the most

common mistakes we hope to provide a

resource that researchers can use when review-

ing manuscripts or commenting on preprints

and published papers. These guidelines are also

intended to be useful for researchers planning

experiments, analysing data and writing

manuscripts.

Our list has its origins in the journal club at

the London Plasticity Lab, which discusses

papers in neuroscience, psychology, clinical and

bioengineering journals. It has been further vali-

dated by our experiences as readers, reviewers

and editors. Although this list has been inspired

by papers relating to neuroscience, the relatively

simple issues described here are relevant to any

scientific discipline that uses statistics to assess

findings. For each common mistake in our list we

discuss how the mistake can arise, explain how it

can be detected by authors and/or referees, and

offer a solution.

We note that these mistakes are often inter-

dependent, such that one mistake will likely

impact others, which means that many of them
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cannot be remedied in isolation. Moreover,

there is usually more than one way to solve each

of these mistakes: for example, we focus on fre-

quentist parametric statistics in our solutions,

but there are often Bayesian solutions that we

do not discuss (Dienes, 2011; Etz and Vande-

kerckhove, 2016).

To promote further discussion of these issues,

and to consolidate advice on how to best solve

them, we encourage readers to offer alternative

solutions to ours by annotating the online ver-

sion of this article (by clicking on

the ’annotations’ icon). This will allow other

readers to benefit from a diversity of ideas and

perspectives.

We hope that greater awareness of these

common mistakes will help make authors and

reviewers more vigilant in the future so that the

mistakes become less common.

Absence of an adequate control
condition/group

The problem

Measuring an outcome at multiple time points is

a pervasive method in science in order to assess

the effect of an intervention. For instance, when

examining the effect of training, it is common to

probe changes in behaviour or a physiological

measure. Yet, changes in outcome measures can

arise due to other elements of the study that do

not directly relate to the manipulation (e.g. train-

ing) per se. Repeating the same task in the

absence of an intervention might induce a

change in the outcomes between pre- and post-

intervention measurements, e.g. due to the par-

ticipant or the experimenter merely becoming

accustomed to the experimental setting, or due

to other changes relating to the passage of

time. Therefore, for any studies looking at the

Figure 1. Interpreting comparisons between two effects without directly comparing them. (A) Two variables, X and Y, were measured for two groups

A and B. It looks clear that the correlation between these two variables does not differ across these two groups. However, if one compares both

correlation coefficients to zero by calculating the significance of the Pearson’s correlation coefficient r, it is possible to find that one group (group A;

black circles; n = 20) has a statistically significant correlation (based on a threshold of p�0.05), whereas the other group (group B, red circles; n = 20)

does not. However, this does not indicate that the correlation between the variables X and Y differs between these groups. Monte Carlo simulations

can be used to compare the correlations in the two groups (Wilcox and Tian, 2008). (B) In another experimental context, one can look at how a

specific outcome measure (e.g. the difference pre- and post-training) differs between two groups. The means for groups C and D are the same, but the

variance for group D is higher. If one uses a one-sample t-test to compare this outcome measure to zero for each group separately, it is possible to find

that, this variable is significantly different from zero for one group (group C; left; n = 20), but not for the other group (group D, right; n = 20). However,

this does not inform us whether this outcome measure is different between the two groups. Instead, one should directly compare the two groups by

using an unpaired t-test (top): this shows that this outcome measure is not different for the two groups. Code (including the simulated data) available at

github.com/jjodx/InferentialMistakes (Makin and Orban de Xivry, 2019; https://github.com/elifesciences-publications/InferentialMistakes).

DOI: https://doi.org/10.7554/eLife.48175.002
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effect of an experimental manipulation on a vari-

able over time, it is crucial to compare the effect

of this experimental manipulation with the effect

of a control manipulation.

Sometimes a control group or condition is

included, but is designed or implemented inade-

quately, by not including key factors that could

impact the tracked variable. For example, the

control group often does not receive a ’sham’

intervention, or the experimenters are not

blinded to the expected outcome of the inter-

vention, contributing to inflated effect sizes

(Holman et al., 2015). Other common biases

result from running a small control group that is

insufficiently powered to detect the tracked

change (see below), or a control group with a

different baseline measure, potentially driving

spurious interactions (Van Breukelen, 2006). It

is also important that the control and experi-

mental groups are sampled at the same time

and with randomised allocation, to minimise any

biases. Ideally, the controlled manipulation

should be otherwise identical to the experimen-

tal manipulation in terms of design and statistical

power and only differ in the specific stimulus

dimension or variable under manipulation. In
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Figure 2. Spurious correlations: the effect of a single outlier and of subgroups on Pearson’s correlation coefficients. (A–C) We simulated two different

uncorrelated variables with 19 samples (black circles) and added an additional data point (solid red circle) whose distance from the main population

was systematically varied until it became a formal outlier (panel C). Note that the value of Pearson’s correlation coefficient R artificially increases as the

distance between the main population and the red data point is increased, demonstrating that a single data point can lead to spurious Pearson’s

correlations. (D–F) We simulated two different uncorrelated variables with 20 sample that were arbitrarily divided into two subgroups (red vs. black, N =

10 each). We systematically varied the distance between the two subgroups from panel D to panel F. Again, the value of R artificially increases as the

distance between the subgroups is increased. This shows that correlating variables without taking the existence of subgroups into account can yield

spurious correlations. Confidence intervals (CI) are shown in grey, and were obtained via a bootstrap procedure (with the grey region representing the

region between the 2.5 and 97.5 percentiles of the obtained distribution of correlation values). Code (including the simulated data) available at github.

com/jjodx/InferentialMistakes.

DOI: https://doi.org/10.7554/eLife.48175.003

Makin and Orban de Xivry. eLife 2019;8:e48175. DOI: https://doi.org/10.7554/eLife.48175 3 of 13

Feature Article Science Forum Ten common statistical mistakes to watch out for when writing or reviewing a manuscript

https://github.com/jjodx/InferentialMistakes
https://github.com/jjodx/InferentialMistakes
https://doi.org/10.7554/eLife.48175.003
https://doi.org/10.7554/eLife.48175


doing so, researchers will ensure that the effect

of the manipulation on the tracked variable is

larger than variability over time that is not

directly driven by the desired manipulation.

Therefore, reviewers should always request for

controls in situations where a variable is com-

pared over time.

How to detect it

Conclusions are drawn on the basis of data of a

single group, with no adequate control condi-

tions. The control condition/group does not

account for key features of the task that are

inherent to the manipulation.

Solutions for researchers

If the experimental design does not allow for

separating the effect of time from the effect of

the intervention, then conclusions regarding the

impact of the intervention should be presented

as tentative.

Further reading
(Knapp, 2016).

Interpreting comparisons between
two effects without directly
comparing them

The problem

Researchers often base their conclusions regard-

ing the impact of an intervention (such as a pre-

vs. post-intervention difference or a correlation

between two variables) by noting that the inter-

vention yields a significant effect in the experi-

mental condition or group, whereas the

corresponding effect in the control condition or

group is not significant. Based on these two sep-

arate test outcomes, researchers will sometimes

suggest that the effect in the experimental con-

dition or group is larger than the effect in the

control condition. This type of erroneous infer-

ence is very common but incorrect. For instance,

as illustrated in Figure 1A, two variables X and

Y, each measured in two different groups of 20

participants, could have different outcomes in

terms of statistical significance: a correlation co-

efficient for the correlation between the two var-

iables in group A might be statistically significant

(ie, have p�0.05), whereas a similar correlation

co-efficient might not be statistically significant

for group B. This could happen even if the rela-

tionship between the two variables is virtually

identical for the two groups (Figure 1A), so one

should not infer that one correlation is greater

than the other.

A similar issue occurs when estimating the

effect of an intervention measured in two differ-

ent groups: the intervention could yield a signifi-

cant effect in one group but not in the other

(Figure 1B). Again, however, this does not mean

that the effect of the intervention is different

between the two groups; indeed in this case,

the two groups do not significantly differ. One

can only conclude that the effect of an interven-

tion is different from the effect of a control inter-

vention through a direct statistical comparison

between the two effects. Therefore, rather than

running two separate tests, it is essential to use

one statistical test to compare the two effects.

How to detect it

This problem arises when a conclusion is drawn

regarding a difference between two effects with-

out statistically comparing them. This problem

can occur in any situation where researchers

make an inference without performing the nec-

essary statistical analysis.

Solutions for researchers

Researchers should compare groups directly

when they want to contrast them (and reviewers

should point authors to Nieuwenhuis et al.,

2011 for a clear explanation of the problem and

its impact). The correlations in the two groups

can be compared with Monte Carlo simulations

(Wilcox and Tian, 2008). For group compari-

sons, ANOVA might be suitable. Although non-

parametric statistics offers some tools (e.g.,

Leys and Schumann, 2010), these require more

thought and customisation.

Further reading
(Nieuwenhuis et al., 2011).

Inflating the units of analysis

The problem

The experimental unit is the smallest observation

that can be randomly and independently

assigned, i.e. the number of independent values

that are free to vary (Parsons et al., 2018). In

classical statistics, this unit will reflect the

degrees of freedom (df): For example, when

inferring group results, the experimental unit is

the number of subjects tested, rather than the

number of observations made within each sub-

ject. But unfortunately, researchers tend to mix

up these measures, resulting in both conceptual
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and practical issues. Conceptually, without clear

identification of the appropriate unit to assess

variation that sub-serves the phenomenon, the

statistical inference is flawed. Practically, this

results in a spuriously higher number of experi-

mental units (e.g., the number of observations

across all subjects is usually greater than the

number of subjects). When df increases, the criti-

cal statistical threshold against which statistical

significance is judged decreases, making it eas-

ier to observe a significant result if there is a

genuine effect (increase of statistical power).

This is because there is greater confidence in the

outcome of the test.

To illustrate this issue, let us consider a sim-

ple pre-post longitudinal design for an interven-

tion study in 10 participants where the

researchers are interested in evaluating whether

there is a correlation between their main mea-

sure and a clinical condition using a simple

regression analysis. Their unit of analysis should

be the number of data points (1 per participant,

10 in total), resulting in 8 df. For df = 8, the criti-

cal R value (with an alpha level of. 05) for achiev-

ing significance is 0.63. That is, any correlation

above the critical value will be significant

(p�0.05). If the researchers combine the pre and

post measures across participants, they will end

up with df = 18, the critical R value is now 0.44,

rendering it easier to observe a statistically sig-

nificant effect. This is inappropriate because

they are mixing within- and between- analysis

units, resulting in dependencies between their

measures – the pre-score of a given subject can-

not be varied without impacting their post-

score, meaning they only truly have 8 indepen-

dent df. This often results in interpretation of

the results as significant when in fact the evi-

dence is insufficient to reject the possibility that

there is no effect.

How detect it

The reviewer should consider the appropriate

unit of analysis. If a study aims to understand

group effects, then the unit of analysis should

reflect the variance across subjects, not within

subjects.

Solutions for researchers

Perhaps the best available solution to this issue

is using a mixed-effects linear model, where

researchers can define the variability within sub-

jects as a fixed effect, and the between-subject

variability as a random effect. This increasingly

popular approach (Boisgontier and Cheval,

2016) allows one to put all the data in the model

without violating the assumption of indepen-

dence. However, it can be easily misused

(Matuschek et al., 2017) and requires advanced

statistical understanding, and as such should be

applied and interpreted with some caution. For

a simple regression analysis, the researchers

have several available solutions to this issue, the

easiest of which is to calculate the correlation for

each observation separately (e.g. pre, post) and

interpret the R values based on the existing df.

The researchers can also average the values

across observations, or calculate the correlation

for pre/post separately and then average the

resulting R values (after applying normalisation

of the R distribution, e.g. r-to-Z transformation),

and interpret them accordingly.

Further reading
(Pandey and Bright, 2008; Parsons et al.,

2018).

Spurious correlations

The problem

Correlations are an important tool in science in

order to assess the magnitude of an association

between two variables. Yet, the use of paramet-

ric correlations, such as Pearson’s R relies on a

set of assumptions, which are important to con-

sider as violation of these assumptions may give

rise to spurious correlations. Spurious correla-

tions most commonly arise if one or several out-

liers are present for one of the two variables. As

illustrated in the top row of Figure 2, a single

value away from the rest of the distribution can

inflate the correlation coefficient. Spurious corre-

lations can also arise from clusters, e.g. if the

data from two groups are pooled together when

the two groups differ in those two variables (as

illustrated in the bottom row of Figure 2).

It is important to note that an outlier might

very well provide a genuine observation which

obeys the law of the phenomenon that you are

trying to discover, in other words – the observa-

tion in itself is not necessarily spurious. There-

fore, removal of ‘extreme’ data points should

also be considered with great caution. But if this

true observation is at risk of violating the

assumptions of your statistical test, it becomes

spurious de facto, and will therefore require a

different statistical tool.
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How to detect it

Reviewers should pay particular attention to

reported correlations that are not accompanied

by a scatterplot and consider if sufficient justifi-

cation has been provided when data points have

been discarded. In addition, reviewers need to

make sure that between-group or between-con-

dition differences are taken into account if data

are pooled together (see ’Inflating the units of

analysis’ above).

Solutions for researchers

Robust correlation methods (e.g. bootstrapping,

data winsorizing, skipped correlations) should be

preferred in most circumstances because they

are less sensitive to outliers (Salibian-

Barrera and Zamar, 2002). This is because

these tests take into consideration the structure

of the data (Wilcox, 2016). When using

parametric statistics, data should be screened

for violation of the key assumptions, such as

independence of data points, as well as the

presence of outliers.

Further reading
(Rousselet and Pernet, 2012).

Use of small samples

The problem

When a sample size is small, one can only detect

large effects, thereby leaving high uncertainty

around the estimate of the true effect size and

leading to an overestimation of the actual effect

size (Button et al., 2013). In frequentist statistics

in which a significance threshold of alpha=0.05 is

used, 5% of all statistical tests will yield a signifi-

cant result in the absence of an actual effect

(false positives; Type I error). Yet, researchers

are more likely to consider a correlation with a

high coefficient (e.g. R>0.5) as robust than a

modest correlation (e.g. R=0.2). With small sam-

ple sizes, the effect size of these false positives

is large, giving rise to the significance fallacy: “If

the effect size is that big with a small sample, it

can only be true.” (This incorrect inference is

noted in Button et al., 2013). Critically, the

larger correlation is not a result of there being a

stronger relationship between the two variables,

it is simply because the overestimation of the

actual correlation coefficient (here, R = 0) will

always be larger with a small sample size. For

instance, when sampling two uncorrelated varia-

bles with N = 15, simulated false-positive corre-

lations roughly range between |0.5-0.75|

whereas when sampling the same uncorrelated

variables with N = 100 yields false-positive corre-

lations in the range |0.2-0.25| (Code available at

github.com/jjodx/InferentialMistakes).

Designs with a small sample size are also

more susceptible to missing an effect that exists

in the data (Type II error). For a given effect size

(e.g., the difference between two groups), the

chances are greater for detecting the effect with

a larger sample size (this likelihood is referred to

as statistical power). Hence, with large samples,

you reduced the likelihood of not detecting an

effect when one is actually present.

Another problem related to small sample size

is that the distribution of the sample is more

likely to deviate from normality, and the limited

sample size makes it often impossible to rigor-

ously test the assumption of normality

(Ghasemi and Zahediasl, 2012). In regression

analysis, deviations from the distribution might

produce extreme outliers, resulting in spurious

significant correlations (see

’Spurious correlations’ above).

How to detect it

Reviewers should critically examine the sample

size used in a paper and, judge whether the

sample size is sufficient. Extraordinary claims

based on a limited number of participants

should be flagged in particular.

Solutions for researchers

A single effect size or a single p-value from a

small sample is of limited value and reviewers

can refer the researchers to Button et al. (2013)

to make this point. The researchers should either

present evidence that they have been sufficiently

powered to detect the effect to begin with, such

as through the presentation of an a priori statis-

tical power analysis, or perform a replication of

their study. The challenge with power calcula-

tions is that these should be based on an a priori

calculation of effect size from an independent

dataset, and these are difficult to assess in a

review. Bayesian statistics offer opportunities to

determine the power for identifying an effect

post hoc (Kruschke, 2011). In situations where

sample size may be inherently limited (e.g.

research with rare clinical populations or non-

human primates), efforts should be made to pro-

vide replications (both within and between

cases) and to include sufficient controls (e.g. to

establish confidence intervals). Some statistical

solutions are offered for assessing case studies

(e.g., the Crawford t-test; Corballis, 2009).
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Further reading
(Button et al., 2013).

Circular analysis

The problem

Circular analysis is any form of analysis that ret-

rospectively selects features of the data to char-

acterise the dependent variables, resulting in a

distortion of the resulting statistical test

(Kriegeskorte et al., 2010). Circular analysis can

take many shapes and forms, but it inherently

relates to recycling the same data to first charac-

terise the test variables and then to make statis-

tical inferences from them, and is thus often

referred to as ‘double dipping’

(Kriegeskorte et al., 2009). Most commonly,

circular analysis is used to divide (e.g. sub-

grouping, binning) or reduce (e.g. defining a

region of interest, removing ‘outliers’) the com-

plete dataset using a selection criterion that is

retrospective and inherently relevant to the sta-

tistical outcome.

For example, let’s consider a study of a neu-

ronal population firing rate in response to a

given manipulation. When comparing the popu-

lation as a whole, no significant differences are

found between pre and post manipulation. How-

ever, the researchers observe that some of the

neurons respond to the manipulation by increas-

ing their firing rate, whereas others decrease in

response to the manipulation. They therefore

split the population to sub-groups, by binning

the data based on the activity levels observed at

baseline. This leads to a significant interaction

effect – those neurons that initially produced low

responses show response increases, whereas the

neurons that initially showed relatively increased

activity exhibit reduced activity following the

manipulation. However, this significant interac-

tion is a result of the distorting selection crite-

rion and a combination of statistical artefacts

(regression to the mean, floor/ceiling effects),

and could therefore be observed in pure noise

(Holmes, 2009).

Another common form of circular analysis is

when dependencies are created between the

dependent and independent variables. Continu-

ing with the example from above, researchers

might report a correlation between the cell

response post-manipulation and between the

difference in cell response across the pre- and

post-manipulation. But both variables are highly

dependent on the post-manipulation measure.

Therefore, neurons that by chance fire more

strongly in the post manipulation measure are

likely to show greater changes relative to the

independent pre-manipulation measure, thus

inflating the correlation (Holmes, 2009).

Selective analysis is perfectly justifiable when

the results are statistically independent of the

selection criterion under the null hypothesis.

However, circular analysis recruits the noise

(inherent to any empirical data) to inflate the sta-

tistical outcome, resulting in distorted and hence

invalid statistical inference.

How to detect it

Circular analysis manifests in many different

forms, but in principle occurs whenever the sta-

tistical test measures are biased by the selection

criteria in favour of the hypothesis being tested.

In some circumstances this is very clear, e.g. if

the analysis is based on data that were selected

for showing the effect of interest, or an inher-

ently related effect. In other circumstances the

analysis could be convoluted and require more

nuanced understanding of co-dependencies

across selection and analysis steps (see, for

example, Figure 1 in Kilner, 2013 and

the supplementary materials in

Kriegeskorte et al., 2009). Reviewers should be

alerted by impossibly high effect sizes which

might not be theoretically plausible, and/or are

based on relatively unreliable measures (if two

measures have poor internal consistency this lim-

its the potential to identify a meaningful correla-

tion; Vul et al., 2009). In that case, the

reviewers should ask the authors for a justifica-

tion for the independence between the selection

criteria and the effect of interest.

Solutions for researchers

Defining the analysis criteria in advance and

independently of the data will protect research-

ers from circular analysis. Alternatively, since cir-

cular analysis works by ‘recruiting’ noise to

inflate the desired effect, the most straightfor-

ward solution is to use a different dataset (or dif-

ferent part of your dataset) for specifying the

parameters for the analysis (e.g. selecting your

sub-groups) and for testing your predictions

(e.g. examining differences across the sub-

groups). This division can be done at the partici-

pant level (using a different group to identify the

criteria for reducing the data) or at the trial level

(using different trials but from all participants).

This can be achieved without losing statistical

power using bootstrapping approaches (Curran-

Everett, 2009). If suitable, the reviewer could
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ask the authors to run a simulation to demon-

strate that the result of interest is not tied to the

noise distribution and the selection criteria.

Further reading
(Kriegeskorte et al., 2009).

Flexibility of analysis: p-hacking

The problem

Using flexibility in data analysis (such as switched

outcome parameters, adding covariates, unde-

termined or erratic pre-processing pipeline, post

hoc outlier or subject exclusion; Wicherts et al.,

2016) increases the probability of obtaining sig-

nificant p-values (Simmons et al., 2011). This is

because normative statistics rely on probabilities

and therefore the more tests you run the more

likely you are to encounter a false positive result.

Therefore, observing a significant p-value in a

given dataset is not necessarily complicated and

one can always come up with a plausible expla-

nation for any significant effect particularly in the

absence of specific predictions. Yet, the more

variation in one’s analysis pipeline, the greater

the likelihood that observed effects are not gen-

uine. Flexibility in data analysis is especially visi-

ble when the same community reports the same

outcome variable but computes the value of this

variable in different ways across the paper (e.g.

www.flexiblemeasures.com; Carp, 2012; Fran-

cis, 2013) or when clinical trials switch their out-

comes (Altman et al., 2017; Goldacre et al.,

2019).

This problem can be pre-empted by using

standardised analytic approaches, pre-registra-

tion of the design and analysis (Nosek and

Lakens, 2014), or undertaking a replication

study (Button et al., 2013). Note that pre-regis-

tration of experiments can be performed after

the results of a first experiment are known and

before an internal replication of that effect is

sought. But perhaps the best way to prevent p-

hacking is to show some tolerance to borderline

or non-significant results. In other words, if the

experiment is well designed, executed, and ana-

lysed, reviewers should not ’punish’ the

researchers for their data.

How to detect it

Flexibility of analysis is difficult to detect

because researchers rarely disclose all the neces-

sary information. In the case of pre-registration

or clinical trial registration, the reviewer should

compare the analyses performed with the

planned analyses. In the absence of pre-registra-

tion, it is almost impossible to detect some

forms of p-hacking. Yet, reviewers can estimate

whether all the analysis choices are well justified,

whether the same analysis plan was used in pre-

vious publications, whether the researchers

came up with a questionable new variable, or

whether they collected a large battery of meas-

ures and only reported a few significant ones.

Practical tips for detecting likely positive findings

are summarized in Forstmeier et al. (2017).

Solutions for researchers

Researchers should be transparent in the report-

ing of the results, e.g. distinguishing pre-

planned versus exploratory analyses and pre-

dicted versus unexpected results. As we discuss

below, exploratory analyses using flexible data

analysis are fine if they are reported and inter-

preted as such in a transparent manner and

especially so if they serve as the basis for a repli-

cation with pre-specified analyses (Curran-

Everett and Milgrom, 2013). Such analyses can

be a valuable justification for additional research

but cannot be the foundation for strong

conclusions.

Further reading
(Kerr, 1998; Simmons et al., 2011).

Failing to correct for multiple
comparisons

The problem

When researchers explore task effects, they

often explore the effect of multiple task condi-

tions on multiple variables (behavioural out-

comes, questionnaire items, etc.), sometimes

with an underdetermined a priori hypothesis.

This practice is termed exploratory analysis, as

opposed to confirmatory analysis, which by defi-

nition is more restrictive. When performed with

frequentist statistics, conducting multiple com-

parisons during exploratory analysis can have

profound consequences for the interpretation of

significant findings. In any experimental design

involving more than two conditions (or a com-

parison of two groups), exploratory analysis will

involve multiple comparisons and will increase

the probability of detecting an effect even if no

such effect exists (false positive, type I error). In

this case, the larger the number of factors, the

greater the number of tests that can be per-

formed. As a result, the probability of observing

a false-positive increases (family-wise error rate).
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For example, in a 2 � 3 � 3 experimental design

the probability of finding at least one significant

main or interaction effect is 30%, even when

there is no effect (Cramer et al., 2016).

This problem is particularly salient when con-

ducting multiple independent comparisons (e.g.

neuroimaging analysis, multiple recorded cells

or EEG). In such cases, researchers are techni-

cally deploying statistical tests within every

voxel/cell/timepoint, thereby increasing the like-

lihood of detecting a false positive result, due to

the large number of measures included in the

design. For example, Bennett and colleagues

(Bennett et al., 2009) identified a significant

number of active voxels in a dead Atlantic

Salmon (activated during a ’mentalising’ task)

when not correcting for multiple comparisons.

This example demonstrates how easy it can be

to identify a spurious significant result. Although

it is more problematic when the analyses are

exploratory, it can still be a concern when a

large set of analyses are specified a priori for

confirmatory analysis.

How to detect it

Failing to correct for multiple comparisons can

be detected by addressing the number of inde-

pendent variables measured and the number of

analyses performed. If only one of these varia-

bles correlated with the dependent variable,

then the rest is likely to have been included to

increase the chance of obtaining a significant

result. Therefore, when conducting exploratory

analyses with a large set of variables (such as

genes or MRI voxels), it is simply unacceptable

for the researchers to interpret results that have

not survived correction for multiple comparisons,

without clear justification. Even if the researchers

offer a rough prediction (e.g. that the effect

should be observed in a specific brain area or at

an approximate latency), if this prediction could

be tested over multiple independent compari-

sons, it requires correction for multiple

comparisons.

Solutions for researchers

Exploratory testing can be absolutely appropri-

ate, but should be acknowledged. Researchers

should disclose all measured variables and prop-

erly implement the use of multiple comparison

procedures. For example, applying standard cor-

rections for multiple comparisons unsurprisingly

resulted in no active voxels in the dead fish

example (Bennett et al., 2009). Bear in mind

that there are many ways to correct for multiple

comparisons, some more well accepted than

others (Eklund et al., 2016), and therefore the

mere presence of some form of correction may

not be sufficient.

Further reading
(Han and Glenn, 2018; Noble, 2009).

Over-interpreting non-significant
results

The problem

When using frequentist statistics, scientists apply

a statistical threshold (normally alpha=.05) for

adjudicating statistical significance. Much has

been written about the arbitrariness of this

threshold (Wasserstein et al., 2019) and alter-

natives have been proposed (e.g., Colqu-

houn, 2014; Lakens et al., 2018;

Benjamin et al., 2018). Aside from these issues,

which we elaborate on in our final remarks, mis-

interpreting the results of a statistical test when

the outcome is not significant is also highly

problematic but extremely common. This is

because a non-significant p-value does not dis-

tinguish between the lack of an effect due to the

effect being objectively absent (contradictory

evidence to the hypothesis) or due to the insen-

sitivity of the data to enable to the researchers

to rigorously evaluate the prediction (e.g. due to

lack of statistical power, inappropriate experi-

mental design, etc.). In simple words - non-sig-

nificant effects could literally mean very different

things - a true null result, an underpowered gen-

uine effect, or an ambiguous effect (see

Altman and Bland, 1995 for an example).

Therefore, if the researchers wish to interpret a

non-significant result as supporting evidence

against the hypothesis, they need to demon-

strate that this evidence is meaningful. The p-

value in itself is insufficient for this purpose. This

confound also means that sometimes research-

ers might ignore a result that did not meet the

p�0.05 threshold, assuming it is meaningless

when in fact it provides sufficient evidence

against the hypothesis or at least preliminary evi-

dence that requires further attention.

How to detect it

Researchers might interpret or describe a non-

significant p-value as indicating that an effect

was not present. This error is very common and

should be highlighted as problematic.
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Solutions for researchers

An important first step is to report effect sizes

together with p-values in order to provide infor-

mation about the magnitude of the effect

(Sullivan and Feinn, 2012), which is also impor-

tant for any future meta-analyses (Lakens, 2013;

Weissgerber et al., 2018). For example, if a

non-significant effect in a study with a large sam-

ple size is also very small in magnitude, it is

unlikely to be theoretically meaningful whereas

one with a moderate effect size could potentially

warrant further research (Fethney, 2010). When

possible, researchers should consider using sta-

tistical approaches that are capable of distin-

guishing between insufficient (or ambiguous)

evidence and evidence that supports the null

hypothesis (e.g., Bayesian statistics;

[Dienes, 2014], or equivalence tests

[Lakens, 2017]). Alternatively, researchers might

have already determined a priori whether they

have sufficient statistical power to identify the

desired effect, or to determine whether the con-

fidence intervals of this prior effect contain the

null (Dienes, 2014). Otherwise, researchers

should not over-interpret non-significant results

and only describe them as non-significant.

Further reading
(Dienes, 2014).

Correlation and causation

The problem

This is perhaps the oldest and most common

error made when interpreting statistical results

(see, for example, Schellenberg, 2019). In sci-

ence, correlations are often used to explore the

relationship between two variables. When two

variables are found to be significantly correlated,

it is often tempting to assume that one causes

the other. This is, however, incorrect. Just

because variability of two variables seems to lin-

early co-occur does not necessarily mean that

there is a causal relationship between them,

even if such an association is plausible. For

example, a significant correlation observed

between annual chocolate consumption and

number of Nobel laureates for different coun-

tries (r(20)=.79; p<0.001) has led to the (incorrect)

suggestion that chocolate intake provides nutri-

tional ground for sprouting Nobel laureates

(Maurage et al., 2013). Correlation alone can-

not be used as an evidence for a cause-effect

relationship. Correlated occurrences may reflect

direct or reverse causation, but can also be due

to an (unknown) common cause, or they may be

a result of a simple coincidence.

How to detect it

Whenever the researcher reports an association

between two or more variables that is not due

to a manipulation and uses causal language,

they are most likely confusing correlation and

causation. Researchers should only use causal

language when a variable is precisely manipu-

lated and even then, they should be cautious

about the role of third variables or confounding

factors.

Solutions for researchers

If possible, the researchers should try to explore

the relationship with a third variable to provide

further support for their interpretation, e.g.

using hierarchical modelling or mediation analy-

sis (but only if they have sufficient power), by

testing competing models or by directly manipu-

lating the variable of interest in a randomised

controlled trial (Pearl, 2009). Otherwise, causal

language should be avoided when the evidence

is correlational.

Further reading
(Pearl, 2009).

Final remarks
Avoiding these ten inference errors is an impor-

tant first step in ensuring that results are not

grossly misinterpreted. However, a key assump-

tion that underlies this list is that significance

testing (as indicated by the p-value) is meaning-

ful for scientific inferences. In particular, with the

exception of a few items (see ’Absence of an

adequate control condition/group’ and ’Correla-

tion and causation’), most of the issues we

raised, and the solution we offered, are inher-

ently linked to the p-value, and the notion that

the p-value associated with a given statistical

test represents its actual error rate. There is cur-

rently an ongoing debate about the validity of

null-hypothesis significance testing and the use

of significance thresholds (Wasserstein et al.,

2019). We agree that no single p-value can

reveal the plausibility, presence, truth, or impor-

tance of an association or effect. However, ban-

ning p-values does not necessarily protect

researchers from making incorrect inferences

about their findings (Fricker et al., 2019). When

applied responsibly (Kmetz, 2019; Krueger and

Heck, 2019; Lakens, 2019), p-values can pro-

vide a valuable description of the results, which
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at present can aid scientific communication

(Calin-Jageman and Cumming, 2019), at least

until a new consensus for interpreting statistical

effects is established. We hope that this paper

will help authors and reviewers with some of

these mainstream issues.

Further reading

(Introduction to the new statistics, 2019).
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