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Abstract Chronic itch remains a highly prevalent disorder with limited treatment options. Most

chronic itch diseases are thought to be driven by both the nervous and immune systems, but the

fundamental molecular and cellular interactions that trigger the development of itch and the acute-

to-chronic itch transition remain unknown. Here, we show that skin-infiltrating neutrophils are key

initiators of itch in atopic dermatitis, the most prevalent chronic itch disorder. Neutrophil depletion

significantly attenuated itch-evoked scratching in a mouse model of atopic dermatitis. Neutrophils

were also required for several key hallmarks of chronic itch, including skin hyperinnervation,

enhanced expression of itch signaling molecules, and upregulation of inflammatory cytokines,

activity-induced genes, and markers of neuropathic itch. Finally, we demonstrate that neutrophils

are required for induction of CXCL10, a ligand of the CXCR3 receptor that promotes itch via

activation of sensory neurons, and we find that that CXCR3 antagonism attenuates chronic itch.

Introduction
Chronic itch is a debilitating disorder that affects millions of people worldwide (Matterne et al.,

2011; Mollanazar et al., 2016; Dalgard et al., 2015). It is a symptom of a number of skin diseases

and systemic disorders, as well as a side effect of a growing list of medications. Like chronic pain,

chronic itch can be a disease in and of itself (Ständer and Steinhoff, 2002; Oaklander, 2011;

Dhand and Aminoff, 2014). Unlike acute itch, which can facilitate removal of crawling insects, para-

sites, or irritants, persistent scratching in chronic itch disorders has no discernable benefit; scratching

damages skin, leading to secondary infection, disfiguring lesions, and exacerbation of disease sever-

ity (Mollanazar et al., 2016; Yosipovitch and Papoiu, 2008; Ikoma et al., 2006). The most common

chronic itch disorder is atopic dermatitis (AD; commonly known as eczema), which affects fifteen mil-

lion people in the United States alone (Spergel and Paller, 2003). Severe AD can trigger the atopic

march, where chronic itch and inflammation progress to food allergy, allergic rhinitis, and asthma

(Spergel and Paller, 2003; Zheng et al., 2011).

Little is known about the underlying mechanisms that drive chronic itch pathogenesis. As such,

studies of human chronic itch disorders have sought to identify candidate mechanisms of disease

progression. A number of studies have identified biomarkers and disease genes in itchy human AD

lesions (Ewald et al., 2017; Choy et al., 2012; Guttman-Yassky et al., 2009; Suárez-Fariñas et al.,

2013; Jabbari et al., 2012). Indeed, a recent study compared the transcriptomes of healthy skin to
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itchy and non-itchy skin from psoriasis and AD patients, revealing dramatic changes in expression of

genes associated with cytokines, immune cells, epithelial cells, and sensory neurons

(Nattkemper et al., 2018). However, due to the difficulty in staging lesion development and obtain-

ing staged samples from patients, there is currently no temporal map of when individual molecules

and cell types contribute to chronic itch pathogenesis. Furthermore, the use of human patient data

does not allow for rigorous mechanistic study of how disease genes contribute to chronic itch. To

this end, we used a well-characterized inducible animal model of itch to define where, when, and

how these genes identified from patient data contribute to chronic itch pathogenesis.

We employed the MC903 mouse model of AD and the atopic march (Dai et al., 2017; Li et al.,

2009; Li et al., 2006; Zhang et al., 2009; Moosbrugger-Martinz et al., 2017) to provide a frame-

work within which to identify the molecules and cells that initiate the development of atopic itch.

The MC903 model is ideal for our approach because of its highly reproducible phenotypes that

closely resemble human AD and its ability to induce the development of lesions and scratching

(Li et al., 2009; Li et al., 2006; Zhang et al., 2009; Oetjen et al., 2017; Morita et al., 2015;

Kim et al., 2019). By contrast, it is difficult to synchronously time the development of lesions in com-

monly used genetic models of AD, such as filaggrin mutant mice or Nc/Nga mice. Another advan-

tage of the MC903 model is that it displays collectively more hallmarks of human AD than any one

particular genetic mouse model. For example, the commonly used IL-31tg overexpressor model

(Cevikbas et al., 2014; Meng et al., 2018) lacks strong Th2 induction, (Martel et al., 2017) and itch

behaviors have not yet been rigorously characterized in the keratinocyte-TSLP overexpressor model.

As MC903 is widely used to study the chronic phase of AD, we hypothesized that MC903 could also

be used to define the early mechanisms underlying the development of chronic itch, beginning with

healthy skin. We performed RNA-seq of skin at key time points in the model. We complemented this

approach with measurements of itch behavior and immune cell infiltration. The primary goal of our

study was to identify the inciting molecules and cell types driving development of chronic itch. To

that end, we show that infiltration of neutrophils into skin is required for development of chronic

itch. Additionally, we demonstrate that neutrophils direct early hyperinnervation of skin, and the

upregulation of itch signaling molecules and activity-induced genes in sensory neurons. Finally, we

identify CXCL10/CXCR3 signaling as a key link between infiltrating neutrophils and sensory neurons

that drives itch behaviors.

eLife digest Chronic itch is a debilitating disorder that can last for months or years. Eczema, or

atopic dermatitis, is the most common cause for chronic itch, affecting one in ten people worldwide.

Many treatments for the condition are ineffective, and the exact cause of the disease is unknown,

but many different types of cells are likely involved. These include skin cells and inflammation-

promoting immune cells, as well as nerve cells that detect inflammation, relay itch and pain

information to the brain, and regulate the immune system.

Learning more about how these cells interact in eczema may help scientists find better

treatments for the condition. So far, a lot of research has focused on static ‘snapshots’ of mature

eczema lesions from human skin or animal models. These studies have identified abnormalities in

genes or cells, but have not revealed how these genes and cells interact over time to cause chronic

itch and inflammation.

Now, Walsh et al. reveal that immune cells called neutrophils trigger chronic itch in eczema. The

experiments involved mice with a condition that mimics eczema, and showed that removing the

neutrophils in these mice alleviated their itching. They also showed that dramatic and rapid changes

occur in the nervous system of mice suffering from the eczema-like condition. For example, excess

nerves grow in the animals’ damaged skin, genes in the nerves that detect sensations become

hyperactive, and changes occur in the spinal cord that have been linked to nerve pain. When

neutrophils are absent, these changes do not take place.

These findings show that neutrophils play a key role in chronic itch and inflammation in eczema.

Drugs that target neutrophils, which are already used to treat other diseases, might help with

chronic itch, but they would need to be tested before they can be used on people with eczema.
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Results

MC903 triggers rapid changes in expression of skin barrier, epithelial
cell-derived cytokine, and axon guidance genes
Although a variety of AD- and chronic itch-associated genes have been identified, when and how

they contribute to disease pathogenesis is unclear. Using RNA-seq of MC903-treated skin, we

observed distinct temporal patterns by which these classes of genes are differentially expressed

across the first eight days of the model (Figure 1A–B, Figure 1—figure supplement 1A). Overall,

we found that 62% of genes from a recent study of human chronic itch lesions (Nattkemper et al.,

2018) (Figure 1—figure supplement 1A) and 67% of AD-related genes (Figure 1B) were signifi-

cantly changed for at least one of the time points examined, suggesting that the MC903 mouse

model recapitulates many key transcriptional changes occuring in human chronic itch and AD.

MC903 dramatically alters the transcriptional profile of keratinocytes by derepressing genomic loci

under the control of the Vitamin D Receptor. In line with rapid changes in transcription, proteases

(Klk6, Klk13, among others) and skin barrier genes (Cdhr1) changed as early as six hours after the

first treatment, before mice begin scratching (Figure 1B). Increased protease activity in AD skin is

thought to promote breakdown of the epidermal barrier and release of inflammatory cytokines from

keratinocytes (Rattenholl and Steinhoff, 2003; Yosipovitch, 2004). One such cytokine, thymic stro-

mal lymphopoetin (TSLP) is a key inducer of the Type two immune response, which is characteristic

of human AD and the MC903 model, via signaling in CD4+ T cells, basophils, and other immune cells

(Li et al., 2006; Zhang et al., 2009; Briot et al., 2010; Demehri et al., 2009; Gao et al., 2010;

Kim et al., 2013). Beginning at day two, before any significant itch-evoked scratching (Figure 1C),

immune cell infiltration (Figure 1E–G, Figure 1—figure supplements 3A, 4A and 5A–C), or skin

lesions (data not shown) (Morita et al., 2015) were observed, we saw increases in Tslp, as well as

several other epithelial-derived cytokines, including the neutrophil chemoattractant genes Cxcl1,

Cxcl2, Cxcl3, and Cxcl5 (Figure 1D). To ask whether upregulation of these chemokine genes was

dependent on protease activity, we treated human keratinocytes with the protease-activated recep-

tor two agonist SLIGRL. SLIGRL treatment triggered increased expression of several of these chemo-

kine genes, including IL8, the human ortholog of mouse Cxcl1/Cxcl2, and CXCL2 (Figure 1—figure

supplement 6A). These increases occurred after a few hours of exposure to SLIGRL, suggesting that

increased protease activity can rapidly trigger increases in neutrophil chemoattractants in skin, simi-

lar to what we observe in MC903-treated mouse skin.

Unexpectedly, in the skin we observed early changes in a number of transcripts encoding neuro-

nal outgrowth factors (Ngf, Artn) and axon pathfinding molecules (Slit1, Sema3d, Sema3a), some of

which are directly implicated in chronic itch (Hidaka et al., 2017; Kou et al., 2012; Tominaga and

Takamori, 2013; Tominaga et al., 2007; Tominaga and Takamori, 2014; Figure 1—figure supple-

ment 7A), prior to when mice began scratching. We thus used immunohistochemistry (IHC) of

whole-mount skin to examine innervation at this time point. We saw increased innervation of lesions

at day two but not day one of the model (Figure 1H–I, Figure 1—figure supplement 8A). Our

RNA-seq data showed elevation in skin CGRP transcript Calca, along with other markers of peptider-

gic nerve endings, specifically at day 2. Indeed, we saw an increase in CGRP+ innervation of skin at

day 2 (Figure 1J, Figure 1—figure supplement 9A), which suggests that elevation of neuronal tran-

scripts in skin is due to hyperinnervation of peptidergic itch and/or pain fibers. The increased inner-

vation was surprising because such changes had previously only been reported in mature lesions

from human chronic itch patients (Nattkemper et al., 2018; Haas et al., 2010; Kamo et al., 2013;

Oaklander and Siegel, 2005; Schüttenhelm et al., 2015; Pereira et al., 2016; Tominaga et al.,

2009). Our findings suggest that early hyperinnervation is promoted by local signaling in the skin

and is independent of the itch-scratch cycle.

Neutrophils are the first immune cells to infiltrate AD skin
By day five, mice exhibited robust itch behaviors (Figure 1C) and stark changes in a number of AD

disease genes (Figure 1A–B). For example, loss-of-function mutations in filaggrin (FLG) are a major

risk factor for human eczema (Palmer et al., 2006; Sandilands et al., 2007). Interestingly, Flg2 levels

sharply decreased at day five. In parallel, we saw continued and significant elevation in neutrophil

and basophil chemoattractant genes (Cxcl1,2,3,5, and Tslp, Figure 1D). Using flow cytometry, we
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Figure 1. The MC903 model parallels the progression of human atopic disease and suggests a temporal sequence of AD pathogenesis. (A) Exact

permutation test (10,000 iterations, see Materials and methods) for significance of mean absolute log2 fold change in gene expression at Day 8 (MC903

vs. ethanol) of custom-defined groups of genes for indicated categories (see Figure 1—source data 1). (B) Log2 fold change in gene expression

(MC903 vs. ethanol) in mouse skin at indicated time points for key immune and mouse/human AD genes that were significantly differentially expressed

Figure 1 continued on next page
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observed a number of infiltrating immune cells in the skin at day 5. Of these, we neutrophils were

the most abundant immune cell subtype (Figure 1E, Figure 1—figure supplement 3A). It was not

until day eight that we observed the classical AD-associated immune signature in the skin,

(Gittler et al., 2012) with upregulation of Il4, Il33 and other Th2-associated genes (Figure 1B,

Figure 1D). We also observed increases in the T cell chemoattractant genes Cxcl9, Cxcl10, and

Cxcl11 (Figure 1D), which are thought to be hallmarks of chronic AD lesions in humans (Oetjen and

Kim, 2018; Mansouri and Guttman-Yassky, 2015). Neutrophils and a number of other immune cells

that started to infiltrate on day five were robustly elevated in skin by day eight, including basophils

(Figure 1F), CD4+ T cells (Figure 1G, Figure 1—figure supplement 4A), eosinophils (Figure 1—fig-

ure supplement 5C), and mast cells (Figure 1—figure supplement 5B), but not inflammatory mono-

cytes (Figure 1—figure supplement 5A).

Figure 1 continued

for at least one time point in the MC903 model. Only genes from our initial list (see Materials and methods) differentially expressed at corrected p<0.05

and changing >2 fold between treatments for at least one condition are shown. Green bars = increased expression in MC903 relative to ethanol;

magenta = decreased expression. Exact values and corrected p-values are reported in Figure 1—source data 2 and Source Data 1 Supplemental

Data, respectively. D1 = 6 hr post-treatment; D2 = Day 2; D5 = Day 5; D8 = Day 8. (C) Scratching behavior of mice treated with MC903 or ethanol for

indicated length of time (two-way ANOVA: ****pinteraction <0.0001, F(2,409) = 13.25; Sidak’s multiple comparisons: pday 3 = 0.1309, n = 62,51 mice; *pday

5 = 0.0171, n = 69,56 mice; ****pday 8 < 0.0001, n = 92,85 mice). Exact values displayed in Figure 1—source data 3. (D) Log2 fold change in gene

expression of neutrophil chemoattractants (upper), Th2 cytokines (middle) and T cell chemoattractants (lower, from RNA-seq data). (E) Neutrophil

counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA: **ptreatment = 0.0023, F(1,102) = 9.82; Sidak’s multiple

comparisons: pday 2 > 0.999, n = 4,4 mice; pday 3 = 0.9801, n = 5,5 mice; ***pday 5 = 0.0003, n = 6,8 mice; ***pday 8 = 0.0001, n = 40,38 mice). (F)

Basophil counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA: **ptreatment = 0.0051, F(1,102) = 8.17; Sidak’s multiple

comparisons: pday 2 > 0.999, n = 4,4 mice; pday 3 = 0.8850, n = 5,5 mice; pday 5 = 0.0606, n = 6,8 mice; ****pday 8 < 0.0001, n = 40,38 mice). (G) CD4+ T

cell counts in MC903- and ethanol-treated skin at indicated time points (two-way ANOVA: **ptime = 0.0042, F(1,44) = 9.10; pday 3 = 0.9998, n = 8,6 mice;

pday 5 = 0.2223, n = 9,8 mice; **pday 8 = 0.0021, n = 11,8 mice). Day 8 immune cell infiltrate represented as % of CD45+ cells in Figure 1—figure

supplement 2A–B (see Supplementary file 3 for all experimental conditions). Exact values displayed in Figure 1—source data 4 and representative

FACS plots for myeloid and T cell gating shown in Figure 1—figure supplement 3A and Figure 1—figure supplement 4A. For Figure 4E–G, data

from mice receiving i.p. injection of PBS (see Figure 4) in addition to MC903 or EtOH are also included. (H) (Upper and Lower) Representative

maximum intensity Z-projections from immunohistochemistry (IHC) of whole-mount mouse skin on Day 2 of the MC903 model. Skin was stained with

neuronal marker beta-tubulin III (BTIII; green). Hair follicle autofluorescence is visible in the magenta channel. Images were acquired on a confocal using

a 20x water objective. (I) Quantification of innervation (see Materials and methods) of mouse skin as determined from BTIII staining (*p=0.012; two-

tailed t-test (t = 3.114; df = 9); n = 7,4 images each from two mice per treatment). Day 1 IHC results as follows: 31.78 ± 18.39% (MC903) and 31.51 ±

16.43% (EtOH); p=0.988; two-tailed unpaired t-test; n = 6 images each from two mice per treatment. Exact values are reported in Figure 1—source

data 5. (J) Quantification of CGRP+ nerve fibers (see Materials and methods) in skin (**p=0.0083; two-tailed t-test (t = 2.868; df = 25); n = 15, 12 images

from three mice per treatment). Exact values are reported in Figure 1—source data 5. Representative images in Figure 1—figure supplement 9A.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Values displayed in the bar plot shown in Figure 1A.

Source data 2. Values displayed in the heat map shown in Figure 1B.

Source data 3. Values displayed in the bar plot shown in Figure 1C.

Source data 4. Values displayed in the bar plots shown in Figure 1E–G and Figure 1—figure supplement 5A–C.

Source data 5. Values displayed in the bar plots shown in Figure 1I and Figure 1J.

Source data 6. Values displayed in the heat map shown in Figure 1—figure supplement 1A.

Source data 7. Values displayed in the heat map shown in Figure 1—figure supplement 6A.

Source data 8. Values displayed in the heat map shown in Figure 1—figure supplement 7A.

Source data 9. Values displayed in the bar plot shown in Figure 1—figure supplement 10A.

Figure supplement 1. Expression of mouse and human itch genes.

Figure supplement 2. Immune cells represented as % of CD45+ cells.

Figure supplement 3. Myeloid and granulocyte gating strategy.

Figure supplement 4. T cell gating strategy.

Figure supplement 5. Immune cell counts in MC903-treated skin.

Figure supplement 6. Protease receptor activation triggers rapid upregulation of neutrophil chemoattractant genes in human keratinocytes.

Figure supplement 7. Expression of neuronal genes and axon guidance molecules in skin.

Figure supplement 8. Method of image quantification for whole mount skin.

Figure supplement 9. Peptidergic fibers display hyperinnervation in MC903-treated skin.

Figure supplement 10. Inflammatory lipids in MC903-treated skin.
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CD4+ T cells are ubiquitous in mature human AD lesions (Guttman-Yassky and Krueger, 2017)

and promote chronic AD itch and inflammation. More specifically, they play a key role in IL4Ra-

dependent sensitization of pruriceptors in the second week of the MC903 model (Oetjen et al.,

2017). Thus, we were quite surprised to find that itch behaviors preceded significant CD4+ T cell

infiltration. Therefore, neutrophils drew our attention as potential early mediators of MC903 itch.

While neutrophil infiltration is a hallmark of acute inflammation, it remains unclear whether neutro-

phils contribute to the pathogenesis of chronic itch. Moreover, neutrophils release known prurito-

gens, including proteases, reactive oxygen species, and/or histamine, inflammatory lipids, and

cytokines that sensitize and/or activate pruriceptors (Dong and Dong, 2018; Hashimoto et al.,

2018). Increased levels of the prostaglandin PGE2 and the neutrophil-specific leukotriene LTB4 have

also been reported in skin of AD patients (Fogh et al., 1989). Indeed, by mass spectrometry, we

observed increases in several of these inflammatory lipids, PGD2 and PGE2, as well as LTB4 and its

precursor 5-HETE (Figure 1—figure supplement 10A) in MC903-treated skin, implicating neutro-

phils in driving AD itch and inflammation. Thus, we next tested the requirement of neutrophils to

itch in the MC903 model.

Neutrophils are required for early itch behaviors in the MC903 model
of AD
We first asked whether neutrophils, the most abundant population of infiltrating immune cells in this

chronic itch model, were required for MC903-evoked itch. Systemic depletion of neutrophils using

daily injections of an anti-Gr1 (aGr1) antibody (Ghasemlou et al., 2015; Sivick et al., 2014) dramati-

cally attenuated itch-evoked scratching through the first eight days of the model (Figure 2A). Con-

sistent with a key role for neutrophils in driving chronic itch, our depletion strategy significantly and

selectively reduced circulating and skin infiltrating neutrophils on days five and eight, days on which

control, but not depleted mice, scratched robustly (Figure 2B; Figure 2—figure supplement 1A–C).

In contrast, basophils and CD4+ T cells continued to infiltrate the skin following aGr1 treatment

(Figure 2C–D), suggesting that these cells are not required for early MC903 itch.

We next used the cheek model of acute itch (Shimada and LaMotte, 2008) to ask whether neu-

trophil recruitment is sufficient to trigger scratching behaviors. As expected, we observed significant

and selective recruitment of neutrophils to cheek skin within 15 min after CXCL1 injection (Figure 2—

figure supplement 2A–B). CXCL1 injection also triggered robust scratching behaviors (Figure 2E)

on a similar time course to neutrophil infiltration (Figure 2—figure supplement 2B). Thus, we next

acutely depleted neutrophils with aGr1 to determine whether neutrophils were required for CXCL1-

evoked acute itch. Indeed, aGr1-treatment rapidly reduced circulating neutrophils (Figure 2—figure

supplement 2C) and resulted in a dramatic loss of CXCL1-evoked itch behaviors (Figure 2C). This

effect was specific to neutrophil-induced itch, as injection of chloroquine, a pruritogen that directly

activates pruriceptors to trigger itch, still triggered robust scratching in aGr1-treated animals (Fig-

ure 2—figure supplement 3A). Given that CXCL1 has been shown to directly excite and/or sensitize

sensory neurons, (Deftu et al., 2017; Deftu et al., 2018) it is possible that the mechanism by which

CXCL1 elicits itch may also involve neuronal pathways. However, our results show that CXCL1-medi-

ated neutrophil infiltration is sufficient to drive acute itch behaviors, and that neutrophils are neces-

sary for itch in the MC903 model.

We also examined MC903-evoked itch behaviors in mice deficient in Crlf2, the gene encoding

the TSLP Receptor (TSLPR KO mice; Carpino et al., 2004). TSLPR is expressed by both immune cells

and sensory neurons and is a key mediator of AD in humans and in mouse models (Li et al., 2009;

Li et al., 2006; Zhang et al., 2009; Demehri et al., 2009; Briot et al., 2009). Surprisingly, MC903-

treated TSLPR KO mice displayed robust scratching behaviors through the first eight days of the

model (Figure 2F). In contrast to our results in aGr1-injected mice, TSLPR KO mice displayed robust

neutrophil infiltration (Figure 2G), but completely lacked basophil and CD4+ T cell infiltration into

the skin (Figure 2H–I, Figure 2—figure supplement 4A), and additionally displayed a reduction in

mast cells (Figure 2—figure supplement 4A). These results suggest that basophils and CD4+ T cells

are not required for early itch and further support an inciting role for neutrophils. Previous studies

have shown that TSLP drives the expression of Type two cytokines and related immune cells that

promote itch and inflammation in mature AD skin lesions (Li et al., 2009; Li et al., 2006;

Zhang et al., 2009; Demehri et al., 2009; Briot et al., 2009). Consistent with a later role for TSLP

signaling in AD, we did observe a significant reduction in itch-evoked scratching in TSLPR KO mice
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Figure 2. Neutrophils are necessary and sufficient for itch behaviors. (A) Scratching behavior of uninjected and PBS-injected mice (combined) and

aGr1-injected mice treated with MC903 or ethanol for indicated length of time (two-way ANOVA: ****pinteraction <0.0001, F(4,447) = 7.16; Tukey’s

multiple comparisons: pday 3 MC903 vs. EtOH = 0.1111 n = 62,51,17 mice; *pday 5 MC903 vs. EtOH = 0.0154, pday 5 MC903 vs. aGr1 = 0.9854, pday 5 aGr1 vs.

EtOH = 0.2267, n = 69,56,17 mice; ****pday 8 MC903 vs. EtOH <0.0001, ***pday 8 MC903 vs. aGr1 = 0.0007, pday 8 aGr1 vs. EtOH = 0.1543, n = 92,85,17 mice). (B)

Neutrophil count from cheek skin of uninjected/PBS-injected MC903- and ethanol-treated, and aGr1-injected MC903-treated mice on day 8 (one-way

ANOVA: ****p<0.0001, F(2,92) = 10.59; Tukey’s multiple comparisons: ****pMC903 vs. EtOH <0.00001, n = 40,38 mice; *pMC903 vs. aGr1 MC903 = 0.0109,

n = 40,17 mice; paGr1 vs. EtOH = 0.8859, n = 38,17 mice). (C) Basophil count from cheek skin of uninjected/PBS-injected MC903- and ethanol-treated, and

aGr1-injected MC903-treated mice on day 8 (one-way ANOVA: ****p=0.0001, F(2,92) = 14.61; Tukey’s multiple comparisons: pMC903 vs. aGr1

MC903 = 0.3217, n = 40,17 mice, ****pMC903 vs. EtOH <0.0001, n = 40,38 mice, *paGr1 MC903 vs. EtOH = 0.0204, n = 17,38 mice). (D) CD4+ T cell count from

cheek skin of PBS-injected MC903- and ethanol-treated, and aGr1-injected MC903-treated mice on day 8 (two-way ANOVA: **ptreatment = 0.0035, F

(1,35) = 9.82; Holm-Sidak multiple comparisons for PBS versus aGr1: pMC903 = 0.8878, n = 9,11 mice; pEtOH = 0.5201, n = 8,9 mice). Control MC903 and

EtOH data from Figure 2B–C are also displayed in Figure 1. Exact values displayed for Figure 2A–D in Figure 2—source data 1. (E) Scratching

behavior of mice immediately after injection of 1 mg CXCL1 or PBS (s.c. cheek). For neutrophil-depletion experiments, mice received 250 mg anti-Gr1

(aGr1) 20 hr prior to cheek injection of CXCL1 or PBS (one-way ANOVA: ****p<0.0001, F(4,88) = 75.53; Tukey’s multiple comparisons: *pCXCL1 vs.

PBS = 0.0126, n = 36,31 mice; paGr1-CXCL1 vs. aGr1-PBS > 0.9999, n = 10,10 mice; paGr1-CXCL1 vs. PBS = 0.9986, n = 10,31 mice). Exact values displayed in

Figure 2—source data 2. (F) Scratching behavior of WT and TSLPR KO (TSLPR KO) mice treated with MC903 or ethanol for indicated length of time

(two-way ANOVA: ****pinteraction <0.0001, F(9,657) = 4.93; Tukey’s multiple comparisons: ****pday 8 WT MC903 vs. EtOH <0.0001, *pday 8 WT MC903 vs. KO

MC903 = 0.0194, **pday 8 KO MC903 vs. KO EtOH = 0.0039, n = 92,85,36,26 mice; ****pday 12 WT MC903 vs. EtOH <0.0001, **pday 12 WT MC903 vs. KO MC903 = 0.0028,

pday 12 KO MC903 vs. KO EtOH = 0.7061, n = 26,26,27,23 mice). (G) Neutrophil count from cheek skin of wild-type MC903- and ethanol-treated, and TSLPR

KO MC903-treated mice on day 5 (two-way ANOVA: **pgenotype = 0.0025, F(2,125) = 6.28; Tukey’s multiple comparisons: ****pday 5 WT MC903 vs. WT

EtOH <0.0001, n = 6,8 mice; pday 5 WT MC903 vs. KO MC903 = 0.2198, n = 6,6 mice; *pday 5 WT EtOH vs. KO MC903 = 0.0212, n = 8,6 mice). (H) Basophil count

from cheek skin of wild-type MC903- and ethanol-treated, and TSLPR KO MC903-treated mice on day 8 (two-way ANOVA: **pgenotype = 0.0003, F(2,117)

= 8.87; Tukey’s multiple comparisons: ****pday 8 WT MC903 vs. WT EtOH <0.0001, n = 40,38 mice; ****pday 8 WT MC903 vs. KO MC903 <0.0001, n = 40,15 mice;

pday 8 WT EtOH vs. KO MC903 = 0.9519, n = 38,15 mice). See also Figure 2—figure supplement 5A. For Figure 2G–H, data from days 3, 5, and 8 are

Figure 2 continued on next page
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in the second week of the model (Figure 2F). Thus, our data support a model in which neutrophils

are necessary for initiation of AD and itch behaviors early in the development of AD, whereas TSLPR

signaling mediates the recruitment of basophils and CD4+ T cells to promote later stage itch and

chronic inflammation.

The incomplete loss of itch behaviors on day 12 in the TSLPR KO animals (Figure 2F) raised the

question of whether neutrophils might also contribute to itch during the second week of the MC903

model. To directly answer this question, we measured neutrophil infiltration and itch-evoked scratch-

ing on day 12 in mice that received either aGr1 or PBS on days 8–11 of the model to selectively

deplete neutrophils solely during the second week. Neutrophil depletion in the second week with

aGr1 robustly decreased skin-infiltrating neutrophils (Figure 2J), and substantially reduced scratch-

ing behaviors at day 12 (Figure 2K), supporting a role for neutrophils in chronic itch. Interestingly,

we observed a 79% mean reduction in time spent scratching after neutrophil depletion at day 12,

whereas loss of TSLPR effected a 44% reduction in time spent scratching. We speculate that neutro-

phils and TSLP signaling comprise independent mechanisms that together account for the majority

of AD itch. In order to ascertain whether neutrophils could be salient players in other models of AD,

and not just MC903, we measured neutrophil infiltration into ear skin in the 1-fluoro-2,4-dinitroben-

zene (DNFB) model of atopic dermatitis, which relies on hapten-induced sensitization to drive

increased IgE, mixed Th1/Th2 cytokine response, skin thickening, inflammation, and robust scratch-

ing behaviors in mice (Zhang et al., 2015; Kitamura et al., 2018; Solinski et al., 2019a). Indeed,

neutrophils also infiltrated DNFB- but not vehicle-treated skin (Figure 2—figure supplement 5A).

Taken together, these observations are complementary to published datasets showing evidence for

neutrophil chemokines and transcripts in human AD lesions (Ewald et al., 2017; Choy et al., 2012;

Guttman-Yassky et al., 2009; Suárez-Fariñas et al., 2013; Jabbari et al., 2012). Overall, our data

support a key role for neutrophils in promoting AD itch and inflammation.

MC903 drives rapid and robust changes in the peripheral and central
nervous systems
But how do neutrophils drive AD itch? Itchy stimuli are detected and transduced by specialized sub-

sets of peripheral somatosensory neurons. Thus, to answer this question we first profiled the tran-

scriptional changes in somatosensory neurons in the MC903 model, which were previously

unstudied. In general, little is known regarding neuronal changes in chronic itch. Our initial

Figure 2 continued

presented in Figure 2—source data 3. (I) CD4+ T cell count from cheek skin of wild-type MC903- and ethanol-treated, and TSLPR KO MC903-treated

mice on day 8 (one-way ANOVA: **p=0.0053, F(2,24) = 6.564; Tukey’s multiple comparisons: *pWT MC903 vs. WT EtOH = 0.0163, n = 11,8 mice; *p MC903 vs.

KO MC903 = 0.0130, n = 11,8 mice; pWT EtOH vs. KO MC903 = 0.9953, n = 8,8 mice). Wild-type MC903 and EtOH data from 2 F-H are also displayed in

Figure 1. Exact values for Figure 2F–I displayed in Figure 2—source data 3. (J) Neutrophil count from cheek skin of wild-type MC903- and ethanol-

treated mice on day 12 of the MC903 model. MC903-treated animals received daily i.p. injections of 250 mg aGr1 antibody or PBS (250 mL) on days 8–11

of the model (one-way ANOVA: *p=0.01, F(2,13) = 6.69; Tukey’s multiple comparisons: *pMC903-PBS vs. EtOH = 0.0141, n = 6,5 mice; *pMC903-PBS vs. MC903-

aGr1 = 0.10330, n = 6,5 mice; pMC903-aGr1 vs. EtOH = 0.9005, n = 5,5 mice). (K) Time spent scratching over a thirty minute interval for wild-type MC903- and

ethanol-treated mice on day 12 of the MC903 model. MC903-treated animals received daily i.p. injections of 250 mg aGr1 antibody or PBS (250 mL) on

days 8–11 of the model (one-way ANOVA: ****p<0.0001, F(2,26) = 53.1; Tukey’s multiple comparisons: ****pMC903-PBS vs. EtOH <0.0001, n = 12,5 mice;

****pMC903-PBS vs. MC903-aGr1 < 0.0001, n = 12,12 mice; pMC903-aGr1 vs. EtOH = 0.3734, n = 12,5 mice). Values from bar plots are reported in Figure 2—

source data 5.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Values displayed in bar plots shown in Figure 2A–D.

Source data 2. Values displayed in the bar plots shown in Figure 2E and Figs.

Source data 3. Values displayed in the bar plots shown in Figure 2F–I and Figure 2—figure supplement 4A–B.

Source data 4. Values used to generate the line plots shown in Figure 2—figure supplement 1C.

Source data 5. Values displayed in the bar plots shown in Figure 2J–K.

Source data 6. Values displayed in the bar plots in Figure 2—figure supplement 5A.

Figure supplement 1. aGr1 treatment preferentially depletes neutrophils.

Figure supplement 2. CXCL1 rapidly and selectively recruits neutrophils to skin.

Figure supplement 3. Neutrophil depletion does not affect chloroquine-evoked itch.

Figure supplement 4. Loss of TSLPR reduces skin basophil and mast cell numbers in the first week of AD development.

Figure supplement 5. Neutrophils robustly infiltrate the skin in the DNFB mouse model of atopic dermatitis.
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examination of early hyperinnervation and changes in axon guidance molecules in skin suggested

that neurons are indeed affected early on in the MC903 model, before the onset of itch-evoked

scratching behaviors. In contrast to the skin, where we saw many early transcriptional changes, we

did not see any significant transcriptional changes in the trigeminal ganglia (TG) until five days after

the first treatment, and in total only 84 genes were differentially expressed through the eighth day

(Figure 3A–B). These hits included genes related to excitability of itch sensory neurons, (Dong and

Dong, 2018; Usoskin et al., 2015) neuroinflammatory genes, (Takeda et al., 2009) and activity-

induced or immediate early genes (Figure 3A). Interestingly, we observed enrichment of neuronal

markers expressed by one specific subset of somatosensory neurons that are dedicated to itch

(Il31ra, Osmr, Trpa1, Cysltr2, and Nppb), termed ‘NP3’ neurons (Dong and Dong, 2018;

Usoskin et al., 2015; Huang et al., 2018; Solinski et al., 2019b). Similar to what has been reported

in mouse models of chronic pain, we observed changes in neuroinflammatory (Bdnf, Nptx1, Nptx2,

Nptxr) and immune genes (Itk, Cd19, Rag, Tmem173). However, these transcriptional changes

occurred just a few days after itch onset, in contrast to the slow changes in nerve injury and pain

models that occur over weeks, indicating that neuropathic changes may occur sooner than previously

thought in chronic itch. These changes occurred in tandem with the onset of scratching behaviors

(Figure 1C), suggesting that the early molecular and cellular changes we observed by this time point

may be important for development or maintenance of itch-evoked scratching.

The changes we observed in immune-related genes in the TG were suggestive of infiltration or

expansion of immune cell populations, which has been reported in models of nerve injury and

chronic pain, but has never been reported in chronic itch. To validate our observations, we used IHC

to ask whether CD45+ immune cells increase in the TG. We observed a significant increase in TG

immune cell counts at day eight but not day five (Figure 3C–F, Figure 3—figure supplement 1A–

D). Because we observed such dramatic expression changes in the TG on day eight of the model,

we postulated that the CNS may also be affected by this time point. Thus, we performed RNA-seq

on spinal cord segments that innervate the MC903-treated rostral back skin of mice. To date, only

one study has examined changes in the spinal cord during chronic itch (Shiratori-Hayashi et al.,

2015). The authors showed that upregulation of the STAT3-dependent gene Lcn2 occurred three

weeks after induction of chronic itch and was essential for sustained scratching behaviors. Surpris-

ingly, we saw upregulation of Lcn2 on day eight of the MC903 model and, additionally, we observed

robust induction of immediate early genes (Fos, Junb, Figure 3G), suggesting that MC903 itch

drives activity-dependent changes in the spinal cord as early as one week after beginning treatment.

Together, our findings show that sustained itch and inflammation can drive changes in the PNS and

CNS much sooner than previously thought, within days rather than weeks after the onset of scratch-

ing. We next set out to explore how loss of neutrophils impacts the molecular changes observed in

skin and sensory neurons in the MC903 model, and which of these changes might contribute to neu-

trophil-dependent itch.

Neutrophils are required for upregulation of select itch- and atopic-
related genes, including the itch-inducing chemokine CXCL10
To ask how neutrophils promote itch in the MC903 model, we examined the transcriptional changes

in skin and sensory ganglia isolated from non-itchy neutrophil-depleted animals and from the TSLPR

KO mice, which scratched robustly. A number of AD-associated cytokines that were upregulated in

control MC903 skin were not upregulated in TSLPR KO and neutrophil-depleted skin. For example,

Il33 upregulation is both neutrophil- and TSLPR-dependent (Figure 4A, Figure 4—figure supple-

ment 1A). By contrast, upregulation of epithelial-derived cytokines and chemokines Tslp, Cxcl1,

Cxcl2, Cxcl3, and Cxcl5 was unaffected by either loss of TSLPR or neutrophil depletion (Figure 4B),

suggesting these molecules are produced by skin cells even when the MC903-evoked immune

response is compromised. Consistent with previous studies, Il4 upregulation was completely depen-

dent on TSLPR but not neutrophils, establishing a role for TSLP signaling in the Type two immune

response. Among the hundreds of MC903-dependent genes we examined, only a handful of genes

were uniquely affected by neutrophil depletion. One such gene was Cxcl10, a chemokine known to

be released by skin epithelial cells, neutrophils, and other myeloid cells (Hashimoto et al., 2018;

Ioannidis et al., 2016; Kanda et al., 2007; Koga et al., 2008; Michalec et al., 2002;

Padovan et al., 2002; Tamassia et al., 2007).Cxcl10 expression was increased in TSLPR KO but not

neutrophil-depleted skin (Figure 4B, Figure 4—figure supplement 1A). CXCL10 has been
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Figure 3. The MC903 model induces rapid and robust changes in neuronal tissue. (A) Exact permutation test (10,000 iterations, see

Materials and methods) for significance of mean absolute log2 fold change in gene expression at Day 8 (MC903 vs. ethanol) of custom-defined groups

of genes for indicated categories (see Figure 3—source data 1). (B) Log2 fold change in gene expression (MC903 vs. ethanol) in mouse trigeminal

ganglia (TG) at indicated time points for all genes which were significantly differentially expressed for at least one time point in the MC903 model.

Figure 3 continued on next page
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previously shown to drive acute itch in a model of allergic contact dermatitis via CXCR3 signaling in

sensory neurons, (Qu et al., 2015) and is elevated in skin of AD patients (Mansouri and Guttman-

Yassky, 2015). Expression of Cxcl9 and Cxcl11, two other CXCR3 ligands that are elevated in AD

but have an unknown role in itch, was also decreased in AD skin of neutrophil-depleted mice

(Figure 4B).

CXCR3 signaling is necessary for MC903-evoked chronic itch
We hypothesized that neutrophil-dependent upregulation of CXCL10 activates sensory neurons to

drive itch behaviors. Consistent with this model, neutrophil depletion attenuated the expression of

activity-induced immediate early genes (Vgf, Junb) in the TG, suggestive of neutrophil-dependent

sensory neuronal activity (Figure 4C, Figure 4—figure supplement 1B). We found that neutrophils

also contributed to other sensory neuronal phenotypes in the model. For example, we observed that

expression of Lcn2, a marker of neuropathic itch, and activity-induced genes Fos and Junb were not

increased in spinal cord isolated from neutrophil-depleted animals, indicating that neutrophil-depen-

dent scratching behaviors may indeed drive changes in the CNS (Figure 4D). We also observed that

neutrophil-depleted animals displayed no skin hyperinnervation at day two (Figure 4E). This result

was surprising because we did not observe significant neutrophil infiltration at this early time point,

but these data suggest that low numbers of skin neutrophils are sufficient to mediate these early

effects.

To test our model wherein CXCL10 activates CXCR3 to drive neutrophil-dependent itch, we first

asked whether this CXCR3 ligand is in fact released in MC903-treated skin. We performed ELISA on

cheek skin homogenate and found that CXCL10 protein was increased in MC903-treated skin from

uninjected wild-type and TSLPR KO animals, but not in skin from neutrophil-depleted mice

(Figure 4F). To test whether CXCR3 signaling directly contributes to AD itch, we asked whether

acute blockade of CXCR3 using the antagonist AMG 487 (Qu et al., 2015) affected scratching

behaviors in the MC903 model. We found that the CXCR3 antagonist strongly attenuated scratching

behaviors on days five, eight, and twelve (Figure 4G), with the greatest effect at day eight. In con-

trast, CXCR3 blockade did not attenuate scratching behaviors in naive mice injected with the prurito-

gen chloroquine (Figure 4G), demonstrating that CXCR3 signaling contributes to chronic itch but is

not required for scratching in response to an acute pruritogen. Thus, we propose that neutrophils

promote chronic itch in atopic dermatitis via upregulation of CXCL10 and subsequent activation of

CXCR3-dependent itch pathways (Figure 5).

Figure 3 continued

Green bars = increased expression in MC903 relative to ethanol; magenta = decreased expression. Exact values and corrected p-values are reported in

Figure 3—source data 2 and Source Data 1 Supplemental Data, respectively. (C) Representative composite images showing immune cells (CD45,

green), and sensory neurons (Prph, magenta) with DAPI (blue) in sectioned trigeminal ganglia from mice treated with Vehicle or MC903 for five days on

the cheek. (D) Quantification of images examining average number of CD45+ cells per section and average ratio of CD45:Peripherin cells per section

after five days of treatment (p=0.562 (t = 0.6318, df = 4), 0.542 (t = 0.6660, df = 4); two-tailed unpaired t-tests, n = 33–159 fields of view (images) each of

both trigeminal ganglia from three mice per condition treated bilaterally). (E) Representative composite images showing immune cells (CD45, green),

and sensory neurons (Peripherin (Prph), magenta) with DAPI (blue) in sectioned trigeminal ganglia from mice treated with Vehicle or MC903 for eight

days on the cheek. (F) Quantification of images examining average number of CD45+ cells per section and average ratio of CD45:Peripherin cells per

section after eight days of treatment (**p=0.0019 (t = 5.977,df = 5), **p=0.0093 (t = 4.107,df = 4); two-tailed unpaired t-tests; n = 42–172 fields of view

(images) each of both trigeminal ganglia from 3 EtOH or 4 MC903 animals treated bilaterally). Scale bar = 100 mm. Images were acquired on a

fluorescence microscope using a 10x air objective. Values from bar plots and all TG IHC data are available in Figure 3—source data 3. (G) Log2 fold

change in gene expression (MC903 vs. ethanol) in mouse spinal cord on day 8 showing selected differentially expressed genes (padjusted < 0.05). Exact

values and corrected p-values are reported in Source Data 1 Supplemental Data.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Values displayed in the bar plot shown in Figure 3A.

Source data 2. Values displayed in the heat map shown in Figure 3B.

Source data 3. Quantification of all IHC samples from trigeminal ganglia, and Values displayed in the bar plots shown in Figure 3D,F.

Figure supplement 1. Method of image quantification for sectioned trigeminal ganglia.
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Discussion
There is great interest in unraveling the neuroimmune interactions that promote acute and chronic

itch. Here, we show that neutrophils are essential for the early development of MC903-evoked itch.

Figure 4. Neutrophils are required for induction of the itch-inducing chemokine CXCL10. (A) Log2 fold change (Day 8 MC903 vs. EtOH) of Th2 genes in

skin from uninjected wild-type, aGR1-treated, and TSLPR KO animals. (B) Log2 fold change (Day 8 MC903 vs. EtOH) of chemokine genes in skin from

uninjected wild-type, aGr1-treated, and TSLPR KO animals. (C) Log2 fold change (Day 8 MC903 vs. EtOH) of activity-induced genes in trigeminal

ganglia from uninjected wild-type, aGr1-treated, and TSLPR KO animals. (D) Log2 fold change (Day 8 MC903 vs. EtOH) of Lcn2 and activity-induced

genes in spinal cord from uninjected and aGr1-treated wild-type mice on day 8. For Figure 4A–D, exact values and corrected p-values are reported in

Source Data 1 Supplemental Data. (E) Quantification of innervation (see Materials and methods) of MC903 and EtOH-treated mouse skin as

determined from BTIII staining (p=0.8985; two-tailed t-test (t = 0.1294; df = 18); n = 9,11 images each from two mice per treatment. Exact values are

reported in Figure 4—source data 1. (F) CXCL10 levels in skin homogenate as measured by ELISA on day 8 of the MC903 model for uninjected

animals (left; *p=0.029 (t = 2.715, df = 7); two-tailed t-test; n = 4,5 animals), animals which received aGr1 for 8 days (middle; p=0.43 (t = 0.815, df = 11);

two-tailed t-test; n = 6,6 animals), and TSLPR KO animals (right; *p=0.0357 (t = 2.696, df = 6); two-tailed t-test; n = 4,4 animals. Skin homogenates were

isolated on separate days and so uninjected, WT samples were not compared to aGr1-treated samples or to TSLPR KO samples. (G) (Left) Time spent

scratching over a thirty minute interval on days 5, 8, and 12 of the MC903 model, one hour after mice were injected with either 3.31 mM of the CXCR3

antagonist AMG 487 or vehicle (20% HPCD in PBS; 50 mL s.c. in rostral back); (two-way ANOVA: ****ptreatment <0.0001, F(1,67) = 50.64; Tukey’s multiple

comparisons: *pday 5 = 0.0216, n = 8,10 mice; ***pday 8 = 0.0007, n = 18,21 mice; ****pday 12 < 0.0001, n = 8,8 mice). (Right) Time spent scratching over a

thirty minute interval one hour after mice were injected with either 3.31 mM of the CXCR3 antagonist AMG 487 or vehicle (20% HPCD in PBS; 50 mL s.c.

in rostral back), and immediately after mice were injected with 50 mM chloroquine (20 mL i.d., cheek). p=0.92 (t = 0.0964, df = 8); two-tailed t-test;

n = 5,5 mice. Values from bar plots in Figure 4F–G are displayed in Figure 4—source data 2.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Values displayed in the bar plot shown in Figure 4E.

Source data 2. Values displayed in the bar plots shown in Figure 4F–G.

Source data 3. Values displayed in the heat map shown in Figure 4—figure supplement 1A.

Source data 4. Values displayed in the heat map shown in Figure 4—figure supplement 1B.

Figure supplement 1. MC903-dependent gene expression changes in aGr1-treated and TSLPR KO animals.
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We further show that the recruitment of neutrophils to the skin is sufficient to drive itch behaviors

within minutes of infiltration. While neutrophils are known to release a variety of pruritogens, their

roles in itch and AD were not studied (Hashimoto et al., 2018). Only a few studies have even

reported the presence of neutrophils in human AD lesions (Choy et al., 2012; Koro et al., 1999;

Mihm et al., 1976; Shalit et al., 1987). Neutrophils have been implicated in psoriatic inflammation

and inflammatory pain, (Sumida et al., 2014; Perkins and Tracey, 2000; Guerrero et al., 2008;

Cunha et al., 2003; Finley et al., 2013; Carreira et al., 2013; Levine et al., 2006; Schön et al.,

2000) where they are thought to rapidly respond to tissue injury and inflammation, (Oyoshi et al.,

2012) but they have not been directly linked to itch.

There is a strong precedence for immune cell-neuronal interactions that drive modality-specific

outcomes, such as itch versus pain, under distinct inflammatory conditions. In allergy, mast cells infil-

trate the upper dermis and epidermis and release pruritogens to cause itch, (Solinski et al., 2019b;

Meixiong et al., 2019) whereas in tissue injury, mast cell activation can trigger pain hypersensitivity

(Chatterjea and Martinov, 2015). Likewise, neutrophils are also implicated in both pain and itch.

Figure 5. Model of early AD pathogenesis. (A) AD induction first results in increased protease expression and barrier dysfunction, which drives

production of the cytokines TSLP and CXCL1 via PAR2 activation within keratinocytes. CXCL1 can recruit neutrophils via its receptor CXCR2.

Neutrophils may evoke itch by multiple pathways, including degranulation and release of proteases and histamine, production of sensitizing lipids such

as PGE2 and LTB4, (Hashimoto et al., 2018) and induction of CXCL10 expression, which can activate sensory neurons via CXCR3. TSLP activates a

number of immune cells to elicit IL-4 production, including basophils, which results in increased IL-4, recruitment of CD4+ T cells, (Oetjen et al., 2017)

and sensitization of neurons to promote itch later in the model.
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For example, pyoderma gangrenosum, which causes painful skin ulcerations recruits neutrophils to

the deep dermal layers to promote tissue damage and pain (Hashimoto et al., 2018). In AD, neutro-

phils are recruited to the upper dermis and epidermis, (Choy et al., 2012; Shalit et al., 1987) and

we now show that neutrophils trigger itch in AD. Adding to the complex and diverse roles of neutro-

phils, neutrophils recruited to subcutaneous sites during invasive streptococcal infection alleviate

pain by clearing the tissue of bacteria (Pinho-Ribeiro et al., 2018). Several potential mechanisms

may explain these diverse effects of neutrophils. First, the location of the inflammatory insult could

promote preferential engagement of pain versus itch nerve fibers (Hashimoto et al., 2018). This is

supported by observations that neutrophil-derived reactive oxygen species and leukotrienes can

promote either itch or pain under different inflammatory conditions (Salvemini et al., 2011;

Bautista et al., 2006; Liu and Ji, 2012; Caceres et al., 2009). Second, it has been proposed that

there are distinct functional subsets of neutrophils that release modality-specific inflammatory medi-

ators (Wang, 2018). Third, the disease-specific inflammatory milieu may induce neutrophils to specif-

ically secrete mediators of either itch or pain. Indeed, all three of these mechanisms have been

proposed to underlie the diverse functions of microglia and macrophages in homeostasis, tissue

repair, injury, and neurodegenerative disease (Hammond et al., 2018). It will be of great interest to

the field to decipher the distinct mechanisms by which neutrophils and other immune cells interact

with the nervous system to drive pain and itch.

In addition to neutrophils, TSLP signaling and the Type two immune response plays an important

role in the development of itch in the second week of the MC903 model. Dendritic cells, mast cells,

basophils, and CD4+ T cells are all major effectors of the TSLP inflammatory pathway in the skin. We

propose that neutrophils play an early role in triggering itch and also contribute to chronic itch in

parallel with the TSLP-Type two response. While we have ruled out an early role for TSLP signaling

and basophils and CD4+ T cells in early itch, other cell types such as mast cells, which have recently

been linked directly to chronic itch, (Solinski et al., 2019b; Meixiong et al., 2019) and dendritic

cells may be playing an important role in setting the stage for itch and inflammation prior to infiltra-

tion of neutrophils.

Given the large magnitude of the itch deficit in the neutrophil-depleted mice, we were surprised

to find fewer expression differences in MC903-dependent, AD-associated genes between neutrophil

depleted and non-depleted mice than were observed between WT and TSLPR KO mice. One of the

few exceptions were the Th1-associated genes Cxcl9/10/11 (Ewald et al., 2017; Brunner et al.,

2017). We found that induction of these genes and of CXCL10 protein was completely dependent

on neutrophils. While our results do not identify the particular cell type(s) responsible for neutrophil-

dependent CXCL10 production, a number of cell types present in skin have been shown to produce

CXCL10, including epithelial keratinocytes, myeloid cells, and sensory neurons (Hashimoto et al.,

2018; Ioannidis et al., 2016; Kanda et al., 2007; Koga et al., 2008; Michalec et al., 2002;

Padovan et al., 2002; Tamassia et al., 2007). In support of a role for neutrophils in promoting

chronic itch, we observed striking differences in neutrophil-dependent gene expression in the spinal

cord, where expression of activity-induced genes and the chronic itch gene Lcn2 were markedly

attenuated by loss of neutrophils. Moreover, we also demonstrate that depletion of neutrophils in

the second week of the MC903 model can attenuate chronic itch-evoked scratching. In examining

previous characterizations of both human and mouse models of AD and related chronic itch disor-

ders, several studies report that neutrophils and/or neutrophil chemokines are indeed present in

chronic lesions (Ewald et al., 2017; Choy et al., 2012; Guttman-Yassky et al., 2009; Suárez-

Fariñas et al., 2013; Jabbari et al., 2012; Nattkemper et al., 2018; Li et al., 2017;

Saunders et al., 2016; Andersson, 2015; Liu et al., 2019; Malik et al., 2017). Our observations

newly implicate neutrophils in setting the stage for the acute-to-chronic itch transition by triggering

molecular changes necessary to develop a chronic, itchy lesion and also contributing to persistent

itch.

Additionally, we demonstrate a novel role of CXCR3 signaling in MC903-induced itch. The

CXCR3 ligand CXCL10 contributes to mouse models of acute and allergic itch (Qu et al., 2015;

Qu et al., 2017; Jing et al., 2018); however, its role in chronic itch was previously unknown. We

speculate that the residual itch behaviors after administration of the CXCR3 antagonist could be due

to TSLPR-dependent IL-4 signaling, as TSLPR-deficient mice display reduced itch behaviors by the

second week of the model, or due to some other aspect of neutrophil signaling, such as release of

proteases, leukotrienes, prostaglandins, or reactive oxygen species, all of which can directly trigger
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itch via activation of somatosensory neurons (Hashimoto et al., 2018). Our observations are in align-

ment with a recent study showing that dupilumab, a new AD drug that blocks IL4Ra, a major down-

stream effector of the TSLP signaling pathway, does not significantly reduce CXCL10 protein levels

in human AD lesions (Hamilton et al., 2014). Taken together, these findings suggest that the TSLP/

IL-4 and neutrophil/CXCL10 pathways are not highly interdependent, and supports our findings that

Il4 transcript is robustly upregulated in the absence of neutrophils. Additionally, targeting IL4Ra sig-

naling has been successful in treating itch and inflammation in some, but not all, AD patients

(Simpson et al., 2016). We propose that biologics or compounds targeting neutrophils and/or the

CXCR3 pathway may be useful for AD that is incompletely cleared by dupilumab monotherapy.

Drugs targeting neutrophils are currently in clinical trials for the treatment of psoriasis, asthma, and

other inflammatory disorders. For example, MDX-1100, a biologic that targets CXCL10, has already

shown efficacy for treatment of rheumatoid arthritis in phase II clinical trials (Yellin et al., 2012).

While rheumatoid arthritis and AD have distinct etiologies, (Scott et al., 2010) our body of work

indicates that CXCL10 or CXCR3 may be promising targets for treating chronic itch. Our findings

may also be applicable to other itch disorders where neutrophil chemoattractants and/or CXCL10

are also elevated, such as psoriasis and allergic contact dermatitis. Overall, our data suggest that

neutrophils incite itch and inflammation in early AD through several mechanisms, including: 1)

directly triggering itch upon infiltration into the skin, as shown by acute injection of CXCL1, and, 2)

indirectly triggering itch by altering expression of endogenous pruritogens (e.g. induction of Cxcl10

expression; Hashimoto et al., 2018; Ioannidis et al., 2016; Kanda et al., 2007; Koga et al., 2008;

Michalec et al., 2002; Padovan et al., 2002; Tamassia et al., 2007). Together, these direct and

indirect mechanisms for neutrophil-dependent itch may explain why neutrophils have a dramatic

effect on scratching behaviors on not only days eight and twelve but also day five of the model,

when neutrophils are recruited in large numbers, but CXCR3 ligands are not as robustly induced.

More generally, our study provides a framework for understanding how and when human chronic

itch disease genes contribute to the distinct stages of AD pathogenesis. Our analysis of MC903-

evoked transcriptional changes suggests we may be able to extend findings in the model not only to

atopic dermatitis, but also to related disorders, including specific genetic forms of atopy. For exam-

ple, we provide evidence that MC903 treatment may also model the filaggrin loss-of-function muta-

tions, which are a key inciting factor in human heritable atopic disease (Palmer et al., 2006;

Sandilands et al., 2007). There are many rich datasets looking at mature patient lesions and data-

sets for mature lesions in other mouse models of chronic itch (Ewald et al., 2017; Choy et al.,

2012; Guttman-Yassky et al., 2009; Jabbari et al., 2012; Nattkemper et al., 2018; Oetjen et al.,

2017; Liu et al., 2019; Liu et al., 2016). Our study adds a temporal frame of reference to these

existing datasets and sets the stage for probing the function of AD disease genes in greater detail.

Furthermore, we have mapped the time course of gene expression changes in primary sensory gan-

glia and spinal cord during chronic itch development. We show that the MC903 model recapitulates

several hallmarks of neuropathic disease on a time course much shorter than has been reported for

chronic itch, or chronic pain. Nervous system tissues are extremely difficult to obtain from human

AD patients, and thus little is known regarding the neuronal changes in chronic itch disorders in

both mouse models and human patients. Our findings can now be compared to existing and future

datasets examining neuronal changes in chronic pain, diabetic neuropathy, shingles, neuropathic

itch, psoriasis, and other inflammatory disorders where neuronal changes are poorly understood but

may contribute to disease progression. The early changes we see in skin innervation, sensory gan-

glia, and spinal cord dovetail with recent studies examining neuroimmune interactions in other

inflammatory conditions, (Pinho-Ribeiro et al., 2018; Baral et al., 2018; Pinho-Ribeiro et al., 2017;

Blake et al., 2018) which all implicate early involvement of sensory neurons in the pathogenesis of

inflammatory diseases.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Strain,
strain
background
(Mus musculus)

C57BL/6; WT;
wild-type

The Jackson
Laboratory

Jackson Stock #:
000664;
RRID:IMSR_JAX:000664

Strain, strain
background
(Mus musculus)

C57BL/6; WT;
wild-type

Charles River
Laboratories

RRID:IMSR_CRL:27;
Charles River strain
code #: 027;

Strain, strain
background
(Mus musculus)

Crlf2tm1Jni;
TSLPR KO

PMID: 14993294 RRID:MGI:3039553;
MGI Cat# 3039553

Obtained
from the
laboratory of
Steven F. Ziegler
(Ben Aroya
Research Institute)

Antibody Purified anti-mouse
Ly-6G/Gr-1 antibody.
Low endotoxin,
no azide, in PBS;
anti-GR1 (RB6-8C5); aGr1

UCSF Core UCSF Core
Cat# AM051

Obtained from
the laboratory of
Daniel Portnoy
(UC Berkeley)

Antibody LEAF Purified
anti-mouse
Ly-6G/Ly-6C (Gr-1);
antibody;
RB6-8C5; aGr1

Biolegend RRID:AB_313379;
BioLegend
Cat# 108414

Antibody Anti-b-tubulin III
(Rabbit polyclonal;
1:1000)

Abcam RRID:AB_444319;
Cat # ab18207

Antibody Anti-CGRP
(Rabbit polyclonal;
1:1000)

Immunostar RRID:AB_572217;
Cat # 24112

Antibody Anti-Peripherin
(Chicken polyclonal;
1:1000)

Abcam RRID:AB_777207;
Cat # ab39374

Antibody Goat Anti-Mouse
IgG H and L Alexa
Fluor 488
(Goat polyclonal;
1:1000)

Abcam RRID:AB_2688012;
Cat # ab150117

Antibody Goat anti-Chicken
IgY (H+L) Secondary
Antibody, Alexa Fluor
488 (Goat
polyclonal; 1:1000)

Thermo
Fisher Scientific

RRID:AB_2534096;
Cat # A-11039

Antibody Goat Anti-Chicken
IgG (H+L) Secondary
Antibody, Alexa
Fluor 594 (Goat
polyclonal; 1:1000)

Thermo
Fisher Scientific

RRID:AB_2534099;
Cat # A11042

Antibody Goat anti-Rabbit
IgG (H+L) Secondary
Antibody, Alexa
Fluor 594 (Goat
polyclonal; 1:1000)

Invitrogen RRID:AB_2556545;
Cat # R37117

Commercial
assay or kit

Promocell Keratinocyte
Growth Medium 2

Promocell Cat # C-20011

Cell line (human) Normal Human
Epidermal Keratinocytes (NHEK), single juvenile
donor, cryopreserved

Promocell Cat # C-12001

Other Liberase TM
Research Grade;
Liberase

Roche Cat # 5401119001

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Other Dnase I from
bovine pancreas

Sigma Cat # 11284932001

Other Ambionª DNase I
(RNase-free); DNAse

Ambion Cat # AM2222

Peptide,
recombinant protein

SLIGRL-NH2;
SLIGRL

Tocris Cas 171436-38-7;
Cat #1468

Commercial
assay or kit

Qiagen RNeasy
mini kit

Qiagen Cat # 74104

Commercial
assay or kit

RNAzol RT Sigma-Aldrich Cat # R4533-50ML

Chemical
compound, drug

(2-Hydroxypropyl)-
b-cyclodextrin; HPCD

Sigma-Aldrich Cas 128446-35-5;
Cat # H107

Chemical
compound, drug

Methyl alcohol;
Methanol; MeOH

Sigma-Aldrich Cas 67-56-1;
Cat # 34860

Chemical
compound, drug

Ethanol, Absolute
(200 Proof), Molecular
Biology Grade,
Fisher BioReagents;
Absolute Ethanol,
Molecular-Biology grade;
Ethanol; EtOH

Fischer Scientific Cas 64-17-5;
Cat # BP2818100

Chemical
compound, drug

MC903; Calcipotriol Tocris Cas 112965-21-6;
Cat # 2700

Chemical
compound, drug

(±)-AMG 487; AMG Tocris Cas 947536-03-0;
Cat # 4487

Chemical
compound, drug

Chloroquine
diphosphate;
Chloroquine

Sigma-Aldrich CAS 50-63-5;
Cat # C6628

Chemical
compound, drug

Dimethyl
sulfoxide; DMSO

Sigma-Aldrich Cat # 8418–100 mL

Chemical
compound, drug

Formaldehyde, 16%,
methanol free,
Ultra Pure;
Paraformaldehyde; PFA

Polysciences, Inc. Cat # 18814–10

Chemical
compound, drug

Tissue Tek
Optimal cutting
temperature
compound (OCT)

Sakura Finetek USA Cat # 4583

Chemical
compound, drug

Triton X-100 solution;
Triton X-100

BioUltra CAS 9002-93-1;
Cat # 93443

Chemical
compound, drug

Phosphate-buffered
saline (PBS),
pH 7.4; PBS

Gibco Cat # 10010023

Chemical
compound, drug

Benzyl benzoate Sigma-Aldrich CAS 120-51-4;
Cat # B6630

Chemical
compound, drug

Benzyl alcohol Sigma-Aldrich CAS 100-51-6;
Cat # 305197

Chemical
compound, drug

Sucrose Sigma-Aldrich CAS 57-50-1;
Cat # S0389

Chemical
compound, drug

LIVE/DEAD Fixable
Aqua Dead Cell
Stain Kit, for
405 nm excitation;
Aqua

Thermo
Fisher Scientific

Cat # L34957

Chemical
compound, drug

Isoflurane Piramal CAS 26675-46-7

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound, drug

4’,6-Diamidino-
2-Phenylindole,
Dihydrochloride; DAPI

ThermoFisher
Scientific

CAS 28718-90-3;
Cat # 1306

Chemical
compound, drug

4’,6-Diamidino-
2-Phenylindole,
Dihydrochloride;
DAPI LIVE/DEAD

Invitrogen Cat # L34961

Chemical
compound, drug

Fluoromount-G ThermoFisher
Scientific

Cat # 00-4958-02

Antibody Goat Anti-Mouse
IgG - H and L -
Fab Fragment
Polyclonal
Antibody, Unconjugated,
Abcam; F(ab)
anti-mouse IgG (
Goat polyclonal; 1:200)

Abcam RRID:AB_955960;
Cat # ab6668

Antibody Anti-Mouse CD45.2
Purified 100 ug
antibody, Thermo
Fisher Scientific;
Mouse anti-CD45.2
(Mouse monoclonal;
1:1000)

eBioscience RRID:AB_467261;
Cat # 14-0454-82

Antibody Purified anti-mouse
CD16/32 antibody.
Low endotoxin,
no azide, in PBS;
Rat anti-Mouse
CD16/32 (2.4G2)
(Rat monoclonal; 1:1000)

UCSF Core UCSF Core Cat# AM004

Commercial
assay or kit

DuoSet ELISA
Ancillary Reagent Kit 2

R and D Systems Cat # DY008

Commercial
assay or kit

Mouse CXCl10
DuoSet ELISA

R and D Systems Cat # DY466

Commercial
assay or kit

Pierce BCA
Protein Assay Kit
- Reducing Agent
Compatible

Thermo
Fisher Scientific

Cat # 23250

Chemical
compound, drug

2-Amino-2-
(hydroxymethyl)
�1,3-propanediol;
Trizma base, TRIS,
TRIS base

Sigma-Aldrich Cas 77-86-1;
Cat # T4661

Chemical
compound, drug

Ethylene
glycol-bis
(2-aminoethylether)-
N,N,N0,N0-tetraacetic
acid; EGTA

Sigma-Aldrich Cas 67-42-5;
Cat # E3889

Chemical
compound, drug

Ethylenedinitrilo)
tetraacetic
acid; EDTA

Sigma-Aldrich Cas 60-00-4;
Cat # E9884

Commercial
assay or kit

PhosSTOP inhibitor Roche Cat # 4906845001

Chemical
compound, drug

Sodium
deoxycholate,�97%
(titration); Sodium
deoxycholate

Sigma-Aldrich Cas 302-95-4;
Cat # D6750

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound, drug

Phenylmethyl
sulfonyl fluoride;
PMSF

Sigma-Aldrich Cas 329-98-6;
Cat # 10837091001

Chemical
compound, drug

1-Fluoro-2,4,
-dinitrobenzene;
DNFB

Sigma Cas 70-34-8;
Cat # D1529

Commercial
assay or kit

cOmplete protease
inhibitor cocktail

Roche Cat # 11697498001

Other Advanced RPMI
Medium 1640; RPMI

Gibco Cat # 12633012

Other Fetal Bovine
Serum; FBS; FCS

HyClone Cat # 30396.03

Other sodium
pyruvate 100 mM

Gibco Cat # 11360070

Other N-2-hydroxyethy
lpiperazine-N-2-
ethane sulfonic acid;
HEPES 1M

Gibco Cat # 15630080

Other L-Glutamine 200 mM Gibco Cat # 25030081

Other Penicillin-Streptomycin
(10,000 U/mL; Pen-Strep

Gibco Cat # 15140122

Other Collagenase VIII Sigma-Aldrich Cat # C2139-500MG

Commercial
assay or kit

Invitrogen
CountBright
Absolute Counting
Beads, for flow
cytometry;
Counting Beads

Invitrogen Cat # C36950

Antibody CD45 Monoclonal
Antibody
(30-F11), APC-eFluor
780, eBioscience(TM),
Thermo Fisher Scientific;
CD45-APC/eFluor 780
(30-F11) (Rat
monoclonal; 1:200)

eBioscience RRID:AB_1548781;
Cat # 47-0451-82

Antibody CD11b Monoclonal
Antibody (M1/70),
PE-Cyanine7,
eBioscience(TM),
Thermo Fisher Scientific;
CD11b-PE/Cy7 (M1/70)
(Rat monoclonal;
1:200)

BD Biosciences RRID:AB_469588;
Cat # 25-0112-82

Antibody PE-Cyanine7
Anti-Human/Mouse
CD45R (B220) (RA3-6B2)
Antibody, Tonbo
Biosciences; B220-PE/Cy7 (
RA3-6B2) (Rat
monoclonal; 1:200)

Tonbo Biosciences RRID:AB_2621849;
Cat # 60–0452

Antibody CD11c Monoclonal
Antibody (N418),
PE-Cyanine7,
eBioscience(TM),
Thermo Fisher Scientific;
CD11c-PE/Cy7 (N418)
(Armenian Hamster
monoclonal; 1:200)

eBioscience RRID:AB_469590;
Cat # 25-0114-82

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Antibody CD3e Monoclonal Antibody
(145–2 C11), FITC,
eBioscience(TM), Thermo
Fisher Scientific;
CD3-FITC (145–2 C11)
(Armenian Hamster
monoclonal; 1:200)

eBioscience RRID:AB_464882;
Cat # 11-0031-82

Antibody Brilliant Violet 785
anti-mouse CD8a
antibody, BioLegend;
CD8-BV785 (53–6.7)
(Rat monoclonal;
1:200)

Biolegend RRID:AB_1121880;
Cat # 100749

Antibody Rat Anti-CD4 Monoclonal
Antibody, Phycoerythrin
Conjugated, Clone
GK1.5, BD
Biosciences; CD4-PE
(GK1.5) (Rat
monoclonal; 1:200)

BD Biosciences RRID:AB_395014;
Cat # 553730

Antibody Alexa Fluor 647
anti-mouse TCR g/d
Antibody; gdTCR-AF647
(GL3) (Armenian
Hamster
monoclonal; 1:200)

Biolegend RRID:AB_313826;
Cat # 118133

Antibody CD117 (c-Kit)
Monoclonal
Antibody (2B8), Biotin;
c-Kit-Biotin (ACK2)
(Rat monoclonal;
1:200)

eBioscience RRID:AB_466569;
Cat # 13-1171-82

Antibody FceR1 alpha Monoclonal
Antibody (MAR-1), PE,
eBioscience; FceRI-PE
(MAR-1) (Armenian
Hamster monoclonal;
1:200)

eBioscience RRID:AB_466028;
Cat # 12-5898-82

Antibody CD49b (Integrin alpha 2)
Monoclonal Antibody
(DX5), PE-Cyanine7,
eBioscience;
CD49b-PE/Cy7
(DX5) (Rat
monoclonal; 1:200)

eBioscience RRID:AB_469667;
Cat # 25-5971-82

Antibody Anti-Siglec-F-APC,
mouse (clone: REA798);
SiglecF-APC; (Rat
monoclonal; 1:200)

Miltenyi Biotech RRID:AB_2653441;
Cat # 130-112-333

Other Streptavidin
FITC; SA-FITC

eBioscience RRID:AB_11431787;
Cat # 11-4317-87

Antibody Ly-6C Monoclonal
Antibody (HK1.4),
PerCP-Cyanine5.5,
eBioscience;
Ly6C-PerCP/Cy5.5
(HK1.4) (Rat
monoclonal; 1:200)

eBioscience RRID:AB_1518762;
Cat # 45-5932-82

Continued on next page
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Continued

Reagent type
(species) or resource Designation

Source or
reference Identifiers

Additional
information

Antibody violetFluor 450
Anti-Human/Mouse
CD11b (M1/70); CD11b-
violet fluor 450
(M1/70) (Rat
monoclonal; 1:200)

Tonbo Biosciences RRID:AB_2621936;
Cat # 75–0112

Antibody AF700 anti-mouse
Ly-6G Antibody (1A8);
Ly6G-AF700 (1A8)
(Rat monoclonal;
1:200)

BioLegend RRID:AB_1064045;
Cat # 127621

Antibody CD45.2 Monoclonal
Antibody (104),
APC-Cy7, eBioscience;
CD45.2-APC/Cy7 (104)
(Mouse monoclonal,
1:200)

eBioscience RRID:AB_1272175;
Cat # 47-0454-82

Software,
algorithm

IgorPro version 6.3 WaveMetrics https://www.wavemetrics.
com/order/order_
igordownloads6.htm

Software,
algorithm

Microsoft Excel 2011 Microsoft https://www.microsoft.com
/en-us/store/d/excel-
2016-for-mac/

Software,
algorithm

FIJI NIH https://imagej.net/
Fiji/Downloads

Software,
algorithm

Graphpad Prism 7 Graphpad https://www.graphpad.com/
scientific-software/prism/

Software,
algorithm

R-3.6.0 The R Project
for Statistical
Computing

https://cran.r-project.
org/bin/macosx/

Software,
algorithm

Python 2.7 Anaconda https://www.anaconda.
com/distribution/

Software,
algorithm

HTSeq 0.11.1 Python Package Index https://htseq.
readthedocs.io/
en/release_0.11.1/
install.html

Software,
algorithm

Trimmomatic PMID: 24695404 https://github.com/
timflutre/trimmomatic

Software,
algorithm

Tophat 2.1.1 PMID: 19289445 https://ccb.jhu.edu/
software/tophat/

Software,
algorithm

EdgeR PMID: 19910308;
PMID: 22287627

https://bioconductor.org/
packages/release/bioc/
html/edgeR.html

Software,
algorithm

DESeq PMID: 20979621 https://bioconductor.org/
packages/release/bioc/
html/DESeq.html

Software,
algorithm

FlowJo 10.4.2 FlowJo; Treestar https://www.flowjo.com/
solutions/flowjo/downloads

Other Bovine serum albumin,
cold ethanol fraction,
pH 5.2,�96%; BSA

Sigma-Aldrich CAS 9048-46-8;
Cat # A4503

Other NGS; Goat serum;
Normal goat serum

Abcam Cat # ab7481

Mouse studies
All mice were housed in standard conditions in accordance with standards approved by the Animal

Care and Use Committee of the University of California Berkeley (12 hr light-dark cycle, 21 ˚C). Wild-

type C57BL/6 mice were obtained from Charles River or Jackson Laboratories and raised in-house.
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TSLPR KO mice were kindly provided by Dr. Steven Ziegler (Crlf2tm1Jni; Carpino et al., 2004) and

backcrossed onto C57BL/6. All experiments were performed under the policies and recommenda-

tions of the International Association for the Study of Pain and approved by the University of Califor-

nia Berkeley Animal Care and Use Committee. Where appropriate, genotypes were assessed using

standard PCR.

MC903 model of atopic dermatitis
MC903 (Calcipotriol; R and D Systems) was applied to the shaved mouse cheek (20 ml of 0.2 mM in

ethanol) or rostral back (40 ml of 0.2 mM in ethanol) once per day for 1–12 days using a pipette.

100% ethanol was used. All MC903 studies were performed on 8–12 week old age-matched mice.

Behavior, RNA-seq, flow cytometry, and immunohistochemistry were performed on days 1, 2, 3, 5,

eight and/or 12. For AMG 487 experiments in the MC903 model, 50 mL 3.31 mM AMG 487 (Tocris)

or 20% HPCD-PBS vehicle was injected subcutaneously one hour prior to recording behavior

(Qu et al., 2015). Spontaneous scratching was manually scored for the first 30 min of observation.

Both bout number and length were recorded. Behavioral scoring was performed while blind to

experimental condition and mouse genotype.

MC903 RNA isolation and sequencing
On days 1 (six hours post-treatment), 2, 5, or eight post-treatment, mice treated with MC903 and

vehicle were euthanized via isoflurane and cervical dislocation. Cheek skin was removed, flash-frozen

in liquid nitrogen, and cryo-homogenized with a mortar and pestle. Ipsilateral trigeminal ganglia

were dissected and both skin and trigeminal ganglia were homogenized for three minutes (skin) or

one minute (TG) in 1 mL RNAzol RT (Sigma-Aldrich). Thoracic spinal cord was dissected from mice

treated with 40 mL MC903 or ethanol on the shaved rostral back skin and homogenized for one min-

ute in 1 mL RNAzol. Large RNA was extracted using RNAzol RT per manufacturer’s instructions.

RNA pellets were DNase treated (Ambion), resuspended in 50 mL DEPC-treated water, and sub-

jected to poly(A) selection and RNA-seq library preparation (Apollo 324) at the Functional Genomics

Laboratory (UC Berkeley). Single-end read sequencing (length = 50 bp) was performed by the QB3

Vincent G. Coates Genomic Sequencing Laboratory (UC Berkeley) on an Illumina HiSeq4000. See

Supplementary file 1 for number of mice per experimental condition and number of mapped reads

per sample. Data are available at Gene Expression Omnibus under GSE132173.

MC903 RNA sequencing analysis
Reads were mapped to the mm10 mouse genome using Bowtie2 and Tophat, and reads were

assigned to transcripts using htseq-count (Langmead et al., 2009; Langmead and Salzberg, 2012).

For a given time point, replicate measurements for each gene from treated and control mice were

used as input for DESeq (R) and genes with padjusted <0.05 (for skin and spinal cord) or padjusted <0.1

(for trigeminal ganglia) for at least one time point were retained for analysis (Anders and Huber,

2012; Anders et al., 2013). For the skin dataset, we collated a set of AD-related immune cell

markers, cytokines, atopic dermatitis disease genes, neurite outgrown/axonal guidance genes, and

locally expressed neuronal transcripts, and from this list visualized genes that were significantly dif-

ferentially expressed for at least one time point. For the trigeminal ganglia dataset, we plotted all

genes that were significantly differentially expressed for at least one time point. Genes from these

lists were plotted with hierarchical clustering using heatmap2 (R) (Hill, 2019).

Custom gene groups
Genes were clustered into functional groups and significance was evaluated using a permutation

test. Briefly, we first tabulated the absolute value of the log2 fold change of gene expression

(between MC903 and EtOH) of each gene in a given group of n genes in turn, and then we calcu-

lated the median of these fold change values, ztrue. We then drew n random genes from the set of

all genes detected in the samples and computed the median log2 fold change as above using this

null set, znull. Repeating the latter 10,000 times established a null distribution of median log2 fold

change values; we took the proportion of resampled gene groups that exhibited (ztrue �znull) as an

empirical p-value reporting the significance of changes in gene expression for a given group of n

genes.
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Flow cytometry
Skin samples were collected from the cheek of mice at the indicated time points with a 4- or 6 mm

biopsy punch into cold RPMI 1640 medium (RPMI; Gibco) and minced into smaller pieces with surgi-

cal scissors. When ear skin was collected, whole ears were dissected postmortem into cold RPMI

and finely minced with scissors. For isolation of immune cells, skin samples were digested for 1 hr at

37 ˚C using 1 U/mL Liberase TM (Roche) and 5 mg/mL DNAse I (Sigma). At the end of the digestion,

samples were washed in FACS buffer (PBS with 0.5% FCS and 2 mM EDTA) and filtered through a

70 or 100 mm strainer (Falcon). Cells were stained with LIVE/DEAD fixable stain Aqua in PBS (Invitro-

gen), then blocked with anti-CD16/32 (UCSF Core) and stained with the following fluorophore-conju-

gated antibodies (all from eBiosciences unless stated otherwise) in FACS buffer: cKit-Biotin (clone

ACK2; secondary stain with SA-FITC), CD11b-violet fluor 450 (Tonbo; clone M1/70), Ly6C-PerCP/

Cy5.5 (clone HK1.4), CD49b-PE/Cy7 (clone DX5), CD45.2-APC/Cy7 (clone 104), FceRI-PE (MAR-1),

Ly6G-AF700 (clone 1A8). 10 mL of counting beads (Invitrogen) were added after the last wash to

measure absolute cell counts. For measurement of CD4+ T cells, 6 mm skin biopsy punch samples

were digested for 30 min at 37 ˚C using Collagenase VIII (Sigma). At the end of the digestion, cells

were washed in RPMI buffer (RPMI with: 5% FCS, 1% penicillin-streptomycin, 2 mM L-glutamine, 10

mM HEPES buffer, 1 mM sodium pyruvate). Cells were blocked with anti-CD16/32 (UCSF Core) and

stained with the following fluorophore-conjugated antibodies in FACS buffer (PBS with 5% FCS and

2 mM EDTA): CD45-APC-eFluor780 (clone 30-F11; eBiosciences), CD11b-PE/Cy7 (clone M1/70; BD

Biosciences), B220-PE/Cy7 (clone RA3-6B2; Tonbo Biosciences), CD11c-PE/Cy7 (clone N418; eBio-

sciences), CD3-FITC (clone 145–2 C11; eBiosciences), CD8-BV785 (clone 53–6.7; Biolegend), CD4-PE

(clone GK1.5; BD Biosciences), gdTCR-AF647 (clone GL3; Biolegend). 10 mL of counting beads (Invi-

trogen) were added after the last wash to measure absolute cell counts, and samples were resus-

pended in DAPI LIVE/DEAD (Invitrogen). Blood samples were collected from saphenous vein or from

terminal bleed following decapitation. Red blood cells were lysed using ACK lysis buffer (Gibco),

and samples were washed with FACS buffer (PBS with 0.5% FCS and 2 mM EDTA), and blocked with

anti-CD16/32. Cells were stained with Ly6G-PE (1A8; BD Biosciences), CD11b-violet fluor 450 (M1/

70, Tonbo), Ly6C-PerCP/Cy5.5 (HK1.4, Biolegend), and aGr1-APC/Cy7 (RB6-8C5, eBiosciences). For

all experiments, single cell suspensions were analyzed on an LSR II or LSR Fortessa (BD Biosciences),

and data were analyzed using FlowJo (TreeStar, v.9.9.3) software.

Human keratinocyte RNA sequencing
Normal human epidermal keratinocytes from juvenile skin (PromoCell #C-12001) were cultured in

PromoCell Keratinocyte Growth Medium two and passaged fewer than five times. Cells were treated

for three hours at room temperature with 100 mM SLIGRL or vehicle (Ringer’s + 0.1% DMSO). Total

RNA was extracted by column purification (Qiagen RNeasy Mini Kit). RNA was sent to the Vincent J.

Coates Sequencing Laboratory at UC Berkeley for standard library preparation and sequenced on an

Illumina HiSeq2500 or 4000. Sequences were trimmed (Trimmomatic), mapped (hg19, TopHat) and

assigned to transcripts using htseq-count. Differential gene expression was assessed using R (edgeR)

(Hill, 2019). Data are available at Gene Expression Omnibus under GSE132174.

IHC of whole-mount skin
Staining was performed as previously described (Hill et al., 2018; Marshall et al., 2016). Briefly, 8

week old mice were euthanized and the cheek skin was shaved. The removed skin was fixed over-

night in 4% PFA, then washed in PBS (3X for 10 min each). Dermal fat was scraped away with a scal-

pel and skin was washed in PBST (0.3% Triton X-100; 3X for two hours each) then incubated in 1:500

primary antibody (Rabbit anti beta-Tubulin II; Abcam #ab18207 or Rabbit anti-CGRP; Immunostar

#24112) in blocking buffer (PBST with 5% goat serum and 20% DMSO) for 6 days at 4˚C. Skin was

washed as before and incubated in 1:500 secondary antibody (Goat anti-Rabbit Alexa 594; Invitro-

gen #R37117) in blocking buffer for 3 days at 4˚C. Skin was washed in PBST, serially dried in metha-

nol: PBS solutions, incubated overnight in 100% methanol, and finally cleared with a 1:2 solution of

benzyl alcohol: benzyl benzoate (BABB; Sigma) before mounting between No. 1.5 coverglass. Whole

mount skin samples were imaged on a Zeiss LSM 880 confocal microscope with OPO using a 20x

water objective. Image analysis was performed using a custom macro in FIJI. Briefly, maximum inten-

sity z-projections of the beta-tubulin III or CGRP channel were converted to binary files that
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underwent edge-detection analysis. Regions were defined by circling all stained regions. Region

sizes and locations were saved.

IHC of sectioned trigeminal ganglia
TG were dissected from 8- to 12 week old adult mice and post-fixed in 4% PFA for one hour. TG

were cryo-protected overnight at 4˚C in 30% sucrose-PBS, embedded in OCT, and then cryosec-

tioned at 14 mm onto slides for staining. Slides were washed 3x in PBST (0.3% Triton X-100), blocked

in 2.5% Normal Goat serum + 2.5% BSA-PBST, washed 3X in PBST, blocked in endogenous IgG

block (1:10 F(ab) anti-mouse IgG (Abcam ab6668) + 1:1000 Rat anti-mouse CD16/CD32 (UCSF MAB

Core) in 0.3% PBST), washed 3X in PBST and incubated overnight at 4˚C in 1:1000 primary antibody

in PBST + 0.5% Normal Goat Serum + 0.5% BSA. Slides were washed 3x in PBS, incubated 2 hr at

RT in 1:1000 secondary antibody, washed 3X in PBS, and then incubated 30 min in 1:2000 DAPI-

PBS. Slides were washed 3x in PBS and mounted in Fluoromount-G with No. 1.5 coverglass. Primary

antibodies used: Mouse anti-CD45 (eBioscience #14-054-82) and Chicken anti-Peripherin (Abcam

#39374). Secondary antibodies used: Goat anti-Chicken Alexa 594 (ThermoFisher #A11042) and

Goat anti-Mouse Alexa 488 (Abcam #150117). DAPI (ThermoFisher #D1306) was also used to mark

nuclei. Imaging of TG IHC experiments was performed on an Olympus IX71 microscope with a

Lambda LS-xl light source (Sutter Instruments). For TG IHC analysis, images were analyzed using

automated scripts in FIJI (ImageJ) software (Hill, 2019). Briefly, images were separated into the

DAPI, CD45, and Peripherin channels. The minimum/maximum intensity thresholds were batch-

adjusted to pre-determined levels, and adjusted images were converted to binary files. Regions

were defined by circling all stained regions with pre-determined size-criteria. Region sizes and loca-

tions were saved.

Neutrophil depletion
Neutrophils were acutely depleted using intraperitoneal injection with 250 mg aGR1 in PBS (clone

RB6-8C5, a gift from D. Portnoy, UC Berkeley, or from Biolegend), 16–24 hr before behavioral and

flow cytometry experiments. Depletion was verified using flow cytometry on blood collected from

terminal bleed following decapitation. For longer depletion experiments using the MC903 model,

mice were injected (with 250 mg aGR1 in PBS or PBS vehicle, i.p.) beginning one day prior to MC903

administration and each afternoon thereafter through day 7 of the model, or on days 8–11 for mea-

surement of day 12 itch behaviors, and blood was collected via saphenous venipuncture at days 3, 5,

or by decapitation at day eight to verify depletion.

CXCL10 ELISA measurements in skin
Neutrophil-depleted or uninjected mice were treated with MC903 or ethanol for 7 days. On day 8, 6

mm biopsy punches of cheek skin were harvested, flash-frozen in liquid nitrogen, cryo-homogenized

by mortar and pestle, and homogenized on ice for three minutes at maximum speed in 0.5 mL of

the following tissue homogenization buffer (all reagents from Sigma unless stated otherwise): 100

mM Tris, pH 7.4; 150 mM NaCl, 1 mM EGTA, 1 mM EDTA, 1% Triton X-100, and 0.5% Sodium deox-

ycholate in ddH2O; on the day of the experiment, 200 mM fresh PMSF in 100% ethanol was added

to 1 mM, with one tablet cOmplete protease inhibitor (Roche) per 50 mL, and five tablets PhosSTOP

inhibitor (Roche) per 50 mL buffer. Tissues were agitated in buffer for two hours at 4˚C, and centri-

fuged at 13,000 rpm for 20 min at 4˚C. Supernatants were aliquoted and stored at �80˚C for up to

one week. After thawing, samples were centrifuged at 10,000 rpm for five minutes at 4˚C. Protein

content of skin homogenates was quantified by BCA (Thermo Scientific) and homogenates were

diluted to 2 mg/mL protein in PBS and were subsequently diluted 1:2 in Reagent Diluent (R and D

Systems). CXCL10 protein was quantified using the Mouse CXCL10 Duoset ELISA kit (R and D Sys-

tems; #DY466-05) according to manufacturer’s instructions. Plate was read at 450 nm and CXCL10

was quantified using a seven-point standard curve (with blank and buffer controls) and fitted with a

4-parameter logistic curve.

Acute itch behavior
Itch behavioral measurements were performed as previously described (Shimada and LaMotte,

2008; Wilson et al., 2011; Morita et al., 2015). Mice were shaved one week prior to itch behavior
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and acclimated in behavior chambers once for thirty minutes at the same time of day on the day

prior to the experiment. Behavioral experiments were performed during the day. Compounds

injected: 1 mg carrier-free CXCL1 (R and D systems) in PBS, 3.31 mM AMG 487 (Tocris, prepared

from 100 mM DMSO stock) in 20% HPCD-PBS, 50 mM Chloroquine diphosphate (Sigma) in PBS,

along with corresponding vehicle controls. Acute pruritogens were injected using the cheek model

(20 mL, subcutaneous/s.c.) of itch, as previously described (Shimada and LaMotte, 2008). AMG 487

(50 mL) or vehicle was injected s.c. into the rostral back skin one hour prior to recording of behavior.

Behavioral scoring was performed as described above.

Lipidomics
Skin was collected from the cheek of mice post-mortem with a 6 mm biopsy punch and immediately

flash-frozen in liquid nitrogen. Lipid mediators and metabolites were quantified via liquid chroma-

tography-tandem mass spectrometry (LC-MS/MS) as described before (von Moltke et al., 2012). In

brief, skin was homogenized in cold methanol to stabilize lipid mediators. Deuterated internal stand-

ards (PGE2-d4, LTB4-d4, 15-HETE-d8, LXA4-d5, DHA-d5, AA-d8) were added to samples to calculate

extraction recovery. LC-MS/MS system consisted of an Agilent 1200 Series HPLC, Luna C18 column

(Phenomenex, Torrance, CA, USA), and AB Sciex QTRAP 4500 mass spectrometer. Analysis was car-

ried out in negative ion mode, and lipid 30 mediators quantified using scheduled multiple reaction

monitoring (MRM) mode using four to six specific transition ions per analyte (Sapieha et al., 2011).

1-Fluoro-2,4-dinitrobenzene (DNFB) model of atopic dermatitis
The DNFB model was conducted as described previously (Solinski et al., 2019a). Briefly, the rostral

backs of isofluorane-anesthetized mice were shaved using surgical clippers. Two days after shaving,

mice were treated with 25 mL 0.5% DNFB (Sigma) dissolved in 4:1 acetone:olive oil vehicle on the

rostral back using a pipette. Five days after the initial DNFB sensitization, mice were challenged with

40 mL 0.2% DNFB or 4:1 acetone:olive oil vehicle applied to the outer surface of the right ear.

Twenty-four hours after DNFB or vehicle challenge, mice were euthanized and ear skin was har-

vested for flow cytometry.

Statistical analyses
Different control experimental conditions (e.g. uninjected versus PBS-injected animals) were pooled

when the appropriate statistical test showed they were not significantly different

(Supplementary file 2). For all experiments except RNA-seq (see above), the following statistical

tests were used, where appropriate: Student’s t-test, one-way ANOVA with Tukey-Kramer post hoc

comparison, and two-way ANOVA with Tukey Kramer or Sidak’s post-hoc comparison. Bar graphs

show mean ± SEM. Statistical analyses were performed using PRISM seven software (GraphPad). For

all p values, *=0.01 < p<0.05, **=0.001 < p<0.01, ***=0.0001 < p<0.001, and ****=p < 0.0001.
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