Synthesis of S9 and S9ox

Synthesis of S9 and S9ox 1
General 1
Reaction scheme 1
Preparation of substrates and corresponding NMR spectra 2
Preparation of oxalate salt derived from S9 and corresponding NMR spectra 9

General

Chemicals and solvents were either purchased from commercial suppliers. For thin-layer chromatography (TLC), silica gel plates Merck 60 F254 were used and compounds were visualized by irradiation with UV light and/or by treatment with a solution ninhydrine followed by heating. Column chromatography was performed using silica gel Merck 60 (particle size $0.063-0.200 \mathrm{~mm}$). ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on Bruker AVANCE III 400. Chemical shifts for protons are given in δ relative to tetramethylsilane (TMS) and are referenced to residual protium in the NMR solvent (DMSO- $d_{6}: \delta=2.50 \mathrm{ppm}$, Methanol- $d_{4}: \delta=4.87 \mathrm{ppm}$). Chemical shifts for carbon are referenced to the carbon in NMR solvent (DMSO- $d_{6}: \delta=39.52 \mathrm{ppm}$,, Methanol- $d_{4}: \delta=49.00 \mathrm{ppm}$. The coupling constants J are given in Hz. IR DRIFT spectras were recorded with Nicolet AVATAR 370 FT-IR in cm^{-1}. High-resolution mass spectras were recorded with LCQ Fleet spectrometer.

Reaction scheme

Scheme 1: Synthetic route to S 9 . Reagents and conditions: a) $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}$, reflux, 22% yield, b) 4-propoxyaniline, EtOH , reflux, 47% yield.

Preparation of substrates

N-(4,6-Dimethylpyrimidin-2-yl)cyanamide
N-(4,6-Dimethylpyrimidin-2-yl)cyanamide was prepared according to previously reported procedure. ${ }^{1}$
Cyanoguanidine ($5.0 \mathrm{~g}, 60 \mathrm{mmol}$), acetylacetone ($9.0 \mathrm{~g}, 90 \mathrm{mmol}$) were added to a solution of $\mathrm{NaOH}(0.3 \mathrm{M}, 40 \mathrm{ml})$ and the reaction mixture was stirred under reflux 48 h . Then the mixture was cooled to $4^{\circ} \mathrm{C}$, solids were filtered and washed with minimal amount of water. Filtrate cake was recrystallized from boiling ethanol (approx. 120 ml).
22% yield, white solid, m.p. $=228.7^{\circ} \mathrm{C},{ }^{1} \mathbf{H}-\mathrm{NMR}$: $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=12.58(\mathrm{~s}, 1 \mathrm{H})$, $6.63(\mathrm{~s}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{ppm},{ }^{13} \mathrm{C}-$ NMR: (101 MHz, DMSO- d_{6}) $\delta=166.8,160.2$ (2C), 115.8, 109.7, 21.9 (2C) ppm, IR (KBr) $v=3503,3282,3249,3064,3010,2980,2857,2842$, 2815, 2621, 2319, 2244, 2202, 2175, 2089, 1838, 1727, 1649, 1610, 1422, 1362, 1323, 1231, 1195, 1165, 1036, 1018, $985 \mathrm{~cm}^{-1}$, HRMS (ESI+) $m / z:$ calcd. for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 149.0827, found: 149.0792.

1-(4,6-Dimethylpyrimidin-2-yl)-3-(4-propoxyphenyl)guanidine

 4-Propoxyaniline ($307 \mathrm{mg}, 2.03 \mathrm{mmol}, 1.5 \mathrm{eq}$.) was added dropwise to a suspension of $N-(4,6-$ dimethylpyrimidin-2-yl)cyanamide (200 mg, $1.35 \mathrm{mmol} ; 1.0$ eq.) in anhydrous EtOH (4 ml). Solids were dissolved during addition of aniline. Reaction mixture was heated to reflux. At this temperature reaction mixture was stirred for 72 h and monitored by TLC (eluent: MeOH). Then reaction mixture was cooled to $-35^{\circ} \mathrm{C}$ and solution of $\mathrm{NaOH}(10 \mathrm{ml}, 10 \% \mathrm{w} / \mathrm{w})$ was added dropwise. Solids were filtered and washed with $\mathrm{Et}_{2} \mathrm{O}$ $(4 \times 20 \mathrm{ml})$. Filtrate cake was dissolved in MeOH and purified by column chromatography on silica with MeOH as an eluent.
47% yield, white solid, m.p. $=191.5{ }^{\circ} \mathrm{C}, \boldsymbol{R}_{\mathrm{f}}=0.36\left(\mathrm{MeOH}\right.$, ninhydrine), ${ }^{\mathbf{1}} \mathbf{H}$-NMR: (400 MHz , Methanol- d_{4}) $\delta=7.21-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 3.89(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.27(\mathrm{p}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 6 \mathrm{H}), 1.83-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(101 \mathrm{MHz}\right.$, Methanol- d_{4}) $\delta=168.6$ (2C), 165.2, 158.1, 157.3, 133.7, 126.6 (2C), 116.4 (2C), 112.9, 70.9, 23.74 (2C), 23.69, 10.9 ppm , IR (KBr) $v=3312$, 3106, 3088, 2959, 2893, 2869, 1631, 1577, 1527, 1509, 1419, 1383, 1344, 1237, 1171, 1117, 1075, 1048, $1024 \mathrm{~cm}^{-1}$, HRMS (ESI+) m/z: calcd. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}[\mathrm{M}+\text { ? }]^{+}: 300.1824$, found: 300.1773 .

[^0]NMR spectra

N-(4,6-Dimethylpyrimidin-2-yl)cyanamide

DEPT-135

COSY

HSQC

HMBC

1-(4,6-Dimethylpyrimidin-2-yl)-3-(4-propoxyphenyl)guanidine

DEPT-135

COSY

HSQC

HMBC

Preparation of oxalate salt derived from S9

Corresponding oxalate salt derived from 1-(4,6-dimethylpyrimidin-2-yl)-3-(4propoxyphenyl)guanidine was prepared according to previously reported procedure. ${ }^{2}$
Oxalate acid dihydrate (27.1 mg ; $0.167 \mathrm{mmol} ; 1.0$ eq.) was dissolved in distilled water $(1.0 \mathrm{ml})$. To this solution was added 1-(4,6-dimethylpyrimidin-2-yl)-3-(4-propoxyphenyl) ($20.0 \mathrm{mg}, 0.167 \mathrm{mmol}, 1.0$ eq.). Reaction mixture was stirred for 24 h at room temperature. Water was evaporated. Resulting solid was used directly to further studies.
quantitative yield, white solid, ${ }^{1} \mathbf{H}-\mathrm{NMR}$: $\left(400 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=9.18(\mathrm{~s}, 2 \mathrm{H}), 7.38-7.22$ (m, 2H), $7.18-6.94(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.42(\mathrm{~s}, 6 \mathrm{H}), 1.74(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H})$, $0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) \mathrm{ppm},{ }^{13} \mathrm{C}-\mathrm{NMR}:\left(101 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta=168.1$ (2C), 165.2, 157.9, 157.2, 154.1 (2C), 127.5 (2C), 126.7, 115.7 (2C), 115.5, 69.3, 23.4 (2C), 22.0, 10.5 ppm. 168.6 (2C), 165.2, 158.1, 157.3, 133.7, 126.6 (2C), 116.4 (2C), 112.9, 70.9, 23.74 (2C), 23.69, 10.9 ppm IR (KBr) $v=3375,3294,3111,2959,2881,1736,1652,1613,1545,1512$, $1428,1356,1341,1299,1240,1207,1180,1099,1078,1054,1015 \mathrm{~cm}^{-1}$.

[^1]

DEPT-135

COSY

HSQC

HMBC

[^0]: ${ }^{1} \mathrm{WO} 2013 / 53726,2013, A 1$.

[^1]: ${ }^{2}$ Israel, M.; Zoll, E. C.; Muhammad, N.; Modest, E. J. Med. Chem. 1973, 16, 1-5.

