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revealed by two-photon imaging
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Department of Neuroscience, Erasmus MC, University Medical Center Rotterdam,
Rotterdam, Netherlands

Abstract The dorsal (DCIC) and lateral cortices (LCIC) of the inferior colliculus are major targets

of the auditory and non-auditory cortical areas, suggesting a role in complex multimodal

information processing. However, relatively little is known about their functional organization. We

utilized in vivo two-photon Ca2+ imaging in awake mice expressing GCaMP6s in GABAergic or non-

GABAergic neurons in the IC to investigate their spatial organization. We found different classes of

temporal responses, which we confirmed with simultaneous juxtacellular electrophysiology. Both

GABAergic and non-GABAergic neurons showed spatial microheterogeneity in their temporal

responses. In contrast, a robust, double rostromedial-caudolateral gradient of frequency tuning

was conserved between the two groups, and even among the subclasses. This, together with the

existence of a subset of neurons sensitive to spontaneous movements, provides functional

evidence for redefining the border between DCIC and LCIC.

DOI: https://doi.org/10.7554/eLife.49091.001

Introduction
The inferior colliculus (IC) is a major auditory processing center, which receives input from most

brainstem auditory nuclei. The IC is usually divided into three main regions: the central nucleus

(CNIC), the lateral cortex (LCIC), and the dorsal cortex (DCIC; Oliver, 2005). The latter two,

together also known as the ‘shell region’ of the IC, are part of the non-lemniscal pathway, and are

heavily innervated by feedback projections from the cerebral cortex. The DCIC is often defined as

the part that covers the CNIC dorsally (e.g. Zhou and Shore, 2006). The LCIC is characterized by

distinct neurochemical modules, which can be visualized with various histochemical methods such as

acetylcholinesterase or NADPH diaphorase staining, as well as dense labeling of GABAergic termi-

nals and sparse calretinin immunoreactivity (Lesicko et al., 2016; Dillingham et al., 2017). These

modules show a distinct complement of Eph-ephrin guidance molecules during development

(Wallace et al., 2016; Gay et al., 2018) and receive input from non-auditory areas (Lesicko et al.,

2016; Patel et al., 2017), hinting at their integral role in multisensory integration in the IC. Here, we

refer to the external cortex and lateral nucleus of the IC as the lateral cortex (LCIC; Loftus et al.,

2008), which includes layer three or the ventrolateral nucleus, and refer to the dorsal cortex and

pericentral nucleus as the dorsal cortex of the IC (DCIC). The DCIC and LCIC are at the surface of

the mouse brain, making the dorsal IC an accessible structure for in vivo imaging (Geis and Borst,

2013; Barnstedt et al., 2015; Babola et al., 2018).

Because of the prominence of descending, cortical input, the DCIC and LCIC is ideally studied in

awake, behaving animals. A number of studies have addressed the firing of IC neurons in awake bats

(e.g. Xie et al., 2005; Xie et al., 2007; Xie et al., 2008; Andoni and Pollak, 2011; Gittelman and

Li, 2011a; Gittelman and Pollak, 2011b; Gittelman et al., 2012) or mice (Gittelman et al., 2013;

Grimsley et al., 2013; Duque and Malmierca, 2015; Ayala et al., 2016; Grimsley et al., 2016;
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Longenecker and Galazyuk, 2016; Galazyuk et al., 2017). However, the yield of such recordings is

limited, and the acute nature of some of the studies means that residual anesthetics and analgesics

may have interfered with neuronal activity.

Moreover, relatively little is known about different cell types in the DCIC and LCIC. Around one-

fourth of neurons in the IC are GABAergic (Schofield and Beebe, 2019). In particular the large

GABAergic neurons seem to form a distinct subclass (Ito et al., 2009; Ito and Oliver, 2012;

Geis and Borst, 2013), but based on histology, at least four different subclasses of GABAergic neu-

rons can be discriminated, which all contribute to the ascending projections to the medial geniculate

body of the thalamus (Beebe et al., 2018).

Here, we describe the use of two transgenic mouse lines to characterize GABAergic and glutama-

tergic neuronal subpopulations in the dorsal IC in awake animals using in vivo two-photon Ca2+

imaging. We studied GABAergic neurons with a Gad2-IRES-Cre mouse (Taniguchi et al., 2011) that

was crossed with the GCaMP6s reporter line Ai96 (Madisen et al., 2015) and a sub-population of

non-GABAergic neurons using the Thy1-driven GCaMP6s transgenic line GP4.3 (Dana et al., 2014).

We show a rich diversity of sound-evoked responses in both GABAergic and non-GABAergic neu-

rons in the awake mouse, confirmed with simultaneous juxtacellular electrophysiology in awake ani-

mals. Remarkably, we observed a reversal of the characteristic frequency (CF) gradient in the

rostromedial-caudolateral direction, which was conserved between GABAergic and non-GABAergic

cells, as well as among cells with different classes of sound-evoked response. Moreover, we found a

subset of neurons that were responsive to spontaneous movement of the animal, and were poten-

tially associated with multisensory neurochemical modules (Lesicko et al., 2016). These findings sug-

gest that the large majority of the dorsal IC surface belongs to the LCIC.

Results

Expression of GCaMP6s in IC subpopulations of transgenic mice
To better understand the response heterogeneity observed in IC neurons, we used transgenic lines

in which the GCaMP reporter was selectively expressed in subpopulations. Two transgenic mouse

lines were used: GP4.3, a Thy1-driven GCaMP6s expression line (Dana et al., 2014), and a cross

between Gad2-IRES-Cre line (Taniguchi et al., 2011) and Ai96, a Cre-dependent GCaMP6s reporter

line (Madisen et al., 2015). We will refer to the latter as Gad2;Ai96.

To confirm the neurochemical identity of GCaMP6s-positive neurons in the transgenic lines, we

performed immunolabeling of GAD67. Figure 1 shows example staining and the proportion of

GCaMP-positive neurons expressing GAD67 in each line. We did not distinguish between the differ-

ent subregions of the IC in this analysis. The large majority (4651/4898; 95%) of GCaMP-positive

neurons in the GP4.3 line were not positive for GAD67 (Figure 1A–D), showing that the Thy1-pro-

moter preferentially expressed GCaMP6s in non-GABAergic cells in the IC. Not all non-GABAergic

cells were GCaMP-positive, as shown by the NeuN-positive, GCaMP-negative cell bodies in

Figure 1C (arrowheads). In particular, we observed that GCaMP6s-positive neurons are enriched at

the border of neurochemical modules characterized by dense GAD67 terminals (Figure 1E–G).

In contrast, we detected GAD67 immunoreactivity in >93% (1702/1828) of GCaMP-positive neu-

rons in the Gad2;Ai96 mice (Figure 1D,H–O). Not all GAD67-positive cells in this mouse line were

labeled by GCaMP6s (e.g. arrowheads in Figure 1J).

In addition to GAD67, the calcium buffer parvalbumin (PV) is another marker for neurochemical

modules in the rat (Chernock et al., 2004), while the calcium buffer calretinin (CR) shows a comple-

mentary expression (i.e. in the extramodular region) in early postnatal and juvenile mice

(Dillingham et al., 2017). To get a better idea of the relative contribution of modular and extramod-

ular regions to GCaMP6 responses, we investigated the co-expression of GCaMP6 with PV or CR in

the two transgenic lines (Figure 1—figure supplement 1). We found that a large majority (94%) of

GCaMP+ cells in GP4.3 did not show strong immunoreactivity for either marker (CR++: 2.2%; PV++:

2.9%; PV++CR++: 0.9%), whereas in the Gad2;Ai96 line a larger fraction of GCaMP+ cells were posi-

tive for CR or PV (CR++: 17%; PV++: 22%; PV++CR++: 7%; Figure 1—figure supplement 1G). On

the other hand, GCaMP was expressed in 38% of CR++ cells and 70% of PV++ cells in the IC of

Gad2;Ai96 mice, while a lower fraction of CR++ (9.1%) and PV++ (13.4%) cells were positive for

GCaMP in GP4.3 mice (Figure 1—figure supplement 1H,I). At the single neuron level, the presence
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Figure 1. Co-expression between GCaMP6s and GAD67 in the two transgenic mouse lines. (A) Single optical section of an IC brain slice from a GP4.3

mouse immunolabeled for GAD67 (magenta) and GCaMP6s (green). (B) Distribution of GCaMP+ and GAD67+ cells within the 40 mm brain slice in A,

color-coded by their immunoreactivity to GFP and GAD67 antibodies. GP+/�: GCaMP-positive/negative. (C) Enlarged image from A (small square),

showing different combinations of immunoreactivity: GCaMP (green), GAD67 (magenta) and NeuN (blue). Arrowheads point at two GP�GAD67+ cells.

Due to optical sectioning only a subset of cells marked in B are visible. (D) Percentage of GCaMP+ cells showing immunoreactivity for GAD67

antibodies (error bars: s.e.m.; GP4.3: n = 3 slices from three animals; Gad2;Ai96: n = 4 slices from three animals) (E–G) Enlarged image from large

square in A showing two GAD67-dense modules marked by dashed lines. GP+ cells in GP4.3 were concentrated at the border of these modules. (H–I)

Same as A and B, but from a Gad2;Ai96 mouse. (J–K) Enlarged region from H (square). Arrowheads point at two GP�GAD67+ cells. (L–O) Examples of

GP+GAD67+ cells from G showing images from GAD67 and GCaMP channels separately.

DOI: https://doi.org/10.7554/eLife.49091.002

The following source data and figure supplement are available for figure 1:

Source data 1. CellCounter source data XML files generated by Cell counter plug-in in FIJI containing the actual counted datapoints of each cell type,

with text files explaning the different cell types being counted.

DOI: https://doi.org/10.7554/eLife.49091.004

Figure 1 continued on next page
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or absence of the two buffers was insufficient to indicate whether the neurons lay within a module.

These results suggest that for both lines there is not a clear enrichment of GCaMP6+ neurons within

the neurochemical modules.

Sound-evoked changes in FGCaMP of IC neurons show prominent
inhibitory responses
Unanaesthetized, head-fixed mice with implanted cranial windows (Figure 2A–B) were imaged with

two photon microscopy (Figure 2C–D) and subjected to 1 s pure tones of various frequencies and

intensities (Figure 2E). Average fluorescence of regions-of-interest (ROIs) encompassing the cell

body were analyzed, after subtracting the fluorescent change of a background region surrounding

the cell body (Figure 2D). The use of longer stimuli allowed a detailed characterization of the kinet-

ics of the fluorescence change (DFGCaMP). Importantly, we observed both increases, which were

either transient or sustained, and decreases in FGCaMP during the presentation of stimuli, and some

cells showed a sharp increase in FGCaMP directly after the cessation of the sound (Figure 2E). The dif-

ferent fluorescence responses were classified as excitation, inhibitory and offset, respectively (see

Materials and methods, Figure 3A–D). The excitatory responses were further divided into onset and

sustained classes based on the kinetics of the fluorescence change (Figure 3A,B, Figure 3—figure

supplement 1). The decrease in fluorescence upon sound stimulation was likely due to sound-

evoked inhibition of spontaneous firing in these cells. Some cells showed a mixture of response

kinetics, some even to the same stimulus. Particularly common was the combination of inhibitory

and offset responses (e.g. Figure 3E,M). Another common combination were onset-offset cells in

which a lower frequency elicited an onset/sustained response, while a slightly higher frequency eli-

cited an offset response (e.g. Figure 3I). Inhibitory and offset responses were not reported in earlier

imaging experiments performed in anesthetized mice (Ito et al., 2014; Barnstedt et al., 2015); their

use of shorter stimuli did not allow a distinction between onset and sustained responses. A great

variety of frequency response areas (FRAs) was observed (Figure 3F–M), with some cells showing

responses to tones as high as 64 kHz, the highest frequency presented in this study (e.g. Figure 3G).

In GP4.3 mice, 64% of the cells (696 out of 1090) cells showed detectable fluorescence changes

in response to 1 s pure tone stimuli. We classified the responses and the overall FRA of a cell based

on the criteria described in the Materials and methods. Among the responsive cells, 30% (210 cells)

showed excitatory FRAs (e.g. Figure 3—figure supplement 2), with fluorescence increasing during

sound presentation; while 13% (89 cells) showed offset FRAs, with fluorescence increasing after

sound presentation. Another 30% (207 cells) showed inhibitory FRAs, with fluorescence decreasing

during sound. The FRAs of the remaining 27% (190 cells) showed mixtures of these response catego-

ries. The proportion of different FRA classes are summarized in Figure 4A. The proportion of cells

showing sound-evoked inhibition was clearly higher than the 2–23% reported for anesthetized

C57BL/6 mice in Willott et al. (1988a).

In Gad2;Ai96 mice 73% (247 out of 342 cells) of GCaMP6s-positive IC neurons showed consistent

fluorescence responses to 1 s pure tone stimuli. Among the responsive cells, 46% (115 cells) showed

excitatory FRAs. Four percent (11 cells) showed offset FRAs. Another 26% (65 cells) showed inhibi-

tory FRAs. The remaining 23% (56 cells) showed mixtures of the three response categories. The pro-

portion of different FRA classes in Gad2;Ai96 mice are summarized in Figure 4B; it was similar to

that of GP4.3 mice, but with a somewhat smaller fraction of offset and a larger fraction of excitatory

FRAs.

Relationship between cell type and soma size
GABAergic cells had a larger soma size, as reported previously (cat: Oliver et al., 1994; rat:

Merchán et al., 2005). The estimated diameters for Gad2;Ai96 and GP4.3 cells, defined as 4/p times

the square root of the ROI area in imaging experiments, were 21.9 ± 4.9 mm (mean ±s.d.) and

15.9 ± 2.6 mm, respectively (Figure 4C, p<0.001 Wilcoxon Rank Test). Within each genotype, soma

Figure 1 continued

Figure supplement 1. Expression of parvalbumin and calretinin in GCaMP+ neurons in the two transgenic mouse lines.

DOI: https://doi.org/10.7554/eLife.49091.003
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Figure 2. Calcium imaging of dorsal inferior colliculus in awake mice. (A) Illustration of the cranial window construct imaged with a numerical aperture

(NA) 0.95 water-immersion objective. (B) Top-down view of cranial window, showing optically exposed inferior colliculus (IC), superior colliculus (SC),

cerebral cortex (cortex) and cerebellum (Cb). (C) Averaged GCaMP6s fluorescence in a 256 � 128 mm area, showing regions-of-interest (ROIs; dotted

lines) defined around neuronal somata. (D) Enlarged view from C, showing pixels included in an ROI (green overlay) and a surrounding 2 mm wide

background region (magenta overlay). Pixels belonging to other ROIs were excluded from the background region. (E) Background-subtracted

fluorescence over time of the ROIs labeled a,b,c in C. Tones of 1 s duration with different frequencies and intensities were played, evoking different

responses in IC neurons. The same sound (shaded area) evoked an inhibitory response in ROI a, an offset response in ROI b and a sustained excitatory

response in ROI c.

DOI: https://doi.org/10.7554/eLife.49091.005

The following figure supplement is available for figure 2:

Figure supplement 1. Reduction of scanner noise by sinusoidal galvo scanning.

DOI: https://doi.org/10.7554/eLife.49091.006
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Figure 3. Different sound evoked responses and frequency response areas of representative example cells. (A) An onset fluorescence response to a 1 s

pure tone. Gray vertical lines indicate onset and offset of sound stimulus. Colored and gray traces are average and individual trial fluorescence

changes, respectively, normalized to a one-second baseline immediately before the stimulus onset (DF/Fb). (B) A sustained fluorescence response. (C)

An inhibitory response. (D) An offset response. (E) A mixed inhibitory and offset response. Example FRAs from GP4.3 (F–I) and Gad2;Ai96 (J–M) mice.

Each subplot shows the average DF/Fb to a stimulus of the specified frequency and intensity. Background color shows average Pearson’s correlation

among repetitions, indicating consistency of response (Geis et al., 2011). Black squares mark significant correlation from bootstrap analysis. Cells in (G)

and (J) are examples of cells with an onset FRA; cells in (F) and (K) showed a sustained FRA; cells in (H) and (L) were inhibited by sound; cells in (I) and

(M) showed a mixture of different response classes. (I) A typical onset-offset cell with frequency-dependent responses: onset fluorescence responses to

2.5 kHz tones and offset fluorescent responses to 3.2 and 4 kHz tones. (M) A cell showing intensity-dependent responses: at 12.7 kHz, low intensity

tones evoked a decrease in fluorescence (inhibited) while tones at 80 dB elicited an offset response. Tones at 60–70 dB elicited a mixture of inhibition

and offset responses. Vertical scale bars in (F–I) indicates 1 Fb.

DOI: https://doi.org/10.7554/eLife.49091.007

Figure 3 continued on next page
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size did not differ significantly among cells with different FRA classes. For GP4.3: onset cells

12.3 ± 2.6 mm, sustained 12.5 ± 2.0 mm, inhibited 13.0 ± 1.8 mm, offset 12.3 ± 2.0 mm (p=0.112, Krus-

kal-Wallis Rank test). For Gad2;Ai96: onset cells 16.6 ± 3.4 mm, sustained 17.4 ± 3.6 mm, inhibited

18.1 ± 3.3 mm, offset 15.6 ± 3.1 mm (Figure 4C; p=0.033, Kruskal-Wallis Rank test, followed by

Dunn’s [Dunn-Holland-Wolfe] test where none of the comparisons reached critical value; only cells

with non-mixed FRAs were compared because of the heterogeneity and small sample size of the dif-

ferent mixed response classes).

Detailed kinetics of the different response classes
The temporal kinetics of the FGCaMP response of each cell were assessed by averaging the fluores-

cence change across all stimuli that showed a significant response. Single exponential functions were

fit to the onset (0–1 s re stimulus onset) and the offset/decay (0.5–4 s re stimulus offset) periods (Fig-

ure 3—figure supplement 1A,B). Time constants were restricted to be positive. Due to the limited

stimulus duration, any fit resulting in an onset time constant (tonset) greater than 1000 ms to an

increase in fluorescence was considered sustained activity and these fit constants were not used for

averaging. For excitatory responses (onset, sustained and offset), a time constant of around 1 s (Fig-

ure 3—figure supplement 1D) was found for the decay period, similar to the decay time constant

reported previously for GCaMP6s (Chen et al., 2013).

Electrophysiological correlates of response classes
To relate the different fluorescence responses to spiking patterns, which are highly heterogeneous

within the IC (e.g. Willott et al., 1988a; Willott et al., 1988b; Tan and Borst, 2007), we combined

Ca2+ imaging with in vivo juxtacellular recordings in awake mice. We recorded from neurons show-

ing onset, sustained and inhibitory tone-evoked fluorescence responses. For fluorescence responses

that we classified as onset, electrophysiological recordings showed that this class can represent a

cell whose firing rate quickly adapted during our one-second long stimuli (example in Figure 5A–C,

D left). We observed sustained fluorescence responses that corresponded to sustained firing

(Figure 5D middle) with different amount of adaptation. Inhibitory responses corresponded to cells

that reduced their spontaneous firing upon sound stimulation (Figure 5D right).

We further characterized the relationship between fluorescence responses and firing patterns by

fitting a model to our data set (Figure 5E,F, Figure 5—figure supplements 1–3; see Materials and

methods for equations). We found that on average, an action potential led to a median increase of

0.35 (GP4.3; n = 5 cells) or 0.14 (Gad2;Ai96; n = 12 cells) times the minimal fluorescence (F0), with a

median zero-to-peak rise time of 480 ms (GP4.3) or 560 ms (Gad2;Ai96) and a median decay time

constant of 1.04 s (GP4.3) or 1.36 s (Gad2;Ai96). The model could explain between 50% and 95% of

the variance in the fluorescence (median: 79%; average ±s.d.: 77 ± 13%).

Spatial distribution of frequency tuning
The widespread and homogeneous expression of GCaMP6s in the IC of the transgenic mice allowed

a good overview of its functional organization. We aligned the position of the cells from multiple ani-

mals (GP4.3: n = 7 mice; Gad2;Ai96: n = 6 mice) by anatomical landmarks (midline, anterior and pos-

terior extent of the exposed IC, lateral extent of the exposed IC), and plotted the cells on this

common anatomical coordinate system (Figure 6A; Figure 6—video 1).

Interestingly, we observed a central strip running in the caudomedial-rostrolateral orientation of

cells responding to lower frequencies, while CF progressively increased in both the caudolateral and

Figure 3 continued

The following source data and figure supplements are available for figure 3:

Source data 1. Fluorescence kinetics source data CSV file containing fluorescence kinetics of ROIs, genotype of animal and type of FRA.

DOI: https://doi.org/10.7554/eLife.49091.010

Figure supplement 1. Kinetics of fluorescence responses.

DOI: https://doi.org/10.7554/eLife.49091.008

Figure supplement 2. Another example FRA from a GP4.3 mouse, showing onset response and broad tuning.

DOI: https://doi.org/10.7554/eLife.49091.009
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the rostromedial direction. We tried to estimate the orientation of the spatial organization by projec-

ting the x,y-coordinates of all neurons onto an axis with a parametrized angle q, while simultaneously

fitting the log-transformed CF using a polynomial model (see Materials and methods). We used a

polynomial model fit as a way to extract any general direction along which CFs may diverge, without

imposing any presumption about the spatial CF dependence. We found that a fourth order polyno-

mial captured the variance maximally; further increasing its order did not lead to better fits. The

results of the fit are presented as contour lines in Figure 6A, with the best orientation (q) 50˚ from

the medial-lateral (x) axis. A plot along this orientation shows a high fraction of low CF (~4 kHz) neu-

rons near the 625 mm position, with the mode going towards ~20 kHz at the 1300 mm end

(Figure 6B). The increase in CFs on the rostromedial side was not as pronounced, likely due to the

low number of neurons sampled in this region. The solid line in Figure 6B shows the best polynomial
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Figure 4. Proportion of response classes and relationship with cell size. (A–B) Proportions of response classes in GP4.3 (A) and GAD2;Ai96 animals (B).

(C) Bee swarm plot and mean ±s.d. for cell size for ROIs of different non-mixed response classes, separated by genotypes, measured as the size of the

ROI (Area) in imaging experiments. Estimated diameters (d) were calculated by assuming a circular shape (i.e. logðCFÞ ¼
P
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air
i). Cells imaged in Gad2;

Ai96 mice were on average larger than those in GP4.3 mice.

DOI: https://doi.org/10.7554/eLife.49091.011

The following source data is available for figure 4:

Source data 1. IC ROI Area source data CSV file containing fluorescence area and estimated diameter of ROI, genotype of animal and type of FRA.

DOI: https://doi.org/10.7554/eLife.49091.012
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Figure 5. Relationship between GCaMP6s fluorescence and spikes in IC neurons. (A) Imaging of a GCaMP6s+ cell (green) in an awake GP4.3 animal

with simultaneous juxtacellular recording with a pipette filled with Alexa 594 (red). (B) Spiking pattern (upper) and fluorescence (lower) of the example

cell can be well related by a linear convolution of spike rate with a linear ramp, exponential decay kernel (model: green). Fit parameters: F0 = 28.8 a.u.;

DF1AP = 10.2 a.u.; trise = 532 ms; tdecay = 859 ms. Numbers above bursts indicate number of spikes, and asterisks (*) mark single spikes. (C) Frequency

tuning of the cell. Peristimulus time histogram (PSTH; upper, 50 ms bins, 10 repetitions) and mean fluorescence change of the cell in response to 1 s

tone bursts. (D) Raster plots, PSTHs and fluorescence responses (mean: black; individual: gray) of an onset cell (same example as A-C), a sustained cell

and an inhibited cell. Due to their rarity, we have not obtained a simultaneous recording for offset cells. (E) Relation between normalized single action

potential amplitude (F1AP/F0) and decay time constant (tdecay). (F) Relation between rise time (zero-to-peak; trise) and tdecay. Color in E and F indicate

response class (red: inhibited; dark green: onset; light green: sustained; black: no tone-evoked response) of the cell.

DOI: https://doi.org/10.7554/eLife.49091.013

The following source data and figure supplements are available for figure 5:

Source data 1. Ground-truth model fitting source data CSV file containing model parameters from ground-truth data fitting and the variance explained,

genotype of animal and type of FRA.

DOI: https://doi.org/10.7554/eLife.49091.017

Figure supplement 1. Example model fit to a cell with a sustained FRA.

DOI: https://doi.org/10.7554/eLife.49091.014

Figure supplement 2. Example model fit to a cell with an inhibited FRA.

DOI: https://doi.org/10.7554/eLife.49091.015

Figure supplement 3. Example model fit to spontaneous activity of a cell.

DOI: https://doi.org/10.7554/eLife.49091.016
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Figure 6. Tonotopic organization. (A) Combined spatial distribution of characteristic frequencies (CFs) in the two transgenic lines, aligned to the same

top-down image of an exposed left IC. Symbol size represents the size of the ROI, while colors indicate different CFs. Cells from Gad2;Ai96 mice were

marked by diamonds. For GP4.3, the shape of the symbol represents ROIs from C57BL/6J (circles) or B6CBAF1 (squares) background. To capture a

direction of tonotopy, CF was fitted with a 4th-order polynomial r = x cos� + y sin� where r is a presumed direction of tonotopy at an angle � (i.e.

r = xcosq+ysinq), with the origin being the contact point between superior and inferior colliculi at the midline. The best fit yielded an angle � of 50˚

from the medial-lateral axis. Contour lines indicate the predicted CF of the fit. (B) Geometric mean (open circles) and probability distribution

(background shading) of CF along the 50˚ line, in 75 mm bins. Black trace shows the fitted 4th-order polynomial. (C) Geometric mean of CF along the 50˚

line for the GP4.3 (black) and Gad2-cre*Ai96 (gray) lines. Size of symbol represent number of cells in each 75 mm bin. (D) Geometric mean of CF for

cells of onset, sustained, inhibited or offset FRAs. (E) Depth dependence of CFs along the 50˚ line. (F) Histogram of CF grouped according to depth

from pia surface. Note that low CF cells are present at all imaging depths.

DOI: https://doi.org/10.7554/eLife.49091.018

The following video, source data, and figure supplements are available for figure 6:

Source data 1. IC CF Distribution source data CSV file containing 3D coordinate of ROIs, projected distance of ROIs, genotype of animal and type of FRA.

DOI: https://doi.org/10.7554/eLife.49091.027

Figure supplement 1. Tonotopic organization of a single GP4.3 animal (Mouse 20976–07; B6CBAF1/J background), registered to widefield image in

Figure 6A.

DOI: https://doi.org/10.7554/eLife.49091.019

Figure supplement 2. Tonotopic organization of a single GP4.3 animal (Mouse 11605–01; C57BL/6J background), registered to widefield image in

Figure 6A.

DOI: https://doi.org/10.7554/eLife.49091.020

Figure supplement 3. Tonotopic organization of a single Gad2;Ai96 animal (Mouse 12156–03), registered to widefield image in Figure 6A.

DOI: https://doi.org/10.7554/eLife.49091.021

Figure 6 continued on next page
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fit, which explained around 13% of the variance in CFs. This tonotopic organization can also be

appreciated in individual animals in which a wide extent of the dorsal IC was imaged (Figure 6—fig-

ure supplements 1–3). Additional examples of the tonotopic organization in individual animals are

shown in Figure 6—figure supplements 4–6. A similar spatial distribution of CFs was observed for

GABAergic and glutamatergic neurons (Figure 6C) and for cells showing different response classes

(Figure 6D).

Based on a clustering analysis, Barnstedt et al. (2015) suggested that the central strip of low fre-

quency neurons were from the most dorsal end of the central nucleus, and we did observe a small

but significant correlation between depth and log(CF) (Figure 6—figure supplement 7; correlation

coefficient = �0.22; n = 799; p=3 � 10�10). However, a plot of CF along the best orientation from

the polynomial fit as a function of depth illustrates that most cells were located within 100 mm from

the surface, and that the low frequency neurons were also among the most superficial cells

(Figure 6E). When we limited the fit to neurons < 50 mm from the pia surface, the same tonotopic

pattern appeared (Figure 6—figure supplement 8). There was an over-representation of low CF

neurons in the deepest regions (121–160 mm deep, Figure 6E,F). We attribute this to a sampling

bias in which the low frequency region coincided with the center of the cranial window, where it was

possible to image somewhat deeper than towards the edges (Figure 6E). Objects in the center of

the window profit from utilization of the full NA for focusing excitation light, which is especially criti-

cal for two-photon excitation, and in the center both excitation and fluorescence emission light is

least obstructed (Figure 2A). Restricting the analysis to cells in the central strip (525–725 mm of pro-

jected area) reduced the correlation coefficient for the relation between depth and log(CF), but it

remained significant (Figure 6—figure supplement 7; correlation coefficient = �0.17, n = 295;

p=0.003), hinting at differences between deeper and the most superficial cells. While we do not

exclude the possibility of imaging into the central nucleus of the IC, we believe the observed tono-

topy to be a good representation of the IC shell region because all CFs were represented among

the most superficial neurons (Figure 6E,F).

Spatial distribution for response classes
We next asked whether there was any obvious spatial organization of the different response classes.

Figure 7A shows the proportion of different response classes along our presumed tonotopic axis,

which looked rather homogenous, without any obvious difference between cells rostromedial and

caudolateral to the CF minimum. The same pattern holds for the orthogonal direction (Figure 7B).

Neurons with movement related activity and their localization
Interestingly, we observed cells that showed fluorescence transients in the absence of sound presen-

tation (Figure 8A,B). Numerous studies have shown both ascending and descending somatosensory

projections to the IC (Aitkin et al., 1981; Künzle, 1998; Jain and Shore, 2006; Zhou and Shore,

2006; Lesicko et al., 2016; Patel et al., 2017), as well as from nuclei that are upstream from IC

such as the dorsal cochlear nucleus, which also receive somatosensory inputs (Wu et al., 2014). In

addition, the IC receives inputs from the motor cortex (Cooper and Young, 1976; Olthof et al.,

Figure 6 continued

Figure supplement 4. Tonotopic organization of a single Gad2;Ai96 animal (Mouse 12156–04), registered to widefield image in Figure 6A.

DOI: https://doi.org/10.7554/eLife.49091.022

Figure supplement 5. Tonotopic organization of a single GP4.3 animal (Mouse 11605–04; C57BL/6J background), registered to widefield image in

Figure 6A.

DOI: https://doi.org/10.7554/eLife.49091.023

Figure supplement 6. Tonotopic organization of a single Gad2;Ai96 animal (Mouse 14234–01), registered to widefield image in Figure 6A.

DOI: https://doi.org/10.7554/eLife.49091.024

Figure supplement 7. Relationship between CF and depth of cell.

DOI: https://doi.org/10.7554/eLife.49091.025

Figure supplement 8. Tonotopic organization of the most superficial cells.

DOI: https://doi.org/10.7554/eLife.49091.026

Figure 6—video 1. Video of all sound-responsive.

DOI: https://doi.org/10.7554/eLife.49091.028
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2019). This prompted us to investigate whether these ‘spontaneous’ activities could be attributed to

non-auditory inputs. Our recordings were performed while the animal was passively awake, which

allowed us to observe and correlate the voluntary movement of the animal to simultaneously

recorded calcium transients.

We found that the onset of many of these spontaneous transients coincided with movement

events of the animal (paw and facial movements in Figure 8A). By correlating movement and fluores-

cence, we detected 165 (out of 1359) cells that showed a positive correlation (r > 0.25) with facial

movements during the spontaneous recording period. To exclude potential false-positive detection

due to motion artefacts (i.e. cells moving into and out of focus), we excluded cells with fluorescence

transients that did not show the typical ~1 s exponential decay kinetics, which last much longer than

the brief image shifts that could accompany movement events (image shifts in Figure 8A, Figure 8—

figure supplement 1). Since animal movement inevitably produces sound that may activate the IC

neurons, leading to an apparent movement sensitivity, we also excluded the cells that showed excit-

atory or offset responses in their FRA. In the end, 41 cells showed spontaneous calcium transients

that correlated with animal movement and that could not be explained by their FRA, which was

either inhibited-type or showed no clear pure tone evoked responses (example FRAs in Figure 8F).

These cells seemed to be enriched at the caudolateral side of the dorsal IC (Figure 8C–D). Four of

the 41 cells were found in the Gad2;Ai96 line, in agreement with a recent report that inputs from

motor or somatosensory cortex can directly target GABAergic cells (Olthof et al., 2019), and the

remainder in the GP4.3 line, making them 1% of GABAergic and 4% of investigated glutamatergic

cells, respectively.

A B
rostromedial caudolateral caudomedial rostrolateral

+

+

+

Figure 7. Spatial organization of response classes. Similar proportions of response classes along (A) the presumed tonotopic axis (bin size 50 mm) and

(B) the direction orthogonal to the axis (bin size 100 mm). Zero position was taken as the contact point between superior and inferior colliculi at the

midline. Vertical dashed line in (A) denotes the minimal CF position based on our polynomial fit (625 mm).

DOI: https://doi.org/10.7554/eLife.49091.029

The following source data is available for figure 7:

Source data 1. IC Response Distribution source data CSV file containing 3D coordinate of ROIs, projected distance of ROIs, genotype of animal and

type of FRA.

DOI: https://doi.org/10.7554/eLife.49091.030
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Comparison of tonotopic organization with histological data and
literature
Figure 9A and E show two relatively superficial brain sections (within 80 mm and 120 mm from dorsal

surface, respectively) from one Gad2;Ai96 and one GP4.3 animal stained for GAD67 after two pho-

ton imaging. We overlaid the line representing the neurons with the lowest CF and compared its

location with the border of LCIC and DCIC traced from the latest Allen Reference Atlas (CCFv3) and

from the classical reference atlas by Paxinos and Franklin (2001). The minimum frequency line

aligns with the demarcation from the Allen Reference Atlas, while that by Paxinos and Franklin lays

in the orthogonal direction.

Neurochemical modules with a high density of GAD67-positive terminals have been reported as a

hallmark for the LCIC (Chernock et al., 2004; Lesicko et al., 2016; Dillingham et al., 2017). We

indeed found modules with higher density of GAD67 terminals in our animals as well (arrowheads in

Figure 9A,E,a clear example in Figure 9C). In the most superficial sections, these modules were not

as well defined, but they were contiguous to the more densely stained modules in deeper sections

(Figure 9—figure supplements 1 and 4; 3D reconstruction in Figure 9—video 1), and the superfi-

cial modules also had reduced calretinin staining (Figure 9—figure supplements 2 and 5), in line

with previous findings (Dillingham et al., 2017). These modules are the predominant target of the

somatosensory projections from the cerebral cortex as well as other brainstem areas (Lesicko et al.,

2016). We also observed a central strip of dense GABAergic staining (enlarged in Figure 9B), which

was not contiguous with the modules (Figure 9—figure supplements 1 and 4). GCaMP expression

in these two example animals are presented for comparison in Figure 9—figure supplements 3 and

6.

How do motion-sensitive cells associate with the GAD67-dense modules? Figure 9D2 and F

show two motion-sensitive neurons retrieved in histology (cells 3 and 4, marked by arrows), both of

which resided in close proximity to a GAD67-dense module. We observed that although the somata

of both cells seemed to reside in the extramodular regions, both possessed dendrites that extended

into a GAD67-dense module (Figure 10). Figure 10A and B show a dendritic extension of cell 3. For

cell 4, a pixel-wise correlation of the in vivo somatic fluorescence change (Junek et al., 2009) nicely

revealed its dendritic arbor at the same focal plane (Figure 10C,E). Aligning this to post hoc histo-

logical staining (Figure 10D), we can demonstrate that cell four has dendritic branches extending

both inside and outside of a GAD67 module (Figure 10F). We suggest that this may be a functional

connection scheme for extramodular neurons to enable them to integrate somatosensory or motor

with auditory inputs to the IC (Figure 10G).

Discussion
We investigated the functional organization of the dorsal IC in awake mice at the single neuron level.

We found that the dorsal IC is tonotopically organized, with isofrequency bands running in a rostro-

lateral-caudomedial orientation with frequency tuning varying along the caudolateral-rostromedial

direction. The lowest CF band was found in the middle, dividing the dorsal IC into two reversed

tonotopic gradients. In the caudolateral part, but not in the rostromedial part, neurons that were

sensitive to whisker or other movements were found, which was in agreement with the view that the

caudolateral and rostromedial part corresponded to the LCIC and DCIC, respectively. We observed

four different types of firing patterns in response to tones, but other than the tonotopical organiza-

tion, no obvious topographical organization was observed for the firing patterns. GABAergic neu-

rons were on average somewhat larger, but otherwise there were not clear differences with

glutamatergic neurons in spatial organization or firing patterns. Our experiments thus provide a

functional definition of the major organization principles of the dorsal IC in adult mice.

Suitability of GP4.3 and GAD2-cre mice for 2P imaging in awake mice
Because of the prominence of GABAergic neurons and their substantial contribution to ascending

projections (Schofield and Beebe, 2019), we compared the responses and functional organization

of GABAergic and glutamatergic neurons in the dorsal IC using in vivo two-photon calcium imaging.

We confirmed that virtually all neurons expressing GCaMP6s in the GP4.3 line were glutamatergic,

but not all glutamatergic neurons were labeled. There may have been a preponderance of labeled
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Figure 8. Cells with motion-related responses. (A) Two example cells that were spontaneously active in the absence of sound presentation. Calcium

transients occurred when the animal was moving its paws or showing facial movement (e.g. whisking). These transients decayed much more slowly than

motion artefacts (image shifts, bottom trace; see also Figure 8—figure supplement 1). (B) Facial movements were quantified from a simultaneously

recorded video of the animal by calculating the root-mean-square of the changes in pixel intensity between consecutive frames of a rectangular area at

Figure 8 continued on next page
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cells around the modules in the LCIC (Figure 1D), but a systematic screen of markers would be

needed to test for a selective enrichment of glutamatergic subtypes in the GP4.3 line. The large

majority of GCaMP6s-positive neurons in the IC of mice from the Gad2;Ai96 line expressed GAD67,

in agreement with findings in a related mouse line (Gay et al., 2018). In our hands, these two trans-

genic lines had the advantage that the kinetics of the responses were relatively homogeneous and

well approximated by a linear model (Figure 5B), suggesting that the expression levels, which are a

major determinant of the Ca2+ kinetics (e.g. Éltes et al., 2019), were similar across cells. Moreover,

in contrast to pilot experiments in which we expressed GCaMP6 using adeno-associated viruses, we

found little evidence for toxicity. The more sparse expression facilitated the isolation of the

responses of individual neurons.

A substantial fraction of cells did not respond to tones. Low probability responses may have been

below detection, since the juxtacellular recordings indicated that single APs could not always be

detected. Some cells may respond preferentially to more complex sound stimuli, as previously found

for neurons in the shell region (Ehret and Moffat, 1985; Aitkin et al., 1994). As discussed below,

some cells may prefer somatosensory or motor stimuli instead of sound stimuli.

Response types
In both transgenic lines, we observed four different tone-evoked fluorescence response patterns in

awake mice: onset, sustained, offset and inhibitory. Our simultaneous juxtacellular recordings

showed corresponding patterns. These types were typically also observed in several earlier electro-

physiological studies (e.g. Willott et al., 1988a; Willott et al., 1988b; Jain and Shore, 2006;

Xie et al., 2007). Apart from a possibly lower fraction of GABAergic neurons with pure offset

responses (Figure 4B), our results are thus in line with a recent study that showed that GABAergic

and glutamatergic IC neurons have similar response properties throughout the IC (Ono et al.,

2017).

The prominence of inhibitory responses in the IC (~44% of sound-responsive neurons) in both

transgenic lines was a striking finding in our recordings. An important factor contributing to their

prominence is probably that our experiments were done in awake animals, as a recent single unit

recording study showed the presence of inhibitory responses as well as higher spontaneous spike

rates in IC neurons of awake mice compared to mice under urethane anesthesia (Duque and Mal-

mierca, 2015), and synaptic inhibition has also been shown to be prominently present in whole-cell

recordings in awake bats (Xie et al., 2007).

Offset responses can be found throughout the auditory system including the IC, and they may

have an important role in perceptual grouping or in duration discrimination (Kopp-

Scheinpflug et al., 2018). However, studies in the IC of anesthetized mice, rats and chinchillas

showed that offset responses are generally restricted to cells showing band-pass duration tuning,

which only responded to much shorter tones than the 1 s employed here (Chen, 1998; Brand et al.,

2000; Pérez-González et al., 2006). Another striking finding was therefore that we saw clear evi-

dence for offset responses in 3–11% of sound-responsive cells. A whole-cell study in the mouse IC

showed that in most cases offset responses are inherited from upstream, but that they may also be

generated de novo as a rebound from inhibition (Kasai et al., 2012). Similar to the inhibition class,

we therefore suggest that the prominence of offset responses may be related to the increased

impact of synaptic inhibition in the IC of awake animals. A study using communication calls suggests

Figure 8 continued

the whisker pad. (C–D) Cells showing motion-related activity were predominently located in the caudolateral part of the dorsal IC. Broken line indicates

the minimum CF position obtained from the polynomial fit. (F) The motion-related calcium transients were unlikely to be caused by sounds, as the two

cells showed either an inhibitory FRA (cell 1) or no clear tone-evoked response (cell 2).

DOI: https://doi.org/10.7554/eLife.49091.031

The following source data and figure supplement are available for figure 8:

Source data 1. IC Movement cells source data CSV file containing 3D coordinate of ROIs, projected distance of ROIs, genotype of animal, type of FRA

and parameters related to movement-related response.

DOI: https://doi.org/10.7554/eLife.49091.033

Figure supplement 1. Evidence that the motion-related responses were not due to motion artefacts in imaging.

DOI: https://doi.org/10.7554/eLife.49091.032

Wong and Borst. eLife 2019;8:e49091. DOI: https://doi.org/10.7554/eLife.49091 15 of 31

Research article Neuroscience

https://doi.org/10.7554/eLife.49091.031
https://doi.org/10.7554/eLife.49091.033
https://doi.org/10.7554/eLife.49091.032
https://doi.org/10.7554/eLife.49091


B

GAD67

GCaMP6s

C

m

e

e

D1

m

e

e

D2

A

E

rostral

caudal

mediallateral

rostral

caudal

mediallateral

B

C

F

D
C

ICLC
IC

DCIC
LCIC

GAD67

GCaMP6s

m

e

F

D

cell 3

cell 4

Gad2;Ai96 Mouse 12156-04

GAD67 staining

GP4.3 (B6) Mouse 11605-04

GAD67 staining

Figure 9. Comparison of tonotopic organization with histological data and literature. (A) Epifluorescence image of the IC in a horizontal brain section

stained for GAD67. This brain slice was from a Gad2;Ai96 mouse after two-photon imaging. Black straight line indicates the minimum frequency

location derived from fitting two-photon imaging data. Dashed curve represents the demarcation between the dorsal and the lateral (external) cortices

traced from version 3 of the Allen Reference Atlas. Circles connected with solid and broken lines mark the demarcation at the dorsal brain surface

traced from the atlas by Paxinos and Franklin (2001). The rostral and caudal end of this demarcation are marked by a dashed line because at the

indicated positions on the anterior-posterior axis the whole structure was labeled as LCIC or DCIC, respectively. Modules with dense GAD67 staining,

Figure 9 continued on next page
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that offset responses may be even more prominent following more complex sound stimuli, such as

communication calls (Akimov et al., 2017), possibly by a summation of inhibition at different fre-

quency bands (Sanchez et al., 2008).

Tonotopical organization of the dorsal IC
Following pooling of the data from several experiments, we observed a tonotopic gradient that ran

along a gradient from caudolateral to rostromedial. The gradient reversed at the site where the CFs

were the lowest. This reversal is in line with the banding patterns observed with epifluorescent cal-

cium imaging in unanesthetized mice before and at hearing onset; the pre-hearing spontaneous neu-

ral activities originate from the cochlea, thus regions activated synchronously likely receive input

from the same tonotopic area (Babola et al., 2018). In addition, they observed a double band pat-

tern with higher frequency stimulation in the juvenile (p15) mice. Interestingly, our data are also com-

patible with two earlier two-photon calcium imaging studies (Ito et al., 2014; Barnstedt et al.,

2015). Ito et al. (2014) reported gradients in the medial regions of the dorsal IC, which ran from lat-

eral (low-frequency) to medial (high-frequency), whereas Barnstedt et al. (2015) reported gradients

in a mediorostral to laterocaudal direction.

We found considerable variability in CFs within a band. Imprecisions in the alignment of imaging

areas and variability between animals may have contributed to the variability, but substantial variabil-

ity was also observed within a single animal, in line with previous results (Ito et al., 2014;

Barnstedt et al., 2015). Two-photon calcium imaging studies in the mouse auditory cortex have met

with variable amount of microheterogeneity, apparently depending on layer, calcium dye, or the use

Figure 9 continued

considered to be a hallmark for the LCIC, were observed both medially and laterally from each of the three demarcations (arrowheads). We observed a

region in the center of the IC whose GAD67 staining density was at least as strong as in the neurochemical modules (square labeled B). (B–D) Single

confocal optical sections of GAD67 (black) and GCaMP6s (green) staining in different areas of the brain slice corresponding to the yellow squares in A.

(B) Dense GAD67 area in the central region of the IC (<80 mm from dorsal surface). (C) An area showing a GAD67-dense module (m) in the center, cut

transversely and surrounded by extramodular region (e) with sparse GAD67 staining. (D1-2) Optical sections at different focal depths of an area showing

another GAD67 module from the same slice (m), cut tangentially. Arrow in D2 indicates a cell showing motion-related responses. (E) Similar to A but

from an imaged GP4.3 mouse. (F) Single confocal section for GCaMP6s (green) and GAD67 (black) staining in region marked in E. Arrow marks another

cell with motion-related response. Scale bars, A,E: 500 mm; B-D,F: 50 mm.

DOI: https://doi.org/10.7554/eLife.49091.034

The following video and figure supplements are available for figure 9:

Figure supplement 1. GAD67 staining in the IC of a series of consecutive 40 mm horizontal brain slices from the same Gad2;Ai96 animal as in

Figure 9A (animal: 12156–04), displayed from dorsal (top-left) to ventral (right-bottom) showing that the fainter GAD67 staining highlighted in

Figure 9A is contiguous with the well-stained neurochemical modules in more ventral slices (arrowheads and numbers).

DOI: https://doi.org/10.7554/eLife.49091.035

Figure supplement 2. Calretinin staining in the IC of a series of consecutive 40 mm horizontal brain slices from the same Gad2;Ai96 animal as in

Figure 9A (animal: 12156–04), displayed from dorsal to ventral (left to right, top to bottom).

DOI: https://doi.org/10.7554/eLife.49091.036

Figure supplement 3. GFP staining of GCaMP6s in the IC for a series of consecutive 40 mm horizontal brain slices from the same Gad2;Ai96 animal as

in Figure 9A (animal: 12156–04), displayed from dorsal to ventral (left to right, top to bottom).

DOI: https://doi.org/10.7554/eLife.49091.037

Figure supplement 4. GAD67 staining in the IC of a series of consecutive 40 mm horizontal brain slices from the same GP4.3 animal as in Figure 9E

(animal: 11605–04; C57BL/6J background), displayed from dorsal (top-left) to ventral (right-bottom), showing that the fainter GAD67 staining

highlighted in Figure 9E is contiguous with the well-stained neurochemical modules in more ventral slices (arrowheads and numbers).

DOI: https://doi.org/10.7554/eLife.49091.038

Figure supplement 5. Calretinin staining in the IC of a series of consecutive 40 mm horizontal brain slices from the same GP4.3 animal as in Figure 9E

(animal: 11605–04; C57BL/6J background), displayed from dorsal to ventral (left to right, top to bottom).

DOI: https://doi.org/10.7554/eLife.49091.039

Figure supplement 6. GFP staining of GCaMP6s in the inferior colliculus for the series of consecutive 40 mm horizontal brain slices from the same

GP4.3 animal as in Figure 9E (animal: 11605–04; C57BL/6J background), displayed from dorsal to ventral (left to right, top to bottom).

DOI: https://doi.org/10.7554/eLife.49091.040

Figure 9—video 1. Video showing the 3D reconstruction of the most dorsal aspect of the left and right inferior colliculi in animal 12156–04 from 40 mm

serial sections.

DOI: https://doi.org/10.7554/eLife.49091.041
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of anesthetics (Bandyopadhyay et al., 2010; Rothschild et al., 2010; Winkowski and Kanold,

2013; Issa et al., 2014; Kato et al., 2017; Tischbirek et al., 2019).

The four response types showed a similar tonotopic organization, but considerable microhetero-

geneity. This microheterogeneity was larger than in an earlier study in which bulk loading of an

organic Ca indicator was used (Ito et al., 2014), which may have made it more difficult to isolate

responses from individual cells. Our results are in line with patch-clamp results showing considerable

heterogeneity between adjacent cells within the dorsal IC, which extended to heterogeneity in their

inputs (Geis et al., 2011). The microheterogeneity was similar for GABAergic and glutamatergic

neurons. Our results thus differ from auditory cortex, where response patterns are different and local

microheterogeneity is much smaller for (parvalbumin-positive) GABAergic neurons than for glutama-

tergic neurons (Maor et al., 2016; Liang et al., 2018; Liu et al., 2019). We conclude that despite

the shared input and firing behavior during development (Babola et al., 2018), functional heteroge-

neity dominates within bands in the dorsal IC of adult mice. Whereas some of the mechanisms that

underlie the microheterogeneity within the auditory cortex are being elucidated (Kato et al., 2017;

Tao et al., 2017; Vasquez-Lopez et al., 2017), they remain to be explored for the dorsal IC.

Presence of non-auditory inputs in LCIC
We monitored spontaneous whisker and general body movements, and used strict criteria to

exclude movement artefacts. As we restricted the analysis to neurons that were not excited by

tones, we consider it unlikely that the observed movement-related responses were caused by self-

generated sounds. Despite these severe restrictions, we did find that a few percent of the cells were

excited during whisker or body movements, suggesting a substantial role for somatosensory or
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Figure 10. Example motion-sensitive cells with dendritic arbor extending into GAD67-dense modules. (A) Maximum projection of GCaMP staining

showing dendritic arbor of cell three in Figure 9D2, overlaid with a single optical section of GAD67 staining showing a module (m; at same focus as

Figure 9D2). While its soma is extramodular (e), at least one branch of its dendrite (arrowheads) appeared to extend into the modular region. (B) A

single confocal section of cell three showing the root (arrow) of the dendrite labeled in A (small arrowheads). (C) Averaged GCaMP6s fluorescence for

the in vivo session imaging area in Figure 9F, revealing a dendrite of cell four extending into the modular region. (D) Single confocal section of a fixed

brain slice stained for GCaMP6s. (E) Dendritic arbor of cell four was revealed using pixel-wise correlation to the average somatic fluorescence

(Junek et al., 2009), showing extension into the modular region (arrowheads). (F) Background subtracted pixel correlation from E (green) overlaid onto

GAD67 staining (black). (G) Schematic representation of hypothesis that integration of auditory and non-auditory inputs by multisensory neurons in the

IC can be based on extension of their dendrites into both modular and extramodular regions. Scale bars: A: 20 mm; B: 10 mm; C-F: 50 mm.

DOI: https://doi.org/10.7554/eLife.49091.042
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motor inputs. Little is known about the functional characteristics of motor inputs that are not related

to eye movements (Gruters and Groh, 2012). For somatosensory inputs, the dominant effect

appears to be inhibitory and only a minority of cells have been shown to respond to unimodal tactile

stimuli (Aitkin et al., 1978; Aitkin et al., 1981; Zhou and Shore, 2006), which would not help

detection based on our selection criteria. We did not further discriminate between different move-

ments as they tended to be heavily correlated. Moreover, it is known that neurons in the LCIC have

broad tuning for somatosensory input (Aitkin et al., 1981). Movement-sensitive neurons were not

found in the high-frequency DCIC regions, but only in the putative CNIC region and the LCIC.

A defining feature of the LCIC is the presence of neurochemical modules, which have been shown

in many species, including rats (Chernock et al., 2004; Choy Buentello et al., 2015), but also in

both adult (Choy Buentello et al., 2015; Lesicko et al., 2016; Patel et al., 2017) and developing

mice (Dillingham et al., 2017). While it is still unclear how neurons in these modules and extramodu-

lar zones connect with each other, there is evidence that somatosensory inputs project predomi-

nantly to the modules, while auditory input projects to the extramodular region (Lesicko et al.,

2016). The main sources for somatosensory input to the LCIC are the spinal trigeminal nucleus, the

dorsal column nuclei and the somatosensory cortex (reviewed in Gruters and Groh, 2012). These

inputs target the layer two modules, which constitute only a small fraction of the LCIC volume. More-

over, neurons in the modules do not seem to target extramodular IC neurons (Lesicko and Llano,

2019). This raises the question how so many cells in the LCIC can be sensitive to non-auditory inputs.

We obtained anecdotal evidence that neurons at the border of the modules can extend dendrites

into the modules (Figure 10A,F), which would allow them to sample non-auditory inputs. Indeed,

neurons in LCIC can have extensive dendritic trees (Smith, 1992), and Golgi stainings show that cells

in layer 3 of LCIC can send dendrites up to layer 1 (Meininger et al., 1986; Malmierca et al., 2011).

The CNIC has few somatosensory inputs, but at least half of the cells in CNIC are affected by stimu-

lation of the dorsal column nuclei (Gruters and Groh, 2012). The CNIC may get somatosensory

inputs indirectly via the dorsal cochlear nucleus, which is innervated by the spinal trigeminal nucleus

and the dorsal column nuclei, or in the form of intracollicular input from the LCIC. Direct stimulation

of the different non-auditory inputs would be needed to obtain a better idea of their importance for

the observed facial or body movement-related responses.

Functional parcellation of the dorsal IC
There is little agreement on the precise borders of the different nuclei of the IC, and its parcellation

has been different based on whether cell morphology, inputs, or physiological properties were cho-

sen as the main classifier (Oliver, 2005). Here we used physiological properties as the main criterion

to look at the borders between the DCIC, LCIC and CNIC in the dorsal IC. Our findings suggest that

the laterocaudal area with high frequencies is the dorsal edge of the LCIC, whereas the mediorostral

part of the dorsal IC belongs to the DCIC. The tonotopic reversal would thus provide a functional

demarcation between the dorsal and lateral cortices of the IC. Earlier tracing studies of intracollicular

projections in the guinea pig (Malmierca et al., 1995) and the rat (Saldaña and Merchán, 1992), as

well as ascending projections from the cochlear nucleus in the rat (Malmierca et al., 2002), have

shown interesting V-shaped arrangements in coronal sections, where the medial side corresponds to

isofrequency laminae in CNIC and DCIC, while the lateral side corresponds to those in the LCIC.

These V-shaped axon terminal plexuses, if extended to the dorsal surface of the IC, provide an ana-

tomical explanation for the observed tonotopic reversal. This is also in agreement with the latest

anatomical framework published by the Allen Brain Institute (Figure 9A; Allen Mouse Common

Coordinate Framework, 2015), previous imaging studies (Ito et al., 2014; Barnstedt et al., 2015;

Babola et al., 2018), the known somatosensory inputs to the LCIC, and both the descending and

ascending inputs to the IC (Aitkin et al., 1981; Künzle, 1998; Jain and Shore, 2006; Zhou and

Shore, 2006; Lesicko et al., 2016; Patel et al., 2017). Surprisingly, we observed GAD67-dense

modules in both the medial and the lateral aspect of the IC (arrowheads Figure 9A,G), that is within

both LCIC and DCIC in either atlas. The medial modules could not be imaged within this study, so

their association with somatosensory inputs is currently unclear.

The central strip with neurons tuned to low frequencies in between the LCIC and the DCIC may

be the most dorsal extension of the dorsolateral low frequency area of the CNIC (Stiebler and

Ehret, 1985; Barnstedt et al., 2015). This strip contains the large density of GABAergic inputs

(Figure 9A,B) that is characteristic of the CNIC (Choy Buentello et al., 2015). Lemniscal inputs are
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known to extend quite dorsally, almost up to the surface, and neurons with short latency sound

responses have been found in the dorsal IC, although their exact location was not studied (Geis and

Borst, 2013). The low tuning in the central strip extended close to the surface, but a more system-

atic study of their properties would be needed to be able to assign the most superficial layers to

either the DCIC or another region. From our data it thus appears that the three main areas of the IC,

LCIC, CNIC, DCIC, are readily accessible at the dorsal IC. Their accessibility for imaging studies will

thus help to further delineate their functions and the role of their inputs in the future.

Materials and methods

Key resources table

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Genetic
reagent
(Mus musculus)

B6;129S6-Gt
(ROSA)26Sortm96(CAG-G

CaMP6s)Hze/J

The Jackson
Laboratory;
originally
reported
in Madisen et al. (2015)

IMSR Cat#
JAX:024106,
RRID:IMSR_JAX:024106

Designated as ‘Ai96’ in
this manuscript.
Maintained in
heterozygous
state by backcrossing
to C57BL/6J.

Genetic
reagent
(Mus musculus)

STOCK
Gad2tm2(cre)Zjh/J

The Jackson
Laboratory;
originally reported
in Taniguchi et al. (2011)

IMSR Cat#
JAX:010802,
RRID:IMSR_JAX:010802

Designated as
‘Gad2-IRES-Cre’
in this manuscript.
Maintained in homozygous
state after > 10 generations
of backcrossing to C57BL/6J,
and re-backcrossed to
C57BL/6J every 4–5
generations.

Genetic
reagent
(Mus musculus)

C57BL/6J-Tg
(Thy1-GCaMP6s)
GP4.3Dkim/J

The Jackson
Laboratory; originally
reported in
Dana et al. (2014)

IMSR Cat# JAX:024275, RRID:IMSR_JAX:024275 Designated as ‘GP4.3’
in this manuscript.
Maintained in heterozygous
state by backcrossing to
C57BL/6J, or crossed with
CBA/JRj to obtain mice
with B6CBAF1/J
background.

Strain,
strain
background
(Mus musculus)

JAX C57BL/6J Charles Rivers
Laboratories

IMSR Cat#
JAX:000664,
RRID:IMSR_JAX:000664

Strain,
strain
background
(Mus musculus)

CBA/JRj Janvier Labs MGI Cat# 6157506,
RRID:MGI:6157506

antibody chicken anti-GFP
(Chicken polyclonal)

Aves Aves Labs
Cat# GFP-1020,
RRID:AB_10000240

IF(1:1000)

Antibody mouse anti-Gad67
(Mouse monoclonal)

Millipore Millipore Cat#
MAB5406,
RRID:AB_2278725

IF(1:1000)

Antibody rabbit anti-NeuN
(Rabbit polyclonal)

Millipore Millipore Cat# ABN78,
RRID:AB_10807945

IF(1:1000)

Antibody mouse
anti-parvalbumin
(Mouse monoclonal)

Swant Swant Cat# 235,
RRID:AB_10000343

IF(1:7000)

Antibody rabbit
anti-calretinin
(Rabbit polyclonal)

Swant Swant Cat# 7699/4,
RRID:AB_2313763

IF(1:5000)

Continued on next page
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Continued

Reagent type
(species)
or resource Designation

Source or
reference Identifiers

Additional
information

Antibody Alexa Fluor
488-conjugated
Donkey
anti-chicken
antibody
(Donkey polyclonal)

Jackson
Immuno
Research Labs

Cat# 703-545-155,
RRID:AB_2340375

IF(1:200)

Antibody Alexa Fluor
594-conjugated
Donkey
anti-mouse
antibody
(Donkey
polyclonal)

Jackson
Immuno
Research
Labs

Cat# 715-585-150,
RRID:AB_2340854

IF(1:200)

Antibody Alexa Fluor
647-conjugated
Donkey
anti-rabbit
antibody
(Donkey
polyclonal)

Jackson
ImmunoResearch
Labs

Cat# 711-605-152,
RRID:AB_2492288

IF(1:200)

Software,
algorithm

IGOR Pro Wavemetrics RRID:SCR_000325 Analysis of
calcium
imaging and
electrophysiology
data

Software,
algorithm

pClamp Molecular Devices RRID:SCR_011323 Signal
digitization.
software, algorithm

MATLAB MathWorks RRID:SCR_001622 Stimulus
generation
and presentation

Software,
algorithm

LabView National
Instruments

RRID:SCR_014325 Control of
microscope
and other hardware

Software,
algorithm

Fiji http://fiji.sc RRID:SCR_002285 Processing
and
analysis
of images from
immunohistochemistry

Animals
Detailed two-photon imaging experiments were conducted on seven GP4.3 transgenic animals

(Dana et al., 2014) (three in C57BL/6J background and four in B6CBAF1/J background) and six F1

progeny between Gad2-IRES-cre (Taniguchi et al., 2011), and Ai96 reporter line (B6;129S6-Gt

(ROSA)26Sortm96(CAG-GCaMP6s)Hze/J) (Madisen et al., 2015). We will refer to the Gad2-IRES-Cre x

Ai96 cross as Gad2;Ai96. Postnatal age at recordings ranged between 11–35 weeks (median: 19;

Q1: 15; Q3: 23). Ground-truth juxtacellular recordings were performed on four GP4.3 and three

Gad2;Ai96 animals. Immunohistochemistry for cell counting was performed on three GP4.3 and

three Gad2;Ai96 animals.

GP4.3 animals were originally obtained from the Jackson Laboratory (C57BL/6J-Tg(Thy1-

GCaMP6s)GP4.3Dkim/J; JAX stock #024275); they were maintained in a heterozygous state by back-

crossing to C57BL/6J from Charles Rivers (JAX C57BL/6J). To create GP4.3 animals with B6CBAF1/J

background, heterozygous GP4.3 in C57BL/6J background were crossed with CBA/JRj mice from

Janvier. Gad2-IRES-Cre (originally STOCK Gad2tm2(cre)Zjh/J, the Jackson Laboratory) was maintained

in homozygous state after >10 generations of backcrossing to C57BL/6J, and re-backcrossed to

C57BL/6J every 4–5 generations. Ai96 mice were obtained from Jackson Laboratory with already 3

generations of backcross to C57BL/6J (N3), and were subsequently maintained by backcrossing to
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C57BL/6J for 5–7 generations. All experiments complied with the ethical guidelines for laboratory

animals within our institute and with European guidelines, and were approved by the animal ethical

committee of the Erasmus MC.

Surgery
Animals were anaesthetised through respiratory intake of isoflurane and maintained at surgical level

of anaesthesia, assessed through the hind limb withdrawal reflex. A heating pad with rectal feedback

probe (40-90-8C; FHC, Bowdoinham, ME, USA) was used to maintain body core temperature at 36–

37˚C. Eye ointment (Duratears; Alcon Nederland, Gorinchem, The Netherlands) was used to keep

the eyes moist during surgery. A bolus of buprenorphine (0.05 mg/kg; Temgesic, Merck Sharp and

Dohme, Inc, Kenilworth, NJ, USA) was injected subcutaneously at the beginning of surgery. The skin

overlying the IC was incised. Lidocaine (Xylocaine 10%; AstraZeneca, Zoetermeer, The Netherlands)

was applied before removing the periosteum and cleaning the skull. After etching the bone surface

with phosphoric acid gel (Etch Rite; Pulpdent Corporation, Watertown, MA, USA), a titanium head

plate was glued to the cleaned bone above the left IC using dental adhesive (OptiBond FL; Kerr Ita-

lia S.r.l., Scafati, SA, Italy) and further secured with dental composite (Charisma; Heraeus Kulzer

GmbH, Hanau, Germany).

Through an opening in the head plate, a craniotomy of 3 mm diameter centered at one of the ICs

was made by thinning and removing the skull bone. A cranial window, made by gluing a 3 mm cover

slip (CS-3R-0; Warner Instrument Inc, Hamden, CT, USA) on a custom built, 500 mm thick steel ring

with UV-cured optical adhesive (NOA68; Norland Products), was installed over the exposed brain

surface and secured with superglue. Each animal was allowed to recover for at least two days before

the first measurements. For in vivo electrophysiology, the cranial window construct was gently

removed, and the dura mater covering the IC and part of the cerebellum was carefully punctured

and removed with a pair of fine forceps.

After all recordings had been done, animals received an intraperitoneal injection of pentobarbital

(300 mg/kg) and were perfused transcardially, first with physiological saline (Baxter Healthcare, Zur-

ich, Switzerland), followed by 4% paraformaldehyde (PFA) in 0.1 M phosphate buffer (PB; 4% PFA in

PB, pH 7.4; Merck).

Two-photon imaging
For two-photon imaging of the IC, a 20X water-immersion objective (LUMPlanFI/IR, 20X, NA: 0.95;

Olympus Corporation, Tokyo, Japan) on a custom-built two-photon microscope was used, except

for simultaneous juxtacellular recordings, for which a long working distance 40x objective (LUM-

PlanFl/IR, 40X, NA: 0.80, Olympus Corporation, Tokyo, Japan) was used. Excitation light was pro-

vided by a MaiTai Ti:Sapphire laser (Spectra Physics Lasers, Mountain View, CA, USA) tuned to a

wavelength of 920 nm. A layer of Ringer solution was put between the objective and the cranial win-

dow. GCaMP6s fluorescence was captured by a photomultiplier tube (H6780-20, Hamamatsu, Japan)

after a barrier filter at 720 nm (FF01-720/SP-25; Semrock), a secondary dichroic at 558 nm and a

green bandpass filter centered at 510 nm (bandwidth: 84 nm; FF01-510/84-25; Semrock); AlexaFluor

594 fluorescence was captured at the second channel with a red bandpass filter centered at 630 nm

(bandwidth: 60 nm; D630/60; Chroma). Images (256 � 128 pixels) were collected at 9 Hz (2 ms/pixel;

1–2 mm/pixel). To minimize acoustic noise from scanning, a sinusoidal waveform was used for the X

Galvo-scanner (for acoustic spectra see Figure 2—figure supplement 1). Data were acquired in the

middle 80% of the sinusoidal waveform to minimize nonlinearity. Multiple regions were imaged

sequentially in multiple sessions in awake, head-fixed animals. For depth estimation, a Z-stack was

acquired over a 512 � 512 mm area at 1 � 1 � 1 mm voxel size. Depth of each imaged area was esti-

mated by measuring the Z-distance from the pia surface. Imaged neurons lay between 15–155 mm

from the pia surface. The relative position of each region was tracked through the micromanipulator

(MP-285, Sutter Instrument) that controlled the microscope objective. The positions of imaged areas

were further aligned across animals to a common coordinate using the midline, lateral extreme and

anterior-posterior extremes of the IC as anatomical landmarks in bright field images (SZ 61,Olympus)

of the cranial window.
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Frame timing of the scanner, timing of the sound stimuli, and animal movements were digitized

using a Digidata 1440A (Molecular Devices, Sunnyvale, CA, USA) with Clampex v. 10.3 (Molecular

Devices, Sunnyvale, CA, USA).

Juxtacellular recording
In vivo juxtacellular recordings were made under two-photon guidance (Kitamura et al., 2008).

Glass pipettes were pulled from 1.5 mm, thick-walled borosilicate capillaries (Hilgenberg, Malsfeld,

Germany) to 1–2 mm tip diameter (P-97; Sutter Instrument, Novato, CA) and filled with internal solu-

tion containing (in mM): potassium gluconate 138, KCl 8, Na2-phosphocreatine 10, Mg-ATP 4, Na2-

GTP 0.3, EGTA 0.5, HEPES 10, (pH 7.2 with KOH; Merck). The internal solution also contained 40

mM Alexa Fluor 594 hydrazide. Ringer solution containing 1–2% agarose and (in mM): NaCl 135, KCl

5.4, MgCl2 1, CaCl2 1.8, HEPES 5, was applied on the brain surface to reduce movement artefacts. A

positive pressure of about 300 mbar was maintained before penetration of the pia surface, and

reduced to about 30 mbar upon pia entry; pressure was removed upon cell approach. Electrode

resistances were constantly monitored and recording started when resistance increased to >25 MW.

Juxtacellular potentials were acquired with a MultiClamp 700A amplifier (Molecular Devices, Sunny-

vale, CA, USA) in current-clamp mode. Signals were low-pass filtered at 10 kHz (four-pole Bessel fil-

ter) and digitized at 25 kHz (Digidata 1322A). Data were recorded with pCLAMP 9.2 (Molecular

Devices). In some cases a large current injection (1–6 nA) was used to elicit (positive current) or sup-

press (negative current) spikes of the cell being recorded (nanostimulation; for example

Houweling et al., 2010), usually for cells that did not show obvious change in spike rate upon pure-

tone stimulations. These data were also used for fitting the fluorescence ground-truth model.

Sound stimulation
Tone stimuli were generated in MATLAB v7.6.0 (The MathWorks, Natick, MA, USA) and played back

via a TDT System3 setup (RX6 processor, PA5 attenuator, ED1 electrostatic speaker driver and two

EC1 electrostatic speakers; Tucker Davis Technologies, Alachua, FL, USA). Sound stimuli were pre-

sented bilaterally in open field. Sound intensities were calibrated using a condenser microphone

(ACO pacific Type 7017; ACO Pacific, Inc, Belmont, CA, USA) connected to a calibrated pre-ampli-

fier and placed at the position of the pinnae.

For measurement of FRAs, 1 s tones (including 2.5 ms cosine-squared rise/decay times) with fre-

quencies between 1 and 64 kHz with three steps per octave were presented at intensities between

30 and 80 dB sound pressure level (dB SPL) in steps of 10 dB. The set of stimuli was presented 6–10

times per experiment each in a pseudorandom order at an inter-stimulus interval of 1.5 s. For juxta-

cellular recordings, due to the limited recording time tones were only presented at one or two inten-

sities (70 dB SPL; or 50 and 70 dB SPL).

Behavioral measurements
Visual recordings were made using an RS Miniature CCD Camera (RS Components, Corby, UK) at 3

Hz. The camera was aimed at the animal’s head from a roughly right lateral perspective, in order to

clearly record the animal’s right eye and whiskers. Facial movement was detected by calculating the

root-mean-square intensity change between successive frames in a rectangular region behind the

whisker pad (facial ROI in Figure 8B). General movement of the animal was registered using a piezo-

electric motion sensor under the front paws of the mouse (pressure sensor in Figure 8B), digitized

without further amplification using an AD channel of the Digidata 1440A.

Immunohistochemistry and cell counting
Gelatin-embedded, 40 mm sections of PFA-fixed mouse brains were stained with the following anti-

bodies: mouse anti-Gad67 (cat. no.: MAB5406; Millipore; 1:1000; RRID: AB_2278725); chicken anti-

GFP (cat. no.: GFP-1020; Aves; 1:1000; RRID: AB_10000240); rabbit anti-NeuN (cat. no.: ABN78;

Millipore; 1:1000; RRID: AB_10807945); mouse anti-parvalbumin (cat. no.: 235; Swant; 1:7000; RRID:

AB_10000343); rabbit anti-calretinin (cat. no.: 7699/4; Swant; 1:5000; RRID: AB_2313763); and Alex-

aFluor-, Cy3- or Cy5-conjugated secondary antibodies (Invitrogen or Jackson ImmunoResearch). To

ensure a more homogeneous GAD67 fluorescence for the post-hoc immunostaining of imaged

brains, the brain slices were incubated twice in the primary antibody solution, each for 1 week at 4˚
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C. The secondary antibody was also applied twice, but overnight at room temperature. Cell counting

was performed manually in FIJI using the Cell Counter plug-in on confocal z-stacks. Confocal images

were acquired using a Zeiss LSM700 microscope. Overview epifluorescence images were acquired

using a Zeiss AxioImagerM2 equipped with a Zeiss Axiocam 503 mono camera.

General analysis
Data analysis was performed with Igor Pro (WaveMetrics, Inc, Lake Oswego, OR, USA) using custom

written procedures. Two-photon images and behavior video were aligned to ClampEx data using

stimulus timing. Whisking behavior was assessed by calculating the root-mean-square of the frame

to frame intensity difference in an area at the whisker pad.

Movement artefacts in two-photon images were corrected based on the built-in ImageRegistra-

tion operation in Igor Pro, which is based on a published algorithm (Thévenaz et al., 1998). Neuro-

nal cell bodies were identified visually based on the average image of the motion-corrected image

series, and a higher sampling Z-stack of the area (0.5 � 0.5 mm pixels; 1 mm z steps) taken directly

after each experiment. Regions-of-interests (ROIs) were drawn around cell bodies. Average fluores-

cence values for individual ROIs were corrected for background fluorescence, which was defined as

the change in average fluorescence in a 2 mm wide contour surrounding the ROI, excluding any pixel

directly belonging to another ROI (Figure 2D).

Analysis of Frequency Response Areas and response classification
Individual baseline fluorescence values of an ROI were measured for each trial by averaging the fluo-

rescence in the 1 s preceding each stimulus onset. To mitigate carry over effects from earlier stimuli

caused by the slow kinetics of GCaMP6s, the distribution of these baseline values was fitted with a

Gaussian distribution. Any trial with a more extreme average baseline fluorescence than �� 3s was

excluded from further analysis.

To analyze the FRA of each ROI, we isolated the stimulus-related response by extracting the sig-

nal autocorrelation (Geis et al., 2011) by calculating the average Pearson correlation coefficient

among fluorescence waveforms to the same stimulus; the fluorescence trace within 1 s of the begin-

ning or end of each stimulus was taken as the stimulus related waveform (Fi tð Þ for stimulus i), that is

between -1 s and +2 s of the stimulus onset. For a stimulus that was repeated n times, we calculated

the signal autocorrelation (�
�

auto) by averaging the Pearson’s correlation coefficient (�i;j) for the
n n�1ð Þ

2

possible pairs of responses:

�
�

auto ¼
2

n n� 1ð Þ

X

n

i¼1;i

�i;j

where �i;j was calculated from fluorescence waveforms at trial i and j with the StatsCorrelation

function in Igor Pro using the standard formula:

�i;j ¼

P

Fi tð Þ�Fi

�� �

Fj tð Þ� Fj

�� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

Fi tð Þ�Fi

�� �2
P

Fj tð Þ�Fj

�� �2

r

Statistical significance of signal correlation was done by a bootstrap method: for each ROI, a dis-

tribution of average Pearson correlation coefficient was constructed by drawing 30,000 random sam-

ples of n fluorescence trace segments within an experimental session, where n is again the number

of stimulus repetitions. The p-value of each stimulus was calculated as the fraction of n-member sam-

ples having a greater (for frequency autocorrelation area; Geis et al., 2011) signal autocorrelation

than that of the stimulus. The ranked p-values were then tested for significance with a = 0.05 and

Holm-Bonferroni correction for the number of different stimuli presented (19 frequencies � 6 intensi-

ties=114 for FRA measurements). The characteristic frequency (CF) of an ROI was defined as the

sound frequency at which the lowest intensity evoked a significant response. If multiple frequencies

evoked significant responses at the lowest level, their geometric mean was taken as CF.

The FRA of a cell is generally continuous in frequency-intensity space. Making use of this, we

refined the FRA by quantifying the similarity of responses to “adjacent” stimuli by analogously calcu-

lating the signal crosscorrelation (�
�

cross).
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�
�

cross ¼
1

nm

X

n

i¼1

X

m

j¼1

�i;j

where n and m are the number of repetitions of the two adjacent stimuli, leading to n�m possible

pairs of responses and �i;j is again the Pearson correlation coefficient of the two responses. Note

that, different from the cell to cell comparison described in Geis et al. (2011), none of the response

pairs here were simultaneous. If the maximum �
�

cross calculated against up to 8 (i.e. including diago-

nals) neighbors of a particular stimulus was >0.12, the stimulus was included for classification of its

response type. For this purpose, the fluorescence response was calculated for four periods: onset (0-

500 ms re onset), steady (500-1000 ms re onset), offset (0-500 ms re offset) and off-late (500-1000

ms re offset). We used the following scheme (in pseudocode) to classify individual responses within

an FRA as excitatory, inhibitory or offset:

Response class Criteria (non-exclusive)

Excitation
(onset and sustained)

Fonset – Fbaseline > 2 � s.d. baseline; OR
Fsteady – Fbaseline > 2 � s.d. baseline

Inhibition Fsteady – Fbaseline < –2 � s.d. baseline; OR
Foffset – Fbaseline < –2 � s.d. baseline

Offset If (excitation)
Foff-late – Foffset > 2 x s.d. baseline
elseif (inhibition)
Foff-late – Foffset > 2 x s.d. baseline; AND
Foff-late > Fbaseline
else
Foffset – Fsteady > 2 x s.d. baseline; OR
Foff-late– Fsteady > 2 x s.d. baseline

Unclassified If none of the above, for example due to low signal-to-noise ratio

If at least 25% of all significant responses to frequency-intensity combinations belonged to the

same class (e.g. inhibition), we named the FRA after that response (e.g. inhibition FRA). Typically an

ROI showed a dominant response class in the majority of its significant responses: 20% of cells

showed a dominant class in all significant responses; 54% of cells in �75% of significant responses;

92% of cells in �50% of significant responses. If more than one class reached the threshold of 25%

of the significant responses, the FRA of an ROI was classified as mixed (e.g. Figure 3I,M).

Finally, to distinguish between onset and sustained responses, we averaged all excitatory

responses of an ROI that were not immediately preceded or followed by any significant responses.

The kinetics of sound-evoked responses were fitted by a single exponential function with the form

A 1� exp �t=tonsetð Þð Þ. If this onset time constant, tonset, was >1 s, the ROI response type was desig-

nated as sustained, else as onset.

Orientation of CF gradient
To find the most prominent direction of CF gradient, we parametrized the location of each neuron

as a projected distance r from the anatomical origin along a line with an angle � with the medial-lat-

eral orientation:

r¼ xcos�þ ysin�

where x and y are coordinates (in micrometers) of cells along the medial-lateral and anterior-pos-

terior axes, respectively. We then model CF as a polynomial function of r:

a0þ a1r
1 þ a2r

2 þ a3r
3 þ a4r

4þ . . .¼
X

n

i¼0

air
i

This whole function was then fitted to the logarithm of the CF values of the recorded neurons

using the Levenberg-Marquardt least-squares method, implemented in Igor Pro, that is:
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�; a0�4

arg min
X

n

x¼1

log CFxð Þ�
X

4

i¼0

air
i

 !2

A 4th order polynomial was used in Figure 6 because increasing the number of exponents did not

increase the explained variance further. The best fit parameters were � = 0.875 rad (»50˚), a0= 6.95,

a1= �0.0135 dec mm�1, a2= 1.95 � 10�5 dec mm�2, a3= �1.11 � 10�8 dec mm�3, a4= 2.17 � 10�12

dec mm�4. Cross-validation (70% fitting/30% test) indicated a slight overfitting. We also considered

2D polynomial fits in the form
P

aijx
iyj, where 0� iþ j� n, and found that a 3rd order (n¼ 3) fit would

be an optimal compromise between bias (underfitting) and variance (overfitting). However, we opted

for the single dimension polynomial to avoid potential overinterpretation of the complex contour

created by the 2D polynomial.

Ground-truth and modeling of GCaMP6s fluorescence
Traces from juxtacellular recording were first subjected to a digital DC remove filter which subtracts

at each point in time the average potential within ±1 ms to remove DC drift or offset introduced by

nanostimulation (Houweling et al., 2010). Traces were blanked around the start and end of each

current injection (2 ms before and 3 ms after) to remove stimulus artefacts. Spikes were then

detected by a simple thresholding procedure, with spike times defined as the peak time of the

spikes, which presumably corresponds to the maximum rate of rise of the action potential.

For spike vs fluorescence model, spike times were converted to number of spikes over time (n tð Þ)

at the same sampling rate of the imaging (114.4 ms bins). It was then convolved with a simple ramp-

decay kernel (g tð Þ) according to the equations:

F tð Þ ¼ F0 þ n tð Þ � g tð Þ

g tð Þ ¼
F1AP

t
trise

� �

; t< trise

F1AP 1� exp t�trise
tdecay

� �� �

; t� trise

8

<

:

where F1AP is the amplitude of the fluorescence change per action potential, trise is the rise time

of the fluorescence and tdecay is the decay time constant for the fluorescence. An offset (F0) is

added, which represents the minimal fluorescence at zero spike rate.

This 4-parameter model was fitted to the fluorescence trace using a genetic fitting routine in Igor

Pro (Gencurvefit XOP, kindly provided by Andrew Nelson, Australian Nuclear Science and Technol-

ogy Organization).
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