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Abstract IFI16, an innate immune DNA sensor, recognizes the nuclear episomal herpes viral

genomes and induces the inflammasome and interferon-b responses. IFI16 also regulates cellular

transcription and act as a DNA virus restriction factor. IFI16 knockdown disrupted the latency of

Kaposi’s sarcoma associated herpesvirus (KSHV) and induced lytic transcripts. However, the

mechanism of IFI16’s transcription regulation is unknown. Here, we show that IFI16 is in complex

with the H3K9 methyltransferase SUV39H1 and GLP and recruits them to the KSHV genome during

de novo infection and latency. The resulting depositions of H3K9me2/me3 serve as a docking site

for the heterochromatin-inducing HP1a protein leading into the IFI16-dependent epigenetic

modifications and silencing of KSHV lytic genes. These studies suggest that IFI16’s interaction with

H3K9MTases is one of the potential mechanisms by which IFI16 regulates transcription and

establish an important paradigm of an innate immune sensor’s involvement in epigenetic silencing

of foreign DNA.

DOI: https://doi.org/10.7554/eLife.49500.001

Introduction
Entry of foreign DNA into the nucleus of a eukaryotic cell triggers numerous innate immune

responses such as the induction of the inflammasome, type 1 interferon and DNA damage

responses, as well as the recruitment of the ND10 or PML body components. In addition to the

secretion of pro-inflammatory cytokines as a defense, the cell also maintains its homeostasis by limit-

ing the expression of the invading foreign genes. Transcription factors like Daxx, Sp1 and PML

(Poleshko et al., 2008; Merkl et al., 2018), and heterochromatin inducing factors like HDAC1 and

CBX3 (Poleshko et al., 2008) have been shown to be instrumental in silencing foreign viral DNA.

Interestingly, a Pyrin-Hin200 family nuclear innate immune DNA sensor, IFI16 (Interferon-g-inducible

protein 16) has emerged as a preeminent viral transcription restriction factor against a number of

DNA viruses (Gariano et al., 2012; Orzalli et al., 2013; Merkl and Knipe, 2019; Johnson et al.,

2014; Lo Cigno et al., 2015). Although the innate immune DNA sensor role of IFI16 where it senses

foreign (Kerur et al., 2011; Orzalli et al., 2013) or damaged self DNA (Ouchi and Ouchi, 2008)

and induces the ASC-dependent inflammasome pathway (Kerur et al., 2011; Ansari et al., 2013;

Dutta et al., 2015) and the IFN-b pathway through the STING-TBK1-IRF3 axis (Unterholzner et al.,

2010; Iqbal et al., 2016) is well understood, its transcription restriction role is not fully understood.
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Gariano et al. (2012) observed that IFI16 restricted human cytomegalovirus (HCMV) transcription

and replication by displacing the Sp1 transcription factor. Orzalli et al. (2013), and Merkl and Knipe

(2019) showed that IFI16 promotes silencing of human herpes simplex virus type-1 (HSV-1) gene

expression and replication by adding the repressive chromatin mark, H3K9me3. Our studies showed

that IFI16 restricts HSV-1 replication by modulating the binding of H3K4me3 and H3K9me3 histone

marks and the RNA Pol II, TATA-binding protein (TBP) and Oct1 transcription factors

(Johnson et al., 2014). Similar observations were made by Lo Cigno et al. (2015) for human papillo-

mavirus 18 (HPV18).

Recently, we observed that IFI16 is essential for the repression of Kaposi’s sarcoma associated

herpesvirus (KSHV) lytic gene transcription during latency and thus facilitates latency maintenance

(Roy et al., 2016). IFI16 knockdown (KD) in the latently KSHV-infected primary effusion B-lymphoma

(PEL) BCBL-1 and BC-3 cell lines resulted in a global increase of KSHV lytic transcripts, proteins, and

viral genome replication but not latent genes. We also demonstrated these results during KSHV lytic

cycle induction in TREX-BCBL-1 cells with the doxycycline-inducible lytic cycle switch replication and

transcription activator (RTA) gene. Overexpression of IFI16 reduced lytic gene induction by a chemi-

cal agent TPA. Intracellular viral genome copy number and virion particle associated KSHV DNA

copy numbers were also elevated as a result of this KD. IFI16 chromatin immunoprecipitation assays

(ChIP) showed that IFI16 binds to the promoters of all temporal KSHV gene classes. In addition,

IFI16 repressed the transcription of KSHV luciferase promoter constructs in the uninfected epithelial

SLK and osteosarcoma U2OS cells. Furthermore, during lytic reactivation of KSHV, we observed that

IFI16 was polyubiquitinated and degraded via the proteasomal pathway, and thus relieving the lytic

promoters of the repressive action of IFI16 to create a conducive environment for lytic gene expres-

sion. Blocking of KSHV DNA replication and late lytic gene expression resulted in the absence of

IFI16 degradation. Our studies suggested that KSHV utilizes the innate immune nuclear DNA sensor

IFI16 to maintain its latency by repressing the lytic gene transcription.

The transcription regulatory role of IFI16 has been also reported in other unrelated systems

(Johnstone et al., 1998; Caposio et al., 2007; Kang et al., 2014). Johnstone et al. (1998) fused

IFI16 to GAL4 DNA binding domain (DBD) and observed that it acts as a potent transcription repres-

sor when positioned in proximity to a GAL4DBD binding sequence containing promoter.

Caposio et al. (2007) reported that overexpressing IFI16 resulted in an increased expression of

genes involved in immunomodulation, cell growth, and apoptosis. IFI16 has been shown to interact

with cellular transcription factors such as SP1 (Luu and Flores, 1997; Lo Cigno et al., 2015) and p53

(Johnstone et al., 2000; Kwak et al., 2003). Kang et al. (2014) found that IFI16 is associated with

the promoter of the estrogen receptor a (ERa) gene ESR1 and plays a role in the transcriptional reg-

ulation of ESR1 gene in breast cancer (Kang et al., 2014). Thompson et al. (2014) described a regu-

latory role for IFI16 in the transcriptional regulation of IFN-a gene expression. Recently, a closely

related murine PYHIN family member p205 has been shown to control ASC gene expression by reg-

ulating RNA polymerase II binding to its promoter (Ghosh et al., 2017).

In this study, we used KSHV latency establishment and maintenance as a model system to study

the transcription and possible epigenetic modulatory roles of IFI16. KSHV, an oncogenic human her-

pesvirus, is etiologically associated with endothelial Kaposi’s sarcoma (KS), primary effusion B-cell

lymphoma (PEL) and B-lymphoproliferative multicentric Castleman’s disease (MCD) (Chang et al.,

1994; Cesarman et al., 1995; Soulier et al., 1995). Like all other herpesviruses, KSHV establishes a

lifelong latency in humans with periodic lytic reactivation and reinfection (Boshoff and Chang,

2001). Based on the temporal regulation of expression, the lytic genes are classified as immediate

early (IE), early (E) and late (L) genes. After primary infection of permissive cells, the chromatin-free

input KSHV genome enters the nucleus and undergoes rapid chromatinization which is mediated by

cellular epigenetic factors and viral chromatin regulatory elements (Günther and Grundhoff, 2010;

Toth et al., 2013b; Günther et al., 2014). This chromatinized viral genome is maintained as an

extrachromosomal episome. During latency, lytic genes are under tight transcriptional repression by

epigenetic factors and transcriptional repressors (Krishnan et al., 2004). Upon conducive conditions

such as hypoxia, infection by other pathogens, inflammatory cytokines, or immune suppression,

KSHV transitions from latency to lytic reactivation leading to progeny virion formation (Toth et al.,

2013b). KSHV lytic reactivation can be induced by treating latently infected cells in culture with small

molecule inhibitors of epigenetic modulators such as histone methyltransferases (HMTases), histone
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deacetylases (HDACs), histone acetyltransferases (HATs) and DNA methyltransferases (DNMTs)

(Hopcraft et al., 2018).

The mechanisms of KSHV genome maintenance during latency are under intense investigations.

Toth et al. (2010) reported that activating histone marks AcH3 and H3K4me3 colocalized on the

KSHV genome and predominantly occupied the latency and the early-lytic regions during latency.

On the other hand, the repressive H3K27me3 mark was widely distributed throughout the KSHV

genome, while H3K9me3 was restricted mainly to two regions spanning 30–60 kb and 95–115 kb

encoding several late lytic genes (ORF16–40 and ORF58–68). In agreement with Toth et al.’s results,

Günther and Grundhoff (2010) also found H3K9me3 to be mainly restricted to two consecutive

KSHV genomic regions, ~33–46 kb and 100–114 kb in latently infected cells. Both these authors

found that many lytic loci which are transcriptionally inactive during latency are occupied by both

activating as well as repressive histone marks, instigating the hypothesis that these promoters are

‘bivalent’ and are suspended in a transcriptionally poised state capable of reactivating rapidly when

needed (Toth et al., 2013a; Ter Horst and Luiten, 1987; Günther and Grundhoff, 2010). More

recently, Sun et al. (2017) performed ChIP-Seq experiments on classic KS tissues and found that the

activating acetylated H3 (H3Ac) marks were restricted to the latency locus, while the repressive

H3K27me3 was widespread on KSHV genome.

Although the transcription repression and the possible epigenetic histone mark modification roles

of IFI16 are known, no definitive mechanism has been identified till date linking IFI16 to epigenetic

chromatin remodeling. Here, we used KSHV latency as a model and asked the question - ‘how

does IFI16 modulate epigenetic histone marks leading to its transcription regulatory activity?’. Our

studies show that KD of IFI16 most significantly reduces H3K9me3 and increases H3K4me3 on the

KSHV gene promoters, and that IFI16 interacts with H3K9 histone methyltransferase (H3K9-MTase)

Suppressor of variegation 3–9 homolog 1 (SUV39H1) and G9a-like protein (GLP) both in uninfected

and infected cells. IFI16 KD and knockout (KO) drastically reduces the recruitment of these two

H3K9-MTase onto the KSHV genome which was confirmed by the IFI16 rescue experiments in KO

cells. Our studies suggest that IFI16 dependent recruitment of GLP mono and di-methylates (me1/

me2) at H3K9 on the KSHV genome, while SUV39H1 further establishes tri-methylated H3K9me3

marks. This consequently regulates the recruitment of heterochromatin protein 1-a (HP1a) protein

which functions downstream of H3K9me3 resulting in DNA compaction and heterochromatization of

the KSHV genome and silencing of the KSHV genes, especially the late lytic genes. Our findings

unravel a previously unknown function of IFI16 namely the interactions with SUV39H1 and GLP

H3K9-MTases that facilitate the epigenetic silencing of foreign viral DNA.

Results

Knockdown of IFI16 causes prominent changes in the deposition of H3
lysine methylation marks and RNA Pol II on KSHV promoters
IFI16 suppresses the transcription from KSHV lytic promoters and KD of IFI16 results in lytic reactiva-

tion of latently infected cells (Roy et al., 2016). To investigate the potential mechanism(s) of IFI16-

mediated suppression of KSHV lytic transcription, we determined the role of IFI16 in recruiting the

five known H3 lysine trimethylation marks (H3Kme3) - H3K4me3, H3K9me3, H3K27me3, H3K36me3

and H3K79me3, on the KSHV genome. Among these, H3K4me3, H3K36me3, and H3K79me3 are

known to be associated with transcriptionally permissive euchromatin, whereas H3K9me3 and

H3K27me3 are known to be associated with transcriptionally repressive heterochromatin. For this,

we depleted IFI16 in latently infected BCBL-1 cells using lentivirus-mediated shRNA (shIFI16) trans-

duction and evaluated the recruitment of the different H3Kme3s and total H3 by chromatin immuno-

precipitation (ChIP) after 72 hr of transduction. Compared to control shRNA (shC), we

observed ~70% KD of IFI16 as evaluated by qRT-PCR and WB (Figure 1A and B, respectively). Since

IFI16 KD results in the induction of KSHV lytic genes (Roy et al., 2016), when we evaluated the levels

of lytic ORF50 mRNA by qRT-PCR, we observed a six-fold increase after IFI16 KD (Figure 1A).

In addition to the five H3Kme3s, we also performed ChIP against RNA pol II to determine

whether IFI16 KD results in reduced RNA Pol II mediated transcription. For real-time PCR analysis of

the ChIP DNA, we used four KSHV promoter primers representing the four temporal KSHV gene

classes, namely, pORF73 (La), pK8 (IE), pvIRF2 (E), and pORF63 (L). To better represent the resulting
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Figure 1. Effect of IFI16 knockdown (KD) on H3K9me3 and RNA Pol II deposition on KSHV lytic gene promoters. (A) IFI16 was KD in BCBL-1 cells using

shRNA lentivirus for 72 hr and KD efficiency was assessed by q-RT PCR and successful induction of lytic KSHV ORF50 gene as a result of IFI16 KD was

assessed by q-RT PCR of ORF50. (B) WB showing IFI16 KD compared to untreated or shC treated BCBL-1 cells. (C) ChIP was performed after lentivirus-

mediated IFI16 KD in BCBL-1 cells or shC-BCBL-1 cells. Deposition of different histone H3 lysine tri-methylation marks (H3, H3K4me3, H3K9me3,

Figure 1 continued on next page
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fold changes, ChIP efficiencies were normalized to input chromatin and represented as relative to

shC. Among all the H3Kme3s tested, we observed that IFI16 KD results in a consistent increase in

H3K4me3 recruitment and decrease in H3K9me3 recruitment (black arrows) on all the KSHV pro-

moters tested (Figure 1C). Total H3 remained relatively unaltered after IFI16 KD, and in contrast,

RNA Pol II recruitment was enriched on pK8, pvIRF2 and pORF63 but not pORF73 (Figure 1C). This

observation is in agreement with our previous observations where we demonstrated that IFI16 KD in

BCBL1 cells had little effect on latent gene transcription, while lytic genes of all gene classes were

induced (Roy et al., 2016).

Next, we tested the effect of IFI16 KD during de novo KSHV infection of TIME cells, which are

human neonatal foreskin microvascular endothelial cells immortalized with telomerase reverse tran-

scriptase (hTERT). These cells exhibit a normal karyotype, extended lifespan in culture, and endothe-

lial characteristics at late passages which make them an ideal model for KSHV de novo infection.

These cells were electroporated with a pool of siIFI16 or siC and 72 hr later, infected with KSHV at

100 DNA copies/cell for 6 or 48 hr. qRT-PCRs (Figure 1D) and WBs (Figure 1E) assessed IFI16 KD

efficiencies. Using the same ChIP promoter primers, we found that 48 hr post-infection (p.i.) with

KSHV in IFI16 depleted cells, recruitment of H3K9me3 on lytic pK8, pvIRF2 and pORF63 decreased

at least by 0.5-fold (black arrows) while H3K4me3 and H3K27me3 did not change significantly. Simi-

lar to our observations in BCBL-1 cells, recruitment of RNA Pol II increased significantly on these pro-

moters, but not on latent pORF73 (Figure 1F).

To further assess if IFI16 KD can influence the outcome of KSHV de novo infection, we measured

the copy numbers of latent ORF73 and lytic ORF50 mRNAs after IFI16 KD in TIME cells (Figure 1G

and H). In the control siC-treated cells, ORF73 mRNA increased between 6 hr and 48 h p.i. and

ORF50 mRNA decreased by about 2.5-fold after its initial round of transcription during the early

phases of de novo infection. This is in agreement with findings by Krishnan et al. (2004) where they

showed the transient transcription of a subset of KSHV lytic genes in addition to the latent genes,

with roles in latency establishment immediately after de novo infection of HMVEC-d cell. In the IFI16

KD cells, although no major changes were observed at 6 h p.i., ORF73 mRNA decreased significantly

at 48 h p.i. compared to siC while ORF50 mRNA increased by about 2-fold. This suggested that

when IFI16 is depleted, KSHV fails to establish latency and lytic phase commences. This corroborates

with our previous observations in PEL cells where we demonstrated that IFI16 is important for the

maintenance of KSHV latency and in its absence, KSHV reactivates to lytic life cycle (Roy et al.,

2016).

To determine the importance of H3 lysine methylations in KSHV latent and lytic cycles, we deter-

mined the dynamics of different H3Kme3s on the KSHV genome during reactivation from latency to

lytic cycle. TRExBCBL1-Rta cells carry latent KSHV genomes and an epitope-tagged KSHV lytic cycle

switch replication and transcription activator (RTA) protein cassette under the control of a tetracy-

cline-inducible promoter. We chose these PEL cells as KSHV lytic cycle can be reactivated by doxycy-

cline (DOX) induced RTA expression (Nakamura et al., 2003) instead of phorbol esters and sodium

butyrate, both of which are known to effect transcription globally and are not KSHV specific. We

induced the TRExBCBL1-Rta cells with doxycycline and evaluated the recruitment of total H3 and dif-

ferent H3Kme3s on the late lytic ORF63 promoter by ChIP at 1, 2, 3 and 4 days post-induction. The

results were represented as % of input to confirm the ChIP efficiencies of the respective antibodies,

Figure 1 continued

H3K27me3, H3K36me3 and H3K79me3) and RNA Pol II on four different KSHV promoters (pORF73- La, pK8- IE, pvIRF2- E, and pORF63- L) representing

the four different temporal KSHV gene classes were tested by q-PCR. ChIP efficiencies normalized to input chromatin are shown as relative to shC

control. (D - H) TIME cells were electroporated with either siC or siIFI16. After 72 hr, cells were de novo infected with KSHV (100 DNA copies/cell) for 6

or 48 hr. IFI16 KD efficiencies were assessed by q-RT PCR of the IFI16 gene (D) and WB of IFI16 (E). (F) ChIP was performed after 48 hr of de novo

infection of IFI16 KD TIME. (G and H) q-RT PCR (one step TaqMan) of KSHV latent ORF73 (G) and lytic ORF50 (H) mRNA expression normalized to

cellular RNaseP after 6 and 48 hr of de novo infection of TIME cells previously treated with siIFI16 of siC for 72 hr. (I) Lytic cycle was induced in

TRExBCBL1-RTA cells using doxycycline. At 0, 1, 2, 3 and 4 days post-induction, ChIP was performed. Deposition of different H3 lysine tri-methylation

marks (H3, H3K4me3, H3K9me3 and H3K27me3) and RNA Pol II on the ORF63 promoters was tested by q-PCR. ChIP with control IgG was also

performed. ChIP efficiencies are represented as % input. Data shown are averages of the results of at least three experiments ± SD. *=p < 0.05;

**=p < 0.01; ***=p < 0.001 (unpaired t test).

DOI: https://doi.org/10.7554/eLife.49500.002
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and we also included IgG ChIP (Figure 1I). We have previously reported that IFI16 is polyubiquiti-

nated and degraded via the proteasomal pathway as soon 48 hr post-induction of TREXBCBL-1 cells

(Roy et al., 2016). We observed that recruitment of total H3 did not change between 1- and 3 days

post-induction but decreased at 4 days post-induction. This possibly represents the newly synthe-

sized viral genomes that are not chromatinized (Oh and Fraser, 2008). Recruitment of H3K4me3 on

the late ORF63 promoter increased steadily until day 4, suggesting the gradually increasing tran-

scriptional activity from this promoter. H3K9me3 recruitment decreased sharply on day 1 and

remained at similar levels until day 4. This emphasizes the repressive role of H3K9me3 during lytic

reactivation. H3K27me3 recruitment also decreased but more gradually between day 1 and day 4.

RNA Pol II was predominantly recruited between days 3 and 4 which was expected as ORF63 is a

late gene.

Together, these observations suggested the following: a) IFI16 is important for the recruitment

and maintenance of the repressive H3K9me3 mark and for the exclusion of the permissive H3K4me3

mark on the KSHV genome both, after de novo infection and during prolonged latency; b) IFI16

influences the recruitment of RNA Pol II on KSHV lytic promoters; c) depletion of IFI16 during de

novo infection of endothelial cells results in lytic gene expression and failure to establish latency,

and d) re-distribution of H3K9me3 along with H3K27me3 and H3K4me3 plays an important role dur-

ing reactivation from latency.

H3K9 methylations play an important role in KSHV life cycle and IFI16
interacts with cellular H3K9 methyltransferases (H3K9MTase)
Based on the previous studies of IFI16-mediated transcriptional repression and possible role of IFI16

in the modulation of H3K9me3 on herpesvirus genomes, we next determined the connection of this

histone mark with IFI16. To test the importance of H3K9 methylations on KSHV life cycle, we used

A-366, a potent and selective inhibitor of H3K9 me2/me3 methylation (Kaniskan et al., 2018). MTT

toxicity assays revealed that 100 mM concentration of A366 is non-toxic on BCBL-1 cells for up to 72

hr (Figure 2A). BCBL-1 cells were treated for 72 hr with 10 mM or 100 mM concentrations of A366 or

mock treated with DMSO vehicle control and we measured the expression of all four KSHV temporal

gene by real-time qRT-PCR (Figure 2B). We observed that although there were no significant

changes at 10 mM, treatment with 100 mM A366 induced robust initiation of lytic IE, E, and L gene

transcripts. As a control, we also evaluated cellular IFI16 and GAPDH transcripts and found no signif-

icant changes after A366 treatment. When we tested the levels of different H3 lysine methylations

after 72 hr 100 mM A366 treatment, we observed that A366 specifically inhibited H3K9me2 and

H3K9me3 methylations, and the levels of IFI16 did not change significantly (Figure 2C). Recently,

Hopcraft et al. (2018) screened a number of H3 MTases in an attempt to identify host chromatin-

modifying proteins that are essential for maintaining KSHV latency and found that 1 mM and 10 mM

concentrations of A366 were ineffective in inducing KSHV lytic cycle. Although this observation is

comparable to our findings, these authors did not test 100 mM concentration of A366.

We next hypothesized that IFI16 binds, recruits and maintains specific H3K9 MTase(s) on the

KSHV genome leading to the observed changes in H3K9me3 occupancy on the KSHV genome. To

test this, we infected TIME cells with KSHV (100 DNA copies/cell) for 6 or 24 hr, isolated the nuclear

fractions, treated with benzonase to digest all nucleic acids, and immunoprecipitated (IP) with anti-

IFI16 antibody or isotype control IgG. The IPs were eluted under non-denaturing conditions to pre-

serve the enzymatic activity of associated H3K9MTase and we performed a H3K9 methyltransferase

activity assay (Materials and methods) with the eluate. We observed that IFI16 pulled down signifi-

cant H3K9 MTase activity compared to the IgG control (Figure 2D) ranging between 0.4 and 0.5 ng/

h/mg which were 10-fold lesser compared to the input lysates. KSHV infection did not alter the levels

of intracellular MTases or their interaction with IFI16 as both uninfected and infected conditions

showed comparable enzymatic activities.

Till date, nine H3K9MTase have been identified in eukaryotes (Li et al., 2016) and we were able

to obtain reliable commercial antibodies against seven of them (SUV39H1, SUV39H2, GLP, G9A,

SETDB1, SETDB2 and RIZ1). To identify the H3K9MTases interacting with the KSHV genome and are

thus relevant in the context of KSHV life cycle, we infected TIME cells with 5-ethynyl-2´-deoxyuridine

(EdU) genome labeled or unlabeled control KSHV (100 DNA copies/cell) for 24 hr followed by EdU-

genome pulldown assay using Click chemistry (Material and methods). The pulldown eluates and

their corresponding inputs were blotted for the presence of different H3K9MTases (Figure 2E).
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Figure 2. Effect of A366 on KSHV life cycle and the demonstration of IFI16’s association with cellular H3K9 methyltransferase(s) (H3K9 MTase) and

recruitment of various H3K9 MTases to the KSHV genome during de novo infection. (A) MTT cell viability assay of BCBL-1 cells treated with the

H3K9me3 specific chemical inhibitor A366 at different concentrations and different time points. (B) q-RT PCR (two-step, sybr Green) of KSHV mRNAs in

BCBL-1 cells treated for 72 hr with either vehicle control DMSO or A366 (10 mM and 100 mM). (C) WB of different H3 methylations and IFI16 after A366

Figure 2 continued on next page
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Except for RIZ1, we could detect six of the seven H3K9 MTases tested – SUV39H1, SUV39H2, GLP,

G9A, SETDB1, and SETDB2. In the same experiment, we also tested the recruitment of H3K9me1,

me2, and me3 and observed that all three H3 marks are associated with the KSHV genome within 24

hr of de novo infection. IFI16 was used as a positive control. b-actin used as a negative control was

not detected in the EdU genome pull-down.

To validate the association of these MTases with the KSHV genome, we performed immunofluo-

rescence assay (IFA) for the six identified MTases on TIME cells infected with EdU-KSHV for 24 hr

(Figure 2F). EdU-labeled genomes were detected using Click chemistry-based fluorescent staining

(Figure 2F, red). All the six H3K9MTase (Figure 2F, green) colocalized with the EdU-KSHV genome

(Figure 2F, yellow, white arrowheads) and thus confirming their association with the KSHV genome

during de novo infection. SUV39H1, GLP, and G9A were detected predominantly in the nucleus,

while SUV39H2, SETDB1 and SETDB2 were observed both in the nucleus and cytoplasm. IgG used

as a negative control did not show any interactions. These results demonstrated that: a) treatment of

BCBL-1 cells with A366 confirmed the importance of H3K9 methylations in KSHV gene regulations.

b) IFI16 physically interacts with one or multiple H3K9MTases, and c) six different H3K9 MTases are

associated with the KSHV genome.

IFI16 interacts with H3K9 MTase SUV39H1 and GLP in KSHV latently
infected cells
To identify the IFI16 interacting H3K9MTases, we performed co-immunoprecipitation (co-IP) experi-

ments with benzonase-treated nuclear fractions from the latently infected BCBL-1 and BC-3 PEL cells

and the uninfected BJAB lymphoma cells. IP of IFI16 resulted in efficient co-IP of SUV39H1 and GLP

and to a lesser extent, G9A (Figure 3A, left panel, lanes 1–3). In contrast, all the other H3K9 MTases

tested did not co-IP with IFI16. The H3K27 methylating PRC2 complex protein EZH2 was also tested

but did not co-IP with IFI16. In addition, we also tested IFI16’s ability to interact with H3, H3K9me3

and the heterochromatin binding protein HP1a, and none of them co-IPed with IFI16. ASC which is

known to interact with IFI16 in PEL cells to form the inflammasome complex (Singh et al., 2013) was

used as a positive control (Figure 3A).

LANA1, a KSHV latent protein, has been reported to recruit specific H3 methylating enzymes to

the viral genome. Sakakibara et al. (2004) reported that LANA1 interacts with SUV39H1 leading to

the accumulation of heterochromatin components on the TR sequence of the KSHV genome. They

used DNA pull-down assay with a biotinylated DNA fragment that contained a LANA1-specific bind-

ing sequence and a maltose-binding protein pull-down assay to reach their conclusion. More

recently, Toth et al. (2016) found that LANA1 binds and recruits EZH2 onto the KSHV lytic pro-

moters leading to H3K27me3 mediated heterochromatin structure on the viral genome during de

novo infection of SLK cells. To better understand LANA1’s interactions with cellular H3K9 MTases

under our experimental conditions, we conducted co-IP experiments with anti-LANA1 antibody. We

observed that LANA1 interacts with SETDB1 and SETDB2 in both BCBL-1 and BC-3 cells (Figure 3A,

right panel, lanes 7–9). The lack of IP in BJAB cells confirmed the specificity of the signal. However,

we did not find an interaction between LANA1 and SUV39H1 in PEL cells. All the other H3K9 MTases

also failed to co-IP. ASC, H3, H3K9me3, and HP1a also did not interact with LANA1. In contrast,

consistent with Toth et al.’s findings (Toth et al., 2016), we observed that LANA1 interacts with

EZH2 in BCBL-1 and BC-3 cells. All the corresponding inputs are shown in the middle panel

(Figure 3A, lanes 4–6).

Figure 2 continued

treatment of BCBL-1 cells. (D) H3K9 methyltransferase activity (ng/h/mg) assay. TIME cells were infected with KSHV for 6 or 24 hr followed by isolation

of nuclear fraction, benzonase treatment and IP with anti-IFI16 or control IgG in the presence of benzonase using the catch and release method. Elution

was performed under non-denaturing conditions to keep the associated H3K9 methyltransferase active. H3K9 methyltransferase activity was assayed in

the eluate (Materials and methods). *, p<0.05; **, p<0.01; ***,<0.001; unpaired t-test. (E) TIME cells were infected with KSHV genome labeled with EdU

or unlabeled control KSHV (100 DNA copies/cell) for 24 hr followed by EdU-KSHV genome pulldown using Click chemistry. The inputs and eluates were

blotted for different H3K9 MTases. (F) TIME cells were infected with EdU-labeled KSHV as in (D) and stained using the Click-iT EdU Alexa Fluor 594

Imaging Kit (red). Subsequently, IFA was performed against different H3K9 MTases and colocalization of the IFA signal (green) with KSHV EdU-genome

staining (red) resulting in yellow was evaluated (enlarged image, white arrows).

DOI: https://doi.org/10.7554/eLife.49500.003
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Figure 3. Demonstration of IFI16’s interaction with specific H3K9 MTases in KSHV latently infected PEL (BCBL-1 and BC-3) cells and in uninfected

control BJAB cells. (A) Nuclear fractions were isolated from latently infected cells and uninfected BJAB cells and treated with Benzonase. IPs were

performed using anti-IFI16 mAb and LANA mAb and WBs were performed. (B) To confirm IFI16’s and LANA’s interaction with H3K9 MTases, IPs were

done with Abs against the H3K9 MTases and blotted for the corresponding MTase, IFI16, LANA and HP1a (heterochromatin protein 1a).

DOI: https://doi.org/10.7554/eLife.49500.004
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We validated these findings by conducting reverse co-IP experiments where we pulled down the

respective H3K9 MTases and blotted for IFI16, LANA, HP1a and the MTase (Figure 3B). The

observed results corroborated with Figure 3A results, and thus confirmed that IFI16 interacts with

SUV39H1 and GLP, while LANA1 interacts with SETDB1, SETDB2, and EZH2. However, IP of G9A

did not pull-down IFI16. With the exception of RIZ1, all of the H3K9 MTases tested along with EZH2,

interacted with HP1a.

IFI16 interacts with H3K9 MTase SUV39H1 and GLP during de novo
KSHV infection
During de novo infection, the linear histone-free input herpes viral DNA is circularized in the nucleus,

rapidly adopts a chromatin structure, and viral and host epigenetic factors drive a spatially and tem-

porally ordered recruitment of epigenetic marks onto the viral genome leading to selective silencing

of lytic gene expression, while allowing expression of the latent genes (Toth et al., 2013b;

Renne et al., 1996; Toth et al., 2016). To decipher IFI16’s interactions with H3K9MTases during de

novo infection, TIME cells were mock infected or infected with KSHV for 6 or 24 hr, nuclear fractions

treated with benzonase and IP-ed with anti-IFI16 antibodies. Confirming our findings in PEL cells

(Figure 3), we observed that SUV39H1 and GLP were efficiently pulled-down by IFI16, while G9A

showed weak interactions (Figure 4A, left panel). ASC as a positive control interacted with IFI16

while all the other H3K9 MTases, H3, H3K9me3, and HP1a did not interact with IFI16 (Figure 4A).

All the corresponding inputs are shown in the right panel (Figure 4A, lanes 4–6). The reverse co-IP

experiments using anti-MTase antibodies and IFI16 WBs also substantiated these observations

(Figure 4B).

Ectopically expressed IFI16 interacts with SUV39H1 and GLP in 293T
cells
To confirm that the observed interactions between IFI16 and SUV39H1/GLP were not due to non-

specific interactions of anti-IFI16 antibody, we ectopically expressed His-tagged full-length IFI16 in

293T cells which lack the expression of endogenous IFI16. His-tag IFII6 co-elution assays also pulled

down SUV39H1, GLP and G9A and not the other H3K9MTases (Figure 4C). Next, we expressed the

untagged IFI16 and LANA1 in 293T cells and IP-ed them with their respective antibodies. Ectopically

expressed IFI16 and LANA-1 exhibited similar interactions as observed in PEL cells (Figure 3) namely

IFI16 interacts with SUV39H1 and GLP, and LANA1 fails to interact with SUV39H1 but interacts with

EZH2 (Figure 4D). These observations in 293T cells proved that IFI16 interactions with SUV39H1 and

GLP H3K9 MTases are specific and not due to non-specific pull-downs.

IFI16 interacts with H3K9MTase SUV39H1 and GLP and recruits them
on to the KSHV genome
To investigate IFI16’s ability to recruit these H3K9MTases onto the incoming KSHV genome during

de novo infection, we performed EdU-genome pulldown assay after siRNA-mediated KD of IFI16 in

TIME cells. 24 hr post-KSHV infection, we observed that KD of IFI16 resulted in reduced recruitment

of SUV39H1, GLP, and G9A, but not the other H3K9MTases tested (Figure 5A). In addition, confirm-

ing our ChIP results in Figure 1F, we observed reduced recruitment of H3K9me3 under IFI16 KD

conditions. Furthermore, IFI16 KD also resulted in the reduced recruitment of H3K9me2 but not

H3K9me1 to the KSHV genome, while the total H3 and H3K27me3 recruitment were unaltered. ChIP

experiments in KSHV latently infected BCBL-1 cells confirmed that KD of IFI16 results in reduced

recruitment of SUV39H1, GLP and G9A at the KSHV lytic ORFs 63, 25 and 64 promoters (Figure 5B,

black arrows). These three promoters were chosen since they fall within the KSHV genome regions

where H3K9me3 was found to be highly enriched (Günther et al., 2014; Toth et al., 2010).

To visualize the tripartite interaction between IFI16, H3K9 MTase and the KSHV genome in situ,

we performed Proximity Ligation Assay (PLA) in TIME cells 24 hr after infection with EdU-labeled

KSHV. PLA is a powerful technique which produces a fluorescent signal if the two interacting pro-

teins are within close proximity of ~40 nm or less. Therefore, only physical interaction to IFI16 will

result in a positive PLA signal as opposed to IP-based techniques where interacting partners in a

multi-protein complex can also be pulled-down. We observed that both SUV39H1 and GLP pro-

duced positive PLA dots/spots (Figure 5C, green) with IFI16 confirming their physical interaction. In
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Figure 4. Demonstration of IFI16’s interaction and recruitment of specific H3K9 MTases during de novo KSHV infection. (A) TIME cells either left

uninfected or infected with KSHV for 6 or 24 hr were IPed with anti-IFI16 antibodies and western blotted for the indicated proteins. (B) To confirm

IFI16’s interaction with H3K9 MTases, TIME cells were infected as in (A) and IPed with antibodies against the MTases and blotted for the corresponding

MTase and IFI16. (C) 293 T cells lacking IFI16 transfected with control plasmid or His-IFI16 expressing plasmid for 72 hr were utilized for His-tag

pulldown using HisPur cobalt resin. Inputs and elutions were blotted for the indicated proteins. (D) 293 T cells transfected with control plasmid, IFI16

Figure 4 continued on next page
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addition to PLA, these cells were also stained for the EdU-labeled genome using Click chemistry

(Figure 5C, red). Colocalization of the green PLA dots of IFI16+GLP and IFI16+SUV39H1 PLA with

the red EdU-genome (Figure 5C, yellow indicated by white arrows) confirmed that this is a tripartite

complex between the genome, IFI16 and the respective H3K9MTase. This interaction of IFI16 with

GLP and SUV39H1 was also observed in the uninfected cells. Interestingly, we failed to find PLA sig-

nal between G9A and IFI16. Although we detected G9A in IFI16 pull-down experiments (Figures 3

and 4), failure to detect it in PLA experiments suggest that G9A may not be directly interacting with

IFI16 and may have been pulled-down by virtue of its interaction with GLP that has been shown

before (Shinkai and Tachibana, 2011). In addition, consistent with previous observations, neither

SETDB1 nor the control IgG showed any interaction with IFI16 (Figure 5C). Moreover, an IgG + IgG

control PLA (Figure 5—figure supplement 1) also confirm the specificity of the observed PLA

signals.

To further confirm these results, we used IFI16 CRISPR knockout (KO) osteosarcoma U2OS cells

(U2OS 67) generated in our earlier studies (Johnson et al., 2014) to study the effect of IFI16 KO and

re-introduction of IFI16 in a KO background on the recruitment of H3K9me3, SUV39H1 and GLP.

U2OS wt and U2OS 67 cells were infected with KSHV for 24 hr, and ChIPs were performed with anti-

H3, H3K9me3, SUV39H1 and GLP antibodies. KSHV late ORF63 promoter occupancy was assessed

by real-time PCR. Consistent with previous results, we observed reduced recruitment of H3K9me3,

SUV39H1 and GLP on the ORF63 promoter in IFI16 KO cells (Figure 5D). Total H3 did not decrease

under similar conditions. The WB confirms KO of IFI16 (Figure 5D). Next, we reintroduced IFI16

(pCDNA3.1+ IFI16) or control GFP (pCDNA3.1+ GFP) in the U2OS 67 KO cells and performed WBs

which confirmed the expression of IFI16 and GFP (Figure 5E). When we performed the same experi-

ment described in Figure 5B, we observed that rescue with IFI16 resulted in about threefold

increase in H3K9me3 recruitment and about 1.5-fold increase in SUV39H1 and GLP recruitment on

the KSHV late ORF63 promoter in U2OS 67 cells (Figure 5E). Together, these results suggested that

IFI16 is instrumental in recruiting H3K9MTase SUV39H1 and GLP onto KSHV lytic promoters during

de novo infection, resulting in deposition of the heterochromatin H3K9me3 mark.

PLA in IFI16 KO cells confirms that IFI16 recruits SUV39H1 and GLP onto the KSHV genome

resulting in the deposition of H3K9me3 but not H3K27me3

To confirm the IFI16-mediated recruitment of heterochromatic factors at a single-cell level, we

infected U2OS wt and IFI16 KO U2OS67 cells with BrdU-labeled KSHV and preformed PLA for BrdU

and the indicated proteins. The expectation for this was that positive PLA signal using antibody

against BrdU and antibodies against the proteins of interest will visually confirm the physical proxim-

ity/interaction between the BrdU-labeled KSHV genome and the protein of interest. In addition to

PLA (Figure 6, red), we also immunostained for IFI16 (Figure 6, green). We observed numerous

BrdU genome + H3K9me3 PLA dots in the U2OS wt cells confirming efficient recruitment of

H3K9me3 on the KSHV genome in these cells (Figure 6A, red dots, white arrows). However, the

number of PLA dots in U2OS 67 cells were significantly reduced (Figure 6A, blue arrow) confirming

the role of IFI16 in the recruitment of H3K9me3. In contrast, we did not observe any reduction in the

BrdU genome + H3K27me3 PLA dots in the U2OS 67 cells compared to the wt type cells

(Figure 6B, red dots). Similar experiments for BrdU genome + SUV39H1 PLA and BrdU genome +

GLP PLA demonstrated significantly reduced PLA dots in the IFI16 KO U2OS 67 cells compared to

the wt type cells (Figure 6C and D). The absence of significant PLA dots in the control BrdU+IgG

PLA (Figure 6—figure supplement 1) confirmed the specificity of the PLA reaction. Consistent with

previous reports (Ansari et al., 2015), we observed IFI16’s redistribution to the cytoplasm after

KSHV infection in U2OS wt cells.

Next, we performed similar experiments in U2OS 67 cells transfected with either control

(pcDNA3.1+) plasmid or IFI16 expressing plasmid (pcDNA3.1+ IFI16) for 72 hr. We included unin-

fected (UI) condition to assess the specificity of the PLA reactions (Figure 7—figure supplement 1).

Figure 4 continued

expressing plasmid or LANA expressing plasmid for 72 hr were IPed with anti-IFI16 mAb or LANA mAb. Inputs and elutions were blotted for the

indicated proteins.
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Figure 5. Demonstration of IFI16’s specific interaction with GLP and SUV39H1 and the effect of IFI16 KD upon the recruitment of SUV39H1 and GLP to

the KSHV genome during de novo infection. (A) IFI16 was KD in TIME cells using siRNA and 72 hr later, cells were infected with EdU-KSHV for 24 hr

followed by EdU-KSHV genome pulldown using Click chemistry. The inputs and eluates were blotted for different H3K9 MTases and H3K9 methylations.

(B) ChIP was performed after shRNA IFI16 KD in BCBL-1 cells and recruitment of different H3K9 MTases on different KSHV promoters (pORF63- L,

Figure 5 continued on next page
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Upon BrdU-KSHV infection of the U2OS 67 cells transfected with the control plasmid, very few PLA

dots were observed between the BrdU-genome and H3K9me3 (Figure 7A, first row panels, white

arrows). However, upon rescue with IFI16 plasmid transfection, the number of PLA dots increased

significantly in the cells expressing IFI16 (Figure 7A, second row panels, white arrows), but not in

cells in which IFI16 expression was minimal or absent (Figure 7A, orange arrow). Similar observations

were also made with SUV39H1 (Figure 7B) and GLP (Figure 7C). The absence of significant PLA

dots in the UI samples (Figure 7—figure supplement 1) and in the control BrdU+IgG PLA (Fig-

ure 6—figure supplement 1) confirmed the specificity of the PLA reaction. Together, these observa-

tions confirmed that IFI16 is responsible for the recruitment of SUV39H1 and GLP on the KSHV

genome eventually leading to the addition of the H3K9me3 histone mark.

H3K9 MTase SUV39H1 and GLP are essential for KSHV gene regulation
but not G9A
Since our results have demonstrated that IFI16 binds and recruits SUV39H1 and GLP onto the KSHV

genome, we examined the dynamics of these two H3K9MTases and IFI16 on the KSHV genome dur-

ing lytic reactivation of TREXBCBL-1 cells. We observed that the abundance of SUV39H1 on the

KSHV genome decreased to about 25% of that of uninduced on day 2 post-induction and remained

at that level until day 4. In contrast, a more drastic decrease was observed with GLP which was

reduced to less than 10% of the uninduced level by day 1 post-induction. Abundance of IFI16

decreased more gradually and reduced to less than 20% by day 4, which is also probably due to the

degradation of IFI16 during lytic reactivation (Roy et al., 2016). Next, we investigated the role of

these two H3K9MTases in KSHV life cycle, and included G9A as well in this assay as it is known to

exist in a complex with GLP (Shinkai and Tachibana, 2011). These three MTases were knocked

down in BCBL-1 cells via lentivirus-mediated shRNA for 48 and 96 hr and the expression of all four

temporal KSHV gene classes were measured by real-time qRT-PCR. KD efficiencies for SUV39H1,

GLP and G9A were tested by WB (Figure 8B,D and F, respectively). 48 hr post SUV39H1 KD, KSHV

gene expression for all lytic genes tested (IE, E, and L) increased significantly and remained elevated

at 96 hr post-KD (Figure 8C). However, latent genes increased only marginally at 48 hr while at 96

hr, no increase was observed. KD of GLP had more dramatic outcomes at 96 hr post IFI16 KD. In this

case, lytic gene expressions were induced between 25 and 45-fold (Figure 8E). Here too, latent

gene expression increased only marginally. However, at 48 hr post-GLP KD, lytic genes were not

induced significantly. In contrast to SUV39H1 and GLP, we observed that G9A KD failed to induce

lytic gene expressions at both time points (Figure 8G). These results suggested that: a) H3K9MTase

Figure 5 continued

pORF25- L and pORF64- L) representing promoters where H3K9me3 is most abundantly recruited, were tested by q-PCR. ChIP efficiencies were

normalized to input chromatin and are represented as relative to shC control. (C) TIME cells were infected with EdU-KSHV for 24 hr and stained using

the Click-iT EdU Alexa Fluor 594 Imaging Kit (red). Subsequently, Proximity Ligation Assay (PLA) was performed to assess the interaction between IFI16

and the indicated H3K9 MTases (green). Colocalization of green (PLA) with red (EdU-KSHV genome) resulting in yellow indicates interaction of IFI16

with the corresponding H3K9 MTases on the KSHV genome (enlarged image, white arrows). Uncropped source PLA data for Figure 5C showing a

larger field containing multiple cells are shown in Figure 5—figure supplements 2 and 3. (D) U2OS wt and U2OS 67 (CRISPER Cas-9 IFI16 KO) cells

were infected with KSHV (100 DNA copies/cell) for 24 hr, ChIP performed, and the late KSHV promoter pORF63 tested by q-PCR. ChIP efficiencies were

normalized to input chromatin and are represented as relative to U2OS wt. WB shows IFI16 KO in U2OS 67 cells. (E) U2OS 67 cells were transfected

with either control GFP plasmid or IFI16 plasmid. After 72 hr, cells were infected with KSHV for 24 hr, ChIP performed, and the late KSHV ORF63

promoter was tested by q-PCR. ChIP efficiencies were normalized to input chromatin and are represented as relative to GFP transfected control. The

WB shows IFI16 and GFP overexpression in U2OS 67 cells following transfection. Data shown are averages of the results of at least three

experiments ± SD (*, p<0.05; **, p<0.01; ***, p<0.001).

DOI: https://doi.org/10.7554/eLife.49500.006

The following figure supplements are available for figure 5:

Figure supplement 1. Assessment of the specificity of the PLA reaction.

DOI: https://doi.org/10.7554/eLife.49500.007

Figure supplement 2. Uncropped source PLA data for Figure 5C.

DOI: https://doi.org/10.7554/eLife.49500.008

Figure supplement 3. Uncropped source PLA data for Figure 5C (continued).

DOI: https://doi.org/10.7554/eLife.49500.009
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Figure 6. Proximity Ligation Assay (PLA) demonstrating the reduced recruitment of H3K9me3, GLP and SUV39H1 but not H3K27me3 onto the KSHV

genome by IFI16 KD. (A) U2OS wt and U2OS 67 (IFI16 KO) were infected with BrdU genome labeled KSHV for 24 hr and PLA was performed to assess

the association between BrdU-KSHV genome DNA and H3K9me3 (red). Following PLA, IFA was performed to stain for IFI16 (green). Colocalization of

green (IFA) with red (PLA) resulting in yellow indicates the presence of both, IFI16 and H3K9me3 on the KSHV genome (merged image). In the U2OS 67

Figure 6 continued on next page
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SUV39H1 and GLP are important factors for the maintenance of KSHV latency and their depletion

induces lytic reactivation, and b) G9A, although in a complex with GLP, has a minimal role in KSHV

transcriptional regulations.

We also investigated whether depletion of SUV39H1, GLP and G9A can result in KSHV genome

replication and lytic reactivation. For this, we determined the KSHV genome DNA copy numbers in

BCBL-1 cells treated with shRNAs against these 3 MTases. We observed that only GLP KD resulted

in a two fold increase in the intracellular viral genome copy numbers after 4 days of shRNA treat-

ment (Figure 8H).

Next, we examined the effect of SUV39H1 and GLP KD during de novo infection of TIME cells.

TIME cells were electroporated with the corresponding siRNA and 72 hr later, infected with KSHV

for 48 hr. Efficient KD of SUV39H1 and GLP were confirmed by WB (Figure 8I and K, respectively).

We observed that KD of SUV39H1 and GLP MTases results in an increase in the lytic ORF50 tran-

scripts, while latent ORF73 transcripts remained predominantly unaffected (Figure 8J and K, respec-

tively). These observations supported the results observed in PEL cells and confirmed the

importance of SUV39H1 and GLP MTases in the establishment of KSHV latency.

Recruitment of heterochromatin protein 1a (HP1a) on the KSHV
genome is dependent on IFI16 mediated H3K9-trimethylation
In eukaryotes, chromatin marked by H3K9me2/me3 serves as a binding site for HP1a, a chromodo-

main containing heterochromatin protein. Upon binding to the chromatin, HP1a self-oligomerizes

and recruits multiple repressive histone modifiers, which ultimately leads to heterochromatin com-

paction and spread (Eissenberg and Elgin, 2014). We therefore asked whether IFI16-mediated

addition of H3K9me2/me3 marks on the KSHV genome results in the recruitment of HP1a on to the

viral genome. We first tested if HP1a is recruited onto the KSHV genome during de novo infection.

Immunostaining for HP1a (Figure 9A, green) in TIME cells infected with EdU-labeled KSHV showed

that HP1a colocalizes (Figure 9A, yellow) with the EdU genome (Figure 9A, red) at 24 and 48 h p.i.

(Figure 9A, white arrows).

To determine if HP1a-mediated heterochromatin formation is essential for KSHV gene regula-

tions, we KD HP1a via lentivirus mediate shRNA in BCBL-1 cells. 96 hr post-KD, efficiency of the KD

was assessed by real-time qRT-PCR (Figure 9B) and WB (Figure 9C). Results showed that the shRNA

pool specifically KD HP1a and not HP1b and HP1g, the other two isoforms of HP1a (Figure 9B).

When we measured the expression of all four temporal KSHV gene classes by real-time qRT-PCR

(Figure 9D), we observed that HP1a KD results in the substantial increase in the expression of all

lytic genes (IE, E, and L) with no significant change in the latent gene expression. Expression of IFI16

mRNA which was used as a host gene control did not change significantly. These results confirmed

that HP1a is an important factor for the KSHV heterochromatic gene regulations.

To investigate the role of IFI16 in the recruitment of HP1a, we infected TIME cells with EdU-KSHV

for 24 hr. Pulldown of the EdU-genome yielded HP1a which suggested that HP1a recruitment on

the KSHV genome can be studied by the EdU-genome pulldown assay (Figure 9E). In a similar assay

when we KD IFI16 using siRNA, we observed a significant reduction in the KSHV genome associated

HP1a pulldown (Figure 9F) which confirmed the role of IFI16 in recruiting HP1a (Figure 9F). In addi-

tion, we also performed ChIP for HP1a in BCBL-1 cells and observed that KD of IFI16 results in

Figure 6 continued

panel, as there is no expression of IFI16, yellow colocalization is absent. Boxed areas are enlarged. The number of PLA dots (red) were compared

between the U2OS wt (white arrows) and 67 panels (blue arrows). Similar experiments were performed for H3K27me3 (B), GLP(C), and SUV39H1 (D).

Uncropped source PLA data for Figure 6 showing a larger field containing multiple cells are shown in Figure 6—figure supplements 2 and 3.

DOI: https://doi.org/10.7554/eLife.49500.010

The following figure supplements are available for figure 6:

Figure supplement 1. Assessment of the specificity of the PLA reaction.

DOI: https://doi.org/10.7554/eLife.49500.011

Figure supplement 2. Uncropped source PLA data for Figure 6A and B.

DOI: https://doi.org/10.7554/eLife.49500.012

Figure supplement 3. Uncropped source PLA data for Figure 6C and D.

DOI: https://doi.org/10.7554/eLife.49500.013
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significantly reduced recruitment of HP1a on the different KSHV promoters (Figure 9G). As we

observed in Figure 3A that IFI16 does not directly interact with HP1a, this suggested that HP1a

recruitment dependency on IFI16 is due to IFI16’s ability to establish H3K9me3 marks on the KSHV

genome which serves as a docking site for HP1a.

Figure 7. Demonstration of increased recruitment of H3K9me3, GLP and SUV39H1 onto the KSHV genome after IFI16 rescue of IFI16 KO U2OS 67 cells.

(A) U2OS 67 cells were transfected with control plasmid or IFI16 expressing plasmid. After 72 hr, cells were infected with BrdU-KSHV for 24 hr.

Following infection, PLA was performed to assess the interaction between the BrdU-KSHV genome DNA and H3K9me3 (red). Subsequently, IFA was

performed to stain for IFI16 (green). The number of PLA dots (red) can be compared between the different panels. Boxed areas are enlarged. The white

arrows show PLA dots in a cell expressing transfected IFI16, while the orange arrow show a cell that has not been transfected with IFI16 in the same

field. A similar experiment was performed for SUV39H1 (B) and GLP (C). Uncropped source PLA data for Figure 7 showing a larger field containing

multiple cells are shown in Figure 7—figure supplements 2 and 3.

DOI: https://doi.org/10.7554/eLife.49500.014

The following figure supplements are available for figure 7:

Figure supplement 1. Assessment of the specificity of the PLA reaction.

DOI: https://doi.org/10.7554/eLife.49500.015

Figure supplement 2. Uncropped source PLA data for Figure 7A and B.

DOI: https://doi.org/10.7554/eLife.49500.016

Figure supplement 3. Uncropped source PLA data for Figure 7C.

DOI: https://doi.org/10.7554/eLife.49500.017
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Figure 8. Demonstration of the essential role of H3K9MTAses SUV39H1, and GLP but not G9A in the regulation of KSHV genes during latency and de

novo infection. (A) TRExBCBL1-RTA cells were induced with doxycycline and at 0, 1, 2, 3 and 4 days post-induction, ChIP was performed against the

indicated proteins. Deposition of GLP, SUV39H1 and IFI16 on the ORF63 promoter was tested by q-PCR. ChIP efficiencies normalized to input

chromatin are shown as relative to uninduced (UI) control. (B) SUV39H1 was knocked down in BCBL-1 cells using lentivirus shRNA for 72 hr and KD

efficiency was assessed by WB. (C) mRNA levels of KSHV genes were assessed by real-time RT-PCR after SUV39H1 KD. (D) GLP was knocked down in

Figure 8 continued on next page
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Next, to ascertain the relevance of HP1a in the latency to lytic transition of KSHV, we studied the

dynamics of its recruitment on the KSHV genome in doxycycline-induced TREXBCBL-1 cells by ChIP

at different times post-induction (Figure 9H). HP1a abundance on the KSHV genome significantly

reduced by about 60% during reactivation suggesting its active role in KSHV latency. We also investi-

gated whether depletion of HP1a resulted in KSHV genome replication and lytic reactivation in

BCBL-1 cells, and observed that KD of HP1a fold did not significantly induce the KSHV genome rep-

lication (Figure 9I).

Discussion
The transcriptional repressor function of IFI16 has been identified in diverse experimental models

(Caposio et al., 2007; Johnstone et al., 1998; Kang et al., 2014; Thompson et al., 2014;

Roy et al., 2016). In addition, IFI16’s ability to restrict transcription and replication of episomal viral

DNA of KSHV, HSV-1, HCMV and HPV18 is also well established (Roy et al., 2016; Gariano et al.,

2012; Orzalli et al., 2013; Merkl and Knipe, 2019; Johnson et al., 2014; Lo Cigno et al., 2015).

Although these studies suggested that IFI16 may have the ability to promote epigenetic modifica-

tion of foreign/viral DNA leading to transcriptional silencing (Orzalli et al., 2013; Merkl and Knipe,

2019; Johnson et al., 2014; Lo Cigno et al., 2015), till date, no precise epigenetic function of IFI16

has been identified that can explain its ability to inhibit transcription. Our comprehensive studies

here demonstrate that under physiological conditions, IFI16 is associated with the H3K9 methyltrans-

ferases SUV39H1 and GLP which mediates the deposition of H3K9me2/me3, and thus unravels one

of the potential mechanisms by which IFI16 mediates epigenetic modifications and transcriptional

regulation.

Lysines 4, 9, 27, 36 and 79 of histone H3, and 20 of histone H4 can be methylated, but, no

attempt has been made to comprehensively study the possible role of IFI16 in recruiting these H3

lysine tri-methylations. Hence, we undertook a systamatic approach toward identifying the H3 lysine

tri-methylations that can be modulated by IFI16 on the KSHV epigenome and tested all five identi-

fied lysine tri-methylations of H3. Our studies demonstrate that depletion of IFI16 results in

increased recruitment of H3K4me3 and decreased recruitment of H3K9me3 on the KSHV promoters

in both latent BCBL1 cells and in de novo infected TIME cells (Figure 1C and F). Both these epige-

netic modifications are conducive of increased transcriptional activity which is in agreement with our

previous observation that KD of IFI16 results in increased transcription of lytic genes (Roy et al.,

2016). As a further confirmation of this, we found that KD of IFI16 resulted in increased recruitment

of RNA Pol II on all the lytic promoters tested (Figure 1C and F). It is interesting to note that

Toth et al. (2010) and Günther and Grundhoff (2010) found that abundant levels of H3K9me3

recruitment was restricted mainly to two regions of KSHV genome (30–60 kb and 95–115 kb) encod-

ing a number of late genes (ORF16–40 and ORF58–68) in TRExBCBL1-Rta cells. However, lesser

basal levels were detectable throughout the KSHV genome. Interestingly, Günther and Grundhoff

(2010) did not observe significant deposition of H3K9me3 on the KSHV genome during de novo

infection of SLK cells. However, it must be considered that SLK cells are of epithelial origin and have

been shown to be a contaminant from the renal-cell carcinoma cell line Caki-1 (Stürzl et al., 2013).

Figure 8 continued

BCBL-1 cells using lentivirus shRNA for 72 hr and KD efficiency assessed by WB. (E) mRNA levels of KSHV genes were assessed by real-time RT-PCR

after GLP KD. (F) G9A was knocked down in BCBL-1 cells using lentivirus shRNA for 72 hr and KD efficiency assessed by WB. (G) mRNA levels of KSHV

genes were assessed by real-time RT-PCR after G9A KD. All mRNA levels were normalized against b-tubulin mRNA and are expressed as relative

amounts compared to shC treatments. (I) TIME cells were electroporated with siC or a SUV39H1-specific siRNA pool. After 72 hr, cells were de novo

infected with KSHV DNA copies/cell) for 48 hr. SUV39H1 KD efficiency was assessed by WB. (H) Real-time DNA-PCR showing the KSHV genome copy

numbers at 2 and 4 days post-KD of SUV39H1, GLP and G9A in BCBL-1 cells. Primers specific to the ORF73 gene were used and the level of genomic

DNA was normalized against the b-tubulin gene. (J) mRNA expression of ORF73 and ORF50 genes was evaluated using the TaqMan method,

normalized to cellular RNaseP and are expressed as relative to siC treatment. (K) GLP KD efficiency was assessed by WB in TIME cells that were

electroporated with siC or a GLP-specific siRNA pool. After 72 hr, cells were de novo infected with KSHV for 48 hr. (L) mRNA expression of ORF73 and

ORF50 genes was evaluated by TaqMan method, normalized to cellular RNaseP and are expressed as relative to siC treatment. Data shown are

averages of the results of at least two experiments ± SD *, p<0.05; **, p<0.01; ***, p<0.001.
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Figure 9. Demonstration of IFI16 mediated H3K9me3 dependent recruitment of Heterochromatin Protein 1-a (HP1a). (A) TIME cells were infected with

EdU-KSHV and stained using the Click-iT EdU Alexa Fluor 594 Imaging Kit (red). Subsequently, IFA was performed against HP1a (green). Colocalization

of green (IFA) with red (EdU-KSHV genome) resulting in yellow indicates recruitment of HP1a on the KSHV genome (enlarged image, white arrows). (B)

HP1a was KD in BCBL-1 cells by shRNA for 96 hr and KD efficiency assessed by qRT PCR using primers specific for HP1a as well as HP1b and HP1g. (C)

Figure 9 continued on next page
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In contrast, we used the hTERT immortalized human dermal microvascular endothelial cell line,

TIME, which we believe is a more suitable cell model for KSHV de novo infection.

After observing that IFI16 regulates the recruitment of H3K9me3, we first asked the question ‘Is

the H3K9me3 mark important for the KSHV life cycle?”. Our studies demonstrate that after lytic

induction of TRExBCBL1-Rta cells, levels of H3K9me3 reduced by half on the late ORF63 promoter

as early as day 1 (Figure 1I). The location of the ORF63 promoter on the KSHV genome is between

102 and 103 kb which is within the high abundance H3K9me3 distribution region described previ-

ously (Toth et al., 2010; Günther and Grundhoff, 2010). In contrast, abundance of H3K27me3 on

the ORF63 promoter decreased more gradually between days 2 and 4 post-induction. This strongly

suggested that H3K9me3 does play a role in the KSHV lifecycle. Further evidence of the role of

H3K9me3 in KSHV lifecycle became evident when we treated BCBL1 cells with A366, a specific inhib-

itor of H3K9me2 and H3K9me3 methyltransferase (Kaniskan et al., 2018). This caused significantly

higher transcription of KSHV lytic genes, while expression of the latent genes and the control

GAPDH and IFI16 genes did not alter significantly (Figure 2B). This is a hallmark of successful lytic

reactivation of the latent KSHV genome. Thus, H3K9me2/3 recruitment and maintenance are indis-

pensable for the maintenance of latency. This experiment also suggests that the H3K9me2/3 mark

and possibly all the other epigenetic marks on the KSHV genome is dynamic in nature and must be

continuously recruited to maintain latency. This may be solely or partly due to the fact that as the

BCBL1 cell divides, the newly replicated latent epigenetically naive KSHV genomes must recruit the

proper epigenetic marks to be effectively silenced in order to maintain latency.

It is generally considered that H3K9me3 is a hallmark of constitutive heterochromatin while

H3K27me3 is typically seen in facultative heterochromatin. Constitutive heterochromatin are often

considered to be irreversible such that they will never revert to euchromatin, as those seen at the

telomeres and centromeres in mammalian cells. Alternatively, facultative heterochromatin is consid-

ered to be reversible and capable of undergoing active gene expression. However, resent advances

disprove this notion and H3K9me3’s role in cell-type-specific regulation of facultative heterochroma-

tin has been established (Becker et al., 2016). Moreover, numerous reports have demonstrated that

herpes viral and retroviral genomes are associated with H3K9me3 during latency and almost all

these genes undergo active transcription during lytic reactivation (Günther and Grundhoff, 2010;

Toth et al., 2010; Orzalli et al., 2013; Lo Cigno et al., 2015; Merkl and Knipe, 2019; Bloom et al.,

2010; Cliffe et al., 2009).

Our observations confirm that IFI16 recruits the H3K9MTases SUV39H1 and GLP on to the KSHV

genome resulting in the enrichment of H3K9me2/me3 marks (Figures 3–7). GLP and its partner G9A

are known to be responsible for mono and di-methylation (me1/me2) of H3K9 (Tachibana et al.,

2005). On the other hand, SUV39H1 has been established to use mono and di-methylated H3K9 as

a primary substrate and establish tri-methyl H3K9 (Rea et al., 2000; Peters et al., 2001). Therefore,

we believe, that the establishment of H3K9me3 heterochromatic locus on the KSHV genome

requires the concerted action of GLP and SUV39H1. The fact that IFI16 interacts with and recruits

Figure 9 continued

WB to confirm efficient KD. (D) KSHV mRNA levels were assessed by qRT PCR after HP1a KD. IFI16 mRNA was also assessed to confirm that the effect

is specific for the KSHV genome only. mRNA levels were normalized against b-tubulin mRNA and expressed as relative amounts compared to shC-

treated cells. (E) TIME cells were either infected with EdU-KSHV or control KSHV for 24 hr followed by EdU-KSHV genome pulldown using Click

chemistry. The inputs and eluates were blotted for the presence of HP1a. (F) IFI16 was KD in TIME cells using siIFI16. After 72 hr, cells were infected

with EdU-KSHV for 24 hr followed by EdU-KSHV genome pulldown using Click chemistry. The inputs and eluates were blotted for the presence of

HP1a. (G) HP1a ChIP was performed 48 hr of de novo infection of TIME cells previously KD of IFI16 for 72 hr. KSHV promoters pORF73- La, pK8- IE,

pvIRF2- E, and pORF63- L were tested by q-PCR. ChIP efficiencies have been normalized to input chromatin and are represented as relative to shC

control. Data shown are averages of the results of at least three experiments ± SD (*, p<0.05; **, p<0.01; ***, p<0.001. (H) TREXBCBL1-RTA cells were

induced with doxycycline and at 0, 1, 2, 3 and 4 days post-induction, ChIP was performed against HP1a. Deposition of HP1a on the ORF63 promoter

was tested by q-PCR. ChIP efficiencies normalized to input chromatin are shown as relative to uninduced (UI) control. (I) Real-time DNA PCR showing

KSHV genome copy number 2 and 4 days post KD of HP1a in BCBL-1 cells. Primers specific to the ORF73 gene were used and the level of genomic

DNA was normalized against the b-tubulin gene. (J) Schematic model showing the role of IFI16 in recruiting and maintaining H3K9 MTase SUV39H1 and

GLP onto the KSHV genome leading to tri-methylation (me3) of H3K9. Establishment of H3K9me3 marks on the KSHV genome leads to the recruitment

of heterochromatin protein HP1a which in turn leads to the DNA compaction and transcription silencing.
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both these H3K9MTases explains the functional importance of this mechanism and that IFI16 has

evolved to specifically interact/recruit these MTases to establish heterochromatin. Although KD of

SUV39H1 and GLP resulted in the induction of KSHV lytic transcripts in BCBL-1 cells, KD of GLP only

caused a marginal twofold increase in KSHV genome DNA replication, while KD of SUV39H1 alone

had no effect. This may signify that IFI16-mediated recruitment of H3K9me3 is one among the multi-

ple barriers that herpesviruses have to overcome before the successful induction of lytic replication.

Other important barriers including H3K27me3 exists and a concerted action of all these viral restric-

tion factors help to establish and maintain latency.

The above suggestion is also supported by the observation that H3K4me3 modification on

ORF73 promoter after IFI16 KD is significant (Figure 1.F, p-value **). We have previously reported

ORF73 mRNA expression under similar conditions after IFI16 KD (Roy et al., 2016), where we

observed that KD of IFI16 lead to a marginal increase (2-fold) in ORF73 expression in contrast to lytic

genes which increased by several folds. This observation can be explained by the fact that the

ORF73 promoter is under the concerted regulation of numerous transcription and epigenetic factors

including Oct1, GATA-1 Ap1, and RBP-Jk (Lan et al., 2005). In addition, the ORF73 promoter con-

sists of two mRNA start sites – the LANA constitutive (LTc) and the RTA-inducible (LTi) mRNA start

sites (Veeranna et al., 2012). This makes the ORF73 promoter particularly complex and it is possible

that additional factors are involved in keeping the expression of LANA in check after IFI16 KD

despite the fact that H3K4me3 is significantly enriched on the ORF73 promoter.

Chromatin marked by H3K9me3 are recognized by the chromo domain protein, HP1a which facil-

itate heterochromatin formation (Bannister et al., 2001; Lachner et al., 2001). HP1 proteins serves

as a scaffold to recruit other chromatin modifying proteins, including more H3K9 MTases and his-

tone deacetylases (Bannister et al., 2001; Nakayama et al., 2001; Lachner et al., 2001). We there-

fore reasoned that if IFI16 recruits SUV39H1 and GLP to establish H3k9me3 marks on the KSHV

genome, the subsequent recruitment of HP1a should also be dependent on IFI16. Our data showed

that depletion of IFI16 resulted in reduced recruitment of HP1a on the KSHV genome (Figure 9E–G)

and KD of HP1a caused robust induction of KSHV lytic gene transcription. Together, these con-

firmed that HP1a is important for maintenance of latency and IFI16 is indispensable for its recruit-

ment. Studies of HP1 dynamics have revealed that HP1a is not a stable component of

heterochromatin but is highly mobile (Krouwels et al., 2005). This dynamicity of HP1a together with

the need to epigenetically silence nascent KSHV genomes synthesized as a result of multiplication of

latently infected cells helps explain the indispensable nature of IFI16 in HP1a recruitment.

One common factor binding all the identified functions of IFI16 is its DNA binding ability. How-

ever, crystal structure of IFI16 HIN domains in complex with B-form dsDNA revealed that it binds

dsDNA in a non-sequence specific manner (Jin et al., 2012). Therefore, how IFI16 distinguishes

between self and non-self DNA and if there is any specific signal that dictates both innate sensing

and epigenetic silencing by IFI16 remains unanswered. Further studies are required to determine the

possible existence of nuclear macromolecular complex(es) detecting and epigenetically silencing for-

eign invading DNA. Multiple observations point such a possibility. We have observed that silencing

of IFI16 also effects the recruitment of H3K4me3 (Figure 1C and F). Therefore, it is possible that a

H3K4-specific demethylase is also recruited by IFI16. Fritsch et al. (2010) reported that Suv39H1,

G9a, GLP, and SETDB1 participate in a multimeric complex. Suv39H1 has been found to interact

with the DNA methyltransferase DNMT3B (Lehnertz et al., 2003) and HP1a has been reported to

recruit DNMT3B. Previous reports have also shown that IFI16 is instrumental in recruiting transcrip-

tion factors like Sp1 and Oct1 (Gariano et al., 2012; Johnson et al., 2014). Therefore, the possibility

of all these chromatin silencing factors acting in a concerted fashion is plausible.

Our earlier studies have demonstrated that IFI16 is in association with different proteins in the

nucleus and mediates the innate immune responses (Dutta et al., 2015; Iqbal et al., 2016). We

identified two IFI16 complexes, namely IFI16-BRCA1 and IFI16-BRCA1-H2B. These complexes recog-

nized the KSHV and HSV-1 genomes soon after their entry into the nucleus, leading into BRCA1-

mediated p300 recruitment and acetylation of IFI16 and H2B by p300. IFI16 acetylation resulted in

the formation of BRCA1-IFI16-ASC-procaspase-1 inflammasome formation in the nucleus, transport

to the cytoplasm, pro-IL-1b cleavage and IL-1b formation. Cytoplasmic transport of acetylated IFI16-

H2B-BRCA1 results in the association with cGAS and STING leading into phosphorylation of TBK1

and IRF3, nuclear translocation of p-IRF3 and IFN-b production. Our present study identified a novel

epigenetic function of IFI16 and demonstrates that IFI16 is in association with H3K9MTases
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SUV39H1 and GLP in the nucleus and IFI16 recruits these MTases to the KSHV genome which

sequentially methylates H3K9 to me1/me2 and me3. This serves as a docking site for HP1a which

recruits further chromatin compaction factors leading to heterochromatin formation and lytic gene

silencing (Figure 9J). Thus, our studies uncovered an important paradigm and demonstrated that

IFI16-mediated innate immune sensing of foreign viral DNA not only leads to the induction of innate

interferon and inflammasome pathways, but also results in the epigenetic silencing of the foreign

DNA.

Materials and methods

Cells
KSHV-positive PEL cell lines BCBL-1 and BC-3 and KSHV-negative BJAB cells were obtained from

the AIDS Malignancy Consortium (AMC) and cultured in RPMI 1640 GlutaMAX (Gibco Life Technolo-

gies, Grand Island, NY) supplemented with 10% (v/v) FBS (fetal bovine serum: Atlanta Biologicals)

and penicillin-streptomycin (Gibco Life Technologies). TREX-BCBL-1-RTA cells (Nakamura et al.,

2003) were cultured in the above medium supplemented with hygromycin B (200 mg/ml). TIME

(ATCC CRL-4025), a hTERT immortalized dermal microvascular endothelium cell line, was cultured in

Vascular Cell Basal Medium (ATCC PCS-100–030), supplemented with Microvascular Endothelial Cell

Growth kit-VEGF (ATCC PCS-110–041) and 12.5 ug/ ml blasticidine. U2OS (wt) and U2OS clone 67 -

CRISPR IFI16 KO, reported previously by Johnson et al. (2014) were cultured in DMEM (Dulbecco’s

modified Eagle medium, Gibco Life Technologies), supplemented with 10% (v/v) FBS, penicillin-

streptomycin and 2 mM L-glutamine (Gibco Life Technologies). 293 T cells were cultured in DMEM

supplemented with 10% (v/v) FBS and penicillin-streptomycin and 2 mM L-glutamine (Gibco Life

Technologies). All cells were regularly tested for mycoplasma using the Mycoalert kit (Lonza #LT07-

218) and were confirmed to be negative.

KSHV lytic induction and virus production
KSHV lytic cycle was induced in BCBL-1 cells using the 12-O-tetradecanoyl phorbol-13-acetate (TPA;

20 ng/ml). Virion productions and purifications were carried out as per our methods described previ-

ously (Roy et al., 2016). To quantify the copy number of the virions, KSHV DNA was extracted and

quantified by real-time DNA-PCR using primers specific for the KSHV ORF73 gene as described pre-

viously (Roy et al., 2016). TREX-BCBL-1-RTA cells were induced with doxycycline (DOX, 1 mg/ml).

For de novo KSHV infection, TIME or U2OS cells were washed twice with phosphate buffer saline

(PBS), infected with 100 genome copies/cell in serum-free basal medium for 2 hr, washed with PBS

and incubated in complete medium from 24 to 96 hr, as indicated.

For the production of BrdU and EdU labeled KSHV, viral DNA was labeled by adding 5-Bromo-2’-

deoxyuridine (BrdU) (Thermo Scientific # B23151) 1:100 v/v or 5-ethynyl-2’-deoxyuridine (EdU)

(Thermo Scientific #A10044) 10 mM in DMSO into the culture medium of TPA induced BCBL-1 cells.

The viral DNA is metabolically labeled during lytic replication. BrdU/EdU was added twice in the cul-

ture medium, once on day 1 of TPA induction and again on day 3. The labeled virus from day 5 cul-

ture was purified and genome copy number determined as described earlier.

Lentiviral mediated knockdown of IFI16, SUV39H1, GLP, G9A and
HP1a in BCBL1 cells
We used the following human TRC short hairpin RNA (shRNA) constructs (Dharmacon; Horizon Dis-

covery) to co-transfect HEK293T cells along with the lentivirus packaging vectors using the CalPhos

mammalian transfection kit (TaKaRa Clontech, Mountain View, CA) as previously described

(Dull et al., 1998): IFI16 (clones TRCN0000019080, TRCN0000019082, TRCN0000019083), SUV39H1

(clones TRCN0000150622, TRCN0000157251, TRCN0000157285, TRCN0000158270,

TRCN0000158337), GLP (clones TRCN0000036054, TRCN0000036055, TRCN0000036056,

TRCN0000036057, TRCN0000036058), G9A (clones TRCN0000115667, TRCN0000115668,

TRCN0000115669, TRCN0000115670, TRCN0000115671) and HP1a (clones TRCN0000062238,

TRCN0000062239, TRCN0000062240, TRCN0000062241). To avoid off-target effects, pools of three

or more shRNA were used as stated above. The pLKO.1 empty vector was used as a control (Dhar-

macon; Horizon Discovery #RHS4080). Culture media were changed after 16 hr of infection,
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supernatants containing packaged lentivirus particles collected after 48 hr and filtered through a

0.45 mm filter. Supernatant of all the clones targeting the same gene were pooled together and

used to transduce the cells in the presence of polybrene (5 mg/ ml).

siRNA-mediated knockdown of IFI16, SUV39H1, GLP and G9A in TIME
cells
siRNA transfection of TIME cells was performed using the Neon Transfection System (Invitrogen)

according to the manufacturer’s instructions. Briefly, sub-confluent cells were harvested, washed

once with PBS and re-suspended in resuspension buffer R (provided in the kit) at a density of 1 �

107 cells/ml. Ten microliters of cell suspension was mixed with 100 pmol of respective si-RNA and

then microporated at room temperature using a single pulse of 1350 V for 30 ms. Microporated cells

suspended in complete medium were kept at 37˚C in an atmosphere of 5% CO2. Cells were ana-

lyzed for knockdown efficiency by western blotting and/or qRT-PCR. For all the genes, a mixture of

4 siRNA provided as a single reagent (siGenome SMARTpool) was used. Human siGENOME SMART-

pool against IFI16, SUV39H1, GLP and G9 were purchased from Dharmacon: Horizon Discovery (cat-

alog # M-020004-01-0010, M-009604-02-0010, M-007065-00-0010 and M-006937-01-0010,

respectively). As a negative control, siGENOME Non-Targeting siRNA Pool #2 (Dharmacon: Horizon

Discovery # D-001206-14-20) was used.

Overexpression plasmids and transfection
The IFI16-overexpressing plasmid IFI16-FL (pcDNA3-FLAG) was a gift from Cheryl Arrowsmith

(Addgene plasmid 35064) (Liao et al., 2011). TrueORFGold clone encoding a C-terminal His/DDK

tagged IFI16 was custom generated by Origene. The LANA-1 overexpressing plasmid pCI-neo full-

length LANA-1 was described previously (Paudel et al., 2012). Cells were transfected using the

TransIT-X2 Transfection Reagent (Mirus #MIR 6000) according to the manufacturer’s instructions.

Nuclear protein extraction and co-immunoprecipitation (co-IP)
Nuclear fractions were extracted using a nuclear extraction kit (Active motif #40010) following the

manufacturer’s instruction. Protein concentrations were estimated using the Pierce BCA protein

assay kit (Thermo scientific #23225). All nuclear lysates were treated with benzonase (Sigma #

E1014-25KU) for 1 hr before co-IP. Equal amounts of clarified nuclear lysates were resuspended in IP

Lysis Buffer (Thermo scientific #87788) supplemented with phosphatase inhibitor cocktail (Thermo

scientific #78420) and protease inhibitor cocktail (Thermo scientific #78430) and pre-cleared for 1 hr

with 15 ml 50/50 slurry of Protein A and G sepharose beads (GE Healthcare Bio-Science # 17-0469-

01 and 17-0618-01, respectively) at 4˚C. Following this, the pre-cleared lysates were incubated with

respective antibodies and 25 ml 50/50 slurry of Protein A/G sepharose beads over-night at 4˚C. The

captured immune complexes were washed four times with IP wash buffer (10 mM Tris, pH 7.4, 1 mM

EDTA, 1 mM EGTA, 150 mM NaCl, 1% Triton X-100, 0.2 mM sodium orthovanadate and protease

inhibitor cocktail), boiled with SDS-PAGE sample buffer, resolved on 4–20% SDS-PAGE, and sub-

jected to western blotting.

The ProFoundTM Pull-Down PolyHis Protein-Protein Interaction Kit (Thermo scientific #21277)

was used to pulldown His/DDK tagged IFI16 following the manufacturer’s instructions.

MTT toxicity assays
The MTT cell proliferation assay kit (ATCC# 30–1010K) was used for assessing cellular toxicity follow-

ing manufacturer’s instruction.

Western blot
Nuclear lysates were prepared as mentioned above. Whole cell lysates were prepared using Pierce

IP Lysis Buffer supplemented with a protease inhibitor cocktail for 30 min on ice and then sonicated

three times at an amplitude setting of 40 with pulses of 15s on and 10s off on a Qsonica Q700 soni-

cator. The lysates were clarified by centrifugation at 13,000 X g for 12 min at 4˚C. Protein concentra-

tions were estimated and equal concentration of proteins resolved on 4–20% SDS PAGE gels.

Resolved gels were blotted onto nitrocellulose membranes at 300 mA for 1.5 hr at 4˚C, probed with

respective primary antibodies (Table 1) overnight at 4˚C and then probed with respective HRP-
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Table 1. List of antibodies used and their dilutions for different applications.

Antibody Raised in Company/catalogue# Dilution used

IFI16 (1G7) mouse monoclonal Santa Cruz
Biotechnology
(#SC-8023)

WB: 1:700
IP: 1:30
ChIP: 1:30
IFA: 1:100
PLA: 1:50

LANA Rabbit polyclonal Raised in-house (Uk183) WB: 1:1000
IP: 1:50

H3 (D2B12) Rabbit monoclonal Cell Signaling
Technology (#4620S)

WB: 1:5000
ChIP: 1:50

H3K9me1 Rabbit polyclonal Abcam (#ab8896) WB: 1:1000

H3K9me2 [mAbcam 1220] Mouse monoclonal Abcam (#ab1220) WB: 1:1000

H3K9me3 Rabbit polyclonal Active Motif (#39161) WB: 1:2000
IP: 1:50
ChIP: 1:50
PLA: 1:100

H3K27me3 Rabbit polyclonal Active Motif (#39155) WB: 1:2000
IP: 1:50
ChIP: 1:50
PLA: 1:100

H3K79me3 Rabbit polyclonal Abcam (#ab2621) ChIP: 1:30

H3K4me3 Rabbit polyclonal Active Motif (#39159) WB: 1:2000
IP: 1:50
ChIP: 1:50
PLA: 1:100

H3K36me3 Rabbit polyclonal Abcam (#ab9050) ChIP: 1:30

RNA Pol II CTD [8WG16] Mouse monoclonal Abcam (#ab817) ChIP: 1:50

SUV39H1 (MG44) Mouse monoclonal Active Motif (# 39785) WB: 1:500
IP: 1:30
ChIP: 1:30
IFA: 1:100
PLA: 1:50

SUV39H2 Goat polyclonal Novus Biologicals
(#NB-100–1140)

WB: 1:500
IP: 1:30
ChIP: 1:30
IFA: 1:100

GLP (B0422) Mouse monoclonal Novus Biologicals
(# PPB0422-00)

WB: 1:1000
IP: 1:50
ChIP: 1:50
IFA: 1:100
PLA: 1:100

G9A (C-9) Mouse monoclonal Santa Cruz
Biotechnology
(#sc-515726)

WB: 1:500
IP: 1:30
ChIP: 1:30
IFA: 1:70
PLA: 1:50

SETDB1 Rabbit polyclonal Novus Biologicals
(#NBP2-20322)

WB: 1:500
IP: 1:30
ChIP: 1:30
IFA: 1:70
PLA: 1:50

SETDB2 Goat polyclonal Novus Biologicals
(#NB100-1137)

WB: 1:500
IP: 1:30
ChIP: 1:30
IFA: 1:70

RIZ1 (N-terminal) Rabbit polyclonal Abcam (#ab198792) WB: 1:500
IP: 1:30

Table 1 continued on next page

Roy et al. eLife 2019;8:e49500. DOI: https://doi.org/10.7554/eLife.49500 25 of 33

Research article Chromosomes and Gene Expression Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.49500


Table 1 continued

Antibody Raised in Company/catalogue# Dilution used

HP1a (GA-62) Rabbit polyclonal Cell Signaling
Technology (#2616S)

WB: 1:1000
IP: 1:50
ChIP: 1:50
IFA: 1:100
PLA: 1:100

EZH2 (EPR20108) Rabbit monoclonal Abcam (#191250) WB: 1:5000
IP: 1:100

ASC (TMS1) Mouse monoclonal MBL International
Corporation
(#D086-3)

WB: 1:1000

His-tag (HIS.H8) Mouse monoclonal Thermo Fisher Scientific
(#MA1-21315))

WB: 1:5000

b-Tubulin (D66) Mouse
Monoclonal

Sigma-Aldrich (#T0198) WB: 1:5000

b Actin (AC15) Mouse monoclonal Sigma-Aldrich (#A5441) WB: 1:5000

GAPDH Rabbit polyclonal Proteintech (#10494–1-AP) WB: 1:5000

GFP (GF28R) Mouse monoclonal Thermo Fisher Scientific
(#MA5-15256)

WB: 1:4000

Lamin B Rabbit polyclonal Abcam (#ab16048) WB: 1:1000

Normal IgG Rabbit Rabbit Cell Signaling
Technology (#2729)

WB: 1:1000
IP: 1:50
ChIP: 1:50
IFA: 1:100

Mouse IgG2a
(MOPC-173)

Mouse Abcam (#ab18413) WB: 1:1000
IP: 1:50
ChIP: 1:50
IFA: 1:100

BrdU Rabbit polyclonal Rockland antibodies
and assays
(#600–401 C29)

PLA: 1:100

BrdU (MoBU-1) Mouse monoclonal Thermo Fisher
Scientific (#B35128)

PLA: 1:100

Anti-mouse HRP Sheep polyclonal GE Healthcare
(#NA931V)

WB: 1:5000

Anti-rabbit HRP Donkey polyclonal GE Healthcare
(#NA934V)

WB: 1:5000

Anti-goat HRP Mouse Santa Cruz
Biotechnology (#sc-2354)

WB: 1:5000

Anti-rabbit IgG
Conformation
Specific HRP (L27A9)

Mouse monoclonal Cell Signaling
Technology (#5127S)

WB: 1:500

Anti-mouse Light
Chain specific HRP

Goat polyclonal Jackson Immuno
Research (#115–035174)

WB: 1:1000

Anti-rabbit Light
Chain specific HRP

Mouse monoclonal Jackson Immuno
Research (#211-032-171)

WB: 1:1000

Anti-mouse IgG
(H+L)-Alexa fluor 488

Goat polyclonal Thermo Fisher
Scientific (#A11029)

IFA: 1:500

Anti-rabbit IgG
(H+L)-Alexa fluor 488

Donkey polyclonal Thermo Fisher
Scientific (#A21206)

IFA: 1:500

Anti-goat IgG
(H+L)-Alexa fluor 488

Donkey polyclonal Thermo Fisher
Scientific (#A11055)

IFA: 1:500

DOI: https://doi.org/10.7554/eLife.49500.020
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conjugated secondary antibodies for detection. Wherever mentioned, light-chain-specific secondary

antibodies were used to avoid heavy chain bands in WB of co-IP experiments (Table 1). The immu-

noreactive bands were developed using Super Signal West Pico chemiluminescent substrate

(Thermo scientific #34078) or Super Signal West Femto chemiluminescent substrate (Thermo scien-

tific #34095) depending on the signal strength. Blots were developed on a Bio-Rad ChemiDoc XRS+

System and analyzed using the Bio-Rad Image Lab software.

H3K9me3 activity assay
TIME cells were infected with KSHV (100 DNA copies/cell) for 6 or 24 hr followed by isolation of

nuclear fraction as described above. The isolated nuclear fraction was treated with benzonase and

immunoprecipitated with anti-IFI16 or control IgG antibodies using the Catch and Release v2.0

Reversible Immunoprecipitation System (Millipore Sigma #17–500). Elution was performed under

non-denaturing conditions to keep the associated H3K9 methyltransferase active. Subsequently, the

EpiQuik Histone Methyltransferase Activity/Inhibition Assay Kit (H3K9) (Epigentek #P-3003–2) was

used to measure the H3K9 methyltransferase activity in the IP eluate following manufacturer’s

instructions.

Immunofluorescence assay (IFA)
TIME cells grown on eight-well chamber glass slides were infected with EdU-KSHV (100 DNA cop-

ies/cell) for 24 hr, fixed using 4% paraformaldehyde for 15 min, and permeabilized with 0.2% Triton

X-100 in PBS for 20 min. Slides were washed, blocked with Image-iT FX signal enhancer (Invitrogen

#I36933) for 30 min at 37˚C, incubated with primary antibodies for proteins of interest (Table 1) for 1

hr at 37˚C, washed three times and incubated with corresponding fluorescent dye-conjugated sec-

ondary antibodies (Table 1). To fluorescent stained EdU labeled viral genome, a CLICK chemistry-

based reaction was performed using Click-iTTM EdU Alexa FluorTM 594 imaging kit (Invitrogen

#C10339) following the manufacturer’s instructions. Slides were mounted using mounting medium

containing DAPI and observed either by a Nikon Eclipse 80i microscope or a Keyence BZ-X fluores-

cence microscope. Images were acquired at 40X magnification and analyzed using image analysis

software provided by the respective manufacturers.

Proximity Ligation Assay (PLA)
TIME, U2OS Wt and U2OS 67 cells grown on eight well chamber glass slides were infected with

either EdU or BrdU KSHV (100 DNA copies/cell), and fixed and permeabilized using the same meth-

ods as described for IFA. PLA was performed according to the manufacturer’s instructions using the

following kits and reagents: Duolink In Situ PLA Probe Anti-Rabbit PLUS (Sigma-Aldrich #

DUO92002), Duolink In Situ PLA Probe Anti-Mouse MINUS (Sigma-Aldrich # DUO92004), Duolink In

Situ Detection Reagents Red (Sigma-Aldrich # DUO92008). Primary antibodies used are listed in

Table 1. In experiments with anti-BrdU antibodies for PLA, cells were denatured with 4N HCL for 10

min at room temperature after permeabilization with 0.2% Triton X-100. For negative control, iso-

type matched IgG was used in place of primary antibodies. In experiments where EdU-labeled

genome staining was performed along with PLA, slides were subjected to CLICK reaction using

Click-iTTM EdU Alexa FluorTM 594 imaging kit as described above immediately after PLA reactions.

Experiments where PLA and IFA were performed simultaneously on the same sample, PLA protocol

was performed till the ligation step and then the cells were processed for IFA as described above.

After binding of the fluorescent dye-conjugated secondary antibodies for IFA, PLA was resumed,

and polymerization was performed. Slides were then washed and mounted using a minimal volume

of Duolink In Situ Mounting Medium with DAPI (Sigma-Aldrich # DUO82040). PLA signals were

detected as distinct fluorescent dots or puncta using either a Nikon Eclipse 80i fluorescence micro-

scope or a Keyence BZ-X fluorescence microscope. Images were acquired at 40X magnification and

analyzed using image analysis software provided by the respective manufacturers.

Edu labeled KSHV chromatin pull down assay
EdU-labeled genome (chromatin) pull down has been described previously (Dutta et al., 2015).

Briefly, 107 TIME cells were infected with unlabeled or EdU-labeled KSHV (100 DNA copies/cell) for

2 hr, washed and cross-linked using 1% formaldehyde for 10 min at RT. For IFI16 KD condition, cells
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were microporated with either siC or siIFI16 72 hr before infection. Unreacted formaldehyde was

quenched using 0.125 M glycine for 10 min at RT. Cells were then harvested by trypsinization and

permeabilized with 0.2% (v/v) Triton X-100 in PBS for 10 mins on ice and washed with PBS. Following

this, Click chemistry was used to covalently couple biotin azide to the EdU genome. For this, the fol-

lowing reagents were added sequentially: 10 mM (+)-Sodium-L-ascorbate, 0.1 mM biotin-TEG azide

and 2 mM copper (II) sulfate. Reactions were incubated in the dark for 30 mins at RT following which,

reaction was quenched with 10 volumes of 1% (w/v) BSA and 0.5% (v/v) Tween 20 in PBS for 10

mins. Cells were washed three times with PBS and nuclei isolated by incubating in 500 ml CL lysis

buffer (50 mM HEPES, pH 7.8, 150 mM NaCl, 0.5% (v/v) NP-40, 0.25% (v/v) Triton X-100, 10% (v/v)

glycerol) with protease inhibitors for 10 min at 4˚C. The isolated nuclei were then pelleted, washed

with 500 ml wash buffer (10 mM Tris-HCL pH 8.0, 200 mM NaCl, 0.5 mM DTT) for 10 min at 4˚C, and

lysed by resuspension in 500 ml RIPA buffer (10 mM Tris-HCl, pH 8.0, 140 mM NaCl, 1% (v/v) Triton

X-100, 0.1% (v/v) Na-Deoxycholate, 0.1% (w/v) SDS) with protease inhibitor cocktail. These were

processed for shearing of the chromatin via sonication on ice at an amplitude setting of 40 with

pulses of 15 s on and 10 s off for a total of 10 mins on a Qsonica Q700 sonicator. The extract was

then clarified by centrifugation at 15,000 x g for 10 min at 4˚C and protein content quantitated by

the BCA method. 1 mg of the protein extract was pulled-down for 3 hr at 4˚C with 50 ml of Dyna-

beads MyOne Streptavidin T1 (Thermo scientific #65601) which were previously washed with wash

buffer, equilibrated with RIPA buffer and blocked overnight at 4˚C with 0.5 mg/ml BSA and 0.4 mg/

ml pre-sheared salmon sperm DNA to minimize non-specific binding. Beads with bound complexes

were then washed three times with wash buffer and subjected to reverse protein-DNA cross-linking

and elution of proteins by incubation with 2X Laemmli sample buffer for 10 min at 95˚C before SDS-

PAGE and WB.

Measurement of KSHV gene expression by real-time RT-PCR
Total RNA was isolated using the RNeasy minikit (Qiagen #74106) following manufacturer’s instruc-

tions. On-column DNase digestion was performed by using an RNase-free DNase set (Qiagen

#79254). Concentration of the extracted RNA was estimated using a NanoDrop spectrophotometer

(Thermo Scientific), and 1 mg RNA was reverse transcribed by using the High-Capacity cDNA reverse

transcription kit (Applied Biosystems #4368814) with random primers, according to the manufac-

turer’s instructions. For real-time quantitative reverse transcription-PCR (qRT-PCR) in PEL cells, the

synthesized cDNA was used as a template with Power SYBR Green PCR Master Mix (Applied Biosys-

tems #4367659) on an ABI Prism 7500 detection system (Applied Biosystems). All RNA levels were

normalized to b-actin mRNA levels and calculated as the delta-delta threshold cycle (DDCT). All pri-

mers used have been described previously (Roy et al., 2016). In KSHV infected TIME cells, ORF 73

and ORF 50 mRNA were quantified by real time RT-PCR using gene-specific TaqMan primers,

probes and standards that has been described previously (Krishnan et al., 2004). The TaqManTM

RNA-to-CTTM 1-Step Kit (Applied Biosystems #4392938) was used following manufacturer’s instruc-

tions. Viral mRNA expressions were normalized to cellular internal control, RNaseP using manufac-

turer’s instruction (Applied Biosystems #4403328).

Chromatin immunoprecipitation
Chromatin shearing for ChIP was performed by using the truChIP Chromatin Shearing kit (Covaris

#520154) following manufacturer’s instructions on a Covaris ME220 focused ultrasonicator. After

chromatin shearing, Triton X-100 and NaCl in the sheared lysate were adjusted to final concentra-

tions of 1% and 150 mM, respectively. Shearing efficiencies were evaluated by using a 2100 Bioana-

lyzer instrument and the Agilent High Sensitivity DNA Kit (Agilent Technologies #5067–4626)

following manufacturer’s instructions. The fragment size was ensured to be between 200 bps and

500 bps. For immunoprecipitation, 10 mg sheared chromatin was immunoprecipitated with 2 mg

desired antibody or ChIP-grade control IgG (Table 1) overnight at 4˚C. The chromatin-antibody com-

plex was pulled down with ChIP-grade protein G magnetic beads (Active Motif #104502) for 2 hr at

4˚C. The immunoprecipitated complex was then washed three times with low-salt and once with

high-salt wash buffers (Cell Signaling Technology #14231S). To elute the chromatin, the beads were

incubated in ChIP elution buffer (Cell Signaling Technology #14231S) at 65˚C for 30 min on a Ther-

moMixer (1,200 rpm). Following this step, the eluted chromatin was incubated with NaCl and
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proteinase K for 2 hr at 65˚C to remove all proteins and reverse the cross-linking. DNA was purified

by using the ChIP DNA Clean and ConcentratorTM kit (Zymo Research #D5205). The ChIP-enriched

DNAs were quantitated by real-time quantitative PCR (qPCR) using Power SYBR green PCR master

mix (Applied Biosystems #4367659) and primers described previously (Roy et al., 2016). ChIP

enrichment was calculated as relative to input chromatin (% input) and expressed as fold enrichment

over control (shC or siC) ChIP.

Statistical analysis
Data are expressed as means ± standard deviations (SD) of results from at least three independent

experiments (n � 3), and statistical significance was calculated by using the two-tailed Student t test.

*=p < 0.05; **=p < 0.01 and ***=p < 0.001.
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