
*For correspondence:

dv2121@cumc.columbia.edu

†These authors contributed

equally to this work

Present address: ‡Human Target

Validation Core, Biogen,

Cambridge, United States;
§Ribon Therapeutics, Cambridge,

United States; #Kanaph

Therapeutics, Seuol, South Korea

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 15

Received: 19 July 2019

Accepted: 18 December 2019

Published: 21 January 2020

Reviewing editor: Uri Alon,

Weizmann Institute of Science,

Israel

Copyright Lyashenko et al.

This article is distributed under

the terms of the Creative

Commons Attribution License,

which permits unrestricted use

and redistribution provided that

the original author and source are

credited.

Receptor-based mechanism of relative
sensing and cell memory in mammalian
signaling networks
Eugenia Lyashenko1†‡, Mario Niepel2†§, Purushottam D Dixit1,3†#, Sang Kyun Lim2,
Peter K Sorger1,2, Dennis Vitkup1,4,5*

1Department of Systems Biology, Columbia University, New York, United States;
2HMS LINCS Center Laboratory of Systems Pharmacology, Department of Systems
Biology, Harvard Medical School, Boston, United States; 3Department of Physics,
University of Florida, Gainesville, United States; 4Center for Computational Biology
and Bioinformatics, Columbia University, New York, United States; 5Department of
Biomedical Informatics, Columbia University, New York, United States

Abstract Detecting relative rather than absolute changes in extracellular signals enables cells to

make decisions in constantly fluctuating environments. It is currently not well understood how

mammalian signaling networks store the memories of past stimuli and subsequently use them to

compute relative signals, that is perform fold change detection. Using the growth factor-activated

PI3K-Akt signaling pathway, we develop here computational and analytical models, and

experimentally validate a novel non-transcriptional mechanism of relative sensing in mammalian

cells. This mechanism relies on a new form of cellular memory, where cells effectively encode past

stimulation levels in the abundance of cognate receptors on the cell surface. The surface receptor

abundance is regulated by background signal-dependent receptor endocytosis and down-

regulation. We show the robustness and specificity of relative sensing for two physiologically

important ligands, epidermal growth factor (EGF) and hepatocyte growth factor (HGF), and across

wide ranges of background stimuli. Our results suggest that similar mechanisms of cell memory and

fold change detection may be important in diverse signaling cascades and multiple biological

contexts.

Introduction
In biological systems, concentrations of extracellular signaling molecules, such as hormones and

growth factors, often vary by orders of magnitude. Therefore, the ability to sense relative rather

than absolute signals, that is detect fold changes in extracellular cues, is critical for making accurate

decisions in different biological contexts (Alon, 2019). Relative sensing requires both the ability to

store memories of past environmental stimuli and the capacity to quickly and efficiently compute rel-

ative signals (Adler and Alon, 2018).

Relative sensing of environmental inputs has been previosuly investigated in bacteria, with the E.

coli chemotaxis being a classic example (Mesibov et al., 1973; Barkai and Leibler, 1997;

Alon et al., 1999; Shoval et al., 2010). Studies have also explored relative sensing in a variety of

eukaryotic systems. When responding to constant stimuli, experiments with the signaling

proteins ERK (Cohen-Saidon et al., 2009) and b-catenin (Goentoro and Kirschner, 2009) showed

that fold changes in their nuclear activity were robust to cell-to-cell variability (Cohen-Saidon et al.,

2009) and variability in signaling network parameters (Goentoro and Kirschner, 2009). These

observations suggested that gene expression of target genes may respond, at the single cell level,

to fold changes rather than absolute activities of these proteins. Later studies of the NF-kB
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(Lee et al., 2014) and TGF-b/SMAD pathways (Frick et al., 2017) also showed that genes directly

controlled by these proteins often respond to their fold changes at the single cell level. Recent work

has explored relative sensing at the organism level in plants, where the chlorophyll activity was found

to be proportional to the fold change in external light intensity (Tendler et al., 2018).

Despite the insights gained in the aforementioned studies, the molecular mechanisms allowing

cells to detect fold changes in extracellular stimuli are not well understood. The key unresolved

questions are: (1) where and how the memories of background extracellular stimuli are stored within

the cell, (2) what makes these memories specific to particular stimuli, and (3) how the cells subse-

quently use the stored memories to compute fold changes.

In this work, using the growth factor-activated PI3K/Akt signaling pathway, we describe a novel

non-transcriptional mechanism of relative sensing in mammalian cells. The mechanism operates on

fast timescales of dozens minutes to hours, and across more than an order of magnitude of extracel-

lular background stimuli. We derive key aggregate parameters of the signaling cascade that deter-

mine the accuracy and the background range of relative sensing. We also experimentally validate

the accuracy of relative sensing by stimulating cells with multiple fold changes of two physiologically

important ligands, EGF and HGF. Furthermore, we demonstrate that ligand relative sensing is reli-

ably propagated to an important downstream target of the PI3K/Akt pathway.

Results
Stimulation of mammalian cells with growth factors elicits a variety of context-dependent, pheno-

typic responses, including cell migration, proliferation, and cell survival (Cantley et al., 2014). Akt

serves as a central hub of multiple growth factor-activated signaling cascades (Hemmings and

Restuccia, 2012). Naturally, Akt phosphorylation-dependent (pAkt) pathways are implicated in mul-

tiple human diseases, such as many types of cancers (Engelman, 2009; Hemmings and Restuccia,

2012), diabetes (Whiteman et al., 2002), and psychiatric disorders (Gilman et al., 2012;

McGuire et al., 2014).

To understand how the immediate-early dynamics of the Akt pathway depend on the background

level of growth factors, we used immunofluorescence to quantify the levels of pAkt in epidermal

growth factor (EGF)- stimulated human non-transformed mammary epithelial MCF10A cells (Materi-

als and methods, Figure 1—figure supplement 1). Within minutes of continuous stimulation with

EGF pAkt reached maximum response, and then decayed to low steady state levels within hours

(Figure 1a). The resulting steady state pAkt levels were approximately independent of the EGF stim-

ulus, indicating an approximately adaptive response (Friedlander and Brenner, 2009; Shoval et al.,

2010; Figure 1—figure supplement 2). In the sensitive range of EGF concentrations, maximal pAkt

response was approximately proportional to the logarithm of the EGF stimulus (Figure 1b). Quanti-

tative western blot experiments demonstrated that in this logarithmic regime, pAkt levels were

approximately linearly proportional to the phosphorylation level of EGF receptors (EGFRs) (Fig-

ure 1—figure supplement 3). The logarithmic dependence of EGFR phosphorylation levels on EGF

stimulation has been previously attributed to a mixture of receptor species with varying affinities to

the ligand, negative cooperativity of ligand binding to receptor dimers, and oligomeric aggregation

of receptors (Kawamoto et al., 1983; Chatelier et al., 1986; Wofsy et al., 1992; Macdonald and

Pike, 2008; Huang et al., 2016).

Continuous stimulation with EGF resulted in the abundance of cell-surface EGF receptors (sEGFR)

also decreasing proportionally to the logarithm of the background EGF level, and reaching a new

steady state within hours (Figure 1c). Notably, prior exposure with EGF desensitized cells to subse-

quent EGF stimulations in a quantitative manner. When we first pre-exposed cells to different levels

of EGF for 3 hr and then stimulated them with the same final EGF concentration (2 ng/ml)), the maxi-

mal pAkt response decreased monotonically with increasing pre-exposure EGF levels (Figure 1d).

These experiments demonstrate that the pAkt response to an abrupt EGF stimulation is strongly

affected by background EGF levels, and that this effect is likely mediated by the endocytosis-

based removal of activated EGFRs from the cell surface (Wiley et al., 1991).

Using pharmacological perturbations of the EGFR/Akt pathway, we confirmed that the desensiti-

zation of the phosphorylation response (Figure 1d) was likely due to receptor-based mechanisms

upstream of Akt activation, and did not depend on its downregulation, for example, through phos-

phorylation-dependent Akt degradation (Wu et al., 2011). Specifically, we used SC79, a small
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molecule which promotes Akt phosphorylation even in the absence of extracellular ligands (Jo et al.,

2012). Unlike the desensitization observed in the growth factor-induced pAkt response (Figure 1d),

the pAkt response following stimulation with SC79 did not depend on the background EGF pre-

exposure (Figure 1—figure supplement 4). This result supports the conclusion that the

EGF desensitization mechanism was upstream of Akt.

To understand how background EGF levels affect the pAkt response to subsequent EGF stimula-

tion we next constructed an ordinary differential equation (ODE) model of EGF-dependent Akt phos-

phorylation. The model included several well-established features of the EGFR signaling

cascade (Chen et al., 2009), such as endocytosis and degradation of activated receptors (Materials

and methods) (Figure 2a). We constrained the ranges of model parameters based on literature-

derived estimates (Supplementary file 1a), and fitted the model using experimental data on pAkt

time courses (Figure 1a) and steady state sEGFR levels (Figure 1c) at different doses of EGF

Figure 1. EGF-induced Akt phosphorylation and desensitization in MCF10A cells. (a) Temporal profiles of

phosphorylated Akt (pAkt) in cells exposed to increasing stimulation with extracellular EGF (see inset). (b) Maximal

pAkt response as a function of EGF stimulation. (c) Steady state levels of surface EGFR (sEGFR) after 150 and 180

min of stimulation with a constant level of EGF. (d) Desensitization of the maximal pAkt response to an abrupt

EGF stimulation. MCF10A cells were pre-treated with increasing background doses of EGF (x-axis) for three hours,

followed by a second abrupt stimulation with the same concentration of EGF (2 ng/ml); the inset shows a

schematic illustration of the experimental protocol. In all subpanels, error bars represent the standard deviation of

n = 3 technical replicates. Source data: pakt_timecourses_first_step.mat and segfr_150_180mins.doseresponse.

mat (available in Source code 1).

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Representative immunofluorescence stains of Akt phosphorylation and cell surface EGF

receptor levels.

Figure supplement 2. Adaptation of steady state pAkt response.

Figure supplement 3. Akt phosphorylation response is linearly related to EGFR phosphorylation response.

Figure supplement 4. pAkt activation using pharmacological intervention.
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stimulations. We then used simulated annealing to optimize model parameters (Materials and meth-

ods, Figure 2—figure supplement 1), and considered multiple distinct parameter sets from the

optimization runs for further computational analysis.

Using the fitted dynamical model (Figure 2—figure supplement 1), we explored the ability of

the Akt pathway to respond to relative, rather than absolute, changes in EGF levels. To that end, we

simulated the pAkt response by exposing the model in silico to a range of background EGF levels

followed by different abrupt fold change increases in EGF concentration (Figure 2b). The model pre-

dicted that the maximal pAkt response indeed depends primarily on the EGF fold change relative to

Figure 2. Computational model demonstrates the ability of the system to sense relative changes of EGF levels. (a)

Schematic of the computational model of the EGFR signaling cascade leading to phosphorylation of Akt. Rate

constants marked with asterisks correspond to reactions associated with activated (phosphorylated) receptors.

Only a subset of reactions in the network are shown for brevity. (b) In silico protocol used to explore relative

sensing, showing the temporal profiles of EGF stimulation (top) and the corresponding profiles pAkt response

(bottom). Cells were first exposed to various background EGF stimulations (blue and red) and were next subjected

to the same abrupt fold change in EGF at time t0. The resulting maximal pAkt responses were similar for the same

EGF fold change independent of background EGF stimulation, indicating relative sensing. (c) The maximal pAkt

response observed after exposing the ODE model in silico to different background EGF levels (x axis), followed by

a 2-, 3-, 4-, or 6- fold increase (different colors) in EGF; inset shows pAkt response over a wider range of

background EGF levels. (d) Maximal pAkt responses (y axis) induced by stimulation with different EGF background

levels (data points with the same shape and color) were combined and plotted as a function of the EGF fold

change (x axis). Dashed line represents log-linear fit to data (Pearson’s r2 = 0.96, regression p value < 10�15). In all

subpanels, error bars represent the standard deviation of n = 10 model fits. Source code: https://github.com/

dixitpd/FoldChange/.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Dynamical model fits to experimental data.
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the background stimulation levels (Figure 2c). This relative sensing of EGF stimuli occurred over an

order of magnitude of background EGF concentrations, and the resulting pAkt response was

approximately proportional to the logarithm of the EGF fold change (Figure 2d). Notably, the model

predicted relative sensing exactly in the range of EGF background concentrations where

sEGFR endocytosis was sensitive to background ligand stimulation. At low EGF background concen-

trations (<0.01 ng/ml), no substantial sEGFR removal was predicted at the steady state (Figure 2—

figure supplement 1), and consequently there was no significant desensitization of the pAkt

response. In that regime, the pAkt response to an abrupt fold change depended primarily on the

absolute EGF level. In contrast, at high background EGF concentrations (>1 ng/ml), a large fraction

of sEGFR was already removed from cell surface and consequently the network responded only

weakly to further EGF stimulation.

Next, we experimentally tested the model-predicted relative sensing in MCF10A cells. Cells were

first treated with various background EGF concentrations for three hours to ensure that sEGFR

reached steady state levels (Figure 1c), and that pAkt had decayed after a transient increase

(Figure 1a). As in the computational analysis (Figure 2b), cells were then exposed to different fold

changes in EGF levels; pAkt levels were measured at 2.5, 5, 10, 15, 30 and 45 min after the step

increase in EGF stimulation (Figure 3—figure supplement 1). Similar results were observed in two

independent biological replicates (Figure 3—figure supplements 1, 2 and 3), and the experiments

confirmed the predictions of the computational model that maximal pAkt response depends primar-

ily on the fold change of EGF and not its absolute concentration (Figure 3a, Figure 3—figure sup-

plement 4). Specifically, across more than an order of magnitude of EGF background concentrations

(0.03–0.5 ng/ml) the same EGF fold change (lines with the same colors in Figure 3a) elicited similar

Figure 3. Experimental validation of EGF relative sensing by pAkt in MCF10A cells. (a) The maximal pAkt

responses after exposing cells to different background EGF levels (x axis) for 3 hr, followed by 2-, 3-, 4-, and 6-fold

increases (different colors) in EGF. Inset shows experimental pAkt response over a wider range of background EGF

levels. (b) Maximal pAkt responses (y axis) to fold changes in EGF depended approximately logarithmically on the

fold change. Maximal pAkt responses induced by stimulation with various EGF background levels (data points with

the same shape and color) were combined and plotted as a function of the EGF fold change (x axis). Dashed line

represents log-linear fit to the data (Pearson’s r2 = 0.93, regression p value < 10�11). In all subpanels, error bars

represent the standard deviation of n = 3 technical replicates. Source data: expt_data.mat (available in

Source code 1).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Dynamics of pAkt responses to step increases in EGF.

Figure supplement 2. The scatter plot of pAkt levels observed in the two biological replicates shown in

Figure 3—figure supplement 1.

Figure supplement 3. Biological replicate of the experiment demonstrating relative sensing of EGF by pAkt (main

text Figure 3).

Figure supplement 4. Maximal Akt phosphorylation response does not depend on the absolute EGF stimulus.

Figure supplement 5. Time-integral of pAkt response exhibits relative sensing of EGF.

Figure supplement 6. Dynamic time course of pAkt response exhibits relative sensing of EGF fold change.
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pAkt responses. The concentration range in which we obsered relative sensing was consistent with

recent estimations of in vivo EGF levels (Pinilla-Macua et al., 2017). In close agreement with

the computational model predictions, the maximal pAkt response was approximately proportional

to the logarithm of EGF fold change (Figure 3b). Interestingly, in addition to the maximal pAkt

response, approximate relative sensing was also observed for the time integral of pAkt levels (Fig-

ure 3—figure supplement 5), and for the entire time course of pAkt dynamics (Figure 3—figure

supplement 6).

To better understand the mechanism responsible for the observed relative sensing of extracellular

EGF concentration, we next constructed a simplified analytical model of the signaling network

(see Appendix). This model revealed that, across a broad range of background concentrations, the

steady-state abundance of cell surface receptors R½ �T decreases approximately log-linearly as a func-

tion of the background ligand (EGF) concentration L½ �
0
(Equation 1 and Figure 4a):

R½ �T ~ constant� a � log L½ �
0

(1)

and that the maximal receptor phosphorylation response LR�
2

� �

max
depends approximately log-line-

arly on the level of the subsequent stimulation L½ �
1
and linearly on the steady-state receptor abun-

dance R½ �T (Equation 2, Figure 4b):

LR�
2

� �

max
~ b � log L½ �

1
þ R½ �T

a

� �

þ constant (2)

where a and b are numerical constants (Appendix). As a result of these relationships, the phosphory-

lation response LR�
2

� �

max
after an increase of ligand concentration from L½ �

0
to L½ �

1
depends, in agree-

ment with computational and experimental analyses, approximately on the logarithm of the

stimulation fold change
L½ �

1

L½ �
0

:

½LR�
2
�max ~b� log½L�

1
þ ½R�T

a

� �

~b� log½L�
1
� log½L�

0

� �

~b log
½L�

1

½L�
0

(3)

The analytical model (Appendix) also revealed that the range of the background ligand concen-

trations where relative sensing is observed is primarily determined by two aggregate

systems parameters, which we denote a and b (Equations 4 and 5). The parameter a quantifies the

Figure 4. Analytical model of the system predicts log-linear relationships leading to receptor-based memory and

relative sensing. (a) Approximate log-linear dependence of the scaled steady-state surface receptor abundance

½R�T on the normalized background ligand concentration u0 ¼ ½L�
0
=Kd1, where Kd1 is the equilibrium dissociation

constant of EGF binding to EGFR. (b) Approximate log-linear dependence of the maximal phosphorylation

response on the normalized ligand stimulus u1 ¼ ½L�
1
=Kd1. Dashed red lines represent the exact log-linear

approximation.
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ability of the signaling network to capture the input signal (EGF) and elicit a downstream phosphory-

lation response. The parameter b quantifies the ability of the network to preferentially internalize

and degrade active (phosphorylated) receptors relative to inactive (non-phosphorylated) receptors.

The two aggregate parameters are expressed as follows:

a¼ kp þ kdp

kdp
� k2

k�2

�R0 (4)

where kp is the rate of receptor phosphorylation and kdp is the rate of receptor de-phosphorylation,

k2 is the rate of receptor dimerization, k�2 is the dissociation rate of receptor dimers, and R0 is the

total number of cell-surface receptors at the steady state in the absence of extracellular stimuli and

b¼ kp

kdpþ kp
� k�i

ki
�

k�
deg

k�
deg

þk�rec
kdeg

kdegþkrec

(5)

where k�i ; k�rec; k�deg and ki; krec; kdeg are correspondingly the rates of internalization, recycling, and

degradation of the active (phosphorylated) and non-active receptors. Notably, an increase in the

value of a increases signal sensitivity and receptor dimerization and phosphorylation. This shifts the

relative sensing range to lower ligand concentrations (Figure 5a). In turn, an increase in the value of

b increases the fraction of active receptors being internalized and degraded. This increases the

range of background ligand concentrations where the relative sensing is observed (Figure 5b).

Based on the best-fit ODE model parameter sets, we estimate a ~ 15 and b ~ 40 (Appendix). As an

example, in Figure 5 we show the scaled phosphorylation response to a six-fold change in EGF con-

centration as a function of the scaled background ligand concentration u0 for different values of a

(Figure 5a) and b (Figure 5b); the green arrows in the figure represent the predicted range of fold

change detection. The model analysis showed that the relative sensing occurs across over an order

of magnitude of background ligand concentrations (Appendix). Furthermore, the analytical model

revealed that relative sensing does not require receptor dimerization, and similar sensing mecha-

nisms can operate in pathways where signaling is initiated by monomeric receptors (Appendix).

In addition to EGF, Akt phosphorylation can be induced by multiple other ligands, including

hepatocyte growth factor (HGF) (Stuart et al., 2000) which binds to its cognate receptor cMet

Figure 5. Analytical model predicts the range of approximate EGF relative sensing. Scaled phosphorylation

response to a six-fold change in extracellular EGF concentration as a function of the scaled background ligand

concentration (u0 ¼ ½L�
0
=Kd1 ). (a) The phosphorylation response as a function of background ligand concentration

(x-axis) is shown for different values of the parameter a (y-axis), when the parameter b is fixed at b=40. (b) The

phosphorylation response as a function of background ligand concentration (x-axis) is shown for different values of

b (y-axis), when a is fixed at a=15. The colors represent the scaled phosphorylation response. The green dashed

lines delineate the parameter ranges where the fold change detection is >90% accurate. The horizontal black lines

correspond to the parameter values a=15 and b=40, which were estimated from experimental data fits; the

horizontal green double arrows represent the predicted range of relative sensing for the investigated PI3K-Akt

cascade.
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(Viticchiè and Muller, 2015). Similar to EGFRs, upon ligand binding, cMet receptors dimerize

(Kong-Beltran et al., 2004) and cross-phosphorylate each other; this leads to phosphorylation of

multiple downstream targets, including Akt. To investigate the specificity of the receptor-based cell

memory to past ligand exposures, we used the two ligands, EGF and HGF, which share

many signaling components downstream of their cognate receptors (Xu and Huang, 2010). We

exposed cells to background doses of either HGF or EGF for three hours, and then stimulated cells

using either the same or the other growth factor to elicit pAkt response (Figure 6a,b). Pre-exposure

with HGF did not substantially downregulate EGF-induced pAkt responses, but substantially

Figure 6. Desensitization and ligand-specific cell memory for EGF- and HGF-induced pAkt responses. MCF10A

cells were first exposed to various background concentrations of either HGF or EGF for three hours, and then

abruptly stimulated using either the same or the other growth factor. pAkt levels were then measured 10 min after

the addition of the second stimulus. (a) EGF- (blue, 2.5 ng/ml) or HGF- (red, 4 ng/ml) induced pAkt response in

cells pre-exposed with various background concentrations of HGF (x axis). (b) EGF- (blue, 2.5 ng/ml) or HGF- (red,

4 ng/ml) induced pAkt response in cells pre-exposed with various background concentrations of EGF (x axis). (c)

The maximal pAkt response in MCF10A cells exposed to different background doses of HGF (x axis) for 3 hr,

followed by 2-, 4-, and 8-fold increase (different colors) of HGF. Inset shows experimental pAkt response over a

wider range of background HGF levels. (d) The maximal pAkt responses (y axis) to HGF fold changes depended

approximately logarithmically on the fold change (x axis). Maximal pAkt responses induced by stimulation with

various HGF background levels (data points with the same shape and color) were combined and plotted as a

function of the HGF fold change (x axis). Dashed line represents log-linear fit to data (Pearson’s r2 = 0.88,

regression p value < 10�6). In all subpanels, error bars represent the standard deviation of n = 3 technical

replicates. Source data: expt_data.mat (available in Source code 1).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Stimulation with different growth factors leads to specific removal of cognate receptors

from the cell surface.

Figure supplement 2. Biological replicate of the experiment demonstrating relative sensing of HGF by pAkt (main

text Figure 6c,d).
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decreased HGF-induced responses (Figure 6a). Similarly, we observed a relatively small desensitiza-

tion of HGF-induced responses due to pre-exposure with EGF, while there was a significant desensi-

tization of EGF-induced pAkt responses (Figure 6b). We further confirmed that exposure of

MCF10A cells to various concentrations of HGF leads to pronounced HGF-dependent removal of

cMet from the cell surface, without significant removal of sEGFR (Figure 6—figure supplement 1).

Similarly, the pre-exposure of cells to EGF leads to EGF-dependent removal of sEGFR without a sig-

nificant change in surface cMet abundance (Figure 6—figure supplement 1). These observations

support the mechanism in which the relative sensing of extracellular ligands relies on the memory of

their past exposures effectively encoded in the abundances of their cognate cell-surface receptors.

Given the observed HGF-dependent removal of cell surface cMet receptors and the resulting

pAkt desensitization, we investigated next whether the maximal pAkt response depends, similarly to

EGF, on the relative fold changes in the level of extracellular HGF. To that end, we exposed cells to

a range of different background levels of HGF, and then stimulated cells with different fold changes

in HGF concentrations (Figure 6c,d and Figure 6—figure supplement 2). These experiments dem-

onstrated that HGF-induced phosphorylation of Akt also depends primarily on the fold change in

extracellular HGF concentration across almost an order of magnitude of background HGF exposures

(between 0.1 and 1 ng/ml HGF) (Figure 6c). Moreover, like EGF, the maximum pAkt levels

depended approximately log-linearly on the HGF fold change (Figure 6d).

Relative sensing of extracellular ligands should affect important downstream biological targets of

the PI3K-Akt pathway. The FoxO3 transcription factor is a key effector of the pathway, and it is

involved in diverse cellular processes including apoptosis, proliferation, and metabolism (Webb and

Brunet, 2014). Akt phosphorylation of FoxO3 leads to its translocation from the nucleus to cyto-

plasm and subsequent transcriptional deactivation (Webb and Brunet, 2014). Notably, following

Akt activation, the typical nuclear translocation timescale for FoxO family proteins is short (less than

5 min) (Gross and Rotwein, 2017). To investigate FoxO3 activation induced by EGF stimulation, we

used quantitative immunofluorescence to measure its nuclear-to-cytoplasm ratio (Worster et al.,

2012). We exposed cells to two different background EGF levels for three hours, and then treated

them with two different abrupt fold changes in EGF concentrations. Consistent with relative sensing

by pAkt, the nuclear-to-cytoplasmic ratio of FoxO3 also reflected the relative, rather than the abso-

lute changes in EGF stimulation (Figure 7 and Figure 7—figure supplement 1). Thus, relative sens-

ing of the growth factor signal is faithfully transmitted in MCF10A cells to at least some of the

physiologically important effectors of the PI3K-Akt pathway.

Discussion
Receptor endocytosis and down-regulation, following ligand stimulation, has been canonically asso-

ciated with signal and circuit desensitization (Friedlander and Brenner, 2009; Sorkin and von Zas-

trow, 2009; Ferrell, 2016). Our study suggests an additional and more quantitative role of

receptors endocytosis in mammalian cells. Specifically, receptor endocytosis may allow cells to con-

tinuously monitor signals in their environment (Becker et al., 2010; Brennan et al., 2012;

Mitchell et al., 2015) by dynamically adjusting the number of ligand-cognate receptors on the cell

surface. Our analysis also demonstrates that the memory of past stimuli, effectively encoded in the

number of surface receptors, may be signal-specific, at least for some ligands, due to the selective

removal of ligand-cognate receptors. The combination of logarithmic pAkt response, and the loga-

rithmic dependence of the ligand-specific memory on the background signal, allows cells to respond

to relative changes in environmental stimuli. We note that the described relative sensing mechanism

is not a direct consequence of either simple adaptation to various levels of background signals or

logarithmic activation response (Shoval et al., 2010; Adler et al., 2017; Adler and Alon, 2018).

Previous studies (Cohen-Saidon et al., 2009; Goentoro and Kirschner, 2009; Lee et al., 2014)

have demonstrated that transcriptional motifs may efficiently buffer cell-to-cell variability in signaling

components when responding to a constant extracellular stimulation. In contrast, our study describes

a non-transcriptional mechanism of sensing extracellular signal changes relative to past extracellular

stimulation. Although the pAkt response to an abrupt stimulation is relatively fast (~5–15 min,

Figure 1a), and therefore non-transcriptional in nature, the sustained production and delivery of cell

surface receptors is essential to establishing the signal-dependent and receptor-mediated memory.
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Therefore, sustained transcription and translation of network comonents are necessary for proper

functioning of the described sensing mechanism.

Although there are usually ~105–106 EGFR receptors on mammalian cell surface (Shi et al., 2016),

the downstream network response, for example Akt phosphorylation, often saturates when only a

relatively small fraction (5–10%) of the receptors are bound to their cognate ligands (Chen et al.,

2009; Shi et al., 2016). Our study suggests that one potential advantage of such a system architec-

ture is that, beyond simple signal activation, it may endow cells with a large dynamic range of recep-

tor abundances to memorize stimulation levels of multiple extracellular ligands (Hart et al., 2013;

Nandagopal et al., 2018). Notably, signal-mediated removal has been reported for many other

receptors and signaling systems, such as the G protein-coupled receptors (GPCRs) (Ferguson, 2001),

involved in various sensory systems, and AMPA-type glutamate receptors (Guskjolen, 2016), impli-

cated in synaptic plasticity. Therefore, similar relative sensing mechanisms may be important in multi-

ple other receptor-based signaling cascades and across different biological contexts.

Materials and methods

Experimental methods
Measurement of EGF signaling responses
MCF10A cells were obtained from the ATCC and grown according to ATCC recommendations. Cell

identity was confirmed by short tandem repeat (STR) profiling at the Dana-Farber Cancer Institute

and cells were tested with the MycoAlert PLUS mycoplasma detection kit (Lonza) and found to be

free of Mycoplasma prior to analyses. For experiments, 96 well plates (Thermo Scientific) were

coated with type I collagen from rat tail (Sigma-Aldrich) by incubating plates with 65 ml of 4 mg/ml

collagen I solution in PBS for 2 hr at room temperature, washed twice with PBS using a EL406

Figure 7. Relative sensing of EGF concentrations by pAkt is propagated to FoxO3. MCF10A cells were

first exposed to two background concentrations of EGF for three hours, and then were stimulated with 3- and 6-

fold increase in EGF concentrations. The ratio of nuclear-to-cytoplasmic FoxO3 levels (y-axis) was measured using

quantitative immunofluorescence (Materials and methods) after 15 min of the EGF fold changes. Statistical

significance was calculated using the Wilcoxon rank sum test (n = 5); * corresponds to p<0.01, and n. s.

corresponds to p>0.1. Error bars represent the standard deviation of n = 5 technical replicates. Source data:

expt_data.mat (available in Source code 1).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Biological replicate of the experiment showing relative sensing of EGF by FoxO3.

Lyashenko et al. eLife 2020;9:e50342. DOI: https://doi.org/10.7554/eLife.50342 10 of 31

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.50342


Microplate Washer Dispenser (BioTek), and then sterilized under UV light for 20 min prior to use.

Cells were harvested during logarithmic growth and plated into collagen-coated 96 well plates using

a EL406 Microplate Washer Dispenser. Cells were grown in 200 ml of complete medium for 24 hr,

serum starved twice in starvation media (DMEM/F12 supplemented with 1% penicillin-streptomycin

and 0.1% bovine serum albumin), incubated in 200 ml of starvation media for 19 hr, washed twice

more, and incubated in 200 ml of starvation media for another hour. This time point constituted t = 0

for all experiments.

Treatment solutions were created by manual pipetting or by dispensing the appropriate amounts

of epidermal growth factor (EGF, Peprotech), hepatocyte growth factor (HGF, Peprotech), or SC-79

(Sigma) into starvation media using a D300 Digital Dispenser (Hewlett-Packard). At t = 0 cells were

stimulated with 100 ml of treatment solution and then incubated for the indicated times. For experi-

ments requiring a second stimulus, cells were treated with an additional 100 ml of treatment solution

at 3 hr and incubated for the indicated times. For fixation, 100 ml of supernatant were removed from

the wells, replaced by 100 ml of 12% formaldehyde solution (Sigma) in phosphate buffered saline

(PBS), and incubated for 30 min at room temperature.

All subsequent washes and treatments were performed with the EL406 Microplate Washer Dis-

penser. Cells were washed twice in PBS and permeabilized with 0.3% Triton X-100 (Sigma-Aldrich) in

PBS for 30 min at room temperature (this step was omitted for measuring the surface expression of

cMET and EGFR), washed once again in PBS, and blocked in 40 ml of Odyssey blocking buffer (LI-

COR Biotechnology) for 60 min at room temperature. Cells were incubated with 30 ml of anti-phos-

pho-Akt (Cell Signaling Technologies, 4060, 1:400), FoxO3 (Cell Signaling Technologies, 2497,

1:200), anti-Met (R and D Systems, AF276, 1:150), or anti-EGFR (Thermo Fisher Scientific, MA5-

13319, 1:100) over night at 4˚C. Cells were washed once in PBS and three times in PBS with 0.1%

Tween 20 (Sigma-Aldrich; PBS-T for 5 min each and incubated with 30 ml of a 1:1000 dilution of sec-

ondary antibodies conjugated with Alexa Fluor 647 in Odyssey blocking buffer for 60 min at room

temperature. Cells were washed two times in PBS-T, once with PBS, and stained for 30 min at room

temperature with whole cell stain green (Thermo Fisher Scientific) and Hoechst (Thermo Fisher Scien-

tific). Cells were washed three times in PBS, covered in 200 ml of PBS, and sealed for microscopy.

Cells were imaged using an Operetta microscope (Perkin Elmer).

For the quantitative Western blots, about 70% confluent MCF10A cells were serum starved and

treated with different concentrations of EGF (1, 0.56, 0.31, 0.18, 0.1 ng/mL). Cell lysate was pre-

pared in Laemmili Sample Buffer (Bio-Rad) and subjected to SDS-PAGE in the 4–20% gradient gel

(Bio-Rad). Western blots were performed using standard conditions with primary antibodies anti-

phospho-EGFR (Cell Signaling Technologies, 3777, 1:1000) and anti-phospho-Akt (Cell Signaling

Technologies, 4060, 1:1000) and anti-Actin (Santa Cruz Biotechnology, sc-47778 HRP, 1:5000). Sec-

ondary HRP-conjugated antibodies were acquired from Cell Signaling (7074, 1:10,000). Signals were

detected with SuperSignal West Dura Extended Duration Substrate (Thermo Fisher Scientific) on a

myECL Imager (Thermo Fisher Scientific) and analyzed by Image Studio Lite software (LI-COR Bio-

sciences) by normalizing the signal from each antibody by the corresponding signal from Actin.

Image Processing
Images were analyzed using the Columbus image data storage and analysis system (Perkin Elmer) to

quantify single cell fluorescence measurements from each imaged well. The reported intensity values

were obtained by first subtracting the background fluorescence of the well and subsequently the lev-

els of pAKT at no stimulation at the same time. From each well we thus obtained a distribution of

single cell measurements of a given target (pAkt, FoxO3, scMET or sEGFR). In each distribution we

discarded the top and bottom 5% of points to remove outliers due to imaging and detection errors.

The nuclear FoxO3 to cytoplasmic FoxO3 compartmentalization ratio was determined by the mean

intensity in each area after image segmentation based on Hoechst and whole cell stain green at the

single cell level. After that, we calculated the average of the resulting single cell distributions. For

each condition, we performed multiple technical repeats (multiple wells), and as a final result

reported the average of the corresponding single cell distribution averages and the associated stan-

dard deviations.
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Computational methods
In this section, we describe in detail (1) the model of the EGF/EGFR/Akt signaling pathway, (2)

model assumptions, (3) model parameters and their bounds, (4) various relevant biological con-

straints that were imposed while fitting the model to the data, (5) the error function that was mini-

mized in the parameter search, (6) the numerical procedure used to minimize the error function

between model predictions and experimental data, and (7) in silico predictions.

General structure of the computational model
The dynamic ODE model describing the EGF/EGFR signaling cascade leading to Akt phosphoryla-

tion (Supplementary file 1a, b, and Equations A2–A20) was based on the previous work by

Chen et al. (2009). We retained the components of the model relevant to EGF-dependent phos-

phorylation of EGFR and the subsequent cascade responsible for Akt phosphorylation. The resulting

model consisted of 20 chemical species (see Supplementary file 1a) and was described by 24

parameters (20 reaction rate constants and four total species concentrations, Supplementary files

1–3, and Equations A2– A20).

The model included processes across three cellular compartments: cell surface (plasma mem-

brane), cytoplasm, and endosomes. The model included interactions of the ligand with the receptors

(ligand-binding and unbinding to receptor monomers and dimers) and subsequent receptor dimer-

ization and undimerization. The model also included internalization of phosphorylated and unphos-

phorylated receptors, their recycling and degradation, phosphorylation and dephosphorylation by

phosphatases.

Main assumptions of the model
In agreement with available literature (Wiley and Cunningham, 1982; Herbst et al., 1994), we

assumed that the rates of internalization, recycling, and degradation are different for inactive

(unphosphorylated) and active (phosphorylated) receptors (Supplementary file 1a). We assumed

that EGFR phosphatases in MCF10A cells are present at exceedingly high concentrations

(Kleiman et al., 2011), and therefore we implemented the corresponding reaction of dephosphory-

lation of phosphorylated EGFRs (pEGFRs) as a first order reaction. We further assumed that acti-

vated receptors on plasma membrane and in endosomes are dephosphorylated by the phosphatase

with the same rate (Kleiman et al., 2011).

We implemented PIP2 phosphorylation by pEGFR on the plasma membrane as a simplified effec-

tive first order process. Following the receptor-driven phosphorylation of PIP2 we retained the

canonical signaling cascade of the PI3K/Akt activation (Figure 2a in the main text). We also imple-

mented a first order reaction for action of the phosphatase on pAkt.

We assumed that cells are at steady state in terms of the abundances of ligand-free cell surface

and endosomal receptors prior to ligand exposure. Specifically, prior to ligand exposure, the num-

ber of ligand-free EGFR monomers on cell surface and in endosomes, were derived based on the

steady state condition of the corresponding equations.

In agreement with the literature (Haugh and Meyer, 2002; Park et al., 2003), we assumed that

Akt can be phosphorylated only by cell-surface pEGFR, and not by endosomal pEGFR. Finally, we

assumed that over the course of simulation extracellular ligand concentration remained constant,

unless a step increase in EGF was applied. Here we refer to the background ligand stimulation as

stimulation applied at time t = 0 to the cells that were previously not exposed to the ligand.

Model parameters
The model parameters consisted of 4 total species abundances (PIP2, Akt, PDK1, and EGF recep-

tors) and 20 rate constants. We collected multiple values of these parameters from literature

(Supplementary file 1a). In our search for optimal rate parameters fitted to data, we allowed rate

parameters to vary within half an order of magnitude from the lowest and the highest literature

derived estimate (Supplementary file 1a). For parameters, for which experimental estimates were

not available, we allowed up to four orders of magnitude in variation.

In addition, we allowed one and a half orders of variation in first order rate of EGF unbinding

from receptors and the rate of EGFR phosphorylation in order to account for spatial organization of

the receptors on the cell surface (Mayawala et al., 2006). We fixed the rate of pEGFR phosphatase
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according to the measurement of this constant in MCF10A cells (Kleiman et al., 2011). In accor-

dance with literature parameter estimates (Supplementary file 1a), we constrained the rate of

ligand unbinding, receptor undimerization, receptor phosphorylation, and receptor dephosphoryla-

tion to be at least 10 times faster than receptor internalization (Wiley et al., 1991; Herbst et al.,

1994; Chen et al., 2009; Kleiman et al., 2011).

Total number of EGFR receptors was limited to be between 105–106 molecules per cell

(Niepel et al., 2013). Total protein abundance of Akt was limited to be between 105–106 molecules

per cell (Chen et al., 2009). The abundance of PDK1 was limited between 103–106 molecules per

cell (Chen et al., 2009; Wang et al., 2012). Total abundance of lipid molecule PIP2 was limited

between 108.2–109.2. The abundance of PIP2 was calculated based on (1) surface area of MCF10A

cells (calculated using a diameter of ~66 mm [Imbalzano et al., 2009] and assuming spherical cell

shape), (2) total number of lipid molecules per 1 mm2 of membrane (Alberts et al., 1994) (~5�106),

and (3) the fraction of PIP2 among all plasma membrane lipids (Czech, 2000) (0.75%); this corre-

sponded to ~5�108 molecules of PIP2 per cell.

Additional constraints
In addition to the constraints imposed on network parameters directly through the experimentally

measured data at EGF stimulations, we also required several additional constraints to better capture

biology of EGFR signaling based on known literature. These constraints were either added as ‘hard’

constraints: parameter sets that did not agree with hard constraints were rejected, or as ‘soft’ con-

straints: parameter sets that did not agree with soft constraints were penalized using additional

terms in the error function.

Hard constraints
We constrained the total number of EGF receptors prior to EGF exposure to be between 105–106

per cell, and surface EGFR to be within 105–106 receptors per cell, in agreement with EGFR abun-

dances reported for MCF10A cell lines (Niepel et al., 2013). In the model, the number of cell surface

receptors was not a free parameter, but was calculated based on the steady state condition of the

differential equations that describe the system.

Soft constraint
We also implemented a ‘soft’ constraint that ensured realistic levels of phosphorylated Akt mole-

cules. We required that at least 10% of total Akt gets phosphorylated at EGF doses close to Akt sat-

uration, that is in our case 3.16 ng/ml EGF (Chen et al., 2009).

Error function
The error function quantified the disagreement between model predictions and data and the soft

constraints. At a given point � in parameter space, we solved the system of ODEs describing EGF-

induced Akt phosphorylation (see below) using the MATLAB and obtained model solutions {Si} for

all experimentally measured conditions. Importantly, while the model predicts protein concentra-

tions in units of number of molecules per cell, our experiments measured protein concentration up

to a scaling factor. Therefore, we rescaled the model prediction using maximum likelihood linear-

regression estimate (MLE) for both pAkt and sEGFR data between the model and the data respec-

tively. Specifically, separately for pAkt and sEGFR, we fitted a linear model between the predictions

from the ordinary differential equation model and the corresponding experimental measurements

across multiple EGF doses and time points. We rescaled the predictions based on the slope and the

intercept of the linear model fit. The scaled predictions were used in the evaluation of the error.

The error function comprised of two different contributions. The first term was defined as the

sum of the squared differences between the model predictions {Si} at parameter value � and the cor-

responding experimental data D, taking into account corresponding experimental errors s s

(Equation S1a). Next, we imposed the soft constraints described above as squared error terms

(Equation S1b, and Supplementary file 1b for species abbreviation). The total error function was

the sum of these two contributions (Equation S1c).
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Ê1 �ð Þ ¼
X

n

k¼1

Sk �ð Þ�Dkð Þ2
2s2

k

(S1a)

Ê2 �ð Þ ¼ fakt;max� 0:1
� �2

2� 0:004ð Þ2
if fakt;max<0:1 (S1b)

Ê �ð Þ ¼ Ê1 �ð Þþ Ê2 �ð Þ (S1c)

where

fakt;max ¼
C19max

C17
(S1d)

The standard deviation 0.004 in Equation S1b was chosen to ensure that the maximum pAkt lev-

els were guaranteed to be above 10% of total Akt levels. Lower values lead to a very high rejection

rate in the simulated annealing procedure and higher values were likely to return parameter points

that did not satisfy the constraint that maximum pAkt levels were at least 10% of total Akt levels.

The active endocytosis and degradation of cell surface receptors in our system occurred mostly

between EGF doses of 0 ng/ml and 3.16 ng/ml. Accordingly, we fit the model using experimental

data collected in the same range of EGF stimulations.

The error function in Equation 1 a contained the following experimentally measured data points:

pAkt time courses measured up to 180 min (5, 10, 15, 30, 45, 90, and 180 min) across range of EGF

doses between 0.03 and 3.16 ng/ml (0.03,0.1,0.3,1,3.16 ng/ml EGF) and sEGFR levels at 2.5 and 3

hr across a range of EGF stimulation doses (0 ng/ml and 0.03–3.16 ng/ml).

In Equation 1 a, index k runs through all n experimentally measured data points (5 doses x 7 time

points = 35 total points) and sEGFR measurements (6 doses x 2 time points = 12 total points).

Overall, the error function had a total of 50 terms (35 pAkt measurements, 12 sEGFR measure-

ments, and one soft constraint). We minimized this error by searching through the parameter space

using simulated annealing (SA) described in the next section.

Simulated Annealing optimization
Given that the mechanistic ODE models constrained by experimental measurements of several

dynamical quantities are usually underdetermined (Chen et al., 2009), we used simulated annealing

(SA) (Kirkpatrick et al., 1983), to numerically search the model’s parameter space.

The overall error (Equation S1c) was minimized with SA in order to determine parameter sets

that are most consistent with the experimental measurements. Following standard SA optimization

scheme, we ran a random walk in the model’s parameter space. At each point in the parameter

space we accept or reject a next proposed parameter set according to the Metropolis criterion and

a likelihood that is the negative exponential of the error function in Equations S1a. Following a con-

ventional SA protocol, we used an additional parameter, temperature, which allowed steps with rela-

tively large change in the likelihood score to explore large parameter space. The temperature was

decreased gradually to find a local minimum of the likelihood function.

To find multiple parameter sets that fit the experimental data, we ran 100 independent SA chains

with randomly selected starting points spread out across allowed parameter ranges. Each chain was

started at high temperature and was cooled down in 12 stages to the lowest temperature (using the

sequence of temperatures: 400, 200, 100, 50, 20, 10, 5, 2, 1, 0.5, 0.25, 0.1). At each temperature,

1500 steps in parameter space were performed. In each step, on an average four randomly chosen

parameters (out of the 24) were changed in order to speed up the search in the parameter space.

Predictions from SA
For individual chains, the parameter set with the lowest error was recorded. The averages of param-

eter values from the 10 best-fit chains are shown in Supplementary file 1a. We used these top 10

optimized parameter sets (Supplementary file 1a, Figure 2—figure supplement 1) to explore phe-

nomenon of relative sensing in silico. For each parameter set, we simulated the following. The model
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was first exposed to the background EGF concentration for 50 hr to ensure that all species reached

a steady state. The model was subsequently exposed to a step increase in EGF concentration (2-, 3-,

4-, or 6- fold). After the step increase, EGF was kept constant as well. We noted the maximum Akt

phosphorylation level at each background concentration and EGF fold-change. For each fit, we

obtained a series of maximum pAkt responses across different initial EGF concentrations and for

multiple fold changes as well as time integrals of pAkt responses between 0 and 30 min. We com-

bined the predicted relative sensing dose responses at every background EGF level and at every

fold by taking the average (and the corresponding standard deviation) across predictions from all 10

best parameter sets. We then plot the resulting dose response as seen in Figure 2c,d of the main

text.

Statement of source code availability
All data and source code are available at: https://github.com/dixitpd/FoldChange (Dixit, 2020; copy

archived at https://github.com/elifesciences-publications/FoldChange).
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Appendix 1

Analytical model of relative sensing
Below we present the analytical model to understand the biochemical mechanisms underlying

the observed relative sensing in the EGFR/Akt pathway. The model focuses on the receptors

level signaling. Since Akt phosphorylation is directly downstream of receptor phosphorylation,

the conclusions of the model hold for Akt phosphorylation as well.

In section 1 we show that after continuous exposure to an activiating ligand with

concentration [L]0, the steady-state level of cell-surface receptors [R]T decreases approximately

as the negative logarithm of the ligand concentration, that is [R]T ~ (constant – log [L]0). In this

way, the steady state abundance of cell surface receptors effectively encodes the memory of

the background ligand concentration. In section 2, we show that the phosphorylation response

induced by an increase in the extracellular ligand concentration from [L]0 to [L]1 depends

approximately logarithmically on the ligand concentration and linearly on the current

abundance of cell-surface receptors [R]T. Based on results derived in the secton 1 and section

2, we then demonstrate that the phosphorylation response of the signaling network to an

increase in ligand concentration primarily depends on the relative fold increase in ligand

concentration ([L]1/[L]0). In section 3, we use the analytical model to identify two dimensionless

aggregate parameters (a and b) that determine the ranges of background ligand concetration

where relative sensing can be observed. In section 4 we derive and analyze a similar analytical

model for a signal transduction network in which the phopshorylation signal is initiated by

monomeric receptors.

Main assumptions of the model
In the simplified analytical model, following experimental evidence (Huang et al., 2016;

Macdonald and Pike, 2008) the prevailing mode of EGFR dimerization in the range of

extracellular EGF concentrations that we consider is assumed to be one EGF-bound EGFR

monomer bound to one ligand-free EGF receptor. While phosphorylated EGFRs can signal

from both the plasma membrane and endosomes, some components of the PI3K/Akt signaling

pathway are largely restricted to the plasma membrane. Consequently, Akt phosphorylation

occurs primarily from the phosphorylated EGFRs localized at the plasma membrane

(Haugh and Meyer, 2002; Park et al., 2003). Thus, we assume that Akt molecules cannot get

phosphorylated from phosphorylated EGFRs localized in the endosomes. We also assume that

endosomal EGFR-bound EGF ligands do not dissociate from the receptors (Reddy et al.,

1998). In the endosomes the model only allows receptor phosphorylation/dephosphorylation,

recycling to plasma membrane, and degradation. We assume that the rates of

phosphorylation and dephosphorylation are the same for cell surface receptors as well as

internalized receptors. We also assume that rates of internalization, recycling, and degradation

of phosphorylated (activated) receptors are different from those of the non-phosphorylated

(non-activated) receptors. Finally, we assume that the extracellular ligand concentration

remains constant at background stimulation and after the step increase in ligand

concentration.

Section 1. steady state level of surface receptors
First, we calculate the level of cell surface receptors at steady state when cells are exposed to

a constant stimulus with ligand concentration [L]0. Given the aforementioned assumptions,

Equations A1-A8 describe the dynamics of receptor signaling cascade in presence of ligand at

concentration [L]0 (Appendix 1—figure 1). In Equations A1-A8 below, we use * to denote

phosphorylated receptors and the subscript i to denote endosomal receptors.
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d R½ �
dt

¼ kprod � k1½L�0½R�þ k�1½LR�� k2½R�½LR�þ k�2½LR2� � ki½R� þ krec½Ri� (A1)

d LR½ �
dt

¼ k1 L½ �
0
R½ �� k�1 LR½ � � k2 R½ � LR½ � þ k�2 LR2½ � � ki LR½ � þ krec LRi½ � (A2)

d LR2½ �
dt

¼ k2 R½ � LR½ �� k�2 LR2½ �� kp LR2½ �þ kdp LR�
2

� �

� ki LR2½ �þ krec LR2i½ � (A3)

d LR�
2

� �

dt
¼ kp LR2½ � � kdp LR�

2

� �

� k�i LR�
2

� �

þ k�rec LR�
2i

� �

(A4)

d Ri½ �
dt

¼ ki R½ �� krec Ri½ � � kdeg Ri½ � (A5)

d LRi½ �
dt

¼ ki LR½ �� krec LRi½ �� kdeg LRi½ � (A6)

d LR2i½ �
dt

¼ ki LR2½ � þ kdp LR�
2i

� �

� kp LR2i½ � � krec LR2i½ � � kdeg LR2i½ � (A7)

d LR�
2i

� �

dt
¼ k�i LR�

2

� �

þ kp LR2i½ �� kdp LR�
2i

� �

� k�rec LR�
2i

� �

� k�deg LR�
2i

� �

(A8)

. Equation A1 describes the dynamics of the concentration [R] of ligand-free receptors. kprod
is the rate of delivery of free receptors to cell surface, k1 is the rate constant of ligand bind-
ing to receptors, k-1 is the rate constant of ligand unbinding from the ligand-receptor com-
plex, k2 is the rate of receptor dimerization, k-2 is the rate of receptor undimerization, ki is
the basal internalization rate of non-activated receptors, and finally, krec is the rate of recy-
cling of internalized unphosphorylated receptors to cell surface.

. Equation A2 describes dynamics of the concentration [LR] of the ligand bound non-activated
monomeric receptors.

. Equation A3 describes the dynamics of the concentration [LR2] of the unphosphorylated
dimer species. kp is the rate of receptor phosphorylation and kdp is the rate of receptor
dephosphorylation.

. Equation A4 describes the dynamics of the concentration [LR*
2] of the phosphorylated dimer

species. ki
* is the internalization rate of phosphorylated receptors and krec

* is the rate of recy-
cling of phosphorylated receptors.

. Equation A5 describes the dynamics of the concentration [Ri] of the internalized ligand-free
receptor monomers. kdeg is the rate of degradation of unphosphorylated receptors.

. Equation A6 describes the dynamics of the concentration [LRi] of the internalized ligand-
bound non-activated receptor monomers.

. Equation A7 describes the dynamics of the concentration [LR2i] of the internalized unphos-
phorylated receptor dimers.

. Equation A8 describes the dynamics of the concentration [LR*
2i] of the internalized phos-

phorylated receptors. k*deg is the rate of degradation of phosphorylated receptors.
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Appendix 1—figure 1. Model schematics of dimer-activated receptors signaling cascade.

In our calculations below we consider all concentrations (except for the ligand) to be

measured on a per cell basis. For convenience we also introduce the following constants and

equations:

R0 ¼
kprod

ki
� kdeg þ krec

kdeg
(A9)

steady state abundance of surface receptors in the absence of ligand, [L]=0

R½ �T¼ R½ � þ LR½ �þ 2 LR2½ �þ 2 LR�
2

� �

(A10)

the total cell-surface receptor level at steady state

Kd1 ¼
k�1

k1
(A11)

the equlibrium dissociation constant of ligand binding to receptors.

Kd2 ¼
k2

k�2

(A12)

the equilibrium constant of the undimerization reaction.

u0 ¼
L½ �

0

Kd1

(A13)

the ligand concentration relative to the ligand-receptor equilibrium dissociation constant

We note that Kd1 has the units of moles and Kd2 has the units of molecules per cell (same as

R0), and u0 is a dimensionless quantity.

As has been previously reported (Wiley and Cunningham, 1982) and as was also observed

in our experimental system, surface EGFR levels reach quasi-steady state within hours of

continuous stimulation with EGF (main text Figure 1c). Importantly, ligand unbinding,

receptors undimerization, and receptor phosphporylation-dephosphprylation happen at a

substantially faster rate than basal receptor internalization (Chen et al., 2009; Kleiman et al.,

2011). Moreover, when we substitute the average parameter values from the fits to the

computational model (main text and Methods), we have:

Lyashenko et al. eLife 2020;9:e50342. DOI: https://doi.org/10.7554/eLife.50342 21 of 31

Research article Computational and Systems Biology Physics of Living Systems

https://doi.org/10.7554/eLife.50342


k�1

ki
~ 0:3 s�1

1:5�10�4s�1 ~ 2000� 1;

k�2

ki
~ 0:05 s�1

1:5�10�4s�1 ~ 380� 1;

kp
ki
~ 1 s�1

1:5�10�4s�1 ~7000� 1;

kdp
ki
~ 0:07 s�1

1:5�10�4s�1 ~480� 1

(A14)

From Equations A1-A8 and the limits imposed by inequalities A14, we calculate the

receptor level at steady state with continuous exposure to the ligand by setting the rates of

change of individual concentrations to zero. Based on the available knowledge about the

biology of EGF receptors and parameters of our model (Equations A14), we neglect the

internalization and recycling of ligand-bound monomers and unphosphorylated dimers.

Consequently, we neglect degradation of ligand-bound receptor monomers and

unphosphorylated receptor dimers. As a result, we assume that at steady state, the fraction of

monomeric ligand bound receptors in the endosomes is negligible. We have

0¼ kprod � k1 L½ �
0
R½ � þ k�1 LR½ �� k2 R½ � LR½ �þ k�2 LR2½ � � ki R½ �þ krec Ri½ � (A15)

0¼ k1 L½ �
0
R½ � � k�1 LR½ � � k2 R½ � LR½ �þ k�2 LR2½ � (A16)

0¼ k2 R½ � LR½ � � k�2 LR2½ �� kp LR2½ �þ kdp LR�
2

� �

(A17)

0¼ kp LR2½ �� kdp LR�
2

� �

� k�i LR�
2

� �

þ k�rec LR�
2
i

� �

(A18)

0¼ ki R½ � � krec Ri½ �� kdeg Ri½ � (A19)

0¼ kdp LR�
2i

h i

� kdeg LR2i
½ �� kp LR2i½ � (A20)

0¼ kp LR2i½ �� kdp LR2i
�½ � þ k�i LR�

2

� �

� k�rec LR2i
�½ �� k�deg LR2i

�½ � (A21)

Solving for steady state Equations A15-A21 when ligand concentration is [L]0 = u0*Kd1, we

obtain the formula for the total number of receptors on the cell surface,

R½ �T¼ 2R0

1þ u0

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8abu0
p þ 2au0

1þ 4abu0þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8abu0
p

� �

»
2R0

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8abu0
p (A22)

where we have introduced two aggregate parameters that we denote a and b (see

Equations A23a and A23b below).

The first term in Equation A22 represents the concentration of monomeric surface

receptors (ligand-free [R] and ligand-bound monomeric receptors [LR]) at steady state, the

second term represents the steady state concentration of dimeric receptors

(unphosphorylated dimers [LR2] and phosphorylated receptors [LR*
2]). When the ligand

concentration is much lower than the equilibrium dissociation constant; u0 <<1, we can

assume that the majority of cell surface receptors are ligand free as indicated in the second

approximation in Equation A22.

Remarkably, even though Equations A1-A8 are governed by more than ten rate

parameters, the total concentration of receptors on the surface [R]T at steady state depends

only on two composite aggregate parameters a and b and the ligand concentration u0. The

two aggregate parameters are defined as,

a¼ kdpþ kp

kdp
� R0

Kd2

; (A23a)

b¼ kp

kdpþ kp
� k�i

ki
�

k�
deg

k�
deg

þk�rec
kdeg

kdegþkrec

(A23b)

The parameter a quantifies the ligand-sensitivity of the signaling system, an increase in the

value of a leads to a higher signal sensitivity and an increase in receptor dimerization and
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phosphorylation. The parameter b quantifies the combination of two biases leading to

preferential internalization and degradation of phosphorylated receptors. An increase in the

value of b leads to a larger fraction of active (phosphorylated) receptors being internalized

and degraded. The first term in A23b is the fraction of dimeric receptors that are

phosphorylated. The second term k*i/ki is the relative rate at which phosphorylated receptors

are trafficked to the endosomes compared to unphosphorylated receptors. Finally, the third

term quantifies the ratio of the two following fractions; k*deg/(k
*
rec + k*deg) is the fraction of

phosphorylated receptors that are transported from endosomes to be degraded and kdeg/(krec
+ kdeg) is the fraction of unphosphorylated receptors that are transported from endosomes to

be degraded.

Using average values of parameters from our dynamical ODE model fits

(Materials and methods and Supplementary files 1, 2, 3), we estimate a ~16 and b ~40. From

here onwards, we use these two values of a and b in our analysis. In Appendix 1—figure 2 we

plot the steady state cell surface EGFR levels predicted by Equation A22 as a function of the

continuous background ligand stimulation u0 for these values of a and b. Notably, the

receptor levels decrease approximately logarithmically as a function of u0 over nearly two

orders of magnitude in ligand concentration between u0 ~10
-3.5 – 10�2.

Appendix 1—figure 2. Steady state receptor levels decrease proportional to the logarithm of

ligand concentration. The steady state cell surface receptor level [R]T for receptors (black line)

given by Equation (A22) depends approximately on the logarithm of the ligand concentration

u0 = [L]0/Kd1 (red line, Equations A24). The inflection point is indicated by a green dot.

The logarithmic dependence can be quantified as follows. [R]T in Equation A22 has an

inflection point with respect to the logarithm of the ligand concentration;
d2 R½ �T
d log u2

0

¼ 0 at

u0 ¼ uflex ¼ 1þ
ffiffi

2
p

4ab
. Near the inflection point, [R]T can be approximated as a log-linear function of

u0. Expanding Equation A22 near u0 ¼ uflex, we have

r¼ R½ �T
R0

»constant� a logu0 (A24)

where a. Notably, a¼ 3� 2
ffiffiffi

2
p

does not depend on a and b. Here r is the fraction of receptors

remaining on the cell surface.
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Section 2. Relative sensing of extracellular ligand by the signaling
cascade
In this section, using a surface-receptor level analytical model, we show that receptor

phosphorylation can sense relative changes in extracellular ligands. Based on the equation for

the total number of receptors at the steady-state obtained in the previous section, we

calculate here the maximum of the EGFR phosphorylation level in response to an instant

change in EGF concentration from a background level [L]0 to a new level [L]1.

Main assumptions of the model. We assume that the dynamic maximum of the

phosphorylation response is reached through the rapid equilibration between ligand binding

and unbinding and receptor phosphorylation and dephoshorylation and assume no

contribution from relatively slow receptor internalization (Kleiman et al., 2011). Consequently,

at the time phosphorylated EGFRs reach their maximum level, the total number of receptors

on the cell surface, [R]T, is approximately similar to the steady state level determined by the

pre-exposure to ligand concentration of [L]0. With these approximations, we have at pseudo-

steady state conditions at the maximum pEGFR activity:

0¼�k1 L½ �
1
R½ �þ k�1 LR½ �� k2 R½ � LR½ � þ k�2 LR2½ � (A25)

0¼ k1 L½ �
1
R½ �� k�1 LR½ �� k2 R½ � LR½ � þ k�2 LR2½ � (A26)

0¼ k2 R½ � LR½ � � k�2 LR2½ �� kp LR2½ �þ kdp LR�
2

� �

(A27)

0¼ kp LR2½ �� kdp LR�
2

� �

(A28)

R½ �T¼ R½ � þ LR½ �þ 2 LR2½ �þ 2 LR�
2

� �

(A29)

Solving Equations A25, A26, A27, A28, A29 for maximum pEGFR level of active receptors

[LR2
*], we get

LR�
2

� �

¼ kpR0

kdpþ kp
� r

1

2
� 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8au1

1þu1ð Þ2 � r
q

2

6

4

3

7

5
»

kpR0

kdpþ kp
� r

1

2
� 1

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8au1r
p

� �

(A30)

The leading term
kpR0

kdpþkp
in Equation A30 is a constant that determines only the overall

strength of the response. From here onwards, we neglect it. Note that in Equation A30, the

total receptor concentration r depends on the background ligand concentration [L]0 before a

step increase in the ligand concentration (see Equation A22). The result of substituting the

expression for the receptor level (Equation A22) in Equation A30 cannot be written down as

a simple analytical expression. In Appendix 1—figure 3, we numerically examine how [LR*
2],

given by Equation A30, depends on the fold change in ligand concentration, that is [L]1/[L]0,

at different background ligand concentrations [L]0. Notably, [LR*
2] mostly depends on the ratio

[L]1/[L]0 and only weakly on the background exposure levels [L]0 over an order of magnitude in

background ligand concentration.
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Appendix 1—figure 3. The maximum of the EGFR phosphorylation response [LR*2] as a func-

tion of ligand concentration u0 before step change in ligand concentration for fold changes u1/

u0 in ligand concentration ranging from u1/u0 = 2 (black) to u1/u0 = 6 (red). The phosphorylation

response is estimated using Equation A30.

The relative sensing phenomenon can be intuitively understood by considering an

approximation to Equation A30 that allows us to quantify the contribution of ligand

stimulation and steady state receptor levels in maximum phosphorylated EGFR response. As

seen above, for a given background concentration r the corresponding steady state receptor

level u0 ¼ uflex decreases approximately as the logarithm of the background concentration near

u0 ¼ uflex of the relationship between ligand concentration and steady state receptor level

(Equation A22). When u0 ¼ uflex, r ¼ rflex ¼ 2�
ffiffiffi

2
p

: Similarly, the phosphorylation response

[LR*2] upon a step change in ligand concentration from u0 to u1 can also be approximated as a

log-linear function of the ligand concentration u1 near u1 ¼ 1þ
ffiffi

2
p

4ra
: Here r is the steady state cell

surface EGFR levels after exposing the cells to a background ligand concentration u0. To

understand how [LR*2] depends separately on r and u1, we expand using, Taylor series, [LR*2]

given by Equation A30 linearly in r and log-linearly in u1 near r ¼ rflex and u1 ¼ 1þ
ffiffi

2
p

4rflexa
: We have

LR�
2

� �

»constantþ b logu1 þ c� r (A31)

where b¼ 5� 7
ffiffi

2
p

� �

and c¼ 1� 1
ffiffi

2
p

� �

.

In Appendix 1—figure 4, we show a direct comparison between the phosphorylation

response as predicted by Equation A30 as well as its approximation given by Equation A31.

We evaluate the phosphorylation response at r = rflex by varying the ligand concentration u1
between u1 = 10�2-10-0.75.The x-coordinate corresponds to the phosphorylation response

predicted by Equation A30 and the y-coordinate corresponds to the phosphorylation

response predicted by Equation A31. Individual data points are represented as black circles.

The dashed red line represents the line y = x. From Appendix 1—figure 4, it is clear that

Equation A31 agrees very well with Equation A30 over a broad range of variation in ligand

concentrations.
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Appendix 1—figure 4. Comparison between the phosphorylation response as predicted by

Equation A30 (x-axis) and its approximation, Equation A31 (y-axis). We varied the ligand

concentration u1 between u1 = 10�2-10-0.75. The black dots represent individual data points

and the dashed red line represents x = y line.

Substituting the log-linear relationship between r and the background ligand concentration

u0 given by Equation A24 we have

LR�
2

� �

»constantþ b logu1 þ c� r » constantþ b logu1� c� a logu0 (A32)

) LR�
2

� �

»constantþ b log
u1

u0
(A33)

Equation A33 follows from Equation A32 because

a� c¼ 3� 2

ffiffiffi

2

p� �

� 1� 1
ffiffiffi

2
p

� �

¼ 5� 7
ffiffiffi

2
p

� �

¼ b (A34)

Consequently, the phosphorylation response after a step change in ligand concentration

mostly depends on the ratio of ligand concentrations rather than on the background ligand

concentration.

Section 3. Aggregate network parameters determine the range of
relative sensing
In this section we explore whether the observed relative sensing is a result of fine-tuning of

rate parameters in the EGF/EGFR pathway or if it is a robust phenomenon that is relatively

insensitive to parameter variations.

The analysis of the model shows that the maximum phosphorylation response [LR*2]

(Equation A30) primarily depends on two aggregate parameters a and b (Equations A23a

and A23b). In order to compare phosphorylation response at different values of a and b, we

define the scaled phosphorylation response [LR*2] (scaled) by normalizing [LR*2] by its

maximum over the background ligand concentration [L]0 at a fixed value of a and b. Such a

scaled phosphorylation response varies between zero and one for all values of [L]0, [L]1, a, and

b.

Using as an example a fold change of 6, [L]1=6x[L]0, in Appendix 1— figure 5 we show

[LR*2] (scaled) as a function of background ligand concentration at different values of a (panel

a) and b (panel b). The different colors represent different accuracy values of relative sensing.

For example, the color red represents the range of background ligand concentrations over

which the phosphorylation response is within 90% of the maximum (10% deviation). The color

yellow represents the range of background ligand concentrations over which phosphorylation
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response is within 80% of the maximum (20% deviation) and so on. Vertical green lines

indicate the region of 90% accuracy; the phosphorylation response [LR*2] (scaled) varies within

10% of the maximum. Notably, as a increases, corresponding to a larger fraction of receptors

that get phosphorylated, the span of background concentrations over which signaling network

exhibits relative sensing increases as well. In panel b), we show [LR*2] (scaled) as a function of

background ligand concentration at different values of b. As b increases, the range of

background concentrations over which relative sensing holds increases as well. The green

arrows show the range of background ligand concentrations over which relative sensing holds

for the values of a and b evaluated from the model fits to the data.

Appendix 1—figure 5. Dimensionless parameters a and b dictate the range of relative sensing

phenomenon. (a) Scaled phosphorylation response [LR*2] as a function of background ligand

concentration u0 = [L]0/Kd1 for different values of a and fold change u1/u0 = 6 when b was

fixed to b = 40. The colors represent scaled phosphorylation response. The dashed green lines

sketch the range of concentrations u0where [LR*2] is insensitive to the initial ligand

concentration u0. (b) Scaled [LR*2] as a function of u0 for different values of b and fold change

u1/u0 = 6 when a was fixed to a = 16. The dashed green lines sketch the range of

concentrations u0 where phosphorylation response [LR*2] is insensitive to the background

ligand levels. The green arrows show the range of background ligand concentrations over

which relative sensing holds for the values of a and b evaluated from the model fits to the

data.

In summary, the analytical model showed that cells adjust the number of receptors on their

plasma membranes in response to background ligand exposures through preferential

internalization and subsequent degradation of activated receptors. This effectively allows cells

to encode the memory of background ligand exposures on the plasma membrane. The model

identified two dimensionless aggregate parameters a and b that dictate the range of

background ligand concentrations over which the signaling network can sense relative changes

in extracellular ligand concentration. In agreement with experimental data (Figure 3 in main

text), the model showed that the relative sensing is observed over an order of magnitude in

background ligand exposures and is several orders of magnitude below the equilibrium

dissociation constant of the ligand with the receptors. Notably, the model showed that relative

sensing was robust to variations in a and b.

Section 4. An analytical model for receptors internalization-based
relative sensing for a case of monomer-activated receptors
signaling
Section 4.1 In this section, we show that relative sensing of extracellular ligand concentration

can also occur for signaling cascades where receptor phosphorylation (activation) is initiated

by ligand-bound receptor monomers instead of dimers. Therefore, receptor dimerization is

not a necessary condition for relative sensing. The derivation of analytical expressions for the

monomeric case follows the same general logic used in Sections 1 and 2 above.
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Similar to the dimer case, we assume that signal transduction to a downstream target P

(Appendix 1—figure 6) occurs largely through membrane-bound activated receptors and

neglect activation due to endosomal phosphorylated receptors.

Appendix 1—figure 6. Simplified schematics of the steady state analytical model of monomer-

activated receptor signaling.

First, we derive the expression for the steady-state cell surface receptor abundance after

continuous exposure to the ligand at concentration [L]0. We demonstrate that the receptor

level depends approximately logarithmically on the ligand concentration. Then, we derive the

expression for the maximum phosphorylation in response to a step increase in extracellular

ligand concentration. Notably, we show that the phosphorylation response only weakly

depends on the background ligand dose and primarily reflects the fold change in ligand

concentration.

The dynamics of species in the model is described by the following equations.

d R½ �
dt

¼ kprod � k1 L½ �
0
R½ �þ k�1 LR½ �� ki R½ �þ krec Ri½ � (A35)

d LR½ �
dt

¼ k1 L½ �
0
R½ �� k�1 LR½ � � ki LR½ �þ krec LRi½ �� kp LR½ � þ kdp LR

�½ � (A36)

d LR�½ �
dt

¼ kp LR½ �� kdp LR
�½ � � k�i LR

�½ �þ k�rec LR�
i

� �

(A37)

d Ri½ �
dt

¼ ki R½ �� krec Ri½ � � kdeg Ri½ � (A38)

d LRi½ �
dt

¼ ki LR½ �� krec LRi½ � � kdeg LRi½ �� kp LRi½ � þ kdp LR�
i

� �

(A39)

d LR�
i

� �

dt
¼ k�i LR

�½ � � k�rec LR�
i

� �

� k�deg LR�
i

� �

þ kp LRi½ � � kdp LR�
i

� �

(A40)

Equations A35-A40 describe dynamics of [R], ligand-free receptor monomers, [LR], ligand-

bound non-activated (unphosphorylated) receptor species, [LR*], ligand-bound activated

receptor species, and their internalized counterparts [Ri], [LRi] and [LRi*]. The conventions for

the rate constants are the same as for the dimer model (section one above).

For convenience, we also introduce the following notations:
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R0 ¼
kprod

ki
� krec þ kdeg

kdeg
(A41)

steady-state surface receptor level in the absence of extracellular ligand, [L]0 = 0

R½ �T¼ R½ � þ LR½ �þ LR�½ � (A42)

the total number of receptors on the cell surface at steady state

Kd ¼
k�1

k1
(A43)

equilibrium dissociation constant of ligand binding to its receptors

u0 ¼
L½ �

0

Kd

(A44)

the ligand concentration relative to the ligand-receptor dissociation constant

As in the case of dimers-activated signaling, we solved Equations A35-A40 for the steady

state value [R]T of the cell surface receptor level. Similar to the dimer case, we assume that

ligand binding/unbinding and receptor phosphorylation/dephosphorylation happen at a time

scale much faster than internalization of inactive receptors. In that limit, we have,

R½ �T »R0 �
1

1þb�k� u0
(A45)

where k and b are dimensionless constants given by

b¼ k�i
ki
�

k�
deg

k�rec þ k�
deg

kdeg
krecþkdeg

; k¼ kp

kdp
(A46)

The dependence of [R]T/R0 on the ligand concentration u0 is shown in Appendix 1—figure

7. As an illustration, we use b = 40 and k = 20. Similar to the dimer case, the surface receptor

concentration [R]T depends approximately logarithmically on the ligand concentration near u0
~ 1/bk.

Appendix 1—figure 7. Steady state receptor levels decrease proportional to the logarithm of

ligand concentration. The steady state cell surface receptor level [R]T for monomeric receptors

(black line) given by Equation A45 depends approximately on the logarithm of the ligand

concentration u0 = [L]0/Kd (red line). The green point represents the inflection point.

Section 4.2 Next, using the equation for the total number of cell surface receptors at the

steady-state obtained in the previous section we calculated the maximum phosphorylation
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level in response to an instant change in ligand concentration from a background level [L]0 to a

new level [L]1.

Assumptions. We assume that the dynamic maximum of the phosphorylation response is

reached through the rapid equilibration between ligand binding and receptor phosphorylation

and dephosphorylation and assume no contribution from relatively slow receptor degradation

(Kleiman et al., 2011). Consequently, at the time phosphorylated receptors reach their

maximum level, the total number of receptors on the cell surface, [R]T, remains approximately

the same as the steady state level determined by the pre-exposure to ligand concentration of

[L]0. With these approximations, we have at pseudo-equilibrium conditions at the maximum

phosphorylated receptor activity:

0¼�k1 L½ �
1
R½ �þ k�1 LR½ � (A47)

0¼ k1 L½ �
1
R½ �� k�1 LR½ � � kp LR½ � þ kdp LR

�½ � (A48)

0¼ kp LR½ �� kdp LR
�½ � (A49)

R½ �T¼ R½ �þ LR½ � þ LR�½ � (A50)

Solving Equations A47-A50, we obtain the maximum phosphorylated receptor level

LR�½ � ¼ R½ �Tu1k
1þ u1 þ u1k

(A51)

When the ligand concentration is changed from u0 = [L]0/Kd to u1 = [L]1/Kd such that [L]1/

[L]0 = f, we have (combining Equations A45 and A51)

LR�½ � ¼ u0fk

1þ u0bkð Þ 1þ u0f 1þkð Þð Þ (A52)

In Appendix 1—figure 8, we plot the maximum phosphorylation response [LR*]

(Equation A51) over a range of background concentrations u0 and over multiple folds. We use

the parameters obtained for the computational model for EGFR; b = 40 and k = 20

(Supplementary file 1).

Appendix 1—figure 8. Monomeric receptors exhibit relative sensing. The maximum of the

phosphorylated receptors level [LR*] as a function of background ligand concentration [L]0 for

fold changes [L]1/[L]0 in ligand concentration ranging from [L]1/[L]0 = 2 to [L]1/[L]0 = 6.

Section 4.3 Similar to the dimeric case, we next explore how changes in the aggregate

parameters b and k affect relative sensing for monomer-based receptors signaling. In

Appendix 1—figure 8, we show [LR*] (scaled) as a function of background ligand

concentration at different values of k and b. As was described in Appendix 1—figure 5 for

dimeric receptors, different colors represent different accuracy values of relative sensing. For
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example, the color red represents the range of background ligand concentrations over which

the phosphorylation response is within 90% of the maximum (10% deviation). The color yellow

represents the range of background ligand concentrations over which phosphorylation

response is within 80% of the maximum (20% deviation) and so on. Vertical green lines

indicate the region of 90% accuracy; the phosphorylation response [LR*2] (scaled) varies within

10% of the maximum. The green arrows show the range of background ligand concentrations

over which relative sensing holds for the values of a and b evaluated from the model fits to

the data.

Appendix 1—figure 9 panel (a) suggests that the relative sensing range is insensitive to

changes in k when b is fixed. At the same time, when k is increased the network exhibits

relative sensing at lower ligand concentrations. In Appendix 1—figure 9 panel (b), we show

[LR*] (scaled) as a function of background ligand concentration at different values of b. As b

increases, the range of background concentrations over which relative sensing holds increases.

Appendix 1—figure 9. Dimensionless parameters k and b dictate the range of relative sensing.

(a) Scaled response [LR*] as a function of u0 = [L]0/Kd for different values of k and fold change

[L]1/[L]0 = 2 when b was fixed at b = 40. The colors represent scaled phosphorylation

response. The green lines sketch the range of concentrations [L]0 where [LR*] is insensitive to

the initial ligand concentration [L]0. (b) Scaled [LR*] as a function of [L]0 for different values of b

and fold change [L]1/[L]0 = 2 when k was fixed at k = 20. The green lines sketch the range of

concentrations [L]0 where [LR*] is insensitive to the initial ligand concentration [L]0. The green

arrows show the range of background ligand concentrations over which relative sensing holds

for the values of k and b estimated based on the model fits to the data.
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