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Abstract We demonstrate that prostate cancer can be identified by flow cytometric profiling of
blood immune cell subsets. Herein, we profiled natural killer (NK) cell subsets in the blood of 72
asymptomatic men with Prostate-Specific Antigen (PSA) levels < 20 ng ml", of whom 31 had
benign disease (no cancer) and 41 had prostate cancer. Statistical and computational methods
identified a panel of eight phenotypic features (CD56%"CD16"", CD56* DNAM — 1~,

CD56"LAIR — 1, CD56* LAIR — 1-, CD56""#" CD8*+, CD56+ NKp30+, CD56* NKp30~, CD56 NKp46™)
that, when incorporated into an Ensemble machine learning prediction model, distinguished
between the presence of benign prostate disease and prostate cancer. The machine learning model
was then adapted to predict the D’Amico Risk Classification using data from 54 patients with
prostate cancer and was shown to accurately differentiate between the presence of low-/
intermediate-risk disease and high-risk disease without the need for additional clinical data. This
simple blood test has the potential to transform prostate cancer diagnostics.

Introduction

Early diagnosis and treatment increase curative rates for many cancers. The WHO considers that the
burden of cancer on health services can be reduced by early detection and that this is achievable via
three integrated steps: 1) awareness and accessing care, 2) clinical evaluation, diagnosis, and stag-
ing, 3) access to treatment (http://www.who.int/mediacentre/factsheets/fs297/en/). Although the
clinical introduction of the Prostate-Specific Antigen (PSA) test in 1986 increased the early diagnosis
of localized prostate cancer (Catalona et al., 1991; Hankey et al., 1999), elevated PSA levels are
not necessarily indicative of prostate cancer because PSA levels can be raised by prostatitis, other
localised infections, benign hyperplasia and/or factors such as physical stress. Contrastingly, 15% of
men with ‘normal’ PSA levels typically have prostate cancer, with a further 15% of these cancers
being high-grade (https://prostatecanceruk.org/prostate-information/prostate-tests/psa-test). The
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eLife digest With an estimated 1.8 million new cases in 2018 alone, prostate cancer is the
fourth most common cancer in the world. Catching the disease early increases the chances of
survival, but this cancer remains difficult to detect.

The best diagnostic test currently available measures the blood level of a protein called the
prostate-specific antigen (PSA for short). Heightened amounts of PSA may mean that the patient has
cancer, but 15% of individuals with prostate cancer have normal levels of the protein, and many
healthy people can have high amounts of PSA. This blood test is therefore not widely accepted as a
reliable diagnostic tool.

Other methods exist to detect prostate cancer, yet their results are limited. A small piece of the
prostate can be taken for analysis, but results from this invasive procedure are often incorrect. Scans
can help to spot a tumor, but they are not accurate enough to be conclusive on their own. New
tests are therefore urgently needed.

Prostate cancer is often associated with changes in the immune system that can be detected
through a blood test. In particular, the appearance of a type of white blood (immune) cells called
natural killer cells may be altered. Yet, it was unclear whether measurements based on these cells
could help to detect prostate cancer and assess the severity of the disease.

Here, Hood, Cosma et al. collected and examined the natural killer cells of 72 participants with
slightly elevated PSA levels and no other symptoms. Amongst these, 31 individuals had prostate
cancer and 41 were healthy. These biological data were then used to produce computer models that
could detect the presence of the disease, as well as assess its severity. The algorithms were
developed using machine learning, where previous patient information is used to make prediction
on new data. This work resulted in a new detection tool which was 12.5% more accurate than the
PSA test in detecting prostate cancer; and in a detection tool that was 99% accurate in predicting
the risk of the disease (in terms of clinical significance) in individuals with prostate cancer.

Although these new approaches first need to be validated in the clinic before being deployed,
they could ultimately improve the detection and diagnosis of prostate cancer, saving lives and
reducing the need for further tests.

reliable diagnosis of prostate cancer based on PSA levels alone is therefore not possible and confir-
mation using invasive biopsies is currently required. In 2011/12 approximately 32,000 diagnostic
biopsies (28,000 TRUS and 4,000 TPTPB) were performed by the NHS in England (NICE, 2014).
Although the transrectal ultrasound guided prostate (TRUS) biopsy is the most commonly used tech-
nique, it is limited to taking 10 to 12 biopsies primarily from the peripheral zone of the prostate and
has a positive detection rate between 26% and 33% (Aganovic et al., 2011; Nafie et al., 2014a;
Naughton et al., 2000; Yuasa et al., 2008). The Transperineal Template Prostate biopsy (TPTPB) is
a 36 core technique that samples all regions of the prostate and delivers a better positive detection
rate between 55% and 68% (Dimmen et al., 2012; Nafie et al., 2014b; Pal et al., 2012). However,
invasive biopsies are painful and associated with a significant risk of potentially serious side-effects
such as urosepsis and erectile dysfunction (Chang et al., 2013). Given the potential challenges of
invasive tests and the risk of significant side-effects, considerable interest in the potential of non-
invasive blood or urine-based tests/approaches ('liquid biopsies’) for diagnosing disease has devel-
oped (Quandt et al., 2017). Liquid biopsies can provide information about both the tumour (e.g. cir-
culating cells, cell-free and exosomal DNA and RNA) and the immune response (e.g. immune cell
composition and their gene, protein, and exosome expression profiles). Liquid biopsies are minimally
invasive and enable serial assessments and ‘live’ monitoring speedily and cost-effectively
(Quandt et al., 2017).

Based on the reciprocal interaction between cancer and the immune system, we have proposed
that immunological signatures within the peripheral blood (the peripheral blood ‘immunome’) can
discriminate between men with benign prostate disease and those with prostate cancer and thereby
reduce the dependency of diagnosis on invasive biopsies. To this end, we have previously shown
that the incorporation of a peripheral blood immune phenotyping-based feature set comprising five
phenotypic  features  CD8"CD45RA-CD27-CD28~  (CD8"  Effector Memory cells),
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CD4TCD45RA~CD27-CD28~ (CDA' Effector Memory cells), CD4TCD45RA*CD27-CD28~ (CD4A™ Ter-
minally Differentiated Effector Memory Cells re-expressing CD45RA), CD3~CD19" (B cells),
CD3"CD56"CD8'tCD4" (NKT cells) into a computation-based prediction tool enables the better
detection of prostate cancer and strengthens the accuracy of the PSA test in asymptomatic men hav-
ing PSA levels < 20 ng/ml (Cosma et al., 2017). Herein, we have extended this new approach to
determine if phenotypic profiling of peripheral blood natural killer (NK) cell subsets can also discrimi-
nate between the presence of benign prostate disease and prostate cancer in the same cohort of
asymptomatic men. We also investigate the potential of the peripheral blood dataset to
discriminate between low- or intermediate-risk prostate cancer and high-risk prostate cancer in those
men having prostate cancer.

Results

Distinguishing between benign prostate disease and prostate cancer:
statistical analysis of NK cell phenotypic features and PSA levels

Herein, we consider a ‘feature’ to be a single phenotypic variable (as determined using flow cytome-
try) or a pre-grouped set of phenotypic variables, as shown in Table 1. It was not possible to discrim-
inate between men with benign prostate disease and men with prostate cancer based on differences
between phenotypic features/profiles due to their similarity (Table 1, Figure 1, Figure 2).

These findings highlight the difficulty in identifying combinations of features that can best identify
the presence of cancer. These difficulties are compounded by the challenge of identifying the best
combination of predictors which comprise n number of features, and that features within a combina-
tion, ideally, should not correlate. It is important to evaluate correlations between features, because
if two features are highly correlated, then only one of these could serve as a candidate predictor.
However, there may be occasions where both features are needed and besides the impact of this on
the dimensionality of the dataset, there is no other negative impact. Furthermore, when two features
are highly correlated and are important, it may be difficult to decide which feature to remove. Fig-
ure 3 shows the correlations between features, where +1.0 indicates a strong positive correlation
between two features, and —1.0 indicates a strong negative correlation between two features.

The Kolmogorov-Smirnov and Shapiro-Wilk tests of normality were carried out to determine
whether the dataset is normally distributed, as this would determine the choice of statistical tests,
that is whether to use parametric (for normally distributed datasets), or non-parametric (for not nor-
mally distributed datasets) tests. The results of the normality tests are shown in Table 2. The results
revealed that only 7-8 features (depending on the normality test) were normally distributed (with
p>0.05), and for the remaining features the p value was less than 0.05 (p <0.05) which indicates that
there is a statistically significant difference between the distribution of the data of those features
and the normal distribution. Based on the results of the test, we can conclude that the dataset is not
normally distributed.

Given that most features in the dataset are not normally distributed, the Kruskal-Wallis (also
called the ‘one-way ANOVA on ranks’, a rank-based non-parametric test) tests were used to check
for statistically significant differences between the mean ranks of the NK cell phenotypic features in
men with benign prostate disease and patients with prostate cancer rather than its parametric equiv-
alent (one-way analysis of variance, ANOVA). Although the Kruskal-Wallis test did not return any sig-
nificant differences in the mean PSA values between individuals with benign disease and those with
prostate cancer (x> = 0; p=0.949, Figure 4), statistically significant differences at the alpha level of
a = 0.05 in the mean ranks of the CD56""CD8" (ID14, p=0.007), CD56* NKp30* (ID15, p=0.008),
CD56"NKp30~ (ID16, p=0.031), CD56"NKp46™ (ID17, p=0.023) populations in men with benign pros-
tate disease and those with prostate cancer (Table 3) were observed.

This initial analysis provided insight into which phenotypic features might be good candidates for
distinguishing between the presence of benign disease and prostate cancer. The next step was to
examine whether using these as inputs into a machine learning algorithm can achieve this. An
Ensemble Subspace kNN classifier was developed for the task at hand. The section which follows
explains the approaches that were used to compare the diagnostic accuracy of the classifier when
using the subset of features derived from the statistical analysis, and those features which were
selected as a combination using the Genetic Algorithm (GA) for feature selection.
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Table 1. Descriptive statistics of the dataset.

Min. Max. Mean Std. IQR Range Diff.

o ~ Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc.

 PsA 470 470 1900 1900 826 834 331 328 330 408 1430 1430  —008
CD56%™ %
1 CD16" 8385 73.04 96.61 96.98 90.98  90.64 3.35 5.46 4.13 5.02 1276  23.94 0.34
2 CD16"sh 2438  49.66 87.46  89.33 72.88  73.32 1174 1022 15.00  10.45 63.08  39.67 -0.44
3 CcD16v 5.17 6.57 64.22  44.00 17.74 16.84 1040 745 8.76 7.66 59.05 3743 0.90
4 CD16~ 1.41 1.25 1111 18.06 4.83 4.89 2.45 3.48 2.58 2.68 9.70 16.81 —0.06
5 CD56%"total 91.29  87.24 98.70  98.70 95.81 95.53 2.02 2.58 2.96 3.02 7.41 11.46 0.28
CD56"7sh %
6 CD16" 0.46 0.65 5.10 5.88 1.91 1.83 1.06 1.04 1.64 0.92 4.64 5.23 0.08
7 CD16"eh 0.09 0.12 1.97 1.15 0.60 0.47 0.44 0.25 0.50 0.40 1.88 1.03 0.13
8 CcD16v 0.34 0.40 311 4.95 1.27 1.35 0.72 0.86 0.97 0.63 2.77 4.55 -0.07
9 CD16~ 0.61 0.58 578 9.09 2.28 2.64 1.14 1.82 1.42 1.75 5.17 8.51 -0.36
10 cD56" " total 1.30 1.30 8.71 12.76 4.19 4.47 2.02 2.58 2.95 3.01 7.41 11.46 -0.28
CD8%
11 CD56"CD8™" 21.88 9.20 86.70 80.47 46.43 40.71 15.64 14.66 24.03 20.05 64.82 71.27 572
12 CD567CD8~ 13.30 19.53 78.12 90.80 53.57 59.29 15.64 14.66 24.03 20.05 64.82 71.27 —5.72
13 cDs56%mCcD8* 19.63  8.60 8238 7747 4518  39.11 15.31 14.10 24.72 19.36 62.75  68.87 6.07
14 cDs6bs CcDg* 0.37 0.25 4.75 6.64 1.41 1.70 1.07 1.41 0.70 1.60 4.38 6.39 -0.29
NKp30 %
15 CD56"NKp30™* 40.69  56.80 96.74  98.43 79.78  88.56 1642  10.41 21.80 1044 56.05  41.63 -8.78
16 CD56*NKp30~ 3.26 1.57 58.34 4459 20.05 11.43 16.22 1046 20.54 1049 55.08  43.02 8.61
NKp46 %
17 CD56"NKp46™ 38.11 45.37 86.52  95.82 62.65  69.82 1349 1158 2390 1271 48.41 50.45 -7.18
18 CD56"NKp46~ 14.02 432 6297  55.68 38.40  30.87 1358  11.64 24.89 13.44 4895  51.36 7.53
DNAM-1 %
19  CD56"DNAM — 1" 63.69  88.56 99.18  99.60 9535 9646 6.81 2.59 3.37 3.49 35.49 11.04 1.1

20  CD56"DNAM — 1~ 0.86 0.42 37.29 11.66 4.74 3.59 6.96 2.61 3.45 3.54 36.43 11.24 1.14
NKG2D %

21 CD56"NKG2D* 8517 8079 9877 9896 9349 9407 445 487 681 383 1360 1817  —0.58

22 CD56"NKG2D~ 122 103 1476 1912 644 584 436 476 680 396 1354 1809 0.0
PSA 470 470 1900  19.00 826  8.34 331 328 330 408 1430 1430  —0.08

NKp44 %

23 CD56"NKpdd+ 043 028 371 677 116 134 08 120 078 125 328 649 -0.18

24 CD56"NKpdd~ 9610 9370 9953 9970 9882 9864 083 113 080  1.25 343 600 018

CD85j %

25  CD56*CD8sjt 1953 1421 8473 9159 5337 5510  19.04 1834 3049 2023 6520 7738  —174

26 CD56*CD8sj 1493 850 8154 8608 4694 4524 1921 1843 3028 2148 6661 7758 1.69

LAIR-1 %

27 CD56'LAIR — 1+ 9497 2143 9990  99.89  99.07 9747 107 1219 049 047 493 7846  1.60

28 CD56LAIR — 1~ 002 005 524 7820 076 240 102 1215 042 043 522 7815  —145

NKG2A %

29 CD56"NKG2A* 2043 1901 7757 7301 4614 4424 1741 1373 3082 1747 5714 5400 190

30 CD56*NKG2A~ 2262 2741 7940 80.85 5401 5599  17.39 1347 3048 1790 5678 5374  —198

Table 1 continued on next page
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Table 1 continued

Min. Max. Mean Std. IQR Range Diff.
Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc. Beni. Canc.
2B4 %
31 CD56"2B4" 98.41 97.06 99.99 99.96 99.53 99.50 0.39 0.59 0.32 0.33 1.58 2.90 0.02
32 CD5672B4~ 0.01 0.05 1.59 2.95 0.48 0.50 0.39 0.59 0.31 0.34 1.58 2.90 —0.02

Min. is the minimum value, Max. is maximum value, Mean is the mean or average value, and Std. is Standard Deviation. Range is the difference between
the minimum and maximum values. The Interquartile range (IQR) is a measure of data variability and was derived by computing the distance between the
Upper Quartile (i.e. top) and Lower Quartile (i.e. bottom) of the boxes illustrated in Figure 1. Difference is computed as diff = mean(Benign)-mean

(Cancer).

Distinguishing between benign prostate disease and prostate cancer:

The GA was used to identify a subset of features that, as a combination, provide an NK cell-based
immunophenotypic ‘fingerprint’ which can determine if an asymptomatic individual with PSA levels
below 20 ng ml™" has benign prostate disease or prostate cancer. This fingerprint, or feature set,
would then be used to construct a diagnostic/prediction model. Given that GAs stochastically select
multiple individuals (i.e. features) from the current population (based on their ‘fitness’), each run can
return different results. A common approach to identifying the best solution(s) is, therefore, to run
the algorithm several times to obtain the frequency of the solution(s). Since the aim herein is to iden-
tify the most commonly occurring subset of NK cell phenotypic predictors, the GA was applied to
the dataset and the most frequent subset of features returned was considered as being the best and
most promising.

Let f. denote the number of times (frequency) a combination was returned during the n number
of runs, then the relative frequency of a combination (R;) can be calculated using formula
(Equation 1),

Ry = o Q)]
Table 4 shows the most frequent feature combinations returned at the end of each of the 30 runs
when setting A to different values. In Table 4, A is the number of features in a combination. No. dif-
ferent comb is the number of unique combinations returned during the n number of runs (i.e. n = 30)
for a given A; Comb. with highest freq is the combination which was returned most frequently during
the n number of runs; Freq of Comb. is the frequency of the most common combination found in the
previous column; Relative Freq. (%) is computed using formula (Equation 1) converted to a
percentage.
As the optimum number of features is not known, the GA was run by setting A = 2,3,...,n where
n is the total number of features in the dataset. Table 4 shows the results for the first 10 combina-
tions. The results indicate that the combination comprising four features is the most promising in
terms of its ability to discriminate between benign prostate disease and prostate cancer on NK cell
phenotypic data alone. Features 2, 20, 27, 28, were returned in all 30 runs when searching for the
best combination comprising of four features. Furthermore, features 20, 27, 28 were returned
together in all combinations comprising more than three features (see feature ID's in combinations
A =4 to A =10 in Table 4). These results strongly suggest that these are good predictors when
grouped. The fact that the same combination was returned in 30 iterations is a strong indicator that
these four features are the most reliable for distinguishing between the presence of benign prostate
disease and prostate cancer. Although the statistical analysis presented in Table 3 determined that
features: ID14: CD56>6"CD8*, ID15: CD56" NKp30*, ID16: CD56* NKp30~, and ID17: CD56"NKp46+
were the only ones with values which were significantly different in the two groups at a = 0.05, and
for which p values were therefore less than 0.05, none of the features selected by the statistical anal-
ysis were returned by the GA when searching for the best combination of features for discriminating
between the presence of benign prostate disease and prostate cancer. The features selected by the
GA were: |D2: CD56%mCD16Ms", |D20: CD56TDNAM —1~, 1D27: CD56YLAIR —1F, and
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Figure 1. NK cell phenotypic features in men with benign prostate disease and patients with prostate cancer. Boxplots represent the flow cytometry
values of each feature for patients with benign disease and with prostate cancer.
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Figure 2. Mean and standard deviation values of flow cytometry features.

ID28: CD56"LAIR — 1~. Referring back to Figure 3 and the correlation values between the selected
features 2, 20, 27, 28, 14, 15, 16, 17, it is shown that these features do not have a strong positive
correlation. There is a strong negative correlation between features 27 and 28, but we decided to
keep both features since these were selected by the feature selection method.

The next step in the analysis involves evaluating the predictive performance of the feature subsets
returned by the statistical test and by the GA. The features identified from the statistical and GA
approaches were input into the proposed Ensemble Subspace kNN classifier to determine whether
it can learn these features and discriminate between the presence of benign prostate disease and
prostate cancer. For transparency of the machine learning model, it was important to keep the pre-
dictor selection and machine learning processes separate. The feature selection algorithm identified
a set of novel NK cell phenotypic features for diagnosing the presence of prostate cancer which will
be used to construct a transparent prediction tool.

Distinguishing between benign prostate disease and prostate cancer:
machine learning

This section describes the outcome of experiments that were performed to determine the predictive
performance of various feature subsets using the Ensemble Subspace kNN model, which was
designed for the task. Machine learning classifiers that are constructed using small training sets have
a large variance which means that the estimate of the target function will change if different training
data are used (Skurichina and Duin, 2002). It is therefore expected, and normal, that classifiers will
exhibit some variance. This means that small changes in input variable values can result in very differ-
ent classification rules. To ensure that the proposed approach does not suffer from low variance, we
evaluated the performance of the classifier using the 10-fold cross-validation approach which was
repeated 30 times, for which the average and standard deviation of each run were recorded. Multi-
ple runs of 10-fold cross-validation are performed using different partitions (i.e. folds), and the vali-
dation results are averaged over the runs to estimate a final predictive model. Each run of the cross-
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Figure 3. Correlations between features.

validation involves randomly partitioning a sample of data into complementary subsets, for which
one subset is used as the training set, and the other is used as the validation subset. Cross validation
randomly partitions the dataset into training and validation sets to limit overfitting problems, and to
provide an insight into how the model will generalise to an independent dataset which was not pre-
viously seen by the model. A random seed generator was used to generate a different sequence of
values each time the k-fold was run, and this was reseeded using a seed that was created using the
current time. It is normal that a classifier returns a different validation accuracy in each fold and run,
since it is training and validating on different samples. The aim is to create a low variance classifier,
meaning that the results of each validation test are close together. The closer the results of each vali-
dation test, the more robust the classifier. To evaluate the predictive performance of various feature
subsets derived from the computational and statistical feature selection approaches, each of these
feature subsets was input into an Ensemble Subspace kNN classifier. Applying 10-fold validation
resulted in 10 different partitions of the dataset of approximately 64 randomly selected samples for
training and 7 randomly selected samples for validation in each partition (1 dataset comprising 63
training cases and 8 validation cases; and 9 datasets comprising 64 validation cases and 7 validation
cases). All samples went through validation at some point during the evaluations. We consider 10-
fold cross validation to be suitable given the small size of the dataset and the fact that sufficient
samples are needed during the training process.

Table 5 shows the results of the comparison when running the 10-fold validation 30 times using
six sets of features: 1) the four features selected by the GA; 2) the four features which were returned
by the Kruskal-Wallis statistical test (STAT); 3) combined features selected by the GA and the statisti-
cal test (GA+STAT); 4) PSA values combined with features selected by the GA and the statistical test
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Table 2. Tests of normality results.
Tests of normality

NK cell values Kolmogorov-Smirnova Shapiro-Wilk

Statistic df Sig. Statistic df Sig.
1 CD564m CD16" 0.15 71.00 0.00 0.85 71.00 0.00
2 CD56%™ CD16"sh 0.1 71.00 0.03 0.89 71.00 0.00
3 CD56%m CD16"v 0.17 71.00 0.00 0.79 71.00 0.00
4 CD56¢m CD16~ 0.19 71.00 0.00 0.82 71.00 0.00
5 CD56%m CD56%™total% 0.15 71.00 0.00 0.91 71.00 0.00
6 CD56bright CD16" 0.13 71.00 0.00 0.88 71.00 0.00
7 CD56isht CD16"sh 0.15 71.00 0.00 0.87 71.00 0.00
8 CDS56riht CD16"v 0.14 71.00 0.00 0.85 71.00 0.00
9 CD56brisht CD16~ 0.16 71.00 0.00 0.86 71.00 0.00
10 CD56risht CD56" " total 0.15 71.00 0.00 0.91 71.00 0.00
11 CD8 CD56"CD8* 0.10 71.00 0.06 0.98 71.00 0.17
12 CD8 CD56"CD8~ 0.10 71.00 0.06 0.98 71.00 0.17
13 CD8 CD564m DY+ 0.09 71.00 0.20* 0.98 71.00 0.24
14 CD8 CD56" " D8+ 0.19 71.00 0.00 0.82 71.00 0.00
15 NKp30 CD56" NKp30+ 0.21 71.00 0.00 0.81 71.00 0.00
16 NKp30 CD56"NKp30~ 0.21 71.00 0.00 0.81 71.00 0.00
17 NKp46 CD56" NKp46™ 0.08 71.00 0.20* 0.98 71.00 0.52
18 NKp46 CD56" NKp46~ 0.07 71.00 0.20* 0.99 71.00 0.57
19 DNAM — 1 CD56*DNAM — 1+ 0.23 71.00 0.00 0.56 71.00 0.00
20 DNAM — 1 CD56"DNAM — 1~ 0.23 71.00 0.00 0.55 71.00 0.00
21 NKG2D CD56"NKG2D* 0.19 71.00 0.00 0.84 71.00 0.00
22 NKG2D CD56"NKG2D~ 0.18 71.00 0.00 0.85 71.00 0.00
23 NKp44 CD56" NKp44™ 0.18 71.00 0.00 0.76 71.00 0.00
24 NKp44 CD56" NKp44~ 0.17 71.00 0.00 0.78 71.00 0.00
25 CD85j CD56" CD85;* 0.1 71.00 0.05 0.96 71.00 0.02
26 CD85j CD56"CD85j~ 0.10 71.00 0.07 0.96 71.00 0.02
27 LAIR — 1 CD56"LAIR — 17 0.43 71.00 0.00 0.14 71.00 0.00
28 LAIR — 1 CD56"LAIR — 1~ 0.43 71.00 0.00 0.14 71.00 0.00
29 NKG2A CD56"NKG2A™ 0.09 71.00 0.20* 0.97 71.00 0.1
30 NKG2A CD56"NKG2A~ 0.08 71.00 0.20* 0.97 71.00 0.10
31 2B4 CD5612B4™" 0.23 71.00 0.00 0.75 71.00 0.00
32 2B4 CD56"2B4~ 0.23 71.00 0.00 0.75 71.00 0.00

*. This is a lower bound of the true significance.

Those values in bold are of those features whose data is normally distributed.

If the p>0.05, we can accept the null hypothesis, that there is no statistically significant difference between the data and the normal distribution, hence we
can presume that the data of those features are normally distributed.

If the p<0.05, we can reject the null hypothesis because there is a statistically significant difference between the data and the normal distribution, hence
we can presume that the data of those features are not normally distributed.

(PSA+GA+STAT); 5) PSA values alone as a predictor (PSA); and 6) using all 32 features (All features).
The averages of the Area Under the Curve (AUC), Optimal ROC Point (ORP) False Positive Rate
(FPR) of the AUC, ORP True Positive Rate (TPR) of the AUC, and Accuracy (ACC) of each fold are
provided. The last column of Table 5 shows the Rank of each model, where 1 is the best model and
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Figure 4. PSA values by group.

6 is the worst. The results of each k-fold were averaged, and these average values are plotted in the
box plot shown in Figure 5. As shown in Table 5, combining the features selected by the GA ID2:
CD56%mCD16"e", 1D20: CD56YDNAM — 1-, ID27: CD561LAIR — 1%, |D28: CD56TLAIR — 1~; with the
four features which were returned by the Kruskal-Wallis statistical test as features with values which
were statistically significant between individuals with benign prostate disease and patients with pros-
tate cancer, ID14: CD56""CD8*, 1D15: CD56*NKp30*, ID16: CD56*NKp30~, ID17: CD56TNKp46+
yielded the highest classification accuracy, with AUC = 0.818, ORP FPR = 0.201, ORP TPR = 0.836
and Accuracy = 0.821. PSA values input into the classifier resulted in weak classification perfor-
mance, AUC = 0.698, ORP FPR = 0.217, ORP TPR = 0.609, and Accuracy = 0.692. Although PSA is
used as a screening test in clinical practice for identifying prostate cancer in men, it is the weakest of
all the predictors. Importantly, predictive accuracy improved when PSA is combined with GA+STAT
flow cytometry features (PSA+GA+STAT): AUC = 0.812, ORP FPR = 0.208, ORP TPR = 0.832, and
ACC = 0.815. Combining PSA with the NK cell phenotypic fingerprint increased accuracy by +0.123
points when compared to using PSA alone.

The closer the standard deviation value is to 0 the less spread out are the results across the 30
runs, and hence the classifier variability is low (see Table 5). This results in a low variance classifier. A
low standard deviation indicates that the data points tend to be close to the mean (also called the
expected value) of the set, whereas a high standard deviation indicates that the data points are
spread out over a wider range of values. Observing the data shown in Table 5 and Figure 5 for each
evaluation measure (i.e. AUC, ORP TPR, ORP FPR, Accuracy (ACC)), the aim is to have a high AUC
and low Std.; low ORP FPR and low Std.; high ORP TPR and low Std.; and high Accuracy and low
Std. The results show that the classifier achieved the best performance when using the GA+STAT
input and the results using k-fold across the 30 runs returned the lowest mean standard deviation
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Chi-Sq.(x?) Asy. sig. p value

PSA 0 0.949

NK cells
1 CD56%m cD16* 0.001 0.981
2 CD56%m CD16"is 0.069 0.793
3 CD56%m CD16 " 0.555 0.456
4 CD56%m CD16~ 0.033 0.857
5 CD56m CD56%™total% 0.063 0.802
6 CD56"risht cD16" 0.836 0.361
7 CD56ieht CD16"ish 0.201 0.654
8 CD56isht CcD16"" 0.106 0.744

CD56ieht CD16~ 0.030 0.861
10 CD56isht CD56" %" to1al 2415 0.120
1 CD8 CD36*CD8* 2.415 0.120
12 CD8 CD56%CD8~ 2.849 0.091
13 CD8 CD56% ™ CD8* 0.417 0.518
14 CD8 CD56""" CDg* 7.230 0.007
15 NKp30 CD56" NKp30+ 7.106 0.008
16 NKp30 CD56" NKp30~ 4,638 0.031
17 NKp46 CD56" NKp46+ 5.179 0.023
18 NKp46 CD56" NKp46~ 0.001 0.981
19 DNAM — 1 CD56"DNAM — 1+ 0.001 0.972
20 DNAM — 1 CD56"DNAM — 1~ 0.293 0.588
21 NKG2D CD56"NKG2D* 0.325 0.568
22 NKG2D CD56"NKG2D~ 0.033 0.857
23 NKp44 CD56% NKp44+ 0.072 0.789
24 NKp44 CD56% NKp44~ 0.049 0.825
25 CD85j CD56" CD85j* 0.072 0.789
26 CD85j CD561 CD85;~ 2.135 0.144
27 LAIR — 1 CD56"LAIR — 1+ 1.343 0.247
28 LAIR — 1 CD56"LAIR — 1~ 0.060 0.807
29 NKG2A CD56"NKG2A™* 0.072 0.789
30 NKG2A CD56"NKG2A~ 0.879 0.348
31 2B4 CD5612B4* 0.890 0.346
32 2B4 CD5612B4~ 0.890 0.346

and hence the least variability in the results. The results reveal that using the GA+STAT predictors
delivers a more reliable classification model with regards to training and validation on new data
which will be generated in the future using the prediction model.

Importance of findings

The GA+STAT prediction model achieved the best performance, in that the ORP FPR was the low-
est, and the AUC, ORP TPR, and Accuracy (ACC) were the highest compared to the other prediction
models. The experimental results are promising and the proposed prediction model is expected to
achieve even higher classification accuracy in identifying the presence of prostate cancer in asymp-
tomatic individuals with PSA levels < 20 ng ml”" based on peripheral blood NK cell phenotypic
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Table 4. Results of the Genetic Algorithm when searching for the best subset of features.

A No. different comb Comb. with highest freq. Freq. of comb. Relative freq. (%)
2 3 17,28 16 53.3

3 2 17,27,29 23 76.7

4 1 2,20,27,28 30 100.0

5 2 3,20,27,28,32 29 96.7

6 2 3,7,20,27,28,32 26 86.7

7 3 3,7,20,23,27,28,32 24 80.0

8 4 3,7,20,22,23,27,28,32 19 63.3

9 3 3,7,19,20,22,23,27,28,32 24 80.0

10 3 2,3,7,19,20,22,23,27,28,32 21 70.0

profiles as more data become available in the future. Table 5 shows the performance of the classifier
when using various feature subsets. When using the GA+STAT features, the AUC is higher, and FPR
is lower (this is an important distinction) than when using all features or the other alternative feature
subsets. The most important aspect is that better performance was achieved using a much smaller
set of biomarkers (features), which indicates that we have identified a fingerprint for detecting the
presence of prostate cancer in asymptomatic men with PSA levels < 20 ng ml™" which is indeed sig-
nificant from a clinical perspective. Feature selection is important, as the fundamental aim of this
project is to develop a subset of phenotypic biomarkers that is smaller than the original set of bio-
markers (i.e. 32 biomarkers in total) which can confidently identify the presence of prostate cancer.
Ultimately, the approach will be embedded into a software application to be used by clinicians, and
the aim is to create an interface that requires the clinician to input a few values (features), that is 8
instead of 32. Importantly, identifying a small subset of 8 features which is needed for detecting the
presence of prostate cancer, results in the construction of an explainable disease detection and cate-
gorization model. Working with a small set of the most promising biomarkers provides a better
understanding of the disease and allows cancer immunobiologists and clinicians to focus on perform-
ing further laboratory evaluations using the specific subset of biomarkers, in a more cost effective
and less time-consuming manner.

Table 5. Naming of the models includes the feature selection method (GA) combined with the proposed Ensemble Subspace kNN

classifier.

Validation results are presented at k = 10 fold cross validation.

Results of 10-fold cross validation over 30 runs

AUC ORP FPR ORP TPR ACC Mean std. Rank

GA Mean 0.776 0.296 0.833 0.781 4
Std. 0.024 0.065 0.026 0.023 0.035

STAT Mean 0.769 0.303 0.828 0.774 5
Std. 0.022 0.057 0.023 0.021 0.031

GA+STAT Mean 0.818 0.201 0.836 0.821 1
Std. 0.021 0.027 0.021 0.020 0.022

PSA+GA+STAT Mean 0.812 0.208 0.832 0.815 2
Std. 0.020 0.031 0.018 0.019 0.022

PSA Mean 0.698 0.217 0.609 0.692 6
Std. 0.022 0.025 0.043 0.020 0.028

All features Mean 0.812 0.213 0.836 0.815 3
Std. 0.022 0.035 0.021 0.021 0.025
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Figure 5. Boxplots illustrating the performance of the proposed model using various feature sets. (a) Average AUC values, (b) Average Optimal ROC
points (TPRs), (c) Average Optimal ROC points (FPRs), (d) Average Accuracy values. Each box plot contains 30 points, where each point is the average
performance evaluation value (i.e. AUC, ORP TPR, ORP FPR, Accuracy) from one 10-fold run using the various feature sets.

Comparing the performance of the proposed ensemble subspace kNN
classifier with alternative classifiers

The experiments discussed thus far utilised a machine learning model comprised of an Ensemble of
kNN learners (see Section ‘Proposed Ensemble Learning Classifier for the task of Predicting Prostate
Cancer’). We then undertook experiments to determine the impact of using the proposed Ensemble
method over conventional machine learning classifiers: simple kNN; Support Vector Machine; and
Naive Bayes models. The last column of Table 6 shows the difference in the performance of the
methods. The proposed method, denoted as EkNN, returned better performance than all other
alternative classifiers. EKNN also returned the lowest Standard Deviation values and these are an
indicator of a more stable and reliable model since the average values are clustered closely around
the mean. SVM-linear returned the highest ORP TPR; however, the higher ORP FPR, higher Std. val-
ues, the low AUC, and low Accuracy values suggest that this model is worse than the proposed
EKNN. Naive Bayes was the least efficient classifier, and although it returned the lowest ORP FPR, it
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Table 6. Comparing the performance of the proposed Ensemble Subspace kNN model against conventional machine learning
models when using the GA+STAT feature set.
Results of 10-fold cross validation over 30 runs.

Proposed ensemble subspace kNN (EKNN) model
(No. of learners (NL): 30; Subspace Dimension (SD): 16)

Parameters AUC ORP FPR ORP TPR ACC
NL: 30, SD:16 Mean 0.818 0.201 0.836 0.821
Std. 0.021 0.027 0.021 0.020
Simple kNN model (Distance: Euclidean)
k AUC ORP FPR ORP TPR ACC Acc. Diff.
(EKNN vs. kNN)
2 Mean 0.768 0.241 0.730 0.751 +0.070
Std. 0.19 0.160 0.393 0.128 —0.108
5 Mean 0.778 0.300 0.833 0.783 +0.038
Std. 0.107 0.265 0.103 0.103 —0.083
10 Mean 0.753 0.371 0.845 0.758 +0.063
Std. 0.137 0.350 0.120 0.131 -0.111
Support Vector Machine models
Kernel AUC ORP FPR ORP TPR ACC Acc. Diff.
(EKNN vs. SVM)
Linear Mean 0.782 0.342 0.860 0.784 +0.037
Std. 0.126 0.352 0.110 0.120 —0.100
Gaussian Mean. 0.808 0.353 0.876 0.799 +0.022
Std. 0.112 0.416 0.107 0.111 —0.091
Naive Bayes model
Predictor distributions AUC ORP FPR ORP TPR ACC Acc. Diff.
(EKNN vs. Naive Bayes)
Normal Mean. 0.695 0.132 0.455 0.662 +0.159
Std. 0.169 0.163 0.493 0.181 —0.161

also returned the lowest ORP TPR, lowest AUC and Accuracy values; and its Std. values were also
higher than those of the EKNN model.

Statistically significant differences in predictive performance when
using various feature subsets

The next step in the analysis is to determine whether statistically significant differences exist
between the average AUC performance values of the classifier when using the various feature sub-
sets, for which Friedman’s two-way Analysis of Variance (ANOVA) test was used. It was also impor-
tant to observe whether including the PSA test values significantly strengthens the diagnostic
accuracy and capacity. The average k-fold values across the 30 runs for each feature set were com-
puted. A matrix C was derived which holds the results of the classifier when using one of five feature
subsets. Friedman'’s chi-square statistic compares the mean values of the columns of matrix C. The
test returned a statistically significant difference in the AUC predictive performance depending on
which type of feature subset was input into the classifier, x?(4) = 106.55, p = 3.968E — 22. This sug-
gests that the mean AUC ranks of at least one feature subset are significantly different than the
others. The mean ranks were as follows: GA = 12.050, STAT = 10.733, GA+STAT = 20.283,
PSA = 3.067, PSA+GA+STAT = 18.867. A post hoc test was run alongside the Friedman test to pin-
point which feature subsets differ from each other. Post hoc analysis using a Bonferroni correction
was used to reduce the likelihood of erroneously declaring a statistically significant due to multiple
comparisons (a Type | error). Table 7 shows the results of multiple comparisons and adjusted p
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Ad hoc test

Group 1 Group 2 Ll 95% Diff. betw.means Ul 95% P
1 GA STAT —12.658 1.317 15.292 1.000
2 GA GA+STAT —22.208 —8.233 5.742 0.525
3 GA PSA —4.992 8.983 22.958 0.344
4 GA PSA+GA+STAT —20.792 —6.817 7.158 1.000
5 STAT GA+STAT —23.525 —9.550 4.425 0.245
6 STAT PSA —6.308 7.667 21.642 0.710
7 STAT PSA+GA+STAT —22.108 -8.133 5.842 0.555
8 GA+STAT PSA 3.242 17.217 31.192 0.001
9 GA+STAT PSA+GA+STAT —12.558 1.417 15.392 1.000
10 PSA PSA+GA+STAT —29.775 —15.800 —1.825 0.002

The first two columns show the groups that are compared. The third and fifth columns show the lower and upper limits for 95% confidence intervals for

the true mean difference. The fourth column shows the difference between the estimated group means. The sixth column contains the p-value for testing

a hypothesis that the corresponding mean difference is equal to zero.

values. There were statistically significant differences between group 8 (GA+STAT vs. GA) and 10
(PSA vs. PSA+GA+STAT) (p=0.001). We can conclude that GA+STAT returned a significantly higher
AUC than PSA, and the difference between their mean ranks is diff = 17.217. PSA returned a signifi-
cantly lower AUC than PSA+GA+STAT (p=0.002), and the difference between their mean ranks is
diff=-15.800.

Comparing the best prediction models over 30 runs

With regard to constructing a model which has the potential to be used in clinical practice, it is nec-
essary to finalise an initial prediction model, since the last experiment returned 30 different varia-
tions of each prediction model when using different training and validation data partitions. Those
experiments were crucial in determining whether the prediction models (five models, a different one
for each feature subset) suffer from low variance. We then observed the classification performance
of each model for each run, to identify the highest performance achieved using a single 10-fold cross
validation in any of the runs. This provides a way of comparing the performance of each prediction
model as it would be used in the clinical setting. Table 8 provides the results of the highest perform-
ing model, and the performance of the models is ranked (with 1 being the best model and 5 the
worst model).

Predicting low-/intermediate risk cancer vs. high-risk cancer

The continuing, significant clinical challenge resides in distinguishing men with low- or intermediate-
risk prostate cancer which is unlikely to progress (for both of which ‘active surveillance’ is the most
appropriate approach), from men with intermediate disease which is likely to progress and men with

Table 8. Results of the best prediction models created during the 30 runs.
Validation results are presented at k = 10 fold cross validation.

Best prediction model results

AUC ORP FPR ORP TPR Accuracy Rank
GA 0.818 0.192 0.829 0.820 3
GA+STAT 0.853 0.157 0.862 0.855 1
PSA 0.734 0.218 0.685 0.730 5
PSA+GA+STAT 0.844 0.175 0.864 0.848 2
STAT 0.811 0.227 0.85 0.817 4
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high-risk prostate cancer (both of which require treatment). The diagnosis of men with low-risk or
small volume intermediate-risk prostate cancer as having prostate cancer is unhelpful as these men
will very rarely require treatment. The inappropriate assignment of men to potentially life-threaten-
ing invasive procedures and life-long surveillance for prostate cancer has significant psychological,
quality of life, financial, and societal consequences. Furthermore, the definitive diagnosis of prostate
cancer currently requires painful invasive biopsies with which is associated a risk of potentially life-
threatening urosepsis in 5% of individuals. We, therefore, undertook experiments to train the pro-
posed Ensemble Subspace kNN model to predict the D'Amico Risk Classification for those patients
with prostate cancer (see subsection ‘The cancer patients dataset used for building the risk predic-
tion modelin Methods), in terms of Low/Intermediate (L/I) risk and High (H) risk disease using NK cell
phenotypic data alone.

The Ensemble model was modified to take as input all 32 features (described in Table 1), and
was trained to classify the disease in patients with prostate cancer as being L/I or H risk disease (see
Figure 9 in Materials and methods). Hence, given a new patient record, which comprises of 32
inputs, the model predicts whether the patient is D’Amico L/I risk (not clinically significant) or H (clin-
ically significant) risk. The flow charts in Figure 6 illustrate the process to detect the presence and
risk of prostate cancer and patient outcomes. Of those 54 patient records, a total of 10 randomly
selected records (5 from the L/l group and 5 from the H group) were extracted from the dataset
such that they can be used at the testing (mini clinical trial) stage. To ensure thorough experiments,
a rigorous methodology was adopted. More specifically, a 10-fold cross validation method was
adopted, and the experiments were run in 30 iterations, for which each iteration provided an aver-
age validation result across 10 folds. Each iteration consists of 10 different ‘train and validation’ data
arrangements (hence 300 tests were carried out using a different mix of train and validation records).
The 10 test records were input into each trained model (i.e. iteration) to predict their accuracy, and

Biomarker 1

Benign Disease

Prostate Cancer
Prediction Model

Low-risk/

Biomarker 2
Intermediate-risk

Prostate Cancer
Risk Prediction

\—P' High-risk

Prostate Cancer

Man attends with elevated PSA levels
and/or prostate cancer symptoms

Model 1: Prostate Cancer
Detection

Is prostate
cancer
clinically
significant?

Is prostate
cancer
detected?

Suitable treatment
pathway offered to
patient

Model 2: Prostate
Cancer Risk Prediction

No

‘No prostate’ cancer detected ‘

[ Patient Assigned to Active Surveillance

Figure 6. Flow charts illustrating the process to detect the presence and risk of prostate cancer and patient
outcomes. Model 1: Distinguishes between men with benign prostate disease and prostate cancer; Model 2:
predicts risk (in terms of clinical significance) in men identified as having prostate cancer in Stage 1. Note that
Model 1 can detect prostate cancer in men with PSA < 20 ng ml™.

Hood et al. eLife 2020;9:e50936. DOI: https://doi.org/10.7554/eLife.50936 16 of 30


https://doi.org/10.7554/eLife.50936

eLife

Cancer Biology | Computational and Systems Biology

to evaluate the model when it is trained and validated using different variations of patient data. The
model can highly accurately differentiate between L/I risk group and H risk group patients. The
k-fold validation results across 30 iterations were AUC: 0.98(+0.03); FPR: 0.03(+0.05), TPR: 0.99
(£0.01), Accuracy: 0.99(+0.02); and results using the test set were AUC: 0.98(+0.03); FPR: 0.03
(+0.05), TPR: 0.99(+0.01), Accuracy: 0.97(+0.02). Accuracy has been near perfect in all iterations (i.e.
using different train and validation data cases in each iteration). Figure 7 illustrates the performance
of the model obtained across the 30 runs during the k-fold cross validation and independent testing
using the 10 patient samples. The results demonstrate that the proposed model predicts with near-
perfect accuracy, the result of the D’Amico Risk Classification (L/I vs High) using NK cell phenotypic
data alone, and without requiring the PSA, Gleason, and tumor stage data.

The dataset that was utilized to identify the biomarker (that comprised eight features) for detect-
ing the presence of prostate cancer (i.e. benign prostate disease vs prostate cancer) in 71 men, and
thus it was large enough to perform the combinatorial feature selection task for finding the best sub-
set of features. The GA that was used for the combinatorial feature selection task is described in
Section Computational Methods. Given that detecting the presence of prostate cancer and its risk if
present are two different tasks, it is expected that the biomarkers for those tasks will be different
since a different target is given to the GA (i.e. the target for the prostate cancer detection model
comprises 0 (benign prostate disease) and 1 (prostate cancer) values; the target for the prostate can-
cer risk prediction model comprises O (L/I risk) and 1 (High risk) values). For the L/ vs H risk task, the
dataset was small (n = 54 men (L/I = 36, H = 16)), and we could not perform the combinatorial fea-
ture selection task with confidence. Hence, it was decided to use the entire feature set for the risk
prediction task. The results obtained from the risk prediction model were very promising as shown
experimentally, and this provided the confidence to report these preliminary results. The combinato-
rial feature selection task to identify the best subset of features for the risk prediction task will be
performed once a larger dataset is available.

Herein, we demonstrate that all 32 phenotypic features are required to distinguish between low/
intermediate risk cancer (L/I) and high risk (H) cancer. However, we expect to be able to identify
smaller subset(s) of these features as the datasets increase and the prediction model is retrained on
the larger dataset. As indicated above, the generation and delivery of additional datasets is beyond
the scope of this paper.

Discussion

The clinical challenge in prostate cancer diagnosis resides in distinguishing men with low- or small
volume intermediate-risk prostate cancer which is unlikely to progress (both require ‘active surveil-
lance’) from men with intermediate disease which is likely to progress or high-risk disease (both of
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Figure 7. Each box plot contains 30 points, where each point is the average performance evaluation value (i.e. AUC, FPR, TPR, Accuracy (ACC)) from
one 10-fold run during (a) k-fold validation results, and (b) independent testing results (i.e. using 10 patient records).
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which require treatment). It is essential that men with low-risk prostate abnormalities are not diag-
nosed as having prostate cancer, as those with low-risk/grade disease do not require active treat-
ment. Furthermore, unnecessarily labeling men as having prostate cancer can assign these men to
life-long surveillance and have significant psychological, quality of life, financial and societal conse-
quences. Recent findings from a decade-long study involving 415,000 British men (The Cluster Ran-
domized Trial of PSA Testing for Prostate Cancer (CAP) Randomized Clinical Trial) have not
supported single PSA testing for population-based screening and suggest that asymptomatic men
should not be routinely tested to avoid unnecessary anxiety and treatment. It is therefore essential
that new approaches for enabling more definitive, early detection of prostate cancer are developed.
The reliable diagnosis of prostate cancer based on PSA levels alone is not possible and confirmation
using invasive biopsies or other approaches such as MRI and biopsy are currently required. Although
interest in the potential diagnostic capabilities of MRI scanning is developing, MRI cannot currently
be used as a sole diagnostic as a positive MRI can be incorrect in approximately 25% of cases and a
negative MRI can be incorrect in approximately 20% of cases Ahmed et al., 2017. Although the
findings from the CAP study do not support using the PSA test as an approach for population-based
screening, combining PSA measurements with other approaches that either identify individuals for
additional testing or strengthen the capacity to diagnose prostate cancer have significant merit, and
it is based on this concept that the current study has been performed. The studies presented herein
have focused on asymptomatic men with a PSA < 20 ng/ml, as men with a PSA level > 20 ng/ml are
more likely to harbour prostate cancer and are thereby less likely to pose a clinical diagnostic quan-
dary. In contrast, men with a PSA < 20 ng/ml pose a major problem because although only 30-40%
of these men will have prostate cancer, all currently undergo potentially unnecessary invasive pros-
tate biopsies to determine who has the disease. It is, therefore, this group of men for which the
development of new and more accurate approaches for the early detection of cancer is a clear
unmet clinical need, and for whom the benefits of such an approach will be most relevant and
significant.

Comparing results to the previous study

We have previously shown that incorporating peripheral blood immune phenotyping-based features
into a computation-based prediction tool enables the better detection of prostate cancer and, fur-
thermore, strengthens the accuracy of the PSA test in asymptomatic individuals having PSA levels
< 20 ng/ml (Cosma et al., 2017). The phenotypic feature set which was shown to be discriminatory
between benign disease and prostate cancer comprised CD8"CD45RA~CD27-CD28~ (CD8* Effector
Memory cells), CD4"CD45RA-CD27-CD28~ (CcD4+ Effector Memory Cells),
CD4TCD45RATCD27-CD28 (CD4" Terminally Differentiated Effector Memory Cells re-expressing
CD45RA), CD3-CD19" (B cells), CD3*CD56"CD8"CD4™ (NKT cells).

Using samples from the same cohort of asymptomatic individuals, herein we have further investi-
gated the phenotype and function of NK cell subsets. Using a combination of statistical and compu-
tational feature selection approaches, we have identified a subset of eight phenotypic features
CD56%mCD16"s",  CD56"DNAM —1~, CD56"LAIR — 1%, CD56TLAIR—1-, CD56""CD8",
CD56"NKp30"™, CD56"NKp30~, CD56"NKp46* which distinguish between the presence of benign
prostate disease and prostate cancer. These features were used to implement a prediction model.
The kNN machine learning approach developed in our previous study (Cosma et al., 2017) has been
extended to an Ensemble of kNN learners to improve performance in identifying patterns in even
more complex data. As was observed in our previous study, flow cytometry predictors significantly
outperform the PSA test. The findings presented herein significantly reinforce our previous finding
(Cosma et al., 2017) that complementing the PSA prediction model with a subset of flow cytome-
try-based phenotypic predictors can significantly increase the accuracy of the initial prostate cancer
test and reduce misclassification. The performance of the prediction model which was built using the
phenotypic ‘signature’ presented in our previous study —CD8"CD45RA-CD27-CD28~,
CD4TCD45RA~CD27-CD28", CD4+tCD45RATCD27-CD28~, CD3~CDI19",
CD37CD56"CD8"CD4" (Cosma et al., 2017), is similar to the model which was built using the NK
cell-based phenotypic signature presented herein, CD56%"CD16"¢", CD56*DNAM — 1-,
CD56*LAIR — 1*, CD56*LAIR — 1, CD56"8"CD8*, CD56*NKp30*, CD56*NKp30~, CD56*NKp46*.
Specifically, the prediction model using the five flow cytometry features identified in Cosma et al.,
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2017 achieved Accuracy: 83.33% , AUC: 83.40%, ORP TPR: 82.93%, FPR: 16.13%, whereas the pre-
diction model presented herein achieved AUC: 85.3%, ORP FPR: 15.7%, ORP TPR: 86.2%, Accuracy:
85.5%. Across the 30 runs the average performance of the prediction model presented herein is
AUC: 81.8%, ORP TPR: 83.6%, FPR: 20.1%, Accuracy: 82.1%.

The difference in the performance of the model presented in the first study (Cosma et al., 2017)
and the study described herein is a consequence of different data and prediction models being used
in each study. Given that the phenotypic features that were used to create the prediction models
were different, the studies resulted in different prediction models. In particular, the model presented
previously (Cosma et al., 2017) was based on a kNN classifier, and herein the kNN classifier was
extended to construct an Ensemble Subspace kNN method which comprised several kNN classifiers
(see Figure 9). The dataset used herein was more complex, and it was therefore necessary to create
a more complex classifier. At this point in the studies, it is not possible to determine which set of
phenotypic features is better at identifying prostate cancer. However, it is evident that both
approaches have significant promise. Since the publication of our previous study (Cosma et al.,
2017), the model developed for that study was used to predict the outcomes of a further 20 new
patients which were previously unseen by the prediction model. The model correctly identified the
presence of prostate cancer in 19 of the 20 patients (data not shown).

Encouragingly, the prediction models generated in the study reported upon herein selected phe-
notypic features that are associated with the expression of activating receptors NKp30, NKp46, and
DNAM-1 by NK cells. Pasero et al., 2015 demonstrated that these activating receptors, in addition
to NKG2D, are involved in the recognition of prostate cancer cell lines. Furthermore, they identified
that the intensity of NKp30 and NKp4é expression on the surface of NK cells isolated from the
peripheral blood of patients with metastatic prostate cancer was predictive of time to hormone (cas-
tration) resistance and overall survival. This suggests that our computational analysis is selecting phe-
notypic features that are of biological/clinical relevance. Thus far, our identification of disease
predictive phenotypic immune features has been limited to effector immune populations (T, B, and
NK cells). The responsiveness of these cells is known to be influenced by the presence of innate
immune cell populations that can be polarized by the tumor toward an immunosuppressive state
(Vitale et al., 2014; Anderson et al., 2017). Therefore, future studies will investigate the identifica-
tion and inclusion of phenotypic features from innate immune subpopulations such as monocytes
and neutrophils into prediction models to assess whether their inclusion enhances predictive capabil-
ity and enables a better assessment of patient prognosis in line with the D’Amico Risk Classification.

The proposed machine learning model was adapted to predict the D'Amico Risk Classification of
patients with prostate cancer using NK cell phenotypic data alone. Experiments with data from 54
patients revealed the significant potential of using the proposed machine learning model for deter-
mining if men with prostate cancer are in the low-/intermediate- or high-risk groups, without the
need for additional clinical data (i.e. PSA, Gleason, clinical stage data). One limitation of the current
study is that the small patient numbers required for low- and intermediate-risk patients to be
grouped. Future work, for which additional sample collections are required, will train the model to
separately predict low-, intermediate- and high-risk cancer. Future work involves collecting more
patient samples to conduct further testing of the proposed machine learning models. In terms of
future work from a computational perspective, once we have a larger patient dataset we plan to
design deep learning models and compare their performance to the conventional machine learning
model which was proposed in this paper.

Potential impact

Currently available screening methods and tests for prostate cancer lack accuracy and reliability, the
consequence of which is that many men unnecessarily undergo invasive tests such as biopsy and/or
are misdiagnosed as having the disease. Furthermore, a biopsy involves removing samples of tissue
from the prostate and it is an extremely uncomfortable procedure which also puts men at risk of
developing life-threatening infections. As biopsy results are not definitive, there is a significant
potential for misdiagnosis and over- and under- treatment. It is therefore essential that new non-
invasive approaches such as blood tests that are more accurate than the Prostate Specific Antigen
(PSA) test are developed to reduce misdiagnosis and unnecessary procedures. Misdiagnosis unnec-
essarily subjects many men to lifelong monitoring for prostate cancer which can have undesirable
psychological and quality of life side-effects, as well as place a significant financial burden on the
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NHS and other healthcare systems. This paper proposes a computerised model, which detects the
presence of prostate cancer in men by analyzing immune system cells in the blood. The model uses
the data from the blood tests and artificial intelligence-based computing (machine learning) to more
accurately detect the presence of prostate cancer. A preliminary model has also been presented to
detect the clinical risk that any prostate cancer which is present poses. The tool has two elements,
the first detects whether a man has prostate cancer. If prostate cancer is detected, the second ele-
ment will detect the clinical risk of the disease (low, intermediate, high) and thereby enable the clini-
cian to decide whether the patient requires no further investigation/treatment (‘watch and wait’) or
whether further investigation and treatment are required.

To our knowledge, these are the first studies to employ computational modeling of peripheral
blood NK cell phenotyping data for the early detection of cancer and its clinical significance. They
also illustrate the potential for this approach to decipher clinically relevant immune features that can
distinguish between benign prostate disease and prostate cancer in asymptomatic individuals for
whom the management and treatment strategy is unclear. Of translational importance is that our
prediction models are interpretable, can be explained to patients and clinicians and can be continu-
ally refined and improved as data are collected.

The novelty of this approach is that it interrogates the immunological response to the tumour,
not the tumour itself and that it requires a simple blood test (liquid biopsy). Based on current prac-
tice, we expect that this approach could avoid up to 70% of prostate biopsies, thereby sparing men
with benign prostate disease or low-risk prostate cancer from unnecessary invasive procedures with
which are associated significant side-effects. Furthermore, more accurate diagnosis would reduce
the demands of healthcare provision and resources associated with treatment and continual surveil-
lance, thereby reducing costs and improving healthcare. We envisage that, in the future, men with a
mildly elevated PSA will also undergo an immune status test and those with a suspicion for signifi-
cant prostate cancer will then undergo an MRI. Although the current study focuses on prostate can-
cer, its fundamental principles and approaches are highly likely to be applicable across many, if not
all, cancer entities.

Materials and methods

(species) or Source or Identifiers Additional

resource Designation reference information

Biological Hyclone fetal GE Healthcare Sv30180.03

Sample bovine serum (FBS) Life Sciences

Antibody Monoclonal mouse BioLegend 338304 5 ul per tube / 10°cells
IgG1 kappa anti human
DNAM-1 (CD226) (clone
11A8); FITC

Antibody Monoclonal mouse 1gG1 eBioscience 12-5878-42 5 ul per tube / 10%cells
kappa anti human
NKG2D (CD314) (clone
1D11); PE

Antibody Monoclonal mouse 1gG1 Beckman A82943 2.5 ul per tube / 10%cells
kappa anti human CD56 Coulter
(clone N901); ECD (PE-
Texas Red)

Antibody Monoclonal mouse 1gG1 BioLegend 302028 5 ul per tube / 10%cells
kappa anti human CD16
(clone 3G8); PerCP-Cy5.5

Antibody Monoclonal mouse 1gG1 BioLegend 331916 5 ul per tube / 10%cells

Continued on next page

kappa anti human NKp4é
(CD335) (clone 9E2);
PE-Cy7
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(species) or Source or Identifiers Additional

resource Designation reference information

Antibody Monoclonal mouse 1gG1 BioLegend 325212 5 ul per tube / 10%cells
kappa anti human NKp30
(CD337) (clone P30-15);
Alexa Fluor 647

Antibody Monoclonal mouse 1gG1 BioLegend 300424 2 ul per tube / 10%cells
kappa anti human CD3
(clone UCHT1); Alexa
Fluor 700

Antibody Monoclonal mouse 1gG1 BioLegend 302226 1 ul per tube / 10%cells
kappa anti human CD19
(clone HIB19); Alexa
Fluor 700

Antibody Monoclonal mouse 1gG1 BioLegend 344714 2.5 ul per tube / 10°cells
kappa anti human CD8
(clone SK1); APC-Cy7

Antibody Monoclonal mouse 1gG2b Miltenyi Biotec 130-098-437 10 pl per tube / 10°cells
anti human CD85j (ILT2)
(clone GHI/75); FITC

Antibody Monoclonal mouse 1gG1 BD Biosciences 550811 20 ul per tube / 10%cells
kappa anti human LAIR-1
(CD305) (clone DX26); PE

Antibody Monoclonal mouse 1gG2b Beckman Coulter B10246 20 ul per tube / 10%cells
anti human NKG2A
(CD159a) (clone Z199);
PE-Cy7(PC7)

Antibody Monoclonal mouse 1gG1 BioLegend 325112 5 ul per tube / 10%cells
kappa anti human NKp44
(CD336) (clone P44-8);
Alexa Fluor 647

Antibody Monoclonal mouse 1gG1 BioLegend 329506 5 ul per tube / 10%cells
kappa anti human 2B4
(CD244.2) (clone C1.7);
FITC

Chemical LIVE/DEAD Fixable Thermo Fisher 34955 Tulin 1wl

Compound Violet Dead Stain Scientific

Chemical Novagen Benzonase Merck Millipore 70664

Compound Nuclease

Chemical CTL Wash Solution Cellular CTLW-010

Compound Technology

Limited

Chemical Trypan Blue Santa Cruz sc-216028

Compound viability stain

Chemical Dimethyl sulfoxide Santa Cruz sc-202581

Compound (DMSQO)

Chemical Calbiochem bovine Merck Millipore 2905-0OP

Compound serum albumin (BSA)

Chemical Sigma-Aldrich Merck Millipore S8032

Compound sodium azide

Chemical Sigma-Aldrich Merck Millipore HO0878

Compound lithium heparin

Chemical Ficoll-Paque GE Healthcare 17-1440-03

Compound Life Sciences

Chemical Isoton Il isotonic Beckman 844 80 11

Compound buffered saline Coulter

Continued on next page
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(species) or Source or Identifiers Additional
resource Designation reference information
Chemical RPMI medium Lonza 12-167Q
Compound
Chemical Phosphate Lonza 17-517Q
Compound Buffered Saline

(PBS)
Other Leucosep tubes Greiner Bio-One 227290

International

Software Kaluza v1.3 Beckman Coulter

Data collection

Peripheral blood samples were obtained from individuals suspected of having prostate cancer that
attended the Urology Clinic at Leicester General Hospital (Leicester, UK) between 24th October
2012 and 15th August 2014. Only patients who had provided informed consent and met the criteria
of being biopsy naive, a benign feeling Digital Rectal Examination (DRE) with a PSA level of < 20 ng
ml™" and agreeing to undergo a simultaneous 12 core TRUS biopsy and a 36 core transperineal tem-
plate prostate biopsy (TPTPB) were included in the study. Further details regarding the TPTPB tech-
nique are provided in Nafie et al., 2014b. A total of 71 males (30 patients diagnosed with benign
disease and 41 patients diagnosed with cancer, as confirmed by pathological examination of TPTPB
biopsies) met the criteria. Of the 30 patients diagnosed with benign disease; 9 patients were diag-
nosed with High Grade Prostatic Intraepithelial Neoplasia (PIN), 10 patients were diagnosed with
Atypia and 2 patients were diagnosed with Atypical Small Acinar Proliferation. The remainder were
diagnosed with benign disease. Of the men diagnosed with prostate cancer, 16 had Gleason 6 dis-
ease, 23 had Gleason 7 disease and 2 had Gleason 9 disease on biopsy-based evidence. The clinical
features of individuals with benign disease and patients with prostate cancer are provided in
Table 9.

The cancer patients dataset used for building the risk prediction model
Data derived from the 41 individuals with prostate cancer were extracted from the dataset shown in
Table 9. All 41 patients had PSA < 20 ng ml™'. However, three of the 41 patients who had a High
D’Amico risk were removed because their clinical profiles were very different from those of other
high risk patients. They were patients with either a Gleason score 3+3 or had a benign biopsy. In the
future, we aim to collect more data from such infrequent patient groups to train the algorithms on
patients with such clinical profiles. The remaining 38 patients had PSA levels < 20 ng ml”" and
belonged to the D'Amico L/I risk group.

Data were collected from an additional 16 patients with prostate cancer who were diagnosed as
having a D'Amico High risk profile (see Table 10). Thus, the new cancer patient dataset comprised
54 patients with prostate cancer, of which 38 patients belonged to the D’Amico L/I risk group and
all had PSA<20 ng ml”", and 16 patients belong to the D’Amico H risk group and have PSA 4.3 ng

Table 9. Patient clinical features.

Patient group Gleason score Number of patients Age range (years) PSA range (ng/ml)
Benign Benign 9 64-71 5.3-15
Benign HGPIN 9 54-70 51-12
Benign Atypia 10 50-76 4.7-19
Benign ASAP 2 59-60 5.3-7.8
Cancer Gleason 6 16 55-80 4.7-11
Cancer Gleason 7 23 53-77 4.7-19
Cancer Gleason 9 2 65-75 6.3-18
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Table 10. Dataset used for differentiating between patients with L/l and H cancer.

Patient group Count %
L/l 38 70.37
H 16 29.63

ml'< PSA < 2617 ng ml™". The 16 patients were diagnosed with Gleason scores of: 4+4 = 8 (n = 2),
544 =9 (n=2),and 4+5 = 9 (n = 11), and 1 patient was diagnosed with small cell cancer. The com-
bined dataset (i.e. 38+16 = 54) comprised 15 patients with Gleason 6 (3+3), 18 patients with Glea-
son 7 (3+4), 5 patients with Gleason 7 (4+3), 2 patients with Gleason 8 (4+4), 11 patients with
Gleason 9 (4+5), 2 patients with Gleason 9 (5+4), and 1 patient with small cell cancer.

Since 11 of those 16 patients had a PSA > 20 ng ml”", their data could only be utilised for building
the prostate cancer risk prediction model, as the detection model focuses on detecting prostate
cancer in asymptomatic men with PSA< 20 ng ml™.

Flow cytometric analysis

Peripheral blood (60 ml) was collected from all patients using standard clinical procedures. Aliquots
(30 ml) were transferred into two sterile 50 ml polypropylene (Falcon) tubes containing 300 pl of ster-
ilized Sigma Aldrich Lithium Heparin (1000 U/ml, Merck Millipore). Anti-coagulated samples were
transferred to the John van Geest Cancer Research Centre at Nottingham Trent University (Notting-
ham, UK) and processed immediately upon receipt (always within 3 hr of collection). Peripheral
blood (60 ml) was mixed with Phosphate Buffered Saline (PBS, 30 ml, Lonza) and layered over Ficoll-
Paque (GE Healthcare Life Sciences) in Leucosep tubes (20 ml blood per tube) and then centrifuged
at 800 g for 20 min. The peripheral blood mononuclear cell (PBMC) fraction was harvested and
washed twice with PBS before being re-suspended in Hyclone fetal bovine serum (FBS, GE Health-
care Life Sciences). Viable cells were counted using trypan blue (0.1 % v/v trypan blue, Santa Cruz)
and a haemocytometer. Cells were frozen in 90% v/v FBS, 10% v/v DMSO (Santa Cruz) in aliquots of
10 x 10° PBMC/vial and stored in liquid nitrogen until phenotypic analysis. At the time of analysis,
one vial from each patient was thawed by mixing with 10 ml ‘thaw’ solution (?0% v/v RPMI (Lonza)),
10% v/v CTL wash solution (Cellular Technology Limited) and 10 ul of Novagen Benzonase (Merck
Millipore) at room temperature.

PBMCs were centrifuged at 400 g for 5 min followed by resuspension in 1 ml of RPMI (supple-
mented with 10% v/v FBS, 1% v/v L-glutamine (Lonza)). Cells were rested for 1 hr at 37, after which
viable cells were counted using trypan blue dye (Santa Cruz) exclusion. For each monoclonal anti-
body (mAb) panel shown in Table 11, 1 x 10° cells were washed and incubated in 100 ul of Wash
Buffer (PBS +2% w/v Calbiochem bovine serum albumin (BSA, Merck Millipore) +0.02% w/v sodium
azide (Sigma)) containing the relevant mAb cocktail for 15 min, after which cells were washed with 1
ml PBS and then incubated in 1 ml LIVE/DEAD Fixable Violet dead stain (Thermo Fisher Scientific)
for 30 min. All incubations were performed at 4 protected from light. The cells were washed with
PBS and then re-suspended in Beckman Coulter Isoton isotonic buffered saline solution.

Data (on viable cells) were acquired within 1 hr using a 10-color/3-laser Beckman Coulter Gallios
flow cytometer and analyzed using Beckman Coulter Kaluza v1.3 data acquisition and analysis soft-
ware. Controls used a Fluorescence Minus One (FMO) approach. A typical gating strategy for the
analyses is presented in Figure 8.

Computational methods

Initially, the GA by Ludwig and Nunes, 2010 was adopted to identify the best subset of features
(i.e. predictors), and thereafter a prediction model was constructed using the Ensemble classifier.
This section also explains the metrics adopted for evaluating the performance of the prediction
model.

GA for selecting the best subset of features
The GA is a metaheuristic, commonly used to generate solutions to optimization and search prob-
lems. Given the large number of combinations, the process of selecting the best subset of flow
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Table 11. Antibody panels for measuring the phenotype of Natural Killer cells.

Antibody Fluorochrome Clone no. Supplier

Panel 1

DNAM-1 (CD226) FITC 11A8 BioLegend

NKG2D (CD314) PE 1D11 eBioscience

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCP-Cy5.5 3G8 BioLegend

NKp4é (CD335) PE-Cy7 9E2 BioLegend

NKp30 (CD337) Alexa Fluor 647 P30-15 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

Live/Dead Dye (violet) Thermo Fisher Scientific

Panel 2

CD85j (ILT2) FITC GHI/75 Miltenyi Biotec

LAIR-1 (CD305) PE DX26 BD Biosciences

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCP-Cy5.5 3G8 BioLegend

NKG2A (CD15%a) PC7 (PE-Cy7) 72199 Beckman Coulter

NKp44 (CD336) Alexa Fluor 647 P44-8 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

LIVE/DEAD Dye (violet) Thermo Fisher Scientific

Panel 3

2B4 (CD244.2) FITC c17 BioLegend

CD56 ECD (PE-Texas Red) N901 Beckman Coulter

CD16 PerCp-Cy5.5 3G8 BioLegend

CD3 Alexa Fluor 700 UCHT1 BioLegend

CD19 Alexa Fluor 700 HIB19 BioLegend

CD8 APC-Cy7 SK1 BioLegend

LIVE/DEAD Dye (violet) Thermo Fisher
Scientific

cytometry features for creating the prediction algorithm is performed using a GA. The GA adopted
in the experiments was developed by Ludwig and Nunes, 2010. The particular GA performs combi-
natorial optimization to identify a subset of features that comprises the optimum feature set, in
which the order of features has no relation with their importance. The algorithm works by maximis-
ing the mutual information between the target y (where y can have a value 1 for cancer or 0 for
benign) and the input features (i.e. these are the 32 features listed in Table 1). Mutual information is
the measure of the mutual dependence between the two variables, i.e. an input feature and the tar-
get. Adopting a GA eliminates the computational effort which is necessary to evaluate all the possi-
ble combinations of features. The fitness function of the GA (Ludwig and Nunes, 2010) is based on
the principle of max-relevance and min-redundancy (mRMR), for which the objective is that the out-
puts of the selected features present discriminant power, thereby avoiding redundancy. The princi-
ple of max-relevance and min-redundancy corresponds to searching the set of feature indexes that
are mutually exclusive and correlated to the target output. Let m x n be a feature-by-patient matrix,
X = [x;] with m features and n patients. Thus, the matrix element x; is the flow cytometry value i of
patient j. Let y be a vector of size 1 x n which holds the diagnosis of each patient (1 for cancer and
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Figure 8. Representative gating strategy for analyzing the expression of activating and inhibitory receptors on peripheral blood natural killer (NK) cells.
Using density plots, the NK cell phenotypic profiles were determined by first gating on ‘live cells’ in the forward scatter (FSc) linear vs side scatter (SSc)
linear density plot and then gating on single cells (determined by FSc Linear vs FS time of flight). The expression of activating and inhibitory receptors
was determined by gating on CD3~CD19~ CD56™" cells using fluorescence minus one (FMO) controls. The expression of each NK cell receptor was

measured using the ‘Logical’ setting.

0 for benign). Hence, each patient x is mapped to a diagnosis y. The GA takes three inputs: 1) the
feature-by-patient matrix X; 2) the vector y which holds the corresponding labels for each patient
record; and 3) the desired number of features, A. The GA returns the IDs of the best subset of fea-
tures, where the subset has size A. GAs stochastically select multiple features from the current popu-
lation and thus each run of the GA can return different results. Consequently, we proposed an
approach to identify the best subset of features by running the algorithm several times and then
obtaining the frequency of the subsets.

Proposed ensemble learning classifier for identifying the presence of
prostate cancer

This section discusses the machine learning classifier which was developed for the task of identifying
the presence of benign prostate disease or prostate cancer using the identified subset of phenotypic
features. The challenging task is that a suitable and reliable classifier must be developed using only
72 patient records. A limitation is that classifiers that have been trained on small sample size data
are likely to be unstable because small changes in the training set cause large changes in the classi-
fier. It was for this reason that the Ensemble machine learning classifier was preferred as an
approach for developing a more stable and reliable classifier. Ensemble classifiers achieve stability
and reliability by constructing many ‘weak’ classifiers instead of a single classifier and then combine
the weak classifiers (i.e. weak learners) to create a more powerful decision rule than that constructed
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when using a single classifier. In clinical applications, it is important to construct prediction models
which have a low bias, meaning that the classifier suggests fewer assumptions about the form of the
target function. Because Ensemble learning makes fewer assumptions about the form of the target
function, it was considered to be a suitable classifier for the task. Several techniques for combining
the classifiers of an Ensemble model exist and these include Boosting, Bagging, and Random Sub-
space Dimension.

In the proposed method, the Random Subspace Dimension approach was utilised as a strategy
for combining the kNN classifiers, to create the Ensemble of kNN classifiers. In machine learning,
the Random Subspace Method (Ho, 1998), also called attribute bagging (Bryll et al., 2003) or fea-
ture bagging, is an Ensemble learning method which attempts to reduce the correlation between
estimators in an Ensemble by training them on random samples of features instead of the entire fea-
ture set. In the Random Subspace method, classifiers are constructed in random subspaces of the
data feature space. These classifiers were combined by simple majority voting in the final decision
rule, and we used the k Nearest Neighbor method (see Figure 9). In particular, we used the Random
Subspace ensemble-aggregation method coupled with k Nearest Neighbours weak learners to pro-
duce an Ensemble of classifiers, and this resulted to a better classification rule. Thus, the Random
Space modifies the training data set, builds classifiers on these modified training sets, and then com-
bines them into a final decision rule by simple or weighted majority voting.

Figure 9 provides an overview of the architecture of the proposed kNN Ensemble learning, and
the description that follows explains the architecture in more detail. Let m be the number of dimen-
sions (variables) to sample in each learner minus 1. Let d be the number of dimensions in the data,
which is the number of predictors in the data matrix X. Let n be the number of learners in the ensem-
ble. The basic random subspace algorithm performs the following steps using the above-mentioned
parameters:

Past Patient Inputs
056%™ Cpigh
CD56" DNAM-17
CD56" LAIR-1"
CD56" LAIR-1-
CD3gY " Cpg*
CD56" NKp30*
D56 NKp30
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Figure 9. Proposed Ensemble Subspace kNN model. Ensembles combine predictions from different models to
generate a final prediction. Because Ensemble approaches combine baseline predictions, they perform at least as
well as the best baseline model.
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1. Choose without replacement a random set of m predictors from the d possible values.

2. Train a weak learner using just the m chosen predictors.

3. Repeat steps 1 and 2 until there are n weak learners.

4. Predict by taking an average of the score prediction of the weak learners and classify the cate-
gory with the highest average score.

Performance evaluation measures
A variety of relevant evaluation metrics were adopted for the task of evaluating the performance of
the machine learning prostate cancer presence and risk prediction models.

Prostate cancer presence prediction models: Let |TP| be the total number of patients with cancer
who were correctly classified as having cancer; |TN| be total the number of individuals with benign
disease who were correctly classified as having benign disease; |FP| be the total number of individu-
als with benign disease who were incorrectly classified as having cancer; |[FN| be the total number of
patients with cancer who were incorrectly classified as having benign disease; |P| be the total num-
ber of patients with cancer that exist in the dataset, where |P| = |TP| + |FN|; and |N| be the total
number of individuals with benign disease that exist in the dataset, where |N| = |FP| + |TN|. The fol-
lowing commonly used evaluation measures can be defined.

|TP|+ |TN|

Accuracy = 7P|+ |FP| + |FN| £ TN|’ €o,1]. (2)
TPR:%,E[OJ]. (3)

= TIN 1 [Pl TA)‘Tfl'FP' ,€10,1]. 4

FNR = $N\|FN\ =1 — Sensitivity, € [0, 1]. (5)
= % =1 — Specificity, € [0,1]. (6)

The closer the values of Accuracy, True Positive Rate (i.e. TPR, Sensitivity) and True Negative Rate
(i.e. TNR, Specificity) are to 1.0, then the better the classification performance of a system.

The Receiver Operating Characteristic (ROC) is an effective measure for evaluating the quality of
a prediction model’s performance. The ROC curve has an optimal ROC point which comprises two
values: the False Positive Rate (FPR) and the True Positive Rate (TPR) values. The optimal ROC point
is computed by function (Equation 7) for finding the slope, S.

_ Cost(PIN) — Cost(N|N)

~ Cost(N|P) — Cost(P|P) ’ @)

N
“p

where Cost(N|P) is the cost of misclassifying a positive class (i.e. cancer) as a negative class (i.e.
benign); Cost(P|N) is the cost of misclassifying a negative class, as a positive class; P, and N, are the
total instance counts in the cancer and benign class, respectively. The optimal ROC point is identi-
fied by moving the straight line with slope S from the upper left corner of the ROC plot (FPR=0,
TPR = 1) down and to the right, until it intersects the ROC curve.

The Area Under the ROC Curve (AUC) is another important performance evaluation metric which
reflects the capacity of a model capacity to discriminate between the data obtained from individuals
with benign disease and patients with cancer. The larger the AUC, the better the overall capacity of
the classification system to correctly identify benign disease and cancer.

Prostate cancer risk prediction models: When applying the above-mentioned measures to evalu-
ate the performance of the risk prediction models, the Positive class, P, was changed to be the
High-risk group and the Negative class, N, was changed to be the L/l group.
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