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Abstract Atopic Dermatitis (AD) is a T cell-mediated chronic skin disease and is associated with

altered skin barrier integrity. Infants with mutations in genes involved in tissue barrier fitness are

predisposed towards inflammatory diseases, but most do not develop or sustain the diseases,

suggesting that there exist regulatory immune mechanisms to prevent aberrant inflammation. The

absence of one single murine dermal cell type, the innate neonatal-derived IL-17 producing gd T

(Tgd17) cells, from birth resulted in spontaneous, highly penetrant AD with many of the major

hallmarks of human AD. In Tgd17 cell-deficient mice, basal keratinocyte transcriptome was altered

months in advance of AD induction. Tgd17 cells respond to skin commensal bacteria and the

fulminant disease in their absence was driven by skin commensal bacteria dysbiosis. AD in this

model was characterized by highly expanded dermal ab T clonotypes that produce the type three

cytokines, IL-17 and IL-22. These results demonstrate that neonatal Tgd17 cells are innate skin

regulatory T cells that are critical for skin homeostasis, and that IL-17 has dual homeostatic and

inflammatory function in the skin.

Introduction
The incidence of atopic dermatitis (AD, eczema) is on a steep incline in industrialized nations with

estimates suggesting as high as a quarter of children affected (Shaw et al., 2011; Leung and Gutt-

man-Yassky, 2014). Clinical and genome wide association studies (GWAS) in humans reveal that

dysfunction of key structural components of epidermal barrier, such as filaggrin, and hypersensitive

type 2 (IL-4, IL-5, IL-9 and IL-13) and type 3 cytokine responses (IL-17 and IL-22), are contributing fac-

tors to AD onset and progression (Irvine et al., 2011; Paternoster et al., 2015; Malhotra et al.,

2016). The contribution of skin-targeting ab T effector cells to AD pathogenicity is largely under-

stood from the basic focus on damaging cytokine production and inflammatory myeloid cell recruit-

ments. It is widely accepted that aberrant skin barrier integrity and local inflammation orchestrate

the activation and recruitment of type 3 cytokine producing ab Th17/22 cells to the skin, where they

are thought to be the arbiters of the major symptoms of the disease, including visible skin damage

(Koga et al., 2008; Suárez-Fariñas et al., 2013; Mirshafiey et al., 2015; Kobayashi et al., 2015;

Czarnowicki et al., 2015).

Pivotal to the establishment of coordinated skin immunity are ab and gd T cells, and innate lym-

phoid cells (ILCs). Dermal ILC2 have been shown to be critical in mobilizing type 2 cytokine

responses in AD, but very little is known about the function of innate skin T cells in autoimmunity.

During the neonatal period, skin is populated by several gdTCR+ and abTCR+ T cell subsets, whose

effector functions are thymically programmed to produce IL-17, and to a lesser extent IL-22, upon

activation in tissues. IL-17 producing gd T cells (Tgd17) are referred to as innate-like and the gd T cell

lineage is subject to the same effector subtype classification (Types 1, 2 and 3 cytokine producers)
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as adaptive T helper cells and ILCs. Tgd17 cells expressing Vg2TCR (Garman TCRg nomenclature

Garman et al., 1986) are exported from the thymus after birth and rapidly populate the newborn

dermis. These cells are part of the neonatal wave of tissue-resident lymphocytes that are not gener-

ated efficiently from adult bone marrow hematopoietic stem cells (Spidale et al., 2019).

Studies to date have established that Vg2+ Tgd17 cells are the central population of the skin

immunocyte subsets and are the most dominant IL-17 producing cells upon acute skin inflammatory

perturbations (Cai et al., 2011; Naik et al., 2012; Malhotra et al., 2013; Gray et al., 2013; Riol-

Blanco et al., 2014). Vg2+ Tgd17 cells are absolutely required for acute Imiquimod (TLR7-agonist)-

induced psoriasis in adult mice. Humans with the loss of function allele of the IL-17R signaling com-

ponent ACT1 (TRAF3IP2) are more susceptible to psoriasis (Wang et al., 2013), but Act1-deficient

mice are afflicted with spontaneous skin inflammatory diseases (Qian et al., 2004;

Matsushima et al., 2010). Moreover, mice that lack IL-17R on radioresistant epithelial cells develop

AD, in genetic background with a type 2 cytokine production bias (Floudas et al., 2017). In the for-

mer, skin pathology was attributed to hyper IL-22 production, and in the latter, diminished filaggrin

expression and impaired skin barrier was implicated as the cause of AD susceptibility. In both mod-

els the apparent disease-protective function of IL-17 in skin homeostasis was not addressed and the

critical source of homeostatic IL-17 is unknown.

Increases in Tgd17 cells in patients with aberrant skin inflammation have been observed in AD

(Cai et al., 2011; Laggner et al., 2011; Nestle et al., 2009), but accurate assessments of their con-

tribution to human disease has lagged, in part due to challenges of isolating these cells from human

tissues (Toulon et al., 2009). Possible dual homeostatic and inflammatory roles for IL-17 and IL-22,

or cells that can produce them, have also limited the use of cytokine and T cell deficient mice to

unveil their context-dependent contribution to skin disease pathogenesis. We show here that mice

specifically lacking Vg2+ Tgd17 cells succumb to a highly penetrant spontaneous AD that captures

most characteristic disease features of human AD. Fulminant disease in the mice is associated with

hyperactive ILC2 and requires both skin commensal bacteria (CB) and expansion of clonal ab T cells.

The initial trigger for the disease is linked to aberrant keratinocyte differentiation at young ages.

Thus, Vg2+ Tgd17 cells are essential to maintain skin homeostasis, in part by promoting normal kera-

tinocyte barrier formation in perinatal period.

Results

Spontaneous AD in Sox13-/- mice specifically lacking Vg2TCR+ dermal
Tgd17 cells
To study the role of Vg2+ Tgd17 cells in skin immunity, we generated mice deficient in Sox13, an

HMG box transcription factor (TF) essential for their development (Malhotra et al., 2013;

Melichar et al., 2007). In the immune system Sox13 expression is restricted to early hematopoietic

stem/progenitors and gd T cells. Mice lacking Sox13 have a highly selective defect in Vg2+ Tgd17 cell

development with all other hematopoietic cell types normally preserved (Malhotra et al., 2013;

Gray et al., 2013). One exception is innate iNKT17 cells that are partially affected in the lymph

nodes (LNs) (Malhotra et al., 2018), but these cells are rare in the skin. Loss of Vg2+ T cells was also

observed in the skin of Sox13-/- mice, while Vg4+ (Vg2- TCRdint) T cells were present at a normal fre-

quency and were capable of producing high levels of IL-17A (Figure 1—figure supplement 1A).

Incompatible with the pro-inflammatory nature of Vg2+ Tgd17 cells,>90% of Sox13-/- mice main-

tained on a 129/Sv genetic background (>250 mice cumulatively tracked over several years) of both

sex develop visible dermatitis in the muzzle, ears, eyes and elsewhere around three to four months

of age (Figure 1—figure supplement 1B), displaying many of the hallmarks of human AD

(Leung and Guttman-Yassky, 2014; Zheng et al., 2007; Fujita, 2013; Kim, 2015). Notably, while

we have previously reported perinatal lethality in Sox13-deficient C57BL/6 mice, no gross develop-

mental abnormalities were observed in 129.Sox13-/- mice for >1 year despite the development of

AD-like disease. Pathophysiology included epidermal thickening (acanthosis, Figure 1A, left),

marked accumulation of immunocytes in skin epithelial lesions leading to eosinophilia, neutrophilia,

and increases monocytes (Mo) and Mo-derived dendritic cells (DCs) in the skin (Figure 1A–F). Fur-

ther, mast cells were expanded, but this trend did not reach statistical significance (Figure 1—figure

supplement 1C). Sox13-/- mice exhibited aberrant, high frequency scratching behavior coincident
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with visible skin lesions (Figure 1—figure supplement 1D and Videos 1 and 2), suggesting an

enhanced itch response. In addition, expanded ILC2 (GATA3hi) associated with human AD

(Kim, 2015; Salimi et al., 2013; Roediger et al., 2014), and their capacity to produce the type 2

cytokines IL-5 and/or IL-13, was recapitulated in Sox13-/- mice (Figure 1G, Figure 1—figure supple-

ment 1E–G). Conversely, in young Rora-/- mice lacking in ILC2 (Wong et al., 2012) there is an

increase in Vg2+ Tgd17 cells with enhanced capacity to produce type 3 cytokines (Figure 1—figure

Figure 1. Development of AD in the absence of dermal Vg2+ Tgd17 cells. (A) Biopsies of muzzle skin from 6 mo

Sox13-/- and Sox13+/- littermate control (LMC) was analyzed by H and E staining. Black arrows identify numerous

eosinophilic infiltrates in the epidermis. Representative of four experiments, each with minimum n = 2/group. (B)

Muzzle skin was digested and analyzed via FACS for Siglec F+ eosinophils (left panels), Ly- 6G+ neutrophils

(middle panels), Ly-6C+ MHC-IIlo monocytes and Ly-6C+ MHC-IIhi monocyte-derived dendritic cells (right panels).

Data are representative of >6 similar experiments analyzing 2–3 mice per/group. (C–F) Enumeration of cell types

examined in Panel B. n = 6/group. *, p<0.05; **p<0.01; ***, p<0.001 by ANOVA. (G) Muzzle-infiltrating cells were

isolated from LMC and Sox13-/- mice and re-stimulated in vitro with PdBu/ionomycin to assess production of IL-5

and IL-13 by ILCs. ILC identified as CD45+ Thy1.2+Lineage markersneg (CD3/CD4/CD5/CD8/CD11b/DX5/Gr-1/

TCRd/TCRb/Ter-119neg). Bottom summary graph enumerates IL-13+ and IL-5+IL-13+ ILC. N = 6/group. **p<0.01;

***p<0.001 by ANOVA. (H) Serum IgE concentration in mice of indicated genotype, aged 1–6 mo, was determined

by ELISA. n = 3–6/group. *, p<0.05; ***, p<0.001 by ANOVA.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Specific loss of Vg2+ Tgd17 cells, scratching behaviors and reciprocally enhanced effector

function of ILCs in Sox13-/- mice with dermatitis.
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supplement 1H), suggesting a possible counter-

regulation between Tgd17 cells and ILC2. Cru-

cially, age-dependent increases in IgE titer, evi-

dent by 3 months of age of the mice (Figure 1H),

before visible signs of disease, captured one of

the major symptoms of human AD.

Expanded ab T cells are required
for AD
Significant expansion of ab T cells in the skin of

Sox13-/- mice was evident starting ~3 months of

age, prior to any visible skin inflammation. Both

CD4+ and CD8+ T cells increased in numbers up

to 10-fold by 6 months of age, depending on skin

sites (Figure 2A). Notably, CD4negCD8neg (dou-

ble negative, DN) T cells accounted for 10–20%

of TCRb+ cells in the skin of both LMC and

Sox13-/- mice, with a significant expansion

observed in Sox13-/- skin (Figure 2A). Utilizing

the MR1/5-OP-RU tetramer, we identified that the DN subset in both healthy and AD skin consisted

primarily of MAITs (Figure 2B). CD4+ or CD8+ MAITs were rare in the skin of WT mice, with only

marginal increase in CD8+ MAITs in Sox13-/- skin (Figure 2—figure supplement 1A). In the skin

draining LNs (dLNs), only subtle increase in the frequency of MAITs was observed in Sox13-/- mice,

with the majority being the CCR6+CD4-CD8- subset in all mice (Figure 2—figure supplement 1B–

C). iNKT cells were rare in the skin and no significant alterations were observed in Sox13-/- mice (Fig-

ure 2—figure supplement 1D).

The majority of ab T cell subsets in AD were associated with enhanced capacity to produce both

IL-17 and IL-22, whereas in control mice very few CD4+ or CD8+ ab T cells were capable of IL-17

production, and even more constrained IL-22 secretion was evident (Figure 2D). DN MAIT cells

were primed for IL-17 in both LMC and Sox13-/- mice. In contrast to the enhanced type 3 cytokine

production, the frequency of Th2 cells was not altered significantly in Sox13-/- skin, although numeri-

cally they were also increased. Similarly, although the frequency of skin FOXP3+ regulatory T cells

(Tregs) was decreased in the ear (Figure 2—figure supplement 1E), but not muzzle, of Sox13-/-

mice, their numbers were comparable to controls, indicating preferential expansion of effector pop-

ulations. Matching the T cell expansion in skin there was an ~8 fold expansion in cellularity in dLNs

(Figure 2E). The trend to this increase was evident before visible skin lesions, at ~3 months of age,

and was associated with greatly increased numbers of spontaneous germinal centers (GCs), typical

of autoimmune disorders (Domeier et al.,

2017), with aberrant GC formation (green,

Figure 2F) in the T cell zone (blue, Figure 2F)

and increased number of follicular T help (Tfh)

cells, GC B cells and plasma cells (Figure 2G

and Figure 2—figure supplement 1F,G). To

ascertain changes in the expression of secreted

inflammatory mediators, RNA was isolated from

the muzzle skin at 6 months of age and select

cytokine and chemokine gene expression was

assessed by quantitative RT-PCR (Figure 2—fig-

ure supplement 1H). A coordinate induction of

the cytokines IL-1b, IL-6 and IL-23, which pro-

mote type 3 cytokine producing lymphocytes,

was prominent. A simultaneous increase in the

danger associated molecular pattern molecule

IL-33 was observed, which has been associated

with skin inflammation and itch response

(Salimi et al., 2013; Meephansan et al., 2013).

Video 1. Comparative Scratching behavior of Sox13-/-

and WT control (tails painted solid white) mice.

https://elifesciences.org/articles/51188#video1

Video 2. Isolated scratching episode typical of Sox13-/-

mice.

https://elifesciences.org/articles/51188#video2
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Figure 2. Aberrant ab T cell activation in AD of Sox13-/- mice. (A) Total number of the indicated T cell types

recovered from skin of from 5-6mo mice were calculated using AccuCheck counting beads. n = 6/group. *,

p<0.05; **, p<0.01 by ANOVA. (B) FACS analysis of CD4negCD8bneg skin T cells (gated on B220-F4/80- TCRb+) with

control MR1/6-FP or MR1/5-OP-RU tetramer to identify MAIT cells in 5 mo mice. (C) Summary data of frequency of

MAIT tetramer-reactive cells among total TCRb+ cells pooled from two independent experiments, performed as in

Panel B analyzing a total of 5–6 mice/group. (D) Muzzle-infiltrating cells were isolated from indicated mice,

stimulated in vitro with PdBu/ionomycin, and analyzed for ab T cell subset-specific production of IL-17A and IL-22

and for CD4+ T cell production of IL-4, and IL-13. FACS data are representative of >5 experiments. For summary

data below, n = 6/group. *, p<0.05; **p<0.01, ***, p<0.001 by ANOVA or t-test (CD4-CD8b- cells). (E) Total cell

number enumeration in skin draining LNs (dLNs) of 6 mo mice of indicated genotype, n = 6/group. ***, p<0.001

by Student’s t-test. (F) Muzzle draining mandibular LN (dLN) from 5 to 6 mo mice were fixed in paraformaldehyde,

Figure 2 continued on next page
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To determine whether the expansion of skin T cells was correlated to more efficient display of

skin antigens in dLN, melanocyte-specific antigen presentation in Sox13-/- mice was assessed. Naı̈ve

PMEL17 CD8+ TCR transgenic T cells specific for a melanocyte antigen (Harris et al., 2012) were

labeled with CellTrace Violet and transferred into Sox13-/- and WT hosts, and their proliferation was

analyzed by dye dilution (Figure 2—figure supplement 1I,J). We observed a 3-fold increase in

PMEL17 T cells proliferation in skin dLNs of Sox13-/- mice compared to controls. In contrast, no dif-

ferences in proliferation were observed at distal sites, including the spleen. Finally, to demonstrate

that ab T cells are required for AD in Sox13-/- mice, skin pathology in Sox13-/-Tcrb-/- was monitored.

The absence of ab T cells prevented AD development with no visible evidence of skin inflammation

and skin histology was grossly normal, including lack of epidermal hyperplasia (Figure 2H).

Collectively, these results indicated that prior to the onset of visible diseases, B and T cells

expand, with evidence for IgE hyperproduction. With the progression of disease, the skin displays a

prominent type 3 effector inducing cytokine milieu with attendant expansion of Th17 cells and IL-

17+ MAITs. Thus, fulminant AD in Sox13-/- mice is characterized by strong polarization and/or expan-

sion of Th17 and Th17-like cells of ab T cell lineage.

Altered basal keratinocyte differentiation program in Sox13-/- mice
To map the sequence of early cellular and molecular alterations in Sox13-/- mice that can account for

the eventual inflammatory immune landscape, we first assessed the impact of the loss of Vg2+ Tgd17

cells on differentiating keratinocytes. For this we undertook a whole transcriptome analysis of basal

CD49f+ (Itga6) keratinocytes of Sox13-/- mice at 3 and 7 weeks (wks), well before the onset of aber-

rant skin inflammation starting in ~3 months old (mo) mice. This population was chosen because

they contain keratinocyte stem cells and progenitors (Terunuma et al., 2007; Sada et al., 2016) and

the two timepoints coincide with the hair follicle catagen cycle, characterized by active keratinocyte

differentiation followed by the relatively quiescent telogen cycle, respectively (Fuchs, 2007). Nota-

bly, Sox13 transcripts were virtually undetectable in both Sox13-/- and LMC keratinocytes, indicating

that Sox13 deficiency is unlikely to cell-autonomously impact keratinocytes. In all, 261 genes were

differentially expressed (>2 fold changes, p<0.05) between 3 wk WT vs Sox13-/- basal keratinocytes

(Figure 3A). Gene Ontology (GO) enrichment analysis revealed pronounced cell apoptosis signa-

tures and stress responses in Sox13-/- basal keratinocytes (Figure 3B). At 7wk the difference was

muted with 50 genes differentially expressed (Figure 3A) with no significant clustering of these

genes into specific biological processes, likely reflecting the resting state of basal keratinocytes in

the telogen phase. Expression of only 3 genes, Igfbp3, Mir-17hg (Mir-17–92) and 4930480K23Rik

(non-coding RNA), was altered at both ages. Igfbp3 and Mir-17hg (Mir-17–92) have been shown to

be associated with skin inflammations (Edmondson et al., 2005; Zhang et al., 2018) and their

expression was initially decreased in Sox13-/- basal keratinocytes, but this pattern was flipped at

7wk. Sox13-/- mice prior to 2 months do not show any significant alterations in skin immune subsets

or visible damage, and consistent with this Sox13-/- basal keratinocytes showed no significant altera-

tions in the expression of inflammatory mediators of immunocytes at 3 and 7 wks. Genes encoding

for the structural components of the skin barrier including gap junction proteins, extracellular matrix

(except collagens at 3wk) and keratins, were also not altered in expression. However, expression of

several genes critical for normal differentiation of basal keratinocytes was altered at 3wk, including

Figure 2 continued

frozen in OCT compound, cryosectioned, and then labeled with the indicated antibodies to visualize B cell follicles

(IgD+), T cell zones (CD4+), dendritic cells (CD11c+), and germinal centers (GL7+ IgD-). Images are representative

of two experiments analyzing sections from at least 3 mice per experiment. (G) Summary data of T follicular helper

(Tfh) cells in dLN of 6 mo LMC and Sox13-/- mice. Tfh cells were identified as CD4+FoxP3neg PD-1hi CXCR5+Bcl6+.

n = 7–8/group. ***, p<0.001 by Student’s t- test. (H) Sox13-/- and 129.Tcrb-/- mice were crossed to generate

double-deficient mice, and then disease progression tracked by phenotyping and muzzle inflammation assessed

by H and E staining. Sox13-/-Tcrb-/- mice do not develop overt or histological signs of AD at 6 mo. Data are

representative of 10–15 mice of each genotype analyzed.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Characterization of skin and dLN MAITs, iNKT cells, regulatory T cells (Tregs), B cell subsets

and melanocyte antigen-specific T cells in Sox13-/- mice.

Spidale et al. eLife 2020;9:e51188. DOI: https://doi.org/10.7554/eLife.51188 6 of 23

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.51188


diminished expression of the IL-17 target Blimp1 (Prdm1) (Magnúsdóttir et al., 2007; Wang et al.,

2016), Sox9 (Menzel-Severing et al., 2018), Runx1, Irf3/6, S100a11, and increased expression of

Myc (Wu et al., 2015), Dlx3,Trp73 and Maf. In addition, genes in the TGFb, Lymphotoxin and the

Figure 3. Perturbations in early basal keratinocyte transcriptome in the absence of Vg2+ Tgd17 cells. (A)

Epidermal basal keratinocytes were sorted from 3 and 7 wk old male LMC and Sox13-/- mice and subjected to

gene expression analysis by RNA sequencing (in biological triplicates). Red and green dots represent genes with

fold change (FC) >2 and p-value <. 05 and the numbers at the bottom denote number of genes whose expression

was significantly altered. Select genes are annotated. (B) Differentially expressed genes from Panel A were

analyzed for Gene Ontology (GO) term enrichment using DAVID. Displayed are a selection of significantly

enriched (p <. 05, dashed line) GO terms. (C) Heatmap of differentially expressed genes (FC >1.5 and p-value <.

05) among male 3 wk old basal keratinocytes with genes involved in cell differentiation, barrier function, skin

inflammation and stress response pathways annotated.

The online version of this article includes the following source data for figure 3:

Source data 1. RNA sequencing read count tables used to generate volcano plot in Figure 3A (upper panel) for

basal keratinocytes analysis of 3 wk old mice.

Source data 2. RNA sequencing read count tables used to generate volcano plot in Figure 3A (lower panel) for

basal keratinocytes analysis of 7 wk old mice.
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JAK-STAT signaling pathways had lower levels of expression in Sox13-/- basal keratinocytes. Genes

controlling barrier fitness, such as Trex2, Epcam, Adam17, Itga2, Cdh3, Tgm4, Il31ra, Il1rn and Jup,

were decreased in expression, whereas Def, Lrrc31 and Tsc22d3 (GILZ) were increased in Sox13-/-

keratinocytes (Figure 3C). Together, these results indicate that Tgd17 cells are critical for establish-

ing normal developmental program of basal keratinocytes during the catagen cycle, and in their

absence the data suggests altered keratinocyte differentiation and increased propensity to

apoptosis.

Skin commensal bacteria dysbiosis in Sox13-/- mice is responsible for
AD
Analysis of differentiated keratinocytes at 2 months or later does not allow for clear distinction

between impaired barrier function arising from keratinocyte-intrinsic defects or from inflammatory

immunocyte-mediated degradation. In patients with AD, expansions of Staphylococcus and Coryne-

bacteria species are often observed in skin lesions (Malhotra et al., 2016; Kobayashi et al., 2015;

Grice and Segre, 2011; Cho et al., 2010) and mouse models of AD with barrier defects replicate

the AD-associated microbiome dysbiosis. Thus, one prediction of the altered keratinocyte differenti-

ation and barrier function well before the onset of chronic inflammation in young Sox13-/- mice is

that the homeostasis of skin commensal bacteria (CB) with the barrier will be disrupted, with the

resultant dysbiosis driving the immune responses. We tested this possibility by first establishing skin

microbiota of Sox13-/- mice at 3 and 6 mo by 16S rRNA sequencing, followed by assessment of anti-

biotic treatment (Abx) on AD onset and progression. As in human AD patients, AD in Sox13-/- mice

was associated with dysbiosis of Staphylococcus and Corynebacteria, but with distinct kinetics

(Figure 4A). Most Sox13-/- mice showed an early bloom of Corynebacteria (C. mastitis, Figure 4—

figure supplement 1A), with the expansion maintained in some mice, but for the majority returning

to the LMC frequencies at 6 mo. Expansion of Staphylococcus was pronounced at the frank phase of

disease but was not obvious at 3 mo. These results largely recapitulate skin CB dysbiosis in two

mouse models of AD (Kobayashi et al., 2015; Floudas et al., 2017).

To determine whether skin CB is necessary for AD initiation and/or progression in Sox13-/- mice

we treated the mice from birth or starting at 3 mo with a combination of antibiotics (cefazolin and

enrofloxacin in drinking water) previously used for a similar purpose (Kobayashi et al., 2015). Skin

commensal sequencing of Abx mice confirmed that Staphylococcus and Corynebacterium species

were significantly reduced (Figure 4—figure supplement 1B). Regardless of regiments, the Abx

Sox13-/- mice were protected from AD. All pathophysiological features of AD were absent, with res-

olution of acanthosis (Figure 4B), decreased serum IgE concentrations (Figure 4C), and suppression

of myeloid expansion (Figure 4D,E). While CD4+ cells remained at an elevated frequency, IL-17 and

IL-22 production was significantly reduced (Figure 4F). Further, all disease-associated phenotypes of

the dLN were corrected by Abx treatment, leading to reduction of total cell number, and the nor-

malization of Tfh, GC B cell, and plasma cell frequencies (Figure 4G–J, Figure 4—figure supple-

ment 1C). We also tested whether the disease initiation is restricted to a narrow developmental

window spanning neonatal-juvenile stages. For this, Sox13-/- mice were treated with the antibiotic

cocktail from birth and then the treatment was terminated at 3 wks of age. AD development was

not prevented in mice treated only acutely at birth (data not shown), suggesting that continuous skin

commensal-immunocyte crosstalk contributes to the disease postnatally and delayed/altered com-

mensal interactions during neonatal stage do not permanently remodel skin pathophysiology.

Tgd17 cells respond to skin CB by IL-1 and IL-23 secreted by APCs
Commensal dysbiosis is known to result from impaired barrier functions. That Tgd17 cells themselves

normally respond to Corynebacteria/Staphylococcus and the absence of Vg2+ Tgd17 cells also

directly contributes to the aberrant microbiome expansion was assessed next. A recent report of

Tgd17 cell activation in SPF mice topically colonized with C. accolens (Ridaura et al., 2018) strongly

supported this possibility. There are two Tgd17 subsets in mice. Along with Vg2+ Tgd17 cells, the

dermis contains the canonical Vg4TCR+ fetal derived Tgd17 cells, which are not dependent on Sox13

for populating the skin (Malhotra et al., 2013). Thus, an obvious question is why dermal Vg2+ Tgd17

cells are functionally non-redundant in suppressing AD initiation. Whereas Vg4+ Tgd17 cell persis-

tence is dependent on CB (Duan et al., 2010) and parallels dermal Th17 and Tc17 cells (Naik et al.,
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Figure 4. Skin commensal alterations in the absence of Vg2+ Tgd17 cells drive AD. (A) Summary stacked bar

charts of muzzle skin microbiome analysis of Sox13-/- and LMC mice at 3 mo and 6 mo. Species depicted are

annotated on the right and their corresponding frequencies among total 16S rRNA sequences are shown. One

experiment of three shown. (B) Sox13-/- mice were antibiotic (enrofloxacin and cefazolin) treated (Abx) by drinking

water from 2 mo and then muzzle histology analyzed at 6 mo. Images are representative of 4 analyzed Abx-treated

mice, with at least 2 sections separated by >100 microns analyzed for each mouse. (C) Serum IgE levels of Ctrl and

Abx-treated Sox13-/- mice at 6 mo were assessed by ELISA. n = 6 (Ctrl) or 10 (Abx). **, p<0.01 by Student’s t-test.

(D) Muzzle skin of 6 mo Ctrl and Abx Sox13-/- mice was analyzed for eosinophil and neutrophil infiltration via

FACS. Data are representative of 9 analyzed Abx-treated mice from 3 independent cohorts. (E) Summary data of

the frequency of Eosinophils (top) and Neutrophils (bottom) among all CD45+ muzzle skin cells. n = 3/group from

1 of 3 similar experiments. *, p<0.05 by t-test. (F) Muzzle skin of 6 mo Ctrl and Abx Sox13-/- mice was analyzed for

Figure 4 continued on next page
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2012), Vg2+ Tgd17 cells were not, as assessed in germ free (GF) mice (Figure 4—figure supplement

1D). Abx WT mice also showed the loss of skin Vg4+ Tgd17 cells (Vg2negVg3neg quadrant, Supp

Figure 3E) and the loss of tonic Il17a transcription by residual Vg4+ Tgd17 cells (Vg2neg) in Abx WT

mice. In contrast, constitutive Il17a transcription in Vg2+ Tgd17 cells was not suppressed by Abx (Fig-

ure 4—figure supplement 1D–F). These results indicate unique homeostatic activation requirements

for dermal Vg2+ Tgd17 cells.

To determine how Tgd17 cells normally react to skin CB, gd T cells were isolated from dLNs and

stimulated with a diverse set of Staphyloccus and Corynebacteria species in transwell cultures with

antigen presenting cells (APCs). While Corynebacteria consistently stimulated copious IL-17 but not

IFNg, production from Vg2+ Tgd17 cells, so did Staphyloccus species, albeit with a consistent diminu-

tion of IL-17 amounts per cell (Figure 5A). For comparison, Vg4+ Tgd17 cells showed indistinguish-

able pattern of CB reactivity. This Tgd17 activation was not T-APC contact dependent, as similar

levels of IL-17 production was elicited when CB-activated APCs were separated from Tgd17 cells in

transwells, indicating sufficiency of trans-acting factor(s) (Figure 5B). Given that IL-1 and IL-23 from

activated APCs was linked to Tgd17 effector cytokine production in peripheral tissues (Sutton et al.,

2009), both cytokines were quenched by Ab in the same culture to test whether they are the trans

activating factors in the skin. Transwell cultures in which Tgd17 cells were cultured in a separate com-

partment from CB-APC and then blocked with Abs against the cytokines showed significantly

reduced IL-17 production (Figure 5C and data not shown). Collectively, these results indicate that

Vg2+ Tgd17 and Vg4+ Tgd17 cells respond comparably to skin CB that are altered in AD, and that

this reactivity can occur independently of direct contact with CB-APCs. Thus, biases in CB recogni-

tion by Tgd17 subsets per se are unlikely to explain the necessity of Vg2+ Tgd17 cells for skin homeo-

stasis. To date, type three cytokine producing T cells with established functions in the skin have

been shown to require CB for persistence. However, Vg2+ Tgd17 cells can be maintained and func-

tion in the skin independent of CB, a distinguishing characteristic that likely underpins the non-

redundancy of Vg2+ Tgd17 cells in controlling aberrant skin inflammation.

Vb4+va4+ ab T clonotypes dominate the diseased skin of Sox13-/-mice
The expanded ab T cells in Sox13-/- mice are required for AD progression. If the expansion is antigen

driven a prediction would be that there would be restricted TCR repertoire in skin infiltrating ab T

cells of Sox13-/- mice. To test this, we first assessed TCRVb chain repertoire of CD4+ T cells by flow

cytometry. While the TCRVb usage of dLN T cells of WT and Sox13-/- mice was indistinguishable,

skin CD4+ T cells in Sox13-/- mice were dominated by the usage of Vb4 TCR, starting at 3 months of

age and reaching a plateau at ~5–6 months (Figure 6—figure supplement 1A,B). As skin inflamma-

tion progressed to overt disease (~5 mo), the frequency of Vb4+ CD4+ T cells increased ~3 fold and

in 5–6 mo Sox13-/- mice the total number of skin CD4+ T cells was more than 10-fold greater in

Sox13-/- mice than WT mice, depending on the skin site, with up to 50% of these cells expressing

Vb4 TCR (Figure 6A–C). In comparison, TCR Vb skewing was not consistently observed for any other

Vbs or for any TCRs associated with FOXP3+ Tregs or CD8+ T cells (Figure 6—figure supplement

1B,C). The increased cellularity in diseased Sox13-/- skin, combined with the strong Vb4-bias and

increased proliferation of skin Vb4+CD4+ T cells in Sox13-/- mice (Figure 6—figure supplement 1D),

suggested that these CD4+ T cells were undergoing expansion in the skin.

Figure 4 continued

Th17 cytokine production post PMA/ionophore reactivation. Summary data of n = 5/group, pooled from 2

independent experiments. *, p<0.05 by ANOVA. (G–J) Mandibular and parotid dLN cells from Ctrl and Abx

Sox13-/- mice were analyzed for total cell number (G), and the frequency of Tfh cells (H), GC B cells (I), and

CD138+ plasma cells (J). n = 7–12/group pooled from 4 independent cohorts. ***, p<0.001 by Student’s t-test.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Bacterial species abundance from the muzzle skin of 3 mo and 6 mo LMC and Sox13-/- mice as

summarized in Figure 4A.

Figure supplement 1. Skin microbiome of antibiotic-treated (Abx) Sox13-/- mice and independence of dermal

Vg2+ Tgd17 from CB for their development and maintenance.

Figure supplement 1—source data 1. Bacterial species abundance from the muzzle skin of 3 mo and 6 mo LMC

and Sox13-/- mice treated with Abx as summarized in Figure 4—figure supplement 1B.
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Cytokine production from skin-infiltrating CD4+ T cells was assessed to correlate effector function

with the TCR Vb repertoire. In WT mice, Th17 cells (IL-17+ and IL-17/22+) were found in both Vb4+

and Vb4- dermal CD4+ T cell populations, but there was a biased representation of these effectors

within Vb4+ T cells (Figure 6D,E).~10% of WT skin CD4+ T cells were geared for IL-13 and/or IL-4

production, but there were negligible numbers of skin Th1 and Th22 cells (data not shown). In con-

trast, Sox13-/- AD skin lesions were enriched in Th17 subset and a larger population of dual IL-17+/

22+ Th17 cells, which were strongly biased to Vb4+ T cells (Figure 6D,E). Moreover, another AD-

associated Th subset was the IL-22-only Th22 cells (Czarnowicki et al., 2015; Fujita, 2013), which

predominantly expressed Vb4 (Figure 6E). Frequencies and TCR Vb repertoire of skin Th2 cells

Figure 5. Cytokine-dependent, contact-independent Tgd17 responses to skin commensals. (A) Total gd cells were enriched from skin-draining LN and

co-cultured with antigen presenting cells and the indicated heat-killed commensal bacteria at a 1:1:10 ratio for 16–18 hr, and then cultured for an

additional 4 hr in the presence of Golgi Stop and Plug. IL-17A and IFNg production was assessed by intracellular cytokine staining. Data are

representative of 2 independent experiments. (B) Total gd cells, splenic DC, and the indicated commensal bacteria were cultured at a 1:1:10 ratio as in

(A) Together in a well or in a 0.4 micron TransWell apparatus in which DC and bacteria were placed in the top chamber and gd cells were placed in the

bottom chamber. Summary data are pooled from 2 independent experiments. (C) Cultures as above with 10 ug/mL each of anti-IL-1R and anti-IL-23

neutralizing Abs or isotype control Abs. Intracellular production of IL-17A and IFNg was then assessed by FACS. Summary data are pooled from 4

independent experiments. *, p<0.05; **, p<0.01 by ANOVA.
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Figure 6. Expansion of dominant CD4+ clonotypes in Sox13-/- skin. (A) Muzzle-infiltrating cells were isolated from

5-6mo LMC and Sox13-/- mice and analyzed for Vb usage by CD4+ T cells. (B) Summary data of Vb4+ frequency

among skin-infiltrating CD4+ cells in LMC and Sox13-/- mice. n = 13–17 mice. ***, p<0.001 by ANOVA. (C)

Enumeration of CD4+ Vb4+ cells in LMC and Sox13-/- skin. n = 6/group. ***, p<0.001; *, p<0.05 by ANOVA. (D)

Skin-infiltrating cells were isolated from 5 mo mice, restimulated in vitro with PdBu/ionomycin, and IL-17 and IL-22

production by Vb4+ and Vb4- CD4+ T cells assessed via FACS. Data are representative of >4 experiments

analyzing 2–3 mice/genotype/experiment. (E) Summary data of multiple experiments performed as in Panel D.

n = 5–6 pooled from 3 independent experiments. ***, p<0.001; *, p<0.05 by ANOVA. (F) Starting at 3 months of

age, Sox13-/- mice were treated with control Ab (Ctrl) or a cell depleting Ab targeting CD4 antigen (aCD4) until 6

mo. AD disease severity was then assessed by H and E staining of muzzle skin. Data are representative of 10 mice

treated with aCD4 Ab across 2 independent experiments. (G) Epidermal thickness in Ctrl and aCD4 Ab treated

Sox13-/- mice as assessed by analysis of histology images. n = 5 mice/group. ***, p<0.001 by Student’s t-test. (H)

Summary stacked bar charts of TCR Vb4 CDR3 clonotype analysis of skin (ear and muzzle combined) infiltrating

CD4+ T cells in LMC and Sox13-/- mice by deep sequencing, focusing on the two major clonotypes. Minimal 1

million reads/sample. Each stack reports proportion of each class on the right amongst total Vb4 CDR3 sequence

reads. (I) Summary of TCR Va4 CDR3 clonotype analysis by pie chart of skin-infiltrating CD4+ T cells in Sox13-/-

mice. LMC control not shown as there were insufficient reads.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. TCR Vb4 (TRBV2 by IMGT nomenclature) CDR3 sequencing analysis of CD4+ non-Treg cells from

the skin of LMC and Sox13-/- mice as summarized in Figure 6H.

Source data 2. TCR Va4 (TRAV6 by IMGT nomenclature) CDR3 sequencing analysis of CD4+ non-Treg from the

skin of Sox13-/- mice as summarized in Figure 6I.

Figure 6 continued on next page
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(~10% of CD4+ T cells) and cytokine producing skin CD8+ T cells (from WT and Sox13-/- mice) were

unchanged in Sox13-/- mice at 3 and 6 mo (data not shown). To demonstrate that the expanded

CD4+ T cells critically contribute to AD, Sox13-/- mice were treated with CD4 T cell depleting Abs

starting at 3 mos of age for three mos. Skin inflammation significantly improved, including substan-

tially reduced epidermal hyperplasia (Figure 6F,G) and amelioration of eosinophil and neutrophil

infiltration (data not shown). Collectively, these results indicate that CD4+ ab T cells are the major

driver of AD in Sox13-/- mice and Vb4+ CD4+ T cell expansion with enhanced IL-22 production is the

primary distinguishing feature of ab T cells in AD, dovetailing with findings in human severe AD

(Czarnowicki et al., 2015).

To test the possibility of clonal TCRVb4+ T cell expansion, we used high throughput sequencing

to identify TCR Vb clonotypes expressed on conventional ab T cells of WT and Sox13-/- mice at 5

months of age. We interrogated cells expressing Vb4 TCRs, as well as ones expressing Vb2, 6 and 8.

Collectively, these T cells represent 50–70% of CD44+CD4+ T cell repertoires. Analyses of skin from

healthy mice revealed a single, dominant clonotype (CDR3b: CASSQDSSAETLYF) expressed

on ~70% of all CD44+Vb4+CD4+ T cells (Figure 6H). Notably, CD4+ T cells expressing this TCR Vb

clonotype along with a related Vb4 sequence (CDR3b: CASSPDSSAETLYF) were strongly expanded

in diseased Sox13-/- mice, making up >75% of Vb4+ conventional CD4+ T cells. These clonotypes,

which we denote as the common Vb4 (comVb4), were less frequent in activated/memory T cells in

dLNs (2–3% of CD4+ T cells), and detectable only at minute frequencies in naı̈ve T cells (<0.1%). In

comparison, TCRb chains expressed on skin-resident CD8+ T cells in WT and Sox13-/- mice were oli-

goclonal (data not shown).

To begin to identify TCRab clonotypes, 15 CD4+ skin T cell lines were established from Sox13-/-

AD skin and converted to hybridomas. Although this approach was inefficient, four Vb4+ T hybrido-

mas expressed the comVb4 chain, all of which were paired with a conserved Va4.9 chain (comVa4,

CALSDNTGNYKYVF). TCRa deep sequencing of total skin CD4+ T cells confirmed that >90% of the

Va4+ cells expressed the comVa4 chain in the skin of diseased Sox13-/- mice (Figure 6I), while these

clonotypes were rare in dLNs. Together, these studies reveal that ~25% of all skin CD4+ T cells in

AD mice express two related TCR clonotypes composed of Vb4Va4.9 TCR, indicative of antigen-spe-

cific clonal expansion.

Discussion
When there are systemic structural breakdowns of the skin barrier, dysregulated immunity leads to

uncontrolled inflammation. Most mouse models of AD to date involve either a systemic breakdown

of the skin barrier (e.g. filaggrin/matted [Kawasaki et al., 2012; Saunders et al., 2013] or Adam17-

deficient [Kobayashi et al., 2015]), or rely on heavy manipulations of the skin (e.g. tape stripping fol-

lowed by antigen challenge (Oyoshi et al., 2012) or topical applications of inflammatory cytokines,

such as IL-23 [Li et al., 2016]) and they may not reflect natural progression of AD. In particular, phys-

iological events that contribute to skin barrier damage in postnatal animals have not been modeled

for experimentation. Moreover, identification of pathogenic CD4 T cell clones and events that trig-

ger adaptive T cells that culminate in AD have not yet been systematically investigated. Here,

removal of one innate dermal T cell sentinel subset that normally populates the neonatal skin is suffi-

cient to cause spontaneous, highly penetrant AD, with many of the major hallmarks of the human

disease. Early changes in basal keratinocyte transcriptome, well before the onset of fulminant dis-

ease, are consistent with an altered barrier formation that is likely to have linkage CB dysbiosis and

the damaging immune responses that ensue. Our model thus serves to close fundamental gaps in

understanding of AD and identify dermal innate Vg2+ Tgd17 cells as skin regulatory T cells.

AD in Sox13-/- mice is driven by Th17 cells, and transfer studies using CD44hi T cells from dLNs of

diseased Sox13-/- mice did result in AD-like symptoms in Sox13-/-, but not in LMC host (data not

shown). However, the hosts need to be primed for the disease transfer, by sublethal irradiation and

skin scarring, and the kinetics of disease induction and severity were variable. Predictable kinetics of

Figure 6 continued

Figure supplement 1. Expansion of CD4+Vb4+ T cells in the skin of Sox13-/- mice.
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AD transfer using dermal T cells from diseased Sox13-/- mice would be ideal, and we are currently

attempting to establish more physiological priming conditions for these studies. An important impli-

cation of our findings is that homeostasis-maintaining Tgd17 cells cannot be substituted by other

type 3 cytokine-polarized T cells: loss of Vg2+ Tgd17 cells leads to expansion of Th17-like ab T cells

that are associated with inflammation. Accordingly, further dissection of the pathways that are selec-

tively engaged under homeostasis versus inflammation will be important to determine whether

homeostasis-specific features could be harnessed to enhance resolution of inflammation. gd T cells

as a population have been suggested to regulate inflammation and ab T cell responses in mucosal

tissues, based on dysregulated type 2 cytokine responses in the lung of Tcrd-/- mice (Zuany-

Amorim et al., 1998; Lahn et al., 1999; Guo et al., 2018), spontaneous skin inflammation in Tcrd-/-:

FVB background (Girardi et al., 2002), and keratitis in Tcrd-/-:B10 mice (O’Brien et al., 2009). How-

ever, gd T cell subset-specific function in these disease models were unknown and Tgd17 cells have

been considered principally as an inflammatory/pathogenic cell type, required for psoriasis and EAE

(Sutton et al., 2009), ocular responses to C. mastitidis to protect against fungal infection (St Leger

et al., 2017), and intestinal responses to Listeria (Sheridan et al., 2013). In the frontline mucosal tis-

sues there are several innate and conventional T cells that can produce IL-17, including Tgd17,

MAITs, iNKT17, ILC3, Tc17 and Th17 cells. While the homeostatic role of IL-17 in the skin was docu-

mented (Qian et al., 2004; Matsushima et al., 2010; Floudas et al., 2017) the critical cell source of

IL-17 was not known. We show that Vg2TCR+ Tgd17 cells is that source necessary to prevent the skin

CB dysbiosis dependent inflammation cascade.

Given that there exists multiple innate type 3 cytokine producing T cells, it remains unclear why

Vg2+ Tgd17 cells are indispensable in skin homeostasis. The alternate fetal-derived PLZF+ Vg4TCR+

Tgd17 cells in adipose tissues are required for normal thermogenic responses (Kohlgruber et al.,

2018) and they are also present in most mucosal tissues (Jin et al., 2019). While Sox13-/- mice gen-

erate reduced numbers of Vg4+ Tgd17 cells from the postnatal thymus, their numbers in peripheral

tissues normalize over time (Malhotra et al., 2013). Thus, in both AD and psoriasis models, Vg2+

Tgd17 cells are the critical mediators of skin homeostasis and acute inflammation, and the Vg4+

counterpart, and other innate IL-17 producing T cells such as DN MAITs that are present in the der-

mis of Sox13-/- mice, cannot functionally compensate for the loss of Vg2+ Tgd17 cells. So far, only

two molecular features distinguish these two gd T cell subtypes in the dermis: highly biased expres-

sion of the scavenger receptor Scart2 on Vg2+ Tgd17 cells (Narayan et al., 2012) and the distinct

TCRs. The nature of ligands recognized by these receptors is unknown, but given the independence

of Vg2+ Tgd17 cells from skin CB for their development and persistence in the skin, the likelihood of

novel environmental cues determining their function is high.

We are actively investigating the ligand recognized by Vb4/Va4 clonotype T cells. Skin Th17 cells

are absent in GF mice, and their numbers are restored to the normal range in Abx Sox13-/- mice,

indicating their dependence on CB. However, skin T cell hybridomas expressing the clonotypic Vb4

TCR did not respond to various Staphyloccus and Corynebateria species, suggesting these cells

respond to other CB or skin antigens. Skin CD8+ Tc17 cells recognize S. epidermidis-derived N-for-

myl methionine peptides presented by the non-classical MHC-Ib molecule H2-M3 (Linehan et al.,

2018) and it is possible that Vb4/Va4 clonotypes also recognize non-conventional MHC molecules.

MR1-5-OP-RU or CD1d-PBS tetramers did not stain skin Vb4+ T cells, ruling out the obvious candi-

dates as likely ligands.

The emerging model of AD progression is then that tonic IL-17/22 produced by Tgd17 cell recog-

nitions of CB and other skin-specific cues promote normal development of keratinocytes in postnatal

mice. In the absence of this lymphoid-epithelial crosstalk, skin CB dysbiosis develops in conjunction

with altered skin barrier, driving APC activation and setting in motion aggressive activation, infiltra-

tion and expansion of type 3 cytokine producing T cells that are primarily focused on dealing with

altered CB, but also result in collateral skin degradation. In parallel, damaged skin releases DAMPs,

such as IL-33 that activates ILC2, which in turn promote Th2 responses (Salimi et al., 2013). Cyto-

kines and chemokines copiously produced by activated skin lymphocytes perpetuate eosinophilia

and neutrophilia that chronically worsen skin damage. In this setting, skin Tregs do not significantly

impact the disease progression, as their sustained depletion does not impact AD amelioration

caused by conventional CD4 T cell ablation (Figure 4).

Human inflammatory skin diseases also involve Tgd17 cells (Laggner et al., 2011). While type 3

cytokine producing lymphocytes have been implicated in human AD progression and maintenance,
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the role of early IL-17 in human neonates in skin barrier maintenance has not been investigated.

Emerging evidence for preprogrammed effector T cells in the gut and blood at the fetal stage

(Zhang et al., 2014; Schreurs et al., 2019; Li et al., 2019) support the possibility that human and

rodents share the similar lymphoid lineage developmental blueprint to generate pre-programmed

lymphoid effectors early in life. Whether Tgd17 cells are the main producers of IL-17 in human skin

requires definitive resolution, but a priori, any type 3 cytokine producing innate lymphocytes in the

skin, including MAITs, iNKT17 and ILC3 can serve the regulatory function of murine dermal Tgd17

cells, likely to be dependent on the commensal community as well as genetic and environmental var-

iations in skin fitness in the outbred populations. Clinically, IL-17 blockade is being tested to treat

skin inflammatory disorders. Emerging findings of regulatory function of IL-17 in the skin raise the

possibility of potential negative impacts on skin barrier function, aggravated by the emergence of

IL-22 as the pathogenic effector in fulminant skin inflammatory disorders with interference of IL-17R

signaling.

Materials and methods

Mice
All mice were housed in specific pathogen-free (SPF) conditions, and all procedures were approved

by the University of Massachusetts Medical School (UMMS) IACUC. Sox13-/- mice have been

described previously (Melichar et al., 2007), and are maintained on a 129S1/SvImJ (129) back-

ground as C57BL/6 (B6).Sox13-/- mice are embryonic lethal. B6, B6.129P2-Tcrbtm1Mom/J (B6.Tcrb-/-),

Rora-/- and B6.Il17atm1Bcgen (B6.Il17a-Egfp) mice were purchased from Jackson Laboratories. Germ-

free B6/129 mice were from HDDC Gnotobiotics Core, Harvard. To generate 129.Sox13-/-Tcrb-/-, B6.

Tcrb-/- was backcrossed to 129 mice for 9 generations, and then intercrossed with Sox13-/- mice to

generate double knockout mice. B6.Cg-Thy1a/Cy Tg(Tcrab)8Rest/J (PMEL Tg) mice were kindly pro-

vided by John Harris (UMMS).

Cell isolation and stimulation and antibodies
Ears and muzzle skin were first treated with Nair for 2 min, and then Nair was gently wiped away

with a PBS-moistened cotton-tip applicator, and tissue was subsequently rinsed extensively with PBS

prior to digestion. For this study, muzzle tissue is demarcated by the boundaries of the vibrissiae.

Ears were split into dorsal and ventral halves, and muzzle tissue was removed of subcutaneous tis-

sue. Skin was finely minced and then digested with 1 U/mL Liberase TL (Roche) + 0.5 mg/mL Hyal-

uronidase (Sigma-Aldrich) + 0.05 mg/mL DNAse (Roche) dissolved in HBSS (with Ca2+/Mg2+,

Corning) + 10 mM HEPES (Gibco) + 5% FBS (Sigma-Aldrich) for 90 min at 37˚C with gentle shaking.

After digestion, EDTA (Sigma-Aldrich) was added at 5–10 mM, and then tissue was strained through

a 100 mm cell strainer. Cell were washed in FACS buffer (DPBS, Ca2+/Mg2+-free + 0.5% BSA [Fisher

Scientific] + 2 mM EDTA) and then plated for antibody staining. Mandibular and parotid dLN were

mechanically homogenized between etched glass slides (Fisher Scientific) and strained through 70

mm mesh prior to plating for antibody staining.

The following anti-mouse antibodies were purchased from Biolegend, BD Biosciences, or Thermo-

Fisher and used for FACS analysis: CD45 (30-F11), Siglec F (S17007L), Ly-6G (1A8), Ly-6C (HK1.4),

MHC II (M5/114.15.2), CD3 (17A2), CD5 (53–7.3), B220 (RA3-6B2), CD11b (M1/70), Gr-1 (RB6-8C5),

Ter-119 (Ter-119), Thy1.2 (30-H12), F4/8) (BM8), TCRb (H57-597), CD4 (GK1.5), CD8b (YTS156.7.7),

PD-1 (29F.1A12), CXCR5 (2G8), GL7 (GL7), CD95 (Jo2), CD138 (281-2), IgD (11–26 c.2a), Vb4 (KT4),

CD49f (GoH3), TCRd (GL3), Vg2 (UC3-10A6), Vg3 (536), CCR6 (140706), IL-17A (17B7), IL-22

(poly5164), IFNg (XMG1.2), IL-4 (11B11), IL-5 (DIH37), IL-13 (eBio13A), FoxP3 (FJK-16s), GATA3

(TWAJ), RORgt (AFKJS-9), Bcl6 (K112-91), Ki-67 (B56). MR1 and CD1d tetramers were provided by

the NIH Tetramer Core Facility at Emory University. All samples were labeled with a fixable viability

dye (ThermoFisher) prior to analysis. The combinatorial TCR Vb staining strategy has been described

previously (Diz et al., 2012), and all Vb epitopes were found to be resistant to the enzymes used for

digestion when tested on dLN cells (data not shown). CellTrace Violet was purchased from Thermo-

Fisher, and cell were labeled as recommended by the manufacturer. For intracellular cytokine stain-

ing, cells were fixed/permeabilized with Cytofix/Cytoperm buffer (BD Biosciences) and then stained
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in permeabilization buffer. For intranuclear transcription factor staining, cells were fixed/permeabi-

lized and then stained using the FoxP3/transcription factor Staining Buffer Set (eBioscience).

For in vitro restimulation, digested skin cells or dLN cells were resuspended in complete DMEM-

10 medium (DMEM, high glucose + 10 mM HEPES + 4 mM L-Glutamine + 1x non-essential amino

acids + 1 mM sodium pyruvate + 100 U/mL penicillin + 100 ug/mL streptomycin (all Gibco) + 10%

FBS) and cultured with 500 ng/mL phorbol 12,13 dibutyrate (PdBu, Tocris) + 1 mM Ionomycin

(Sigma-Aldrich) + 1x GolgiStop + 1x GolgiPlug (BD Biosciences) for 2–3 hr at 37˚C. After stimulation,

cells were washed in FACS buffer and then stained with antibodies as indicated above. Serum IgE

was assessed by ELISA (BioLegend). To deplete CD4+ T cells, mice were injected i.p. with anti-CD4

(GK1.5, Bio X cell) or rat IgG2b isotype control. Initially, mice received two doses of 500 mg/mouse

on day 0 and day 2. Thereafter, mice received a weekly maintenance dose of 100 mg/mouse to main-

tain depletion. Depletion was confirmed by analysis of dLN and skin T cells stained with anti-CD4

clone RM4-4 (Biolegend), which binds a non-overlapping epitope.

Table 1. PCR Primers used in this study.

Sequence F/R Description

CCTGGACTCTCCACCGCAA F Il17a

TTCCCTCCGCATTGACACAG R Il17a

TTTCCTGTCTGTATTGAGAAACCT F Il33

TATTTTGCAAGGCGGGACCA R Il33

CGCTTGAGTCGGCAAAGAAAT F Il1a

TGGCAGAACTGTAGTCTTCGT R Il1a

GCCACCTTTTGACAGTGATGAG F Il1b

GACAGCCCAGGTCAAAGGTT R Il1b

TCCTCTCTGCAAGAGACTTCC F Il6

TTGTGAAGTAGGGAAGGCCG R Il6

AGCTGTAGTTTTTGTCACCAAGC F Ccl2

GTGCTGAAGACCTTAGGGCA R Ccl2

TCACAGCAACGAAGAACACCA F Il4

CAGGCATCGAAAAGCCCGAA R Il4

CAAGCAATGAGACGATGAGGC F Il5

GCATTTCCACAGTACCCCCA R Il5

CACTACGGTCTCCAGCCTCC F Il13

CCAGGGATGGTCTCTCCTCA R Il13

CACCAGCGGGACATATGAATCT F Il23a

CACTGGATACGGGGCACATT R Il23a

TTGAGGTGTCCAACTTCCAGCA F Il22

AGCCGGACGTCTGTGTTGTTA R Il22

AGAGTTTGATCCTGGCTCAG F 16S V1 Universal Primer 27F

ATTACCGCGGCTGCTGG R 16S V3 Universal Primer 534R

AAGCCTGATGACTCGGCCACA F Vb4 TCR deep seq

CTTGGGTGGAGTCACATTTCTCAGATCCTC R Cbeta TCR deep seq

AACTGTACTTATTCAACCACA F Va4 TCR deep seq

CTGTGAACTGTTCCTATGAAACC F Va4 TCR deep seq

TAAACTGTACTTATTCAACCACA F Va4 TCR deep seq

CCTGATAATAAATTGCACGTATTCA F Va4 TCR deep seq

GGTACACAGCAGGTTCTGGGTTCTGGATG R Calpha TCR deep seq
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Histology and immunofluorescence microscopy
For H and E staining, muzzle tissue was first fixed in 10% neutral-buffered formalin for 24 hr, and

then paraffin embedded, sectioned, and stained by the UMMS DERC Morphology Core. Epidermal

thickness was calculated using ImageJ, taking the average of 3 measurements per image to record

as 1 data point. For immunofluorescence microscopy, dLN were fixed in 4% paraformaldehyde

(diluted from 16% ampules, Electron Microscopy Sciences) in PBS for 6–8 hr at 4˚C, washed three

times in PBS, equilibrated in 30% sucrose in PBS overnight, and then frozen in OCT compound

(Sakura Tissue-Tek). Cryosections were cut to 7 um thickness, blocked in PBS + 0.3% Triton X-100 +

5% normal mouse serum for 1 hr at RT, then endogenous biotin was blocked using the Avidin/Biotin

Blocking System (BioLegend) as recommended. Primary antibody labeling was performed in block-

ing buffer overnight at 4˚C in a humidified chamber using the following antibodies: anti-CD4 Alexa

Fluor 647 (BioLegend), goat anti-IgD purified (Cedarlane Labs), anti-GL7 Alexa Fluor 488 (BioLe-

gend), and anti-CD11c Brilliant Violet 421 (BioLegend). Slides were washed 3x in PBS, and then

labeled with donkey anti-goat Cy3 (Jackson ImmunoResearch) in blocking buffer for 1 hr at RT.

Slides were rinsed 3x in PBS and mounted using Fluoromount-G (Southern Biotech). Images were

acquired on a Zeiss Axio Observer with LED excitation using ZEN software (Zeiss) and displayed

using best-fit parameters.

TCR CDR3 deep sequencing
The strategy for deep sequencing of TCR Vb4 CDR3 regions has been described previously

(Stadinski et al., 2016). Cells from pooled muzzle and ear skin of 6 mo LMC and Sox13-/- mice with

AD were sorted via FACS as Live CD45+ TCRb+ CD4+ CD25- GITRlo to exclude Treg cells. RNA was

extracted using Trizol (ThermoFisher), and cDNA generated using oligo dT priming and OminScript

reverse transcriptase (Qiagen) per the manufacturers’ recommendations. PCR was performed using

a Vb4- or Va4-specific forward primer containing adapter and barcode sequences combined with a

Cb or Ca reverse primer. Multiple forward primers were used for Va4 to ensure coverage of the

entire Va4 family. Sequencing was performed on an Illumina MiSeq at the Deep Sequencing Core

Lab. For analysis, low quality (Q score <25) reads were removed and then sequences were parsed

based on the sample barcode using fastq-multx. TCR V and J nucleotide sequences were converted

to amino acid sequences using TCRKlass, using the conserved Cys residue of TCR Vb to identify

CDR3 position 1.

Microbiome sequencing, antibiotics, and in vitro bacterial/gd cell
cultures
To sequence the muzzle microbiome of LMC and Sox13-/- mice, sterile cotton-tip applicators were

swabbed across both sides of the muzzle and then placed into sterile Eppendorf tubes and placed

onto dry ice. Muzzle swabs were sent to Molecular Research LP (MR DNA, Shallowater, TX) for DNA

extraction and sequencing on an Illumina MiSeq. Extracted DNA was used to amplify the 16S V4

region, and then amplicons were purified for library generation. For analysis, low quality and short

sequences (<150 bp) were removed. Operational taxonomic units were identified and classified

using BLASTn and a curated database derived from NCBI, RDPII, and GreenGenes. Count files were

then converted to percentages by dividing the number of counts for a given phylum/species by the

sum of all counts. For antibiotic treatment, Sox13-/- breeders were placed on drinking water contain-

ing 0.5 mg/mL enrofloxacin and 0.5 mg/mL cefazolin (hereafter Abx). Weaned mice were then

placed on Abx water and analyzed at six mo. To assess gd cell responses to skin commensals, LN gd

T cells were isolated from WT 129 mice by negative selection (without the use of anti-TCRd Abs).

CD11c+ cells were isolated from spleens using CD11c microbeads (Miltenyi Biotec). Corynebacteria

were grown on brain heart infusion agar (BHI) with 1% Tween-80, then grown in BHI broth with 1%

Tween-80 overnight. Staphylococcus was grown on trypticase soy agar, then grown in BHI broth

overnight. C. accolens was purchased from ATCC. C. bovis and C. mastitidis were kindly provided

by K. Nagao (National Institute of Arthritis and Musculoskeletal and Skin Diseases, 9). S. lentus was

isolated from the muzzle skin of a Sox13-/- mouse with AD by streaking onto mannitol salt agar, fol-

lowed by re-streaking of an isolated, mannitol-fermenting colony. Species identification was deter-

mined by sequencing analysis of 16S V1-V3 followed by BLAST. The day of the experiment, bacterial

cultures were subcultured 1:100 for 2–4 hr to permit recovery into exponential growth phase.
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Culture density was determined by OD600, and then bacteria were resuspended in PBS and heat-

killed at 56˚C for 1 hr. DC, gd T cells, and bacteria were cultured at 1:1:10 ratio for 16–18 hr, and

then GolgiStop and GolgiPlug were added for an additional 4 hr prior to FACS analysis. In some

cases, anti-IL-23 (MMp19B2, BioLegend) and anti-IL-1R (JAMA-147, Bio X Cell) or isotype control

antibodies were added for the entire culture duration. To assess contact dependency, DC and bacte-

ria were placed in the top chamber of a 0.4 mm TransWell apparatus (Corning) and gd T cells in the

bottom well.

Gene expression analysis
For RT-qPCR analysis of whole skin, skin was excised and stored in RNALater (ThermoFisher) over-

night at 4˚C. The next day, the sample was homogenized in Trizol using an Omni Tissue homoge-

nizer, and then RNA isolated. RNA was converted to cDNA using oligo dT priming and AffinityScript

reverse transcriptase (Agilent). qPCR was performed using iQ SYBR green Supermix and a CFX96

thermal cycler (Bio-rad), followed by thermal melt curve analysis to confirm specific amplification. Pri-

mers used in this study were synthesized by Integrated DNA Technologies and are reported in

Table 1. For RNA sequencing analysis, epidermal keratinocytes were purified by first separating dor-

sal and ventral halves of dissected ears and floating dermis down on 5 U/mL dispase (Sigma-Aldrich)

with 0.05 mg/mL DNAse I for 50 min at 37˚C. Epidermis was then peeled away, and the dermis dis-

carded. The Epidermis was further minced and then digested for an additional 30 min with 2 mg/mL

Collagenase IV (Worthington) with 0.05 mg/mL DNAse I. Epidermal single cell suspensions were

then labeled with anti-CD49f to identify basal keratinocytes, anti-CD45 to exclude leukocytes, and 7-

AAD to exclude dead cells. Keratinocytes were double-sorted for purity, with the second sort into

cell lysis buffer for RNA extraction at 104 cell equivalents. Samples were generated in triplicates.

RNAseq analyses were performed by the Immunological Genome Project, using the standard oper-

ating protocol (Immgen.org). Volcano plots and DEG lists were generated using MultiPlot Studio

(part of the GenePattern from the Broad Institute). Gene Ontology (GO) terms were identified using

the DAVID bioinformatics resource (https://david.ncifcrf.gov/), with significance determined by EASE

score (a modified Fisher Exact).

Statistical analysis
Graphing and statistical analysis was performed using GraphPad Prism software. Significance values,

tests used, and cohort sizes are indicated in figure legends. Unless otherwise indicated, comparison

of two groups was analyzed by unpaired two-tailed Student’s t test, and comparison of three or

more groups was analyzed by ANOVA with Sidak’s correction for multiple hypothesis testing.

Acknowledgements
We thank J Harris (UMMS) and K Nagao (NIH) for reagents, the Immunological Genome Project

Consortium for RNAseq data generation, A Reboldi for critical reading of the manuscript, and

UMMS FACS Core for cell sorting. Supported by NIH grants AI101301, AR071269 to JK.

Additional information

Funding

Funder Grant reference number Author

National Institutes of Health AI101301 Joonsoo Kang

National Institutes of Health AR071269 Joonsoo Kang

The funders had no role in study design, data collection and interpretation, or the

decision to submit the work for publication.

Author contributions

Nicholas A Spidale, Conceptualization, Data curation, Formal analysis, Investigation, Visualization,

Methodology, Writing - original draft, Writing - review and editing; Nidhi Malhotra, Bing Miu, Eric

Spidale et al. eLife 2020;9:e51188. DOI: https://doi.org/10.7554/eLife.51188 18 of 23

Research article Immunology and Inflammation

http://www.immgen.org/
https://david.ncifcrf.gov/
https://doi.org/10.7554/eLife.51188


Huseby, Formal analysis, Investigation; Michela Frascoli, Formal analysis, Visualization; Katelyn Sylvia,

Data curation, Formal analysis; Coral Freeman, Data curation, Visualization; Brian D Stadinski, Data

curation, Methodology; Joonsoo Kang, Conceptualization, Data curation, Supervision, Funding

acquisition, Writing - original draft, Project administration, Writing - review and editing

Author ORCIDs

Nicholas A Spidale https://orcid.org/0000-0002-1568-4746

Joonsoo Kang https://orcid.org/0000-0001-8419-7995

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations

in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All

experiments performed were approved by the University of Massachusetts Medical School IACUC

(Protocol A1206).

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.51188.sa1

Author response https://doi.org/10.7554/eLife.51188.sa2

Additional files
Supplementary files
. Transparent reporting form

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Source Data files are provided for keratinocyte RNA-seq analysis, TCR sequencing, and skin micro-

biome analysis.

References
Cai Y, Shen X, Ding C, Qi C, Li K, Li X, Jala VR, Zhang HG, Wang T, Zheng J, Yan J. 2011. Pivotal role of dermal
IL-17-producing gd T cells in skin inflammation. Immunity 35:596–610. DOI: https://doi.org/10.1016/j.immuni.
2011.08.001, PMID: 21982596

Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, Monroe HR, Magorien JE, Blauvelt A, Kolls JK, Cheung
AL, Cheng G, Modlin RL, Miller LS. 2010. IL-17 is essential for host defense against cutaneous Staphylococcus
aureus infection in mice. Journal of Clinical Investigation 120:1762–1773. DOI: https://doi.org/10.1172/
JCI40891, PMID: 20364087

Czarnowicki T, Gonzalez J, Shemer A, Malajian D, Xu H, Zheng X, Khattri S, Gilleaudeau P, Sullivan-Whalen M,
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