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Abstract Blood vessels are lined by endothelial cells engaged in distinct organ-specific functions

but little is known about their characteristic gene expression profiles. RNA-Sequencing of the brain,

lung, and heart endothelial translatome identified specific pathways, transporters and cell-surface

markers expressed in the endothelium of each organ, which can be visualized at http://www.

rehmanlab.org/ribo. We found that endothelial cells express genes typically found in the

surrounding tissues such as synaptic vesicle genes in the brain endothelium and cardiac contractile

genes in the heart endothelium. Complementary analysis of endothelial single cell RNA-Seq data

identified the molecular signatures shared across the endothelial translatome and single cell

transcriptomes. The tissue-specific heterogeneity of the endothelium is maintained during systemic

in vivo inflammatory injury as evidenced by the distinct responses to inflammatory stimulation. Our

study defines endothelial heterogeneity and plasticity and provides a molecular framework to

understand organ-specific vascular disease mechanisms and therapeutic targeting of individual

vascular beds.

Introduction
Endothelial cells (ECs) line blood vessels in all tissues and organs, and they form a barrier which

tightly regulates the trafficking of oxygen, metabolites, small molecules and immune cells into the

respective tissue (Liao, 2013). Previous studies have suggested that the morphology of the micro-

vascular endothelium or the expression of selected genes can vary when comparing the vasculature

of multiple tissues, thus allowing ECs to take on tissue-specific EC functions (Chi et al., 2003;

Potente and Mäkinen, 2017; Aird et al., 1997). Environmental signals from the tissue microenviron-

ment including mechanical forces, metabolism, cell-matrix, cell-cell interactions, organotypic growth

factors likely play an important role in regulating this endothelial heterogeneity (Potente and Mäki-

nen, 2017).

The tissue-specific interaction between ECs and surrounding cells occurs as early as during devel-

opment, when, for example, brain ECs instruct neuronal differentiation (Bussmann et al., 2011;

Matsuoka et al., 2017). Such tissue-specific endothelial adaptations persist throughout adulthood

when brain ECs form a highly selective barrier composed of specialized tight junctions to limit neuro-

toxicity (Pozhilenkova et al., 2017). In the lung, ECs differentiate in parallel with epithelial cells to

form gas exchange units which are in contact with the external environment and thus need to ensure

a rapid immune response (Jambusaria et al., 2018; Rafii et al., 2016). Heart ECs, on the other
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hand, are specialized in a manner to ensure ready supply of fatty acids to voracious cardiomyocytes

which rely on continuous supply of fatty acids as the primary fuel to generate ATP necessary for car-

diac contraction (Potente and Mäkinen, 2017).

Identifying differences in the expression levels of selected genes in endothelial cells from different

tissues or organs provides some insights into the molecular underpinnings of endothelial heteroge-

neity, however unbiased gene expression profiling is likely to yield a more comprehensive evaluation

of the genes and regulatory pathways underlying endothelial heterogeneity. Microarray profiling has

been used to identify paracrine factors and signaling pathways that characterize endothelial cells in

different organs (Jambusaria et al., 2018; Nolan et al., 2013). Single-cell transcriptomic analysis of

endothelial cells has also provided a molecular atlas of the brain and lung vasculature at a single cell

level (Vanlandewijck et al., 2018). The latter work has characterized transcriptomic signatures of

distinct endothelial subpopulations. While single cell RNA-sequencing is ideally suited for identifying

subpopulations within a single vascular bed, current single cell technologies are limited in their abil-

ity to detect the expression of individual genes in a given cell (Bacher and Kendziorski, 2016;

Zhu et al., 2018; Kharchenko et al., 2014; Lun et al., 2016; Vallejos et al., 2017). The endothelial

signatures defined using these transcriptomic approaches are potentially influenced by disassocia-

tion and isolation of endothelial cells, a process affecting cellular mRNA levels when cells are

removed from their native niche (Haimon et al., 2018; Rossner et al., 2006; Sugino et al., 2006).

Furthermore, conventional global mRNA and single cell mRNA transcriptomic profiling does not dis-

criminate between the total mRNA pool and those mRNAs preferentially translated due to transla-

tional regulation (Zhou et al., 2016; Piccirillo et al., 2014).

In the present study, to understand further the variegated nature of the endothelium, we used

the RiboTag transgenic mouse model, in which LoxP mice express an HA-tag on the ribosomal

Rpl22 protein (Sanz et al., 2009). These mice enable direct isolation of tissue-specific mRNAs

eLife digest Blood vessels supply nutrients, oxygen and other key molecules to all of the organs

in the body. Cells lining the blood vessels, called endothelial cells, regulate which molecules pass

from the blood to the organs they supply. For example, brain endothelial cells prevent toxic

molecules from getting into the brain, and lung endothelial cells allow immune cells into the lungs to

fight off bacteria or viruses.

Determining which genes are switched on in the endothelial cells of major organs might allow

scientists to determine what endothelial cells do in the brain, heart, and lung, and how they differ;

or help scientists deliver drugs to a particular organ. If endothelial cells from different organs switch

on different groups of genes, each of these groups of genes can be thought of as a ‘genetic

signature’ that identifies endothelial cells from a specific organ.

Now, Jambusaria et al. show that brain, heart, and lung endothelial cells have distinct genetic

signatures. The experiments used mice that had been genetically modified to have tags on their

endothelial cells. These tags made it possible to isolate RNA – a molecule similar to DNA that

contains the information about which genes are active – from endothelial cells without separating

the cells from their tissue of origin. Next, RNA from endothelial cells in the heart, brain and lung was

sequenced and analyzed.

The results show that each endothelial cell type has a distinct genetic signature under normal

conditions and infection-like conditions. Unexpectedly, the experiments also showed that genes that

were thought to only be switched on in the cells of specific tissues are also on in the endothelial cells

lining the blood vessels of the tissue. For example, genes switched on in brain cells are also active in

brain endothelial cells, and genes allowing heart muscle cells to pump are also on in the endothelial

cells of the heart blood vessels.

The endothelial cell genetic signatures identified by Jambusaria et al. can be used as “postal

codes” to target drugs to a specific organ via the endothelial cells that feed it. It might also be

possible to use these genetic signatures to build organ-specific blood vessels from stem cells in the

laboratory. Future work will try to answer why endothelial cells serving the heart and brain use genes

from these organs.
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undergoing translation without cell disassociation (Sanz et al., 2009). Using an endothelial-specific

RiboTag model, we show that organ-specific ECs have distinct translatome patterns of gene clusters

during homeostasis. Since the circulating bacterial endotoxin lipopolysaccharide (LPS) is a key medi-

ator of tissue inflammation and injury in patients with bacteremia and sepsis (Cross, 2016)

(Charbonney et al., 2016), we also exposed the RiboTag mice to LPS to induce systemic inflamma-

tory injury and studied the organ-specific EC translatome response. We found that ECs express tis-

sue-specific genes involved in vascular barrier function, metabolism, and substrate-specific transport.

In addition, we found that ECs expressed genes thought to be primarily expressed in the surround-

ing tissue parenchyma, suggesting a previously unrecognized organ-specific endothelial plasticity

and adaptation. To allow other researchers to explore the organ-specific EC translatome heteroge-

neity, we have generated a searchable database (http://www.rehmanlab.org/ribo), in which users

can visualize gene expression levels of individual genes.

Results

Optimized platform to characterize organotypic endothelial
heterogeneity
To precisely investigate the in-situ organ-specific EC molecular signature in brain, lung, and heart tis-

sue we crossed the RiboTag mice (Rpl22HA/+) (Sanz et al., 2009) with the endothelial-specific VE-

cadherin-Cre mice (Jeong et al., 2017; Sörensen et al., 2009) to generate RiboTagEC

(Cdh5CreERT2/+; Rpl22HA/+) mice. At 4 weeks post tamoxifen administration, ribosomes in the endo-

thelial cells of all tissues expressed the HA tag, thus allowing for the specific isolation of mRNA

undergoing ribosomal translation from ECs in the brain, heart and lung during homeostatic condi-

tions. We also isolated brain, lung, and heart endothelial mRNA at several time points following sys-

temic inflammatory injury, induced using a sublethal dose of the bacterial endotoxin

lipopolysaccharide (LPS), ranging from the acute injury phase at 6 hr post-LPS to the recovery phase

at 1 week post-LPS (Figure 1—figure supplement 1A). Log fold change (logFC) values were calcu-

lated between endothelial mRNA (immunoprecipitated by an anti-HA antibody) versus whole tissue

mRNA (immunoprecipitated with control antibody, anti-RPL22) using quantitative PCR (qPCR). The

analysis of the qPCR data confirmed enrichment of endothelial-specific RNA similar to what has

been reported in other studies using the RiboTag model (Jeong et al., 2017) and also demonstrated

minimal expression of RNA from other tissue-resident cell types (Figure 1—figure supplement 1B–

1F).

After confirming the enrichment of endothelial RNA using qPCR, we performed global transcrip-

tional profiling with RNA-Seq on the RiboTagEC brain, lung, and heart samples. Principal component

analysis (PCA) of the RNA-Seq data for endothelial mRNA from brain, lung, and heart tissue from all

time points showed a clear separation between the replicate brain, lung, and heart translatomes,

indicating that ECs from each tissue demonstrated a distinct transcriptional identity at baseline that

is maintained even in the setting of profound systemic inflammatory injury (Figure 1A). In order to

identify the genes responsible for these distinct tissue-specific EC profiles, we performed a differen-

tial expression analysis on the RNA-Seq data. The differential expression analysis was concordant

with the PCA and identified 1692 genes which were differentially expressed in brain ECs (versus ECs

from the other two tissues), 1052 genes which were differentially expressed in lung ECs, and 570

genes which were differentially expressed in heart ECs (Figure 1B).

We next analyzed the baseline heterogeneity of ECs obtained from brain, lung and heart by

assessing the gene expression levels of endothelial genes using established databases. We specifi-

cally focused our analysis on a pan-endothelial gene set (Franzén et al., 2019), glycolysis and fatty

acid metabolism gene sets (Shimoyama et al., 2015) and a solute transport gene set

(Hediger et al., 2013). Hierarchical clustering of the RNA-Seq profiles on merely 152 pan-endothe-

lial genes from PanglaoDB (Franzén et al., 2019) separated all replicate baseline samples, indicating

that classical endothelial markers are sufficient to differentiate ECs from these three organs

(Figure 1C). For example, genes upregulated in brain ECs included T-box transcription factor (Tbx1)

and the glucose transporter 1 (Slc2a1), genes upregulated in the lung endothelium included claudin

5 (Cldn5) and the Hes related family BHLH transcription factor with YRPW Motif 1 (Hey1), whereas
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A B

C D

E F

Endothelial Genes Glycolysis Genes

Fatty Acid Genes Transport Genes

Brain ECs

Lung ECs

Heart ECs

Tissue DEGs
% of total 

genes

Brain ECs 1692 9%

Lung ECs 1052 6%

Heart ECs 570 3%

Figure 1. Endothelial heterogeneity exists in classic endothelial functions. (A) Principal component analysis of RNA-Seq data generated from brain,

lung, and heart endothelial samples isolated from RiboTagEC mice displays the organ-specific in-situ endothelial clusters. (B) Differential expression

analysis of 18,910 genes which are expressed in brain, lung, and heart endothelium at baseline identified tissue-specific differentially expressed genes.

Figure 1 continued on next page
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heart ECs demonstrated upregulation of vascular endothelial growth factor receptor 2 (Kdr) and the

endothelial cell surface expressed chemotaxis and apoptosis regulator (Ecsr).

We next focused on the tissue-specific upregulation of metabolic genes. As seen in the glycolysis

gene heatmap, we found that most tissue-specific EC genes involved in glycolysis were specifically

upregulated in the brain endothelium (Figure 1D), but there were selected glycolytic genes specifi-

cally upregulated in other tissues such as 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3

(Pfkfb3) in lung ECs and alcohol dehydrogenase 1 (Adh1) in heart ECs. In contrast, fatty acid metab-

olism genes were most upregulated in heart ECs consistent with the heavy reliance of the heart on

fatty acids to generate ATP (Figure 1E). Heart ECs exhibited upregulation of 17 fatty acid metabo-

lism genes whereas brain ECs and lung ECs only demonstrated upregulation of 9 and 4 metabolism

genes, respectively.

Regarding solute transport genes, the brain endothelium showed the most specific upregulation

of genes when compared to ECs of the other tissues, both in terms of number of transporters as

well as the magnitude of upregulation. We found that 141 transporter genes were upregulated in

brain ECs, whereas 43 and 44 genes were upregulated in lung and heart ECs, respectively. As seen

in the heatmap (Figure 1F), the expression levels of brain EC-specific transporters were far greater

than those of lung and heart ECs, indicative of the central role of solute transport regulation in brain

EC function.

RiboTagEC endothelial mRNA purity
After confirming the efficiency of the RiboTag immunoprecipitation protocol using qPCR, we next

sought to perform an unbiased and systematic analysis of the utility of the RiboTagEC model as a

tool to study the organ-specific endothelial translatome heterogeneity. We therefore compared

organ-specific RiboTagEC RNA-Seq baseline profiles to healthy whole-tissue RNA-Seq profiles

obtained from publicly available whole tissue RNA-Seq datasets (Athar et al., 2019). By applying

normalization and batch correction techniques, we were able to directly compare the mRNA expres-

sion levels of RiboTagEC endothelial samples with those of whole tissue samples.

To characterize the whole brain, lung, and heart samples, we identified the genes that were sig-

nificantly upregulated in each of the tissues and generated a heatmap displaying the 1358 differen-

tially upregulated whole brain-specific genes relative to whole lung and whole heart (Figure 1—

figure supplement 2A). By performing a gene set enrichment analysis (GSEA) to ascertain the path-

ways associated with these genes, we confirmed the validity of the samples because the top path-

ways included ‘neurotransmitter transport’, ‘synapse organization’, ‘synaptic vesicle cycle’

(Figure 1—figure supplement 2B). The top 10 most abundant genes in the whole brain RNA-Seq

data included myelin basic protein (Mbp), proteolipid protein 1 (Plp1), calmodulin 1 (Calm1), synap-

tosome associate protein 25 (Snap25), kinesis family member 5A (Kif5a), ATPase Na+/K+ transport-

ing subunit alpha 3 (Atp1a3), sodium-dependent glutamate/aspartate transporter 2 (Slc1a2),

secreted protein acidic and cysteine rich (Sparcl1), carboxypeptidase e (Cpe), stearoyl-coA desatur-

ase 2 (Scd2) (Figure 1—figure supplement 2C).

Whole lung samples were characterized by 1071 differentially expressed genes (Figure 1—figure

supplement 3A) on which we performed GSEA (Figure 1—figure supplement 3B). The top 10 most

abundant genes in the whole lung were desmoyokin (Ahnak), microtubule-actin crosslinking factor 1

(Macf1), actin beta (Actb), surfactant protein c (Sftpc), spectrin beta, non-erythrocytic 1 (Sptbn1),

hypoxia inducible factor two alpha (Hif2a), stearoyl-CoA desaturase (Scd1), filamin a (Flna), adhesion

Figure 1 continued

(FDR < 5%) (C–F) Hierarchical clustering of classical endothelial processes including (C) endothelial genes, (D–E) metabolism, and (F) transporters

results in distinct clustering of brain, lung, and heart endothelial baseline samples.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. RiboTag Isolation of endothelial mRNA.

Figure supplement 2. Characterization of Whole Brain RNA-Seq data.

Figure supplement 3. Characterization of Whole Lung RNA-Seq data.

Figure supplement 4. Characterization of Whole Heart RNA-Seq data.

Figure supplement 5. Kendall’s Tau correlation supports endothelial mRNA isolation from RiboTagEC mice.
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g protein-coupled receptor f5 (Adgrf5), and ldl receptor related protein 1 (Lrp1) (Figure 1—figure

supplement 3C).

The signature of the whole heart derived from differential gene expression analysis was com-

posed of 1351 genes (Figure 1—figure supplement 4A). GSEA indicated a preponderance of meta-

bolic and muscle contraction pathways (Figure 1—figure supplement 4B). The top 10 most

abundant cardiac genes were myosin heavy chain 6 (Myh6), ATPase sarcoplasmic/endoplasmic retic-

ulum Ca2+ transporting 2 (Atp2a2), myoglobin (Mb), actin, alpha, cardiac muscle 1 (Actc1), phospho-

lamban (Pln), myosin regulatory light chain 2 (Myl2), titin (Ttn), troponin t2, cardiac type (Tnnt2),

tropomyosin 1 (Tpm1), and lipoprotein lipase (Lpl) (Figure 1—figure supplement 4C).

After establishing and confirming the molecular signatures of the whole brain, whole lung, and

whole heart tissue, we next calculated a Kendall’s Tau correlation coefficient to assess the rank cor-

relation between the RiboTagEC samples and the whole tissue samples. We surmised that if the rank

of the most abundant whole tissue genes was the same as the rank of these genes in the RiboTagEC

samples, then it would indicate possible contamination of the EC samples with whole tissue mRNA;

however, if the abundance rank order of whole tissue genes was quite distinct from that in the Ribo-

TagEC samples, then it would indicate tissue specific programming of ECs in situ (Figure 1—figure

supplement 5A). We assessed the Kendall’s Tau rank correlation for all three tissues and plotted

correlation heatmaps showing the results (Figure 1—figure supplement 5B–D). Our findings indi-

cate that there was no significant correlation between the abundance rank of whole tissue genes

and their rank order in the RiboTagEC samples. The rank correlation in the brain samples ranged

from �0.29 to 0.38 (Figure 1—figure supplement 5B). Since the cellular composition of the lung is

40–50% endothelial, we expectantly saw a higher rank correlation between whole lung samples and

lung RiboTagEC samples, ranging between 0.02 and 0.6 (Figure 1—figure supplement 5C). In the

heart, we found a range of rank correlations between �0.29 to 0.24 (Figure 1—figure supplement

5D). These results provide mathematical evidence for the robustness and purity of the RiboTagEC

samples.

Brain-specific endothelial molecular signature
After confirming the robustness and purity of the RiboTagEC samples, we performed differential

expression analysis to identify the significantly upregulated genes in the brain endothelial transla-

tome (Figure 2A, Supplementary file 1). We used these upregulated genes as the input into GSEA

to characterize the brain ECs (Figure 2B). Surprisingly, we found that genes involved in processes

typically thought of being canonical neuronal functions such as synapse organization, neurotransmit-

ter transport, axon development, and regulation of ion transmembrane transport were significantly

enriched in brain ECs (Figure 2B). The top 10 most significantly upregulated genes in the brain ECs

included: prostaglandin d synthase (Ptgds), ATPase, Na+/K+ transporting, alpha two polypeptide

(Atp1a2), basigin (Bsg), apolipoprotein e (Apoe), glutamate-ammonia ligase (Glul), apolipoprotein d

(Apod), pleiotrophin (Ptn), insulin like growth factor 2 (Igf2), osteonectin (Spock2), and glucose trans-

porter 1 (Slc2a1) (Figure 2C). In order to identify brain EC-specific surface markers, which could be

of great value for therapeutic targeting of brain ECs, we used the Cell Surface Protein Atlas data-

base (Bausch-Fluck et al., 2015) and identified the top 10 surface markers for brain ECs

(Figure 2D), which included the glutamate/aspartate transporter II (Slc1a2), thyroxine transporter

(Slco1c1), glial fibrillary acidic protein (Gfap), ATPase Na+/K+ transporting subunit alpha 3 (Atp1a3),

endothelin b receptor-like protein 2 (Gpr37l1), Delta/Notch like EGF repeat containing transmem-

brane (Dner), synaptic vesicle glycoprotein 2b (Sv2b), sodium voltage-gated channel beta subunit 2

(Scn2b), glutamate ionotropic receptor NMDA type subunit 2a (Grin2a), and neurofascin (Nfasc).

Individual boxplots for the log2 expression levels of each gene show that the expression levels of

these cell surface markers are 6–8 log2 units higher in brain ECs than in the lung and heart endothe-

lium. We freshly isolated individual ECs, performed a cytospin and stained for the neurotrophic fac-

tor PTN and found that it was expressed on individual brain ECs but at much lower levels in heart or

lung ECs (Figure 2E).

Lung-specific endothelial molecular signature
We next analyzed the lung EC signature using differential expression analysis (Figure 3A). We found

that the lung endothelium exhibits significant upregulation of genes involved in biological processes
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A B

C DTop RiboTag Brain EC Signature Genes

Ptgds Prostaglandin D Synthase

Atp1a2
ATPase, Na+/K+ transporting, alpha 2 

polypeptide

Bsg Basigin 

Apoe Apolipoprotein E

Glul Glutamate-Ammonia Ligase

Apod Apolipoprotein D

Ptn Pleiotrophin

Igf2 Insulin Like Growth Factor 2

Spock2
Osteonectin, Cwcv And Kazal Like 

Domains Proteoglycan 2

Slc2a1 Glucose transporter 1

E

Figure 2. Brain endothelial specific signature. (A) Heat map representation of differentially upregulated genes identified by comparing brain ECs to

lung and heart ECs at baseline. The blue to white to red gradient represents increasing expression of the pathway with blue representing minimal

expression while the red represents high expression of the pathway. Individual gene expression values can be visualized at www.rehmanlab.org/ribo (B)

The GSEA results of enriched GO terms from RiboTag brain ECs at baseline. (C) Top RiboTag brain EC signature markers ranked in order of logFC. (D)

Figure 2 continued on next page
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related to immune function such as leukocyte cell-cell adhesion, T cell activation, leukocyte migra-

tion, and regulation of immune system processes (Figure 3B). The 10 most significantly upregulated

genes in lung ECs included surfactant protein c (Sftpc), advanced glycosylation end-product specific

receptor (Ager), norepinephrine transporter (Slc6a2), chitinase-like protein 3 (Chil3), WAP four-disul-

fide cco domain 2 (Wfdc2), c-type lectin domain containing 7a (Clec7a), mucin 1 (Muc1), resistin like

alpha (Retnla), lysozyme (Lyz1), homeobox a5 (Hoxa5) (Figure 3C). The top lung endothelial cell sur-

face markers included norepinephrine transporter (Slc6a1), mucin 1 (Muc1), tumor necrosis factor c

(Ltb), prostaglandin transporter (Slco2a1), epithelial membrane protein 2 (Emp2), ATPase sarcoplas-

mic/endoplasmic reticulum Ca2+ transporting 3 (Atp2a3), epithelial cell adhesion molecule (Epcam),

leukocyte function-associated molecule one alpha chain (Itgal), interleukin three receptor subunit

alpha (Il3ra), matriptase (St14) (Figure 3D). We validated our computational analysis by staining

freshly isolated ECs for RAGE and found that RAGE was only expressed at significant levels in lung

ECs but not heart or brain ECs (Figure 3E).

Heart-specific endothelial molecular signature
We then studied the differentially expressed genes in the heart endothelium (Figure 4A,

Supplementary file 3). GSEA identified pathways specifically upregulated in heart ECs, as compared

to brain and lung ECs (Figure 4B). Strikingly, we found that the genes specifically upregulated in

heart ECs were involved in processes such as cardiac muscle tissue development, myofibril assembly

and cardiac contraction (Figure 4B). This suggested that the cardiac endothelium expresses genes

canonically thought to be cardiomyocyte genes, analogous to the expression of canonical neuronal

genes in the brain endothelium. The top expressing heart EC genes included myosin regulatory light

chain 2 (Myl2), myosin regulatory light chain 3 (Myl3), aquaporin 7 (Aqp7), ADP-ribosylhydrolase like

1 (Adprhl1), alpha 2-HS glycoprotein (Ahsg), sodium-coupled nucleoside transporter (Slc28a2), xin

actin binding repeat containing 2 (Xirp2), myoglobin (Mb), Butyrophilin like 9 (Btnl9), creatine kinase,

mitochondrial 2 (Ckmt2), leucine rich repeats and transmembrane domains 1 (Lrtm1), and fatty acid

binding protein 4 (Fabp4) (Figure 4C).The top 10 heart EC surface marker genes included alpha 2-

HS glycoprotein (Ahsg), sodium-coupled nucleoside transporter (Slc28a2), titin (Ttn), tumor necrosis

factor receptor superfamily member 27 (Eda2r), platelet glycoprotein 4 (Cd36), laminin subunit alpha

4 (Lama4), fibulin 2 (Fbln2), ectonucleotide pyrophosphatase/phosphodiesterase 3 (Enpp3), t-cad-

herin (Cdh13), steroid sensitive gene 1 (Ccdc80) (Figure 4D). We tested the heart EC specificity of

AQP7 using confocal analysis on freshly isolated brain, lung, and heart ECs and found that AQP7

was robustly expressed in heart ECs but minimally expressed in brain and lung ECs (Figure 4E).

Single-cell endothelial heterogeneity
In light of the surprising findings that endothelial cells express genes typically associated with sur-

rounding parenchymal cells such as cardiomyocytes or neuronal cells, we next used single cell RNA-

Seq analysis to assess whether the RiboTagEC endothelial signatures are also found in individual

endothelial cells by analyzing endothelial single-cell data from the Tabula Muris compendium

(Tabula Muris Consortium et al., 2018) and the single cell RNA-Seq atlas of the brain and lung

endothelium (Vanlandewijck et al., 2018). Using expression of the endothelial genes Cd31 and

Cdh5 as markers of ECs, we analyzed double positive cells for both markers in Tabula Muris brain,

lung, and heart tissues and performed PCA to assess the extent of endothelial heterogeneity

(Figure 5A). The PCA plot partitioned the cells into groups defined by their tissue of origin, indicat-

ing a tissue-specific EC signature even at the single cell level. Similarly, we performed PCA on ECs in

Betsholtz dataset (which relied on Cd31 and Cldn5 as EC markers) and also found that ECs similarly

clustered according to their tissue of origin (Figure 5B).

We then used these two scRNA-Seq endothelial datasets for the three organs we had analyzed in

our RiboTag experiments and intersected the differentially expressed genes for each organ-specific

endothelial population. The intent of this was to ascertain which tissue-specific EC signature genes

Figure 2 continued

Top RiboTag brain EC cell surface markers identified using the Cell Surface Protein Atlas. (E) Confocal analysis was performed after brain, lung, and

heart ECs were processed on a cytospin to assess brain EC PTN (Pleotrophin) specificity. A scale bar of 20 mm is included on all images.
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Figure 3. Lung endothelial specific signature. (A) Heat map representation of differentially upregulated genes identified by comparing lung ECs to

brain and heart ECs at baseline. The blue to white to red gradient represents increasing expression of the pathway with blue representing minimal

expression while the red represents high expression of the pathway. Individual gene expression values can be visualized at www.rehmanlab.org/ribo (B)

The GSEA results of enriched GO terms from RiboTag lung ECs at baseline. (C) Top RiboTag lung EC signature markers ranked in order of logFC. (D)

Figure 3 continued on next page
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were present in the single cell datasets as well as our RiboTagEC dataset. We found that the shared

brain EC signature across all three datasets (Tabula MurisEC, BetsholtzEC and RiboTagEC) for brain

ECs was enriched for genes involved in ion transport, acid transport, synapse organization and neu-

rotransmitter transport (Figure 5C). This finding is consistent with the brain EC-specific enrichment

of neuronal signaling pathways that had been identified by the RiboTagEC analysis (Figure 2). We

also found that the genes specifically upregulated in the Tabula Muris and Betsholtz lung ECs were

involved in T cell activation, TGFb signaling, and antigen processing and presentation (Figure 5D),

again consistent with the ‘immune activation’ signature identified by the RiboTagEC analysis alone

(Figure 3). Similarly, the shared upregulated genes in Tabula Muris single cell heart ECs were

involved in processes such as cardiac muscle contraction, myofibril assembly and proliferation

(Figure 5E, Figure 4).

We next quantified the intersection of brain, lung and heart endothelial marker genes across the

Tabula Muris, brain and lung EC atlas, and RiboTag datasets. For the brain endothelium, 40 of the

Tabula Muris top 50 brain EC specific genes were also brain EC specific genes in the RiboTag data-

set. In the Betsholtz dataset, 27 of the top 50 brain EC specific genes were present in the RiboTag

brain EC specific genes (Figure 5F). We found that 17 of the top lung endothelial specific genes in

the Betsholtz data set were also found in the list of lung endothelial-specific genes in the RiboTag

model (Figure 5G). Of the 24 top lung endothelial specific genes found in the Tabula Muris data set,

the same genes were also found in the list of lung endothelial-specific genes in the RiboTag model

(Figure 5G).

Organ-specific parenchymal gene signature exists in endothelial scRNA-
Seq
To address further that the parenchymal signatures (Supplementary files 4–6) identified in the

endothelial translatome were simply not driven by low abundance of transcripts, we performed a

Spearman correlation analysis to compare organ-matched RiboTag bulk RNA-Seq data with scRNA-

Seq data generated by the Betsholtz and the Tabula Muris Compendium (Figure 6, Figure 6—fig-

ure supplement 1). In each dataset, we first determined the fold change for all genes using a house-

keeping gene, Sap30l which we identified as being stably expressed across all datasets, and thus

ideally suited to perform relative abundance comparisons (Supplementary files 7–9). Using the fold

change values, we calculated the correlation coefficients between the brain endothelial translatome

and single cell brain ECs from the Betsholtz and Tabula Muris datasets. We found that the correla-

tion between RiboTag and Betsholtz was 0.53 for all genes detected in the brain endothelium

(Figure 6A) while the correlation between RiboTag and Tabula Muris was 0.47 (Figure 6—figure

supplement 1A). We then specifically tested whether the parenchymal signature genes in the brain

endothelium were correlated with the Betsholtz and Tabula Muris individual brain ECs. The correla-

tion of the parenchymal gene expression between RiboTag brain EC samples and Betsholtz brain

ECs was 0.31 (Figure 6B) while with Tabula Muris brain ECs the correlation was 0.28 (Figure 6—fig-

ure supplement 1B). Importantly, the brain EC parenchymal genes including synaptosome associ-

ated protein 47 (Snap47) and synaptotagmin 11 (Syt11) were expressed at similar or higher levels in

the single cell brain ECs from the Betsholtz and Tabula Muris datasets than in the RiboTag brain EC

samples (Figure 6C). We performed identical analysis for the lung and heart endothelium

(Figure 6D–I, Figure 6—figure supplement 1), and found that similar correlation values ranging

between 0.37 to 0.68. Of note, the heart endothelial gene expression was the most correlated organ

across the distinct platforms (Figure 6G–H). In the lung and heart endothelium, we also found that

individual genes representing the parenchymal signature were expressed at similar or higher levels

in the single cell samples (Figure 6F, Figure 6G–I), such as the cardiac contractile gene Tropomyosin

(Tpm1), which was expressed at higher levels in individual heart ECs from the Tabula Muris dataset.

Figure 3 continued

Top RiboTag lung EC cell surface markers identified using the Cell Surface Protein Atlas. (E) Confocal analysis was performed after brain, lung, and

heart ECs were processed on a cytospin to assess lung EC RAGE (Receptor for Advanced Glycation Endproducts) specificity. A scale bar of 20 mm is

included on all images.
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Top RiboTag Heart EC Signature Genes
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Figure 4. Heart endothelial specific signature (A) Heat map representation of differentially upregulated genes identified by comparing heart ECs to

brain and lung ECs at baseline. The blue to white to red gradient represents increasing expression of the pathway with blue representing minimal

expression while the red represents high expression of the pathway. Individual gene expression values can be visualized at www.rehmanlab.org/ribo (B)

The GSEA results of enriched GO terms from RiboTag heart ECs at baseline. (C) Top RiboTag heart EC signature markers ranked in order of logFC. (D)

Figure 4 continued on next page
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In situ organ-specific endothelial early- and late-inflammation signature
We next analyzed the dynamics of the EC inflammatory response in each tissue, focusing on the

early response (6 hr post systemic LPS) and late response (24 hr post systemic LPS). At these time

points, we identified the genes most upregulated by inflammatory injury in each tissue (Figure 8—

figure supplement 1). In the brain endothelium, we identified several differentially expressed acute

inflammatory factors including selectins, chemokine receptors, and interleukins which were strongly

activated 6 hr post LPS treatment (Figure 7A–C). We analyzed the kinetics during the entire time

course for the early inflammatory brain endothelial specific genes such as eosinophil chemotactic

protein (Ccl11) (Figure 7C) and found that Ccl11 is markedly upregulated at the 6 hr time point and

remains significantly higher in the brain endothelium, but by one week post LPS injection the expres-

sion level returns to the same level as that seen in lung and heart endothelium. In the lung endothe-

lium, we discovered that the most upregulated inflammatory pathways included chemokines,

response to cellular stress, hematopoiesis genes and early immune response mediators (Figure 7D–

F). Lymphocyte antigen 96 (Ly96) was strongly upregulated (Figure 7D) whereas the apoptosis gene

caspase 6 (Casp6) was markedly downregulated 6 hr post LPS treatment and remained lower in lung

ECs than in brain or heart ECs throughout the injury period (Figure 7F). In heart ECs, leukocyte

migration and neutrophil activation pathways were most upregulated by inflammatory injury

(Figure 7G–I). At 24 hr post injury, we found the peak upregulation of inflammatory genes (Figure 8)

with a substantial overlap of the inflammatory response pathways, predominantly associated with

neutrophil and leukocyte chemotaxis and migration, in the brain (Figure 8A–C), lung (Figure 8D–F),

and heart ECs (Figure 8G–I).

Tissue-specific dynamic response following LPS-induced inflammatory
activation
After establishing the baseline heterogeneity of brain, lung and heart ECs, we next studied the

dynamics of the organ-specific baseline endothelial signature during systemic inflammation, we col-

lected translatome data of the brain, lung, and heart endothelium at several time points following

LPS treatment. By computationally analyzing RiboTagEC mRNA from brain, lung, and heart at 0 hr, 6

hr, 24 hr, 48 hr, 72 hr, and 168 hr post-LPS administration, we were able to identify tissue-specific

molecular mechanisms modulated in endothelial injury, repair, and regeneration.

We first investigated the tissue-specific baseline signatures over time in order to address the

question of whether the baseline core endothelial functions were disrupted during inflammatory acti-

vation. The time-course of the brain endothelium specific endothelial genes were plotted to com-

pare their kinetics to the lung and heart endothelium (Figure 9A). We found that selected genes

which constitute the tissue-specific EC signature during homeostasis are modulated during inflam-

matory injury. For instance, the expression level of von Willebrand factor A domain containing pro-

tein 1 (Vwa1) which we found to be a brain endothelial gene during homeostasis decreases during

early and late inflammation and then returns to baseline levels one-week post LPS injury, whereas its

levels in lung and heart endothelium remain relatively low during the entire time course. On the

other hand, there are signature genes such as glucose transporter protein 1 (Slc2a1) which is consis-

tently upregulated in brain ECs throughout the post-injury period.

From the analysis of the lung endothelium specific endothelial genes heatmap (Figure 9B), it is

apparent that expression of nearly all the canonical endothelial genes drastically decrease during the

early and late inflammatory time points. This is an important finding because it suggests that the

lung endothelium experiences the most profound dysregulation of core endothelial genes following

LPS injury. We also identified lung endothelial specific genes which are solely modulated in the lung

endothelium during the inflammatory time course. For instance, the expression levels of forkhead-

related transcription factor 1 (Foxf1) and tetraspanin8 (Tspan8) significantly decrease in the lung

endothelium at 6 hr and 24 hr post LPS treatment and then gradually recover back to baseline levels,

but both genes remain minimally expressed in the brain and heart endothelium.

Figure 4 continued

Top RiboTag heart EC cell surface markers identified using the Cell Surface Protein Atlas. (E) Confocal analysis was performed after brain, lung, and

heart ECs were processed on a cytospin to assess heart EC AQP7 (Aquaporin 7) specificity. A scale bar of 20 mm is included on all images.
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Figure 5. Single-cell endothelial heterogeneity (A) PCA of endothelial scRNA-Seq data from the Tabula Muris collection of mouse tissues colored by

tissue. (B) PCA of endothelial scRNA-Seq data from the Betsholtz Lab of mouse tissues colored by tissue. The GSEA results of enriched GO terms from

overlapping differentially expressed genes between RiboTag and Betsholtz or Tabula Muris for (C) brain ECs, (D) lung ECs, and (E) heart ECs. (F)

Figure 5 continued on next page
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The endothelial genes which were specifically upregulated in the heart endothelium at baseline

do not appear to be affected to the extent that the brain and lung endothelium were during LPS

stimulation. In the heatmap (Figure 9C), a few genes such as Rho family GTPase 1 (Rnd1) and plate-

let glycoprotein (Cd36) undergo a robust change in expression during the time course. From our

analysis, we found that the endothelial genes specific to the heart endothelium are much more abun-

dant in the heart versus the other tissues. For example, caveolin 1 (Cav1) and vascular endothelial

growth factor receptor 2 (Kdr) maintained a high expression level in the heart endothelial samples

during the entire LPS time course whereas in the brain and lung endothelial samples, we see signifi-

cantly lower expression.

We next focused of the organ-specific endothelial glycolysis signature to investigate the tissue-

specific dynamics of glycolytic genes. The brain endothelial basal translatome upregulated the great-

est number of glycolytic genes compared to the lung and heart endothelium. Interestingly, when we

analyzed the time course of these brain endothelial specific glycolysis genes, we found that they

maintain similar levels during the progression and resolution of inflammation (Figure 9—figure sup-

plement 1A). There were only three glycolysis-related genes which were upregulated in the lung

endothelium. When we analyzed these three genes over time, we found that two of them remained

stable whereas 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (Pfkfb3) was dynamic in all

three tissues. Even though this glycolysis regulatory enzyme was specifically upregulated in the lung

endothelium at baseline, we found that it was activated in all tissues during late inflammation/early

repair and then returned to baseline levels (Figure 9—figure supplement 1B). In the heart endothe-

lium, we found that the upregulated glycolytic genes were not modulated during the LPS injury and

recovery (Figure 9—figure supplement 1C).

Discussion
The endothelium which lines the entire vasculature evolves in a tissue-dependent manner during

embryonic development to control organ development, homeostasis, and tissue regeneration

(Augustin and Koh, 2017). Under normal physiological conditions, the endothelium maintains a qui-

escent interface between the blood and tissue. During inflammatory stimulation, the endothelium

becomes actively responsible for controlling blood flow, vascular permeability, leukocyte infiltration,

and tissue edema (Pober and Sessa, 2015). Understanding the organotypic endothelial heterogene-

ity that exists at baseline as well as during the transition from the normal state to the inflammatory

state is essential for understanding endothelial plasticity in homeostasis and tissue-specific responses

to inflammation (Chaqour et al., 2018; Dejana et al., 2017; Krenning et al., 2016;

Malinovskaya et al., 2016).

The RiboTag strategy was originally applied to expression profiling of neurons and Sertoli cells

(Sanz et al., 2009). Cell type specificity of the approach depends on the accuracy of the Cre driver

that is combined with the Rpl22HA allele. This aspect is highlighted in our study and we revealed the

precision of the inducible system for achieving endothelial specificity. Our results demonstrate that

the RiboTag approach provides a useful method to identify distinct molecular gene expression sig-

natures of tissue-specific endothelium. Performing high-throughput gene expression analysis on the

translatome using the RiboTag approach enabled us to establish tissue-specific molecular signatures

underlying in situ endothelial heterogeneity. During homeostasis, we found that the endothelial

translatome in each organ is uniquely characterized by a signature adapted to the surrounding

parenchymal tissue. The metabolic adaptation of the endothelium is less surprising as the endothe-

lium plays a critical role in supplying nutrients to the host tissue (Malinovskaya et al., 2016;

Hamuro et al., 2016). The upregulation of the glucose transporter 1 (Slc2a1) in brain ECs is consis-

tent with the massive glucose consumption of the brain (Schuenke et al., 2017), whereas the upre-

gulation of the fatty acid metabolism genes Cd36 and Fabp4 in the heart likely reflects the

importance of fatty acids to meet the bioenergetic demands of cardiomyocytes (Elmasri et al.,

2009; Silverstein and Febbraio, 2009). Similarly, the upregulation of immune and stress response

Figure 5 continued

Overlap of top 50 scRNA-Seq brain EC marker genes with RiboTag brain EC marker genes. (G) Overlap of top 50 scRNA-Seq lung EC marker genes

with RiboTag lung EC marker genes.
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Figure 6. Expression Correlation Analysis between endothelial gene expression generated by RiboTag, Betsholtz, and Tabula Muris Spearman

correlation scatter plots of average gene expression in RiboTag bulk RNA-Seq, Betsholtz scRNA-Seq (Smart-Seq2), and Tabula Muris scRNA-Seq (10x

Genomics). (A) All genes detected in brain ECs. (B) Parenchymal (non-endothelial) genes detected in brain ECs. (C) All genes detected in lung ECs. (D)

Figure 6 continued on next page
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genes in the lung endothelium is expected due to the lung’s continuous exposure to environmental

stressors and pathogens contained in the inhaled air (Al-Soudi et al., 2017; Kaparakis-Liaskos and

Ferrero, 2015).

However, the adaptation of the endothelium appears to extend far beyond the supply of metabo-

lites and nutrients to the parenchyma. We surprisingly found that there exists a multidirectional

molecular cross-talk of vessel wall cells with the cells of their microenvironment. In the brain endo-

thelium, synapse organization and neurotransmitter transport genes such as Glul were highly

enriched, which discloses the molecular mechanisms underlying how excitatory neurotransmitters

such as glutamate can be transported among brain endothelial cells, neurons, and astrocytes (Haw-

kins, 2009). We also found that lung ECs expressed genes typically found in the lung epithelium

such as Surfactant Protein C (Spc) and Mucin1 (Muc1), again indicative of a key interaction of the

lung endothelium with the lung parenchymal epithelium. The upregulation of genes involved in car-

diomyocyte contraction such as Myl2 and Ckmt2 again points to an unexpected adaptation of the

cardiac endothelium to the surrounding cardiomyocytes, possibly suggesting a key role for the

endothelium in modulating cardiac contractility (Cai et al., 1998; Schnittler et al., 1990).

Studying endothelial heterogeneity in response to the systemic inflammatory stress induced by

LPS, we found that the endothelium in each tissue maintains a distinct organ-specific molecular iden-

tity. Brain and heart ECs express classical inflammatory adhesion molecules such as E-Selectin and

P-Selectin, whereas lung ECs upregulate chemokines such as Cxcl1 and Cxcl9. The gene expression

shifts in the lung may also reflect the severe loss of lung endothelium recently observed during

endotoxemia (Merle et al., 2019). The marked upregulation P-Selectin in the heart and brain is

especially interesting because P-Selectin is a key mediator of thrombosis and platelet aggregation

(Merle et al., 2019), and both the brain and heart are especially vulnerable to thrombotic events.

During the later stage of inflammation at 24 hr, the inflammatory gene expression pathways across

all tissues demonstrated significant upregulation of leukocyte migration and chemotaxis genes, sug-

gesting that despite the persistent heterogenous signatures of the ECs in the respective organs,

there is a broad shared program of inflammatory signaling pathways in response to systemic

endotoxemia.

One of the requisites for targeted therapies is the need to deliver such agents to specific organs,

thus underscoring the importance of leveraging organ-specific endothelial heterogeneity for such

approaches. It has been suggested that vascular endothelial cells in different organs or disease

states express specific markers, or ‘zip codes’ (Folkman, 1999), so that ligands directed against

organ-specific vascular endothelial cell surface markers could be used to deliver effector molecules

to specific vascular beds. To address this concept, we expanded our analysis by analyzing 1296 cell

surface glycoproteins, including 136 G-protein coupled receptors and 75 membrane receptor tyro-

sine-protein kinases. This allowed us to establish EC surface markers that were specifically upregu-

lated in in each vascular bed. Not only was this integrative analysis valuable for the establishment of

EC ‘zip codes’ based on the organs they are derived from, but it may also provide insights about tis-

sue-specific cell-cell contacts of ECs that allow them to interact with niche or parenchymal cells in

each tissue (Maoz et al., 2018; Zamani et al., 2018).

Among the most intriguing findings of our study was the prominent ‘parenchymal’ signature of

endothelial cells in each organ such as contractile genes in the cardiac endothelium and neurotrans-

mitter transport or synaptic vesicle genes in the brain endothelium. A rank-based statistical analysis

demonstrated that only selected genes of surrounding parenchymal cells were expressed in the

endothelium of each organ. In the setting of a possible contamination, the most abundant genes

expressed in the surrounding cells would also be the most abundant genes found in the cell of

Figure 6 continued

Parenchymal (non-endothelial) genes detected in lung ECs. (E) All genes detected in heart ECs. (F) Parenchymal (non-endothelial) genes detected in

heart ECs.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Endothelial gene expression correlation analysis across three distinct datasets (RiboTag Endothelial Translatome, Betsholtz

single-cell transcriptomics, Tabula Muris single-cell transcriptomics).
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Figure 7. The early inflammation (6 hr) markers across organ-specific endothelial cells. (A) Heat map representation of differentially expressed genes

identified by comparing brain ECs to lung and heart ECs at the 6 hr time point. The orange to yellow to white gradient represents increasing

expression of the pathway with orange representing minimal expression while the white represents high expression of the pathway. (B) The GSEA

results of enriched GO terms from RiboTag brain ECs at the 6 hr time point. (C) Tissue-specific kinetics of a specific RiboTag brain EC early

inflammatory marker during the progression and resolution of inflammation. (D) Heat map representation of differentially expressed genes identified by

Figure 7 continued on next page
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interest. That the rank order of parenchymal genes abundance in the endothelium differed from that

found in the parenchyma suggests tissue-specific programming and adaptation of the endothelium.

To further address the concern of possible mRNA contamination by neighboring cells in the Ribo-

TagEC data, we systematically analyzed two independent endothelial single cell RNA-Seq datasets

(Vanlandewijck et al., 2018; Tabula Muris Consortium et al., 2018), which can exclude contaminat-

ing tissue cells by examining the identity of each sequenced cell. We found that EC signature genes

identified by our RiboTagEC approach such as the synaptic vesicle gene Snap47 and cardiac contrac-

tile gene Tropomyosin were also expressed in individual brain and heart ECs as identified by scRNA-

Seq. Importantly, we found a substantial overlap of individual signature genes across our data and

both scRNA-Seq datasets. Even though the approaches to obtain the data were so different, this is

a remarkable degree of consilience. We used a genetic VE-cadherin-Cre to label endothelial ribo-

somes whereas the Tabula Muris scRNA-Seq dataset relied on mRNA markers of endothelial cells

and Betsholtz dataset used Claudin5 lineage tracing combined with endothelial gene expression

markers to identify individual ECs.

Although the bulk of scRNA-Seq tissue-specific genes were found in the Ribotag dataset, the

converse was not true. Not all RiboTagEC signature genes were present in the single cell RNA-Seq

datasets. We think this likely reflects the greater depth and sensitivity of Ribotag RNA-Seq because

current single cell technologies are limited in their ability to detect the expression of individual

genes in a given cell (Bacher and Kendziorski, 2016; Zhu et al., 2018; Kharchenko et al., 2014;

Lun et al., 2016; Vallejos et al., 2017). Not all single ECs expressed parenchymal genes such as

Tropomyosin or Snap47 but those expressing them did so at an even higher levels than what we

found in the RiboTagEC data. The reason for this might be that RiboTagEC data represent an aggre-

gate of all ECs in a tissue. It is therefore possible that the tissue adaptation of individual ECs may be

most prominent in anatomically distinct ECs, for example those in close proximity to parenchymal

cells such as neurons and astrocytes. Furthermore, if the expression of parenchymal gene signatures

such as synaptic vesicle genes or cardiac contractile genes in the endothelium is dependent on envi-

ronmental cues from neighboring cells or the extracellular matrix, the disassociation of the cells

required for single cell RNA-seq may have further reduced mRNA levels of these genes

(Haimon et al., 2018; Rossner et al., 2006; Sugino et al., 2006). Sequencing a larger number of

individual ECs in these tissues may enable identification of additional EC subsets with the most

prominent parenchymal signatures, and a single cell sequencing approach that preserves the anat-

omy of the tissue such as Slide-Seq (Rodriques et al., 2019) may also be useful to address the in

situ transcriptomic signature.

Using the RiboTag model, we were able to characterize the endothelial translatome profile from

distinct tissues. Our analysis uncovered a previously unrecognized degree of endothelial plasticity

and adaptation to the parenchymal tissues, raising intriguing questions about the role that the endo-

thelium plays in modulating parenchymal tissue function that likely go far beyond the classically

ascribed roles of supplying oxygen, metabolites and solutes. Further studies such as endothelial-spe-

cific deletion of neurotransmitter transport or cardiac contractile genes will be required to establish

the functional roles of these tissue-specific genes expressed in the endothelium of each organ.

Understanding the biological significance of endothelial plasticity and adaptation to the parenchyma

will be important in providing a fuller picture of endothelial function during homeostasis and stress

in each tissue.

Figure 7 continued

comparing lung ECs to brain and heart ECs at the 6 hr time point. The orange to yellow to white gradient represents increasing expression of the

pathway with orange representing minimal expression while the white represents high expression of the pathway. (E) The GSEA results of enriched GO

terms from RiboTag lung ECs at the 6 hr time point. (F) Tissue-specific kinetics of a specific RiboTag lung EC early inflammatory marker during the

progression and resolution of inflammation. (G) Heat map representation of differentially expressed genes identified by comparing heart ECs to brain

and lung ECs at the 6 hr time point. The orange to yellow to white gradient represents increasing expression of the pathway with orange representing

minimal expression while the white represents high expression of the pathway. (H) The GSEA results of enriched GO terms from RiboTag heart ECs at

the 6 hr time point. (I) Tissue-specific kinetics of a specific RiboTag heart EC early inflammatory marker during the progression and resolution of

inflammation.
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Figure 8. The late inflammation (24 hr) markers across organ-specific endothelial cells. Heat map representation of differentially expressed genes

identified by comparing brain ECs to lung and heart ECs at the 24 hr time point. The orange to yellow to white gradient represents increasing

expression of the pathway with orange representing minimal expression while the white represents high expression of the pathway. (B) The GSEA

results of enriched GO terms from RiboTag brain ECs at the 24 hr time point. (C) Tissue-specific kinetics of a specific RiboTag brain EC late

inflammatory marker during the progression and resolution of inflammation. (D) Heat map representation of differentially expressed genes identified by

comparing lung ECs to brain and heart ECs at the 24 hr time point. The orange to yellow to white gradient represents increasing expression of the

Figure 8 continued on next page
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-HA (Rabbit
polyclonal)

Abcam Cat#: Ab9110;
RRID:AB_307019

(1:133)

Antibody Anti-IgG1(Mouse
monoclonal)

Sigma Cat#: M5284;
RRID:AB_1163685

(1:133)

Antibody Anti-RPL22
(Rabbit
polyclonal)

Invitrogen Cat#: PA5-68320;
RRID:AB_2692054

(1:133)

Antibody Anti-CD31
(Rat monoclonal)

BD Pharmingen Cat#: 550274;
RRID:AB_393571

(1:25)

Antibody Anti-RAGE
(Rabbit polyclonal)

Abcam Cat#: Ab3611;
RRID:AB_303947

(1:3200)

Antibody Anti-PTN
(Mouse
monoclonal)

Santa Cruz
Biotechnology

Cat#: sc-74443;
RRID:AB_1128556

(1:3200)

Antibody Anti-AQP7
(Rabbit
polyclonal)

Novus
Biologicals

Cat#: NBP1-30862;
RRID:AB_2258607

(1:3200)

Antibody Anti-rat
(Donkey
polyclonal)

Invitrogen Cat#: A-21208;
RRID:AB_141709

(1:300)

Antibody Anti-rabbit
(Donkey
polyclonal)

Invitrogen Cat#: A-21207;
RRID:AB_141637

(1:300)

Antibody Anti-mouse
(Goat polyclonal)

Invitrogen Cat#: A11032;
RRID:AB_2534091

(1:300)

Chemical
compound,
drug

Lipopolysaccharide
(LPS)

Sigma-Aldrich Cat#: L2630

Chemical
compound,
drug

collagenase A Roche Cat#:10103586001

Chemical
compound,
drug

red blood
cell lysis buffer

Biolegend Cat#: 420301

Chemical
compound,
drug

Dynabeads Invitrogen Cat#: 11035

Chemical
compound,
drug

Collagenase/
Dispase

Roche Cat#:
11097113001

Continued on next page

Figure 8 continued

pathway with orange representing minimal expression while the white represents high expression of the pathway. (E) The GSEA results of enriched GO

terms from RiboTag lung ECs at the 24 hr time point. (F) Tissue-specific kinetics of a specific RiboTag lung EC late inflammatory marker during the

progression and resolution of inflammation. (G) Heat map representation of differentially expressed genes identified by comparing heart ECs to brain

and lung ECs at the 24 hr time point. The orange to yellow to white gradient represents increasing expression of the pathway with orange representing

minimal expression while the white represents high expression of the pathway. (H) The GSEA results of enriched GO terms from RiboTag heart ECs at

the 24 hr time point. (I) Tissue-specific kinetics of a specific RiboTag heart EC late inflammatory marker during the progression and resolution of

inflammation.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Markers of early (6 hr) and late (24 hr) LPS-induced inflammation in brain, lung, and heart ECs.
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

DNAse Worthington
Biochemical

Cat#: LK003170

Genetic
reagent
(M. musculus)

Mouse: Cdh5CreERT2/+;
Rpl22HA/+

This paper Ref: Materials
and methods –
Experimental
Animals

Genetic
reagent
(M. musculus)

Rpl22HA/+ Jackson Labs JAX: 011029;
RRID:IMSR_
JAX:011029

Genetic
reagent
(M. musculus)

Cdh5CreERT2/+ Jeong et al., 2017,
Sörensen et al., 2009

Other Myelin
Removal
Beads

Miltenyl
Biotec

Cat#: 130-096-433

Other LS columns Miltenyl Biotec Cat#: 130-042-401

Other CD31 microbeads Miltenyl Biotec Cat#: 130-097-418;
RRID:AB_2814657

Other MACS BSA
Stock Solution

Miltenyl Biotec Cat#: 130-091-376

Other autoMACS
Rinsing Solution

Miltenyl Biotec Cat#: 130-091-222

Other MS columns Miltenyl Biotec Cat#: 130-042-201

Other ProLong Gold
mounting medium

Invitrogen CA#: P36934

Software,
algorithm

Zen software ZEISS

Software,
algorithm

STAR v. 2.4.2 Dobin et al., 2013

Software,
algorithm

HTSeq-count
v. 0.6.1

Anders et al., 2015

Software,
algorithm

biomaRt
package
v. 2.26.1

Durinck et al., 2009

Software,
algorithm

ComBat Johnson et al., 2007

Software,
algorithm

limma Ritchie et al., 2015

Software,
algorithm

GSEA Subramanian
et al., 2005

Software,
algorithm

Seurat Butler et al., 2018

Software,
algorithm

Tableau
Public

Tableau
Software

Experimental animals
RiboTag (Rpl22HA/+) mice were purchased from Jackson Labs. Endothelial-specific VE-cadherin-Cre

mice were provided by Dr. Ralf Adams. We crossed the RiboTag mice (Rpl22HA/+) (Sanz et al.,

2009) with the endothelial-specific VE-cadherin-Cre mice (Jeong et al., 2017; Sörensen et al.,

2009) to generate RiboTagEC (Cdh5CreERT2/+; Rpl22HA/+) mice. Following tamoxifen-induced recom-

bination at week 4, HA-tagged Rpl22 was specifically expressed in endothelial cells. To investigate

the mechanisms of organ-specific EC injury, repair, and regeneration we performed RNA-Seq
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Figure 9. Organ-specific endothelial cells uniquely regulate endothelial genes during the progression and resolution of inflammation. (A–C) Time-series

heat map of significantly upregulated endothelial genes at baseline in (A) brain ECs (B) lung ECs and (C) heart ECs. The blue to white to red gradient

represents increasing expression of the pathway with blue representing minimal expression while the red represents high expression of the pathway.

Figure 9 continued on next page
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analysis of gene expression in ECs isolated at 6 hr, 24 hr, 48 hr, 72 hr, and 1 week post-LPS chal-

lenge (10 mg/kg LPS i.p., Sigma-Aldrich Cat#: L2630) with PBS-injected mice serving as controls.

The C57BL/6J mice were purchased from the Jackson Laboratory. All animal experiments were

conducted in accordance with NIH guidelines for the Care and Use of Laboratory Animals and were

approved by the IACUC of the University of Illinois (IACUC Protocol #19–014, IACUC Protocol #13–

175 and IACUC Protocol #16–064).

Isolation of mouse lung, heart and brain
After surgically opening the mouse chest, the brain, lung and heart were harvested after a one-time

perfusion of 20 mL PBS through the left and right ventricular chamber.

Ribosome immunoprecipitation (IP)
The tissue samples were extracted from RiboTagEC mice, flash-frozen in liquid nitrogen and then

stored at �80˚C. The samples were then homogenized on ice in ice-cold homogenization buffer (50

mM Tris, pH7.4, 100 mM KCl, 12 mM MgCl2, 1% NP-40, 1 mM DTT, 1:100 protease inhibitor

(Sigma), 200 units/mL RNasin (Promega) 1 mg/mL heparin and 0.1 mg/mL cycloheximide (Sigma) in

RNase free DDW) 10% w/v with a Dounce homogenizer (Sigma) until the suspension was homoge-

neous. To remove cell debris, 1 mL of the homogenate was transferred to an Eppendorf tube and

was centrifuged at 10,000xg and 4˚C for 15 min. Supernatants were subsequently transferred to a

fresh Eppendorf tube on ice, then 100 mL was removed for ‘input’ analysis and 3 mL (=3 mg) of anti-

HA antibody (ab9110, Abcam) or 3 mL (=1 mg) of mouse monoclonal IgG1 antibody (Sigma, Cat#

M5284) or 6 mL anti-RPL22 (Invitrogen Cat# PA5-68320) was added to the supernatant, followed by

1 hr of incubation with slow rotation in a cold room at 4˚C. Meanwhile, Pierce Protein A/G Magnetic

Beads (Thermo Fisher Scientific), 100 mL per sample, were equilibrated to homogenization buffer by

washing three times. At the end of 1 hr of incubation with antibody, beads were added to each sam-

ple, followed by incubation 1 hr in cold room at 4˚C. After that, samples were washed three times

with high-salt buffer (50 mM Tris, 300 mM KCl, 12 mM MgCl2, 1% NP-40, 1 mM DTT, 1:200 protease

inhibitor, 100 units/mL RNasin and 0.1 mg/mL cycloheximide in RNase free DDW), 5 min per wash in

a cold room on a rotator. At the end of the washes, beads were magnetized, and excess buffer was

removed, 350 mL Lysis Buffer was added to the beads and RNA was extracted with RNeasy plus Mini

kit (Qiagen). RNA was eluted in 30 mL H2O and taken for RNA-Sequencing.

RNA-Sequencing
RNA quality and quantity were assessed using an Agilent Bio-analyzer. RNA-Seq libraries were pre-

pared using Illumina mRNA TruSeq kits as protocolled by Illumina. Library quality and quantity were

checked using an Agilent Bio-analyzer and the pool of libraries was sequenced using an Illumina

HiSeq4000 and Illumina reagents.

RNA-Sequencing data processing and batch correction
The sequenced reads from all samples were aligned to the mouse (mm10) reference genome with

STAR v. 2.4.2 (Dobin et al., 2013), and the aligned reads were used to quantify mRNA expression

by using HTSeq-count v. 0.6.1 (Anders et al., 2015). Gene symbols were mapped to the ENSEMBL

features using the biomaRt package v. 2.26.1 (Durinck et al., 2009). Preliminary unsupervised analy-

sis of normalized and processed profiles by principal component analysis (PCA) revealed separation

into three major clusters. These clusters largely corresponded to the distribution of samples by

sequencing batch. Consistent with the PCA plots, the distribution of samples by sequencing batch

differed significantly but not by time point after inflammatory treatment or tissue type. To better

harmonize profiles prior to analyses reported here, we normalized expression data of all samples

using ComBat (Johnson et al., 2007). This correction ameliorated the separation by sequencing

Figure 9 continued

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Organ-specific endothelial cells uniquely regulate glycolysis genes during the progression and resolution of inflammation.
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batch without substantially affecting distributions by time point after inflammatory treatment and tis-

sue type.

Baseline tissue-specific gene signatures
We calculated the differential expression level of genes using a one versus others approach in order

to identify signature genes which were upregulated for each tissue at baseline. For instance, to iden-

tify the genes significantly upregulated in brain ECs at baseline, we compared the 0 hr brain EC sam-

ples to 0 hr lung ECs and 0 hr heart ECs. We performed these analyses for all three tissues to

identify baseline organ-specific EC signatures. We utilized the limma R package and applied the

standard limma pipeline (Ritchie et al., 2015) to RNA-Seq data after voom transformation

(Law et al., 2014). For each gene, the log fold-change (logFC) in expression level is derived from

the limma analysis. Genes with FDR < 0.05 were identified as being differentially expressed. All upre-

gulated genes for each tissue were plotted using the heatmap.2 function from the gplots v.3.0.1.1

(Warnes, 2011) R package. The top 10 significantly differentially expressed genes by logFC were

listed.

Baseline tissue-specific pathway analysis
To define the biological function associated with the molecular signature of the tissue-specific ECs,

we specifically performed gene set enrichment analysis (GSEA) (Subramanian et al., 2005) on the

genes which were significantly upregulated (logFC >1) in the tissue of interest. GSEA was performed

on significantly upregulated genes ranked by their p-value using the clusterProfiler package

(Yu et al., 2012) in R with gene ontology (GO) gene sets downloaded from the Molecular Signatures

Database (MSigDB) (Liberzon et al., 2015). The top 20 most enriched GO terms were plotted.

Baseline cell surface markers
Tissue-specific cell surface markers were identified by intersecting tissue-specific differentially

expressed genes with predicted cell surface markers, as reported in the Cell Surface Protein Atlas

(www.proteinatlas.org) (Bausch-Fluck et al., 2015). The top 10 significantly differentially expressed

cell surface proteins by logFC were plotted.

Isolation of lung ECs
The C57BL/6J mice mouse lungs were minced and digested with 3 mL collagenase A at 1 mg/mL in

PBS (Roche, Cat#: 10103586001) at 37˚C water bath for 1 hr. Mixtures were titrated with #18 needles

and then pipetted through a 40 mm disposable cell strainer. After centrifuging 500xg for 5 min and

washing with 1x PBS, the isolated cells were treated with red blood cell lysis buffer (Biolegend,

Cat#: 420301) for 5 min. After washing with 1x PBS twice, cells were incubated in suspension buffer

(Ca2+ and Mg2+ free PBS, 0.5% BSA, 4.5 mg/mL D-glucose, and 2 mM EDTA) with 5 mg anti-CD31

antibody (BD Pharmingen, Cat#: 553370) at 4˚C for 60 min with gentle tilting and rotation. After

washing, cells were then incubated in suspension buffer with pre-washed Dynabeads (20 mL beads in

1 mL buffer, Invitrogen Cat#: 11035) at 4˚C for 60 min with gentle tilting and rotation. After washing

with 1x PBS three times using magnetic separation, lung ECs were dissociated from magnetic beads

with trypsin.

Isolation of brain ECs
The forebrains of C57BL/6J mice were micro dissected and minced in collagenase/dispase (Roche,

Cat#: 11097113001) and DNAse (Worthington Biochemical Cat#: LK003170) and incubated for 1 hr

at 37˚C. Myelin Removal Beads (Miltenyl Biotec, Cat#: 130-096-433) and LS columns (Miltenyl Biotec,

Cat#: 130-042-401) were used. The resulting pellet after myelin removal contained microglia, astro-

cytes and endothelial cells. The endothelial cells were further enriched by using CD31 microbeads

(Miltenyl Biotec, Cat#: 130-097-418).

Isolation of heart ECs
Isolated C57BL/6J mice hearts were minced and digested with prewarmed Collagenase/Dispase mix

(1 mg/mL) (Roche) at 37˚C for 30 min. 75 mL DNAse I per 10 mL cell suspension (1 mg/mL) was

added and the suspension was incubated at 37˚C for 30 min. The digested tissue was filtered using
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70 mm cell strainer followed by RBC lysis in RBC lysis buffer (Biolegend, Cat#: 420301) for 7 min at

room temperature. The cell suspension was diluted with 10 mL of MACS buffer (Prepared in phos-

phate-buffered saline (PBS), pH 7.2, 0.5% bovine serum albumin (BSA), and 2 mM EDTA) by diluting

MACS BSA Stock Solution (Cat#: 130-091-376) 1:20 with autoMACS Rinsing Solution (Cat#: 130-091-

222)) and cells were passed through 40 mm cell strainer followed by centrifugation at 500xg for 5

min to pellet the cardiomyocytes. The supernatant containing endothelial cells was centrifuged at

800xg for 5 min to pellet down the ECs. The endothelial cell enriched pellet was resuspended in 500

mL of MACS buffer and the isolated cells were counted. Endothelial cells were further purified by

using CD31 microbeads (Miltenyl Biotec, Cat#: 130-097-418) and Miltenyl Biotec MS columns (Mil-

tenyl Biotec, Cat#: 130-042-201) through affinity chromatography according to the manufacturer’s

protocol.

Preparation of cytospin slides from brain, lung and heart cells
The Thermo Shandon Cytospin three was used to generate Cytospin slides. Briefly, the Cytoslide

with filter card were inserted into a Cytoclip. The Cytoclip was fastened and placed in a recess of

the Cytospin rotor after sliding a Cytofunnel into it. The required volume of the cell suspension was

pipetted into the Cytofunnel after cell counting and calculation. The Cytospin was centrifuged for

500 rpm for 5 min. The slide was fixed with 4% paraformaldehyde for 10 min and stored in 1x PBS at

4˚C.

Immunofluorescence and confocal microscopy
The slides were permeabilized and blocked with 10% donkey serum, 2% BSA, 0.05% tween in PBS

for 1 hr at room temperature. For lung cells, the slides were incubated with primary antibodies anti-

CD31 (BD Pharmingen, Cat#: 550274, 1:25) and anti-RAGE (Abcam, Cat#: Ab3611, 1:3200) at 4˚C

overnight. The brain ECs were incubated with primary antibodies anti-CD31 (BD Pharmingen, Cat#:

550274, 1:25) and anti-PTN (Santa Cruz Biotechnology, Cat#: sc-74443, 1:3200) at 4˚C overnight. For

the heart samples, primary antibodies anti-AQP7 (Novus Biologicals, Cat#: NBP1-30862, 1:3200) and

anti-CD31 (BD Pharmingen, Cat#: 550274, 1:25) were used and incubated at 4˚C overnight. The next

day, slides were washed and incubated with the fluorescence-conjugated secondary antibody

(AF488 donkey anti-rat 1:300, Invitrogen Cat#: A-21208; AF594 donkey anti-rabbit 1:300, Invitrogen

Cat#: A-21207; AF594 goat anti-mouse 1:300, Invitrogen Cat#: A11032), followed by washing with

1x PBS. Cells were stained with DAPI and mounted on ProLong Gold mounting medium (Invitrogen,

Cat#: P36934). Images were taken with a confocal microscope LSM880 (Zeiss) and analyzed by Zen

software (Zeiss).

Assessing baseline endothelial heterogeneity
Tissue-specific baseline gene expression heatmaps were generated for gene sets related to endo-

thelial function including classical endothelial markers, glycolysis, fatty acid metabolism, and solute

transport. The individual genes listed in the heatmaps contain the tissue-specific differentially

expressed genes which overlapped with each of the respective gene sets.

The classical endothelial markers gene set contains 152 mouse endothelial cell markers down-

loaded from PanglaoDB (Franzén et al., 2019). The mouse glycolysis and fatty acid metabolism

gene sets containing 67 and 52 genes respectively were downloaded from the Rat Genome Data-

base (RGD) https://rgd.mcw.edu/ (Shimoyama et al., 2015). For the transport gene set, the solute

carrier family including 423 membrane transport proteins located in the cell membrane were down-

loaded from the HUGO Gene Nomenclature Committee database (https://www.genenames.org/)

(Hediger et al., 2013).

Computational assessment of mRNA purity
Due to the endothelial cells being surrounded by other tissue-resident cell types, it is likely that the

mRNA isolated from endothelial-specific RiboTagEC samples could contain non-endothelial mRNA.

For this reason, we assessed the mRNA purity of RiboTag endothelial samples isolated from whole

tissue by comparing the gene expression levels of the endothelial-specific RiboTag samples to the

gene expression levels of mRNA from whole tissue. We compared endothelial-specific RiboTagEC
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mRNA expression levels from brain, lung, and heart tissue to whole brain, lung, and heart mRNA

expression levels.

We first acquired RNA-Seq data for whole brain, whole lung, and whole heart tissue from Array

Express (Athar et al., 2019). The three whole brain samples and three whole lung samples were

downloaded from accession number E-MTAB-6081, while the three whole heart samples were down-

loaded from accession number E-MTAB-6798. Raw mRNA counts were processed, and batch cor-

rected in a cohort including the 0 hr RiboTag brain, lung, and heart endothelial mRNA counts. The

preprocessing and batch correction were performed in the same manner as described above.

To identify whether mRNA of tissue-resident cells was isolated during the RiboTag EC mRNA iso-

lation procedure, we calculated a Kendall’s Tau rank coefficient between the most abundant genes

in the RiboTag EC mRNA and whole tissue mRNA. The Kendall’s Tau rank coefficient, ranging

between �1 and 1, allowed us to test whether there was contamination of mRNA from the whole tis-

sue in the RiboTag EC samples. As the coefficient approaches �1, the rank of most abundant genes

differs in both sets of samples; while, as the coefficient approaches 1, the rank of most abundant

genes becomes identical. Using this test, we were able to infer that if the rank of the most abundant

genes in the RiboTag EC sample and the whole tissue is identical, there is contamination of non-

endothelial mRNA in the RiboTag EC mRNA samples. All samples were compared to each other and

heatmaps with Kendall’s Tau rank coefficients were generated to visualize the results.

Single-cell endothelial heterogeneity
To specifically analyze ECs at the single-cell level, we downloaded Tabula Muris data from https://

github.com/czbiohub/tabula-muris and Betsholtz Lab data from NCBI Gene Expression Omnibus

(GSE99235, GSE98816). We filtered out non-ECs from the Tabula Muris brain, lung, and heart data

based on Cd31 and Cdh5 expression. We selected ECs from the Betsholtz Lab brain and lung data

based on Cd31 and Cldn5 expression. All genes that were not detected in at least 10% of all single

cells were discarded. For all further analyses we used 2585 cells expressing 6802 genes from the

Tabula Muris dataset and 873 cells expressing 8116 genes from the Betsholtz Lab dataset. Data

were log transformed for all downstream analyses. We analyzed the data utilizing the Seurat R pack-

age (https://github.com/satijalab/seurat; http://satijalab.org/seurat/) (Butler et al., 2018). PCA anal-

ysis of organ-specific ECs was performed in each dataset separately using the ‘RunPCA’ function of

the Seurat package (Butler et al., 2018). Differential expression analysis for organ-specific endothe-

lial cells was performed using a Wilcoxon rank-sum test as implemented in the ‘FindAllMarkers’ func-

tion of the Seurat package. GSEA was performed on significantly upregulated genes ranked by their

p-value using the clusterProfiler package (Yu et al., 2012) in R with gene ontology (GO) gene sets

downloaded from the Molecular Signatures Database (MSigDB) (Liberzon et al., 2015).

Comparison of organ-specific endothelial translatome and endothelial
single-cell transcriptomic data
Cross-platform comparisons between bulk RNA-Seq data and scRNA-Seq data required computing

the fold change of each gene relative to a housekeeping gene. We calculated the relative fold

change by dividing the expression value for every gene in every sample by an invariable housekeep-

ing gene. We chose Sap30l as the housekeeping gene because it was invariable in all three datasets.

By generating the fold change matrix in all three datasets, we were then able to use these values to

compare relative abundances for genes of interest. We next calculated Spearman’s correlation coef-

ficients for all genes shared between the organ-specific endothelial translatome, Tabula Muris

scRNA-Seq, and Betsholtz scRNA-Seq datasets, and then separately for all parenchymal (non-endo-

thelial) genes.

Tissue-specific endothelial kinetics following LPS-induced injury
To ascertain the kinetics of the tissue-specific endothelial signatures during inflammation we ana-

lyzed the time-series RNA-Seq data with the gene sets referenced above: classical endothelial

markers, glycolysis, fatty acid metabolism, and transport. To visualize the tissue-specific dynamics for

predominant endothelial functions, we plotted a heatmap which includes the tissue-specific differen-

tially expressed genes for each gene set.
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Early and late tissue-specific inflammatory markers
To identify the inflammatory genes that were upregulated in the LPS 6 hr samples as compared to

the baseline samples, we applied the standard limma pipeline (Ritchie et al., 2015) for genes in the

‘inflammatory response’ gene ontology term (GO:0006954). The analysis was carried out on the tis-

sue specific LPS treated samples against the baseline tissue-specific sample. Limma statistically eval-

uates each inflammatory gene and returns the genes which show statistically significant change

between the inflammatory time point and baseline. We applied this approach to the early inflamma-

tion time point, 6 hr, and the late inflammatory time point, 24 hr. Heatmaps were generated to visu-

alize the tissue-specific inflammatory genes and their kinetics.

Online endothelial translatome expression database (www.rehmanlab.
com/ribo)
The endothelial translatome expression database is hosted on Amazon S3. The website was con-

structed using Angular 8.0, JavaScript, HTML5, and CSS. Barplots and heatmaps were generated for

genes of interest using Tableau Public. The visualizations were integrated into the web application

using the Tableau JavaScript API. RiboTag log2 normalized baseline and inflammation time-course

translatome expression data were uploaded to Tableu. The averages were computed using Tableau

calculated fields. Tableau dashboards and workbooks were created to generate bar plots and heat-

maps for online publishing.
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RiboTag EC samples are provided for each gene.

. Supplementary file 3. Heart endothelial-specific gene list. The RiboTag heart endothelial signature

genes are listed in rank order according to log fold-change (LogFC). The expression levels for all

baseline RiboTag EC samples are provided for each gene.

. Supplementary file 4. Brain endothelial parenchymal signature. The RiboTag brain EC signature

genes which are not found in the PanglaoDB list of endothelial cell marker genes.

. Supplementary file 5. Lung endothelial parenchymal signature. The RiboTag lung EC signature

genes which are not found in the PanglaoDB list of endothelial cell marker genes.

. Supplementary file 6. Heart endothelial parenchymal signature. The RiboTag lung EC signature

genes which are not found in the PanglaoDB list of endothelial cell marker genes.

. Supplementary file 7. Brain endothelial signature gene expression across translatome and single

cell transcriptomes. The relative abundance for brain endothelial translatome signature genes in

RiboTag brain EC translatome samples, Betsholtz brain endothelial single-cell transcriptomes, and

Tabula Muris brain endothelial single-cell transcriptomes using a housekeeping gene, Sap30l, to cal-

culate fold change.

. Supplementary file 8. Heart endothelial signature gene expression across translatome and single

cell transcriptomes. The relative abundance for heart endothelial translatome signature genes in

RiboTag heart EC translatome samples, Betsholtz heart endothelial single-cell transcriptomes, and

Tabula Muris heart endothelial single-cell transcriptomes using a housekeeping gene, Sap30l, to cal-

culate fold change.

. Supplementary file 9. Lung endothelial signature gene expression across translatome and single

cell transcriptomes. The relative abundance for lung endothelial translatome signature genes in

RiboTag lung EC translatome samples, Betsholtz lung endothelial single-cell transcriptomes, and

Tabula Muris lung endothelial single-cell transcriptomes using a housekeeping gene, Sap30l, to cal-

culate fold change.

. Transparent reporting form
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Data availability

RNA Sequencing data have been deposited in GEO under accession code GSE136848. We down-

loaded Tabula Muris data from https://github.com/czbiohub/tabula-muris and Betsholtz Lab data

from NCBI Gene Expression Omnibus (GSE99235, GSE98816).

The following dataset was generated:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Rehman J 2019 Endothelial Heterogeneity Across
Distinct Vascular Beds During
Homeostasis and Inflammation
Using RiboTag Strategy

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE136848

NCBI Gene
Expression Omnibus,
GSE136848

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL
Database and
Identifier

Vanlandewijck M,
He L, Mäe M,
Andrae J, Betsholtz
C

2017 Single cell RNA-seq of mouse lung
vascular transcriptomes

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE99235

NCBI Gene
Expression Omnibus,
GSE99235

Vanlandewijck M,
He L, Mäe M,
Andrae J, Betsholtz
C

2017 Single cell RNA-seq of mouse brain
vascular transcriptomes

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE98816

NCBI Gene
Expression Omnibus,
GSE98816

The Tabula Muris
Consortium

2018 Tabula Muris: Transcriptomic
characterization of 20 organs and
tissues from Mus musculus at single
cell resolution

https://www.ncbi.nlm.
nih.gov/geo/query/acc.
cgi?acc=GSE109774

NCBI Gene
Expression Omnibus,
GSE109774
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