
*For correspondence:

tomokazu.souma@duke.edu

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 9

Received: 10 September 2019

Accepted: 16 April 2020

Published: 17 April 2020

Reviewing editor: Florent

Ginhoux, Agency for Science

Technology and Research,

Singapore

Copyright Ide et al. This article

is distributed under the terms of

the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Yolk-sac-derived macrophages
progressively expand in the mouse kidney
with age
Shintaro Ide1,2†, Yasuhito Yahara2,3,4†, Yoshihiko Kobayashi5, Sarah A Strausser1,
Kana Ide1, Anisha Watwe1, Shengjie Xu-Vanpala6, Jamie R Privratsky1,
Steven D Crowley1, Mari L Shinohara6,7, Benjamin A Alman2,3,
Tomokazu Souma1,2*

1Division of Nephrology, Department of Medicine, Duke University School of
Medicine, Durham, United States; 2Regeneration Next, Duke University, Durham,
United States; 3Department of Orthopedic Surgery, Duke University School of
Medicine, Durham, United States; 4Department of Orthopedic Surgery, Faculty of
Medicine, University of Toyama, Toyama, Japan; 5Department of Cell Biology, Duke
University School of Medicine, Durham, United States; 6Department of Immunology,
Duke University School of Medicine, Durham, United States; 7Department of
Molecular Genetics and Microbiology, Duke University School of Medicine, Durham,
United States

Abstract Renal macrophages represent a highly heterogeneous and specialized population of

myeloid cells with mixed developmental origins from the yolk-sac and hematopoietic stem cells

(HSC). They promote both injury and repair by regulating inflammation, angiogenesis, and tissue

remodeling. Recent reports highlight differential roles for ontogenically distinct renal macrophage

populations in disease. However, little is known about how these populations change over time in

normal, uninjured kidneys. Prior reports demonstrated a high proportion of HSC-derived

macrophages in the young adult kidney. Unexpectedly, using genetic fate-mapping and parabiosis

studies, we found that yolk-sac-derived macrophages progressively expand in number with age and

become a major contributor to the renal macrophage population in older mice. This chronological

shift in macrophage composition involves local cellular proliferation and recruitment from

circulating progenitors and may contribute to the distinct immune responses, limited reparative

capacity, and increased disease susceptibility of kidneys in the elderly population.

Introduction
Tissue-resident macrophages constitute a highly heterogeneous and specialized population of mye-

loid cells, reflecting the diversity of their developmental origins and tissue microenvironments

(Mass, 2018; Ginhoux et al., 2010; Schulz et al., 2012; Yona et al., 2013; Gomez Perdiguero

et al., 2015; Mass et al., 2016; Hashimoto et al., 2013; Epelman et al., 2014; Stremmel et al.,

2018; Hoeffel et al., 2015). In addition to their critical roles in host defense against pathogens,

macrophages are central to sterile inflammation, angiogenesis, and tissue remodeling, making them

an attractive target for therapeutic intervention. Tissue-resident macrophages originate from at least

three distinct progenitors: (i) macrophage colony-stimulating factor one receptor (CSF1R)-positive

yolk-sac macrophages; (ii) CX3C chemokine receptor 1 (CX3CR1)-positive yolk-sac macrophages,

also known as pre-macrophages; and (iii) embryonic and neonatal hematopoietic stem cells (HSC)

(Mass, 2018; Ginhoux et al., 2010; Schulz et al., 2012; Yona et al., 2013; Gomez Perdiguero

et al., 2015; Mass et al., 2016; Hashimoto et al., 2013; Epelman et al., 2014; Stremmel et al.,
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2018). These populations are maintained in situ by self-renewal, largely independent of adult hema-

topoiesis (Mass, 2018; Ginhoux et al., 2010; Schulz et al., 2012; Yona et al., 2013;

Gomez Perdiguero et al., 2015; Mass et al., 2016; Hashimoto et al., 2013; Epelman et al., 2014;

Hoeffel et al., 2015; Sawai et al., 2016; Soucie et al., 2016).

Most tissues have mixed populations of different ontogenically-derived macrophages, and their

relative contributions and temporal kinetics are tissue-specific. For example, microglia, Kupffer cells,

and Langerhans cells originate from the yolk-sac, with minimal contribution from HSCs

(Ginhoux et al., 2010; Schulz et al., 2012; Yona et al., 2013; Gomez Perdiguero et al., 2015;

Mass et al., 2016; Sawai et al., 2016). The macrophage composition in the intestinal wall is highly

dynamic. Yolk-sac-derived intestinal macrophages are rapidly replaced by HSC-derived macro-

phages after birth, but a subpopulation of yolk-sac-derived cells persist and self-renew in the special-

ized intestinal niches in adults (Bain et al., 2014; De Schepper et al., 2018). Importantly,

investigators now recognize that macrophage ontogeny contributes to their roles in disease pro-

cesses such as cancer progression; in pancreatic cancer, for example, yolk-sac-derived macrophages

are fibrogenic, while HSC-derived macrophages are immunogenic (Zhu et al., 2017). This raises the

possibility that developmental programs influence how macrophages differentially respond to dis-

ease insults.

Renal macrophages are found in an intricate network surrounding the renal tubular epithelium

(Stamatiades et al., 2016; Berry et al., 2017; Viehmann et al., 2018) and have mixed origins from

both yolk-sac and HSC (Schulz et al., 2012; Mass et al., 2016; Epelman et al., 2014; Munro et al.,

2019). They exert unique functions depending on their anatomical locations; monitoring and clear-

ing immune complexes is a function of cortical macrophages while bacterial immunity is the respon-

sibility of medullary macrophages (Stamatiades et al., 2016; Berry et al., 2017). Renal

macrophages critically control renal inflammation and tissue remodeling after injury with robust phe-

notypic reprogramming (Lever et al., 2019). Despite the importance of these roles, little is known

about how the proportion and distribution of macrophages of different ontogeny change over time

in the normal kidney and whether this influences the increased susceptibility and poorer outcomes

of older patients to acute and chronic kidney diseases (Chen et al., 2019; Chawla et al., 2014;

Sato and Yanagita, 2019). While most preclinical models of kidney diseases have used young ani-

mals, recent papers highlight distinct immune responses in aged mouse kidneys. Aged kidneys

eLife digest Older people are more likely to develop kidney disease, which increases their risk

of having other conditions such as a heart attack or stroke and, in some cases, can lead to their

death. Older kidneys are less able to repair themselves after an injury, which may help explain why

aging contributes to kidney disease. Another possibility is that older kidneys are more susceptible to

excessive inflammation. Learning more about the processes that lead to kidney inflammation in

older people might lead to better ways to prevent or treat their kidney disease.

Immune cells called macrophages help protect the body from injury and disease. They do this by

triggering inflammation, which aides healing. Too much inflammation can be harmful though,

making macrophages a prime suspect in age-related kidney harm. Studying these immune cells in

the kidney and how they change over the lifespan could help scientists to better understand age-

related kidney disease.

Now, Ide, Yahara et al. show that one type of macrophage is better at multiplying in older

kidneys. In the experiments, mice were genetically engineered to make a fluorescent red protein in

one kind of macrophage. This allowed Ide, Yahara et al. to track these immune cells as the mice

aged. The experiments showed that this subgroup of cells is first produced when the mice are

embryos. They stay in the mouse kidneys into adulthood, and are so prolific that, over time, they

eventually become the most common macrophage in older kidneys.

The fact that one type of embryonically derived macrophage takes over with age may explain the

increased inflammation and reduced repair capacity seen in aging kidneys. More studies will help

scientists to understand how these particular cells contribute to age-related changes in susceptibility

to kidney disease.
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exhibit more severe inflammation than young kidneys in response to ischemic and toxic insults, lead-

ing to maladaptive repair and organ dysfunction (Sato and Yanagita, 2019; Sato et al., 2016). Fur-

thermore, there is a growing interest in aging as a fundamental determinant of macrophage

heterogeneity, such as in the heart and serous cavities (Molawi et al., 2014; Bain et al., 2016;

Dick et al., 2019). However, data on the effects of aging on the renal macrophage populations are

lacking. Here, using complementary in vivo genetic fate-mapping and parabiotic approaches, we

identify a previously unappreciated increase in the proportion of yolk-sac-derived macrophages in

the mouse kidney with age.

Results and discussion
Two complementary strategies were used to fate-map CSF1R+, and CX3CR1+ yolk-sac-derived mac-

rophages (Figure 1 and Figure 1—figure supplement 1). Erythromyeloid progenitors (EMP) give

rise to these populations, and the yolk-sac macrophages appear in the yolk-sac around E8.5. Subse-

quently, from E9.0 until E14.5, they proliferate, migrate, and colonize the embryo through the vascu-

lar system (Stremmel et al., 2018; Munro et al., 2019). To lineage-label these cells, we exposed

Csf1r-CreERt; Rosa26tdTomato and Cx3cr1CreERt; Rosa26tdTomato embryos to 4-hydroxytamoxifen (4-

OHT) at E8.5 and E9.5, respectively (Figure 1A and Figure 1—figure supplement 1A),

(Mass, 2018). This efficiently and irreversibly labels yolk-sac-derived macrophages with the tdTo-

mato reporter. Importantly, the approach does not label fetal monocytes or HSCs

(Gomez Perdiguero et al., 2015; Yahara et al., 2020).

At postnatal day 0 (P0), we detected a small number of tdTomato+ cells in kidneys from both

lines (Figure 1 and Figure 1—figure supplement 1). A previous fate-mapping strategy that labels

all HSC-derived cells indicated that 40% to 50% of tissue-resident macrophages in the young adult

kidney originate from HSC; the remainder was inferred to derive from yolk-sac hematopoiesis

(Schulz et al., 2012). Consistent with this inference, we found CX3CR1-lineage labeled cells in kid-

neys from birth, with numbers increasing progressively over time (2 weeks, 2 months and 6 months;

Figure 1, B and C). Surprisingly, we observed an unexpected large increase in the proportion of

tdTomato-positive cells relative to total F4/80-positive cells at 6 months, especially in the cortex and

outer medulla, despite no significant change in the number of F4/80-positive cells per section. This

increase was maintained up to 1 year (Figure 1B). The tdTomato-labeled cells were positive for

mature macrophage markers, F4/80 and CD64 (Figure 1D), (Viehmann et al., 2018; Brähler et al.,

2018). By contrast, we observed only a few F4/80-positive CSF1R-lineage cells inside the kidneys

(Figure 1—figure supplement 1, B and C), as reported previously (Schulz et al., 2012). As CSF1R+

and CX3CR1+ yolk-sac macrophages represent a developmental sequence of tissue-resident macro-

phages derived from EMP, the observed low labeling of CSF1R-lineage cells might be attributable

to differences in labeling efficacies and migration kinetics of progenitors.

To further delineate the chronological shift of renal macrophages, we examined the HSC contri-

bution to renal macrophages using the Flt3-Cre; Rosa26tdTomato mouse line (Mass, 2018;

Yahara et al., 2020; Benz et al., 2008). This mouse line irreversibly labels fetal and adult HSC-

derived multipotent hematopoietic progenitors and their progeny with tdTomato expression. Con-

sistent with the increase of yolk-sac-derived renal macrophages with age, we observed a decreased

number of F4/80+ tdTomato+ cells in the kidneys from 6-month-old mice compared to those from 2-

month-old mice (Figure 2, A and B). These data demonstrate that EMP-derived CX3CR1+ yolk-sac

macrophages and their descendants are major contributors to the resident renal macrophage popu-

lation in aged kidneys.

Our findings raise the question of the underlying mechanisms responsible for the chronological

shift of macrophage composition. We first tested whether the proliferation of yolk-sac-derived renal

macrophages can potentially contribute to their population dynamics. CX3CR1-lineage-labeled cells

that express the proliferation marker, Ki67, are present in kidneys from birth to 6 months of age,

indicating that yolk-sac-derived macrophages retain the potential to expand in numbers through

proliferation (Figure 3, A and B). We further found that higher percentages of CX3CR1-lineage-

labeled F4/80+ cells express Ki67 in comparison to tdTomato-negative F4/80+ cells at 2 weeks and 2

months of age, suggesting that CX3CR1-lineage cells have a higher proliferating capacity

(Figure 3C).
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Another possibility is recruitment of yolk-sac-derived macrophages from extra-renal reservoirs

through the circulation. To test this hypothesis, we generated a parabiotic union between young

Cx3cr1GFP/+ and Cx3cr1CreERt; Rosa26tdTomato mice that had been exposed to 4-OHT in utero at E9.5

(Figure 4A). Effective blood sharing between the pair was confirmed by detecting Cx3cr1-promoter-

Figure 1. CX3CR1-positive yolk-sac macrophage descendants progressively expand in number in kidneys with age. (A) Fate-mapping strategies of

CX3CR1+ yolk-sac macrophages. 4-hydroxytamoxifen (4-OHT) was injected once into pregnant dams at 9.5 dpc and offspring analyzed at the indicated

times (n = 4–6 for P0 to 6-month-old; n = 2 for 12-month-old). Yolk-sac macrophages and their progeny are irreversibly tagged with tdTomato. (B)

Distribution of CX3CR1-lineage cells in postnatal kidneys. Arrows: CX3CR1-lineage cells. (C) Percentage of tdTomato+ to F4/80+ cells. Data are

represented as means ± S.D. ***, p<0.001; ****, p<0.0001; n.s., not significant. (D) Confocal images of F4/80 and CD64 staining in aged kidneys (six mo)

with CX3CR1-lineage tracing (n = 3). Scale bars: 200 mm in B; 20 mm in D.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Percentage of tdTomato+ to F4/80+ cells.

Figure supplement 1. CSF1R-positive yolk-sac macrophage descendants do not expand in number in kidneys.

Figure supplement 2. There is no basal Cre activity in kidneys without 4-hydroxytamoxifen (4-OHT) treatment.
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driven GFP expression in bone marrow cells derived from both mice (data not shown). When ana-

lyzed at 5 weeks after parabiosis, we found a few tdTomato+ cells in the extravascular, interstitial

area of the cortex and medulla of the Cx3cr1GFP parabiont kidneys (0.105 ± 0.04% of total F4/80+

cells; Figure 4, B and C). We also found that a significantly higher percentage of tdTomato-positive

cells expresses Ki67 in the kidneys of Cx3cr1GFP mice compared to the tdTomato-positive cells in

the kidneys of Cx3cr1CreERt; Rosa26tdTomato mice (Ki67+tdTomato+ relative to tdTomato+; 28.55 ±

Figure 2. Age-dependent decrease of HSC-derived F4/80+ cells in the kidneys. The Flt3-Cre; Rosa26tdTomato mouse line was used to examine the

contribution of HSC-derived tissue-resident macrophages. (A) Distribution of F4/80+ Flt3-lineage cells in postnatal kidneys. The kidneys were analyzed

at the indicated times (n = 4–5). HSC-derived cells and their progeny are irreversibly tagged with tdTomato. (B) Percentage of tdTomato+ F4/80+ to

total F4/80+ cells. Note that the number of tdTomato+ F4/80+ cells decreases with age. Data are represented as means ± S.D. *, p<0.05; **, p<0.01.

The online version of this article includes the following source data for figure 2:

Source data 1. Percentage of tdTomato+ F4/80+ cells to total F4/80+ cells.
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Figure 3. CX3CR1-positive yolk-sac macrophage descendants proliferate locally in the kidneys. (A) Schematic of fate-mapping strategy. (B and C)

CX3CR1-lineage macrophages proliferate in neonatal and aged kidneys. Cx3cr1CreERt; Rosa26tdTomato mice were treated with 4-hydroxytamoxifen (4-

OHT) at E9.5 (n = 3–5). Arrowheads: Ki67+ CX3CR1-lineage cells. Percentage of Ki67+ proliferating cells are shown in C. Note that a higher percentage

of CX3CR1-lineage F4/80+ cells (tdTomato+) are Ki67-positive compared to tdTomato– F4/80+ cells. Data are represented as means ± S.D. *, p<0.05; **,

p<0.01; n.s., not significant. Scale bars: 10 mm.

The online version of this article includes the following source data for figure 3:

Source data 1. Percentage of Ki67+ proliferating F4/80+ cells.
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8.23% vs. 3.16 ± 0.74%) (Figure 4, D and E). While further investigation is required, these results

suggest that the tdTomato-positive circulating progenitors may have a significant proliferative

capacity and can slowly contribute to the adult renal macrophage pool. Currently, the origin of the

circulating CX3CR1-lineage cells is not known but we speculate that one site is the spleen, which we

recently identified as a reservoir of CX3CR1+ yolk-sac macrophages (Yahara et al., 2020).

In conclusion, we have shown here that the proportion of yolk-sac-derived, CX3CR1-positive,

macrophages increases significantly in the kidney with age, with recruitment from the circulation and

proliferation being two possible mechanisms. Our findings provide a foundation for future studies to

investigate the functional heterogeneity of ontogenically distinct renal macrophages in younger ver-

sus aged kidneys. These future studies may provide novel insight into age-related susceptibility of

the kidney to acute and chronic diseases.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Genetic Reagent
(M. musculus)

Cx3cr1CreERt The Jackson
laboratory

RRID:IMSR_JAX:020940

Genetic Reagent
(M. musculus)

Csf1r-CreERt
(aka, Csf1r-Mer-
iCre-Mer)

The Jackson
laboratory

RRID:IMSR_JAX:019098

Genetic Reagent
(M. musculus)

Flt3-Cre RRID:IMSR_EM:11790 Flt3-Cre mice were
bred into the C57BL6/J
background for six
generations by the
Shinohara lab.

Genetic Reagent
(M. musculus)

Rosa26tdTomato The Jackson
laboratory

RRID:IMSR_JAX:007914

Genetic Reagent
(M. musculus)

Cx3cr1GFP The Jackson
laboratory

RRID:IMSR_JAX:005582

Antibody Anti-F4/80
(Rat monoclonal)

Bio-Rad
(MCA497)

RRID:AB_2098196 Clone C1:A3-1
IF: 1:100

Antibody Anti-CD64
(Rat monoclonal)

Bio-Rad
(MCA5997)

RRID:AB_2687456 Clone AT152-9
IF: 1:200

Antibody Anti-Endomucin (Rat monoclonal) Abcam
(ab106100)

RRID:AB_10859306 Clone V.7C7.1
IF: 1:100

Antibody Anti-Ki67
(Rat monoclonal)

eBioscience
(14-5698-82)

RRID:AB_10854564 Clone SolA15
IF: 1:200

Antibody Anti-Ki67
(Rabbit monoclonal)

Thermo (MA5-14520) RRID:AB_10979488 Clone SP6
IF: 1:200

Antibody Anti-dsRed
(Rabbit polyclonal)

Rockland
(600-401-379)

RRID:AB_2209751 IF: 1:200

Software,
algorithm

ImageJ NIH,
Bethesda, MD
(Version 1.52P)

RRID:SCR_003070 https://imagej.nih.gov/ij/

Software,
algorithm

GraphPad Prism RRID:SCR_002798 https://www.graphpad.
com/scientific-software/prism/

Study approval
All experiments were performed according to IACUC-approved protocols (A051-18-02 and A196-

16-0).

Animals
The mouse lines were from the Jackson Laboratory (Stock No: 019098; 020940; 007914; and

005582). The Flt3-Cre mouse line was kindly provided from Dr. K Lavine (Washington University, St.

Louis, MO). 75 mg/g body weight of 4-hydroxytamoxifen (4-OHT; Sigma Aldrich, St. Louis, MO)
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dissolved in corn oil (Sigma Aldrich) was intraperitoneally administered into pregnant dams with 37.5

mg/g body weight progesterone (Sigma Aldrich) to avoid fetal abortions. Mice without 4-OHT treat-

ment were used for the specificity of tdTomato signals (Figure 1—figure supplement 2 and Fig-

ure 4—figure supplement 1). Animals were allocated randomly into experimental groups and

Figure 4. CX3CR1-positive yolk-sac macrophage descendants are recruited into adult kidneys from the circulation. (A) Schematic of parabiotic

experiments. (B and C) Localization of tdTomato+ CX3CR1-lineage cells in Cx3cr1GFP kidneys. The tdTomato-positive cells were lineage-labeled in

Cx3cr1CreERt; Rosa26tdTomato mice in utero at E9.5. They migrated into the parabiont Cx3cr1GFP kidneys from circulation. Note that tdTomato+ cells were

detected in extravascular interstitium (n = 4 per group). Endomucin; an endothelial cell marker. *, lumen of capillaries. Arrowheads, CX3CR1-lineage

cells from circulation. (D and E) Circulation-derived CX3CR1-lineage cells proliferate in adult kidneys. Arrowheads, CX3CR1-lineage cells from

circulation. GFP fluorescence was lost during the antigen retrieval process to detect Ki67. Percentages of Ki67+tdTomato+ cells relative to tdTomato+

cells in the kidneys of indicated genotype are shown in E (n = 4 per group). Note that tdTomato+ cells in Cx3cr1GFP kidneys are derived from

circulation. Data are represented as means ± S.D. *, p<0.05. Scale bars: 10 mm in B and C; and in 20 mm in D. Legends for the Supplementary Figures.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Percentages of Ki67+tdTomato+ cells relative to tdTomato+ cells in the kidneys of indicated genotypes.

Figure supplement 1. There is no basal Cre activity in kidneys without 4-hydroxytamoxifen (4-OHT) treatment in the spleen of 2-month-old-mice.
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analyses. To determine experimental group sizes, data from our previous study were used to esti-

mate the required numbers.

Parabiosis surgery
Parabiosis surgery was performed as previously described (Yahara et al., 2020). Briefly, a longitudi-

nal skin incision was performed from elbow to knee joint to each mouse. The two mice were con-

nected by suture. Parabionts were separated 5 weeks after the surgery. The mice were euthanized,

and kidneys and spleen were harvested for analyses. Sham surgery was performed in the same way

except for joining two animals.

Antibodies and sample processing
Primary antibodies: F4/80 (Bio-Rad, Hercules, CA; clone Cl:A3-1), CD64 (Bio-Rad; clone AT152-9),

Endomucin (Abcam; Cambridge, UK; clone V.7C7.1), Ki67 (eBioscience, San Diego, CA; clone

SolA15 and Thermo, Waltham, MA; clone SP6), and dsRed (Rockland, Limerick, PA; cat. #600-401-

379). Fluorescent-labeled secondary antibodies were used appropriately. 7 mm cryosections were

stained using standard protocols. Heat-induced antigen retrieval was performed using pH6.0 sodium

citrate solution (eBioscience). Images were captured using Axio imager and 780 confocal micro-

scopes (Zeiss, Oberkochen, Germany). More than three randomly selected areas from 3 to 5 kidneys

were imaged and quantified using ImageJ.

Statistics and reproducibility
Results are expressed as means ± SD. Unpaired t-test was used for comparing two groups. One-way

ANOVA followed by Dunnett’s correction was used for multiple group comparison. A P-value less

than 0.05 was considered statistically significant.
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