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Abstract The filarial nematode Brugia malayi represents a leading cause of disability in the

developing world, causing lymphatic filariasis in nearly 40 million people. Currently available drugs

are not well-suited to mass drug administration efforts, so new treatments are urgently required.

One potential vulnerability is the endosymbiotic bacteria Wolbachia—present in many filariae—

which is vital to the worm. Genome scale metabolic networks have been used to study prokaryotes

and protists and have proven valuable in identifying therapeutic targets, but have only been

applied to multicellular eukaryotic organisms more recently. Here, we present iDC625, the first

compartmentalized metabolic model of a parasitic worm. We used this model to show how

metabolic pathway usage allows the worm to adapt to different environments, and predict a set of

102 reactions essential to the survival of B. malayi. We validated three of those reactions with drug

tests and demonstrated novel antifilarial properties for all three compounds.

Introduction
Filarial nematodes are responsible for neglected tropical parasitic diseases that are among the lead-

ing causes of morbidity worldwide. One of the most debilitating is lymphatic filariasis (LF)—also

called elephantiasis—which is caused by Brugia malayi, Brugia timori, and Wuchereria bancrofti. As

of 2015, an estimated 38.8 million people had lymphatic filariasis with an estimated 1 billion people

at risk in 72 endemic countries (Vos and GBD 2015 Disease and Injury Incidence and Prevalence

Collaborators, 2016). Transmission occurs when microfilariae released by a female worm within an

infected individual circulate in the blood where they are ingested by one of several species of mos-

quito. In the insect vector, the larvae undergo development; during subsequent blood meals, infec-

tive third-stage filarial larvae (L3) are transmitted to a mammalian host by penetrating the bite

wound. They subsequently develop through molts into adult worms in the lymphatics (Gleave et al.,

2016).
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Current mass drug administration efforts involve a small selection of drugs—diethylcarbamazine,

ivermectin, and albendazole—with limited effectiveness against the adult stages of the parasites. To

prevent transmission and to relieve symptoms, treatment must continue for the lifespan of the adult

worms, which can be up to 15 years (Molyneux et al., 2014). Furthermore, diethylcarbamazine is

contraindicated in regions where Onchocerca volvulus or Loa loa—other filarial nematodes—are

endemic (Gyapong et al., 2005; Taylor et al., 2010). Ivermectin is also contraindicated in regions

where L. loa is co-endemic due to potential life-threatening complications (Gardon et al., 1997;

Boussinesq et al., 1998; Boussinesq et al., 2006). While anthelmintic resistance has not yet mani-

fested as a serious treatment issue in humans as it has in veterinary medicine (Kaplan and Vidya-

shankar, 2012), the potential remains a serious threat; emergence of resistance in these species

against diethylcarbamazine (Eberhard et al., 1991), ivermectin (Awadzi et al., 2004; Eng et al.,

2006), and albendazole (Schwab et al., 2005) has been reported for many years.

An alternative strategy for treatment has been the use of traditional antibiotics to target the

endosymbiotic bacteria that live within most filarial nematodes. These bacteria are from the genus

Wolbachia, specific to each helminth, and found to be essential for adult worm fitness and reproduc-

tion (Taylor et al., 2013b). Targeting these bacteria with the antibiotic doxycycline was shown to

reduce numbers of Wolbachia present in the worms, sterilize adult females, and reduce symptoms of

lymphatic filariasis (Debrah et al., 2009; Rao et al., 2012; Ghedin et al., 2009; Taylor et al., 2010).

While antibiotic treatment remains a viable option for individual patients, long treatment times and

contraindications for children and pregnant women limit its suitability for mass-drug administration

efforts (Taylor et al., 2010). This strategy is ongoing, as recent evidence suggests that the com-

monly used antibiotic rifampicin may also possess filaricidal activity, but these data are preliminary

and have not yet been tested in humans (Aljayyoussi et al., 2017). A more recent study proposes

faster-acting antibiotics that belong to the tetracycline class of drugs (Taylor et al., 2019).

Considering the limitations of current treatment regimens, there is an urgent need to identify

new drug targets for B. malayi that directly impact adult worm survival and, if possible, are specific

enough to avoid the potential complications that arise in regions co-endemic for O. volvulus or L.

loa. The bioinformatic identification of essential pathways as drug targets has been successfully dem-

onstrated against many pathogens, including nematodes (Taylor et al., 2013a), Entamoeba histoly-

tica (Klebanov and Yakovlev, 2007), Plasmodium falciparum (Yeh et al., 2004; Fatumo et al.,

2009; Chiappino-Pepe et al., 2017), and various bacterial pathogens (Rahman and Schomburg,

2006; Kim et al., 2010; Kim et al., 2011). Genome scale metabolic reconstruction and constraint-

based modeling in particular have emerged as effective strategies to identify critical metabolic

enzymes and pathways (Oberhardt et al., 2008; Chavali et al., 2008; Lee et al., 2009; Song et al.,

2013), which, due to their importance in energy production and in generating the building blocks

required for growth and survival, are good potential therapeutic targets (Cotton et al., 2016; Chiap-

pino-Pepe et al., 2017).

These models can be analyzed using flux balance analysis (FBA), an optimization method that is

applied to a metabolic network (reviewed in Orth et al., 2010). Briefly, FBA calculates the maximum

amount of biomass that can be produced given the available nutrients and the reaction constraints

in the model, as well as the flux through each reaction needed to attain that solution. Beyond the

identification of essential genes and potential therapeutic targets, the analyses of metabolic recon-

structions with FBA have been used to identify knowledge gaps and improve annotations in patho-

gens like Pseudomonas aeruginosa (Oberhardt et al., 2008) and Leishmania major (Chavali et al.,

2008), improve bioreactor yields of non-vital compounds in Pseudomonas putida (Puchałka et al.,

2008), explain the complex observed substrate specificities of Desulfovibrio vulgaris (Flowers et al.,

2018), explain observed metabolic changes in the brains of patients with Parkinson’s disease

(Supandi and van Beek, 2018), and even demonstrate the non-biomass related factors affecting tis-

sues growing by cell expansion in tomato plants (Shameer et al., 2020).

Here, we describe the first metabolic reconstruction and constraint-based models of B. malayi.

Using the high quality genome sequence of B. malayi (Ghedin et al., 2007; Foster et al., 2020), we

first generated a network representation of the parasite’s metabolic capabilities. We integrated pre-

viously published stage-specific transcriptome datasets for both B. malayi and its Wolbachia endo-

symbiont (Grote et al., 2017). We revealed stage-specific metabolic dependencies and identified

enzymes that are predicted to be effective targets for drug intervention strategies. In subsequent

drug inhibition studies, we validated three of these targets and show the novel antifilarial properties
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of three human drugs. To our knowledge, this work represents the first compartmentalized meta-

bolic model for any parasitic nematode.

Results

iDC625: The first genome scale metabolic model for B. malayi
To develop a genome scale metabolic model of B. malayi, we first developed a draft network as pre-

viously described (Song et al., 2013; Blazejewski et al., 2015; Cotton et al., 2016) (see Materials

and methods for details). The draft network was then manually curated and divided into three com-

partments: the cytosol and mitochondria of B. malayi, and the Wolbachia endosymbiont.

In order to model B. malayi growth with pFBA (parsimonious FBA), we assembled a set of

required biomass metabolites together with their relative abundances. This collection represents the

biomass objective function and is used in constraints-based modeling to calculate flux distributions

for each reaction in the model. Here we based the objective function on a previously defined func-

tion generated for O. volvulus (Cotton et al., 2016), modified with B. malayi and Wolbachia-specific

values for DNA, RNA and amino acid distributions that were obtained from previously published

studies (Ghedin et al., 2007; Foster et al., 2005; Grote et al., 2017) (see Materials and methods

for the full function).

The final reconstruction, designated iDC625, contains 1266 total reactions involving 1252 total

metabolites. Of the 1266 reactions, 1011 represent enzymes of which 849 are associated with 625

genes; 575 of these enzymatic reactions are associated with the cytosolic compartment, 166 with

the mitochondria, and 270 with Wolbachia (Figure 1). Of the remaining reactions, 226 are associated

with transport across compartments, of which 37 represent metabolite exchange between the mito-

chondria and cytosol, 80 between Wolbachia and the cytosol, and the remaining 109 representing

metabolite exchange between the cytosol and the extracellular milieu. A further 29 reactions are

artificial, used only to organize the biomass components required for the objective function (see

Materials and methods for details). After filtering compartmental duplicates, the 1011 enzymatic

reactions represent 761 unique KEGG reactions. For context, the C. elegans metabolic reconstruc-

tion iCEL1273 (Yilmaz and Walhout, 2016) contains 1985 total reactions representing 929 unique

KEGG reactions; a comparison between these sets indicates that 319 (42%) of the KEGG reactions

are unique to B. malayi and 442 (58%) are shared with iCEL1273. Of the 1252 metabolites, 661 are

associated with the cytosol, 202 with the mitochondrion, 362 with the Wolbachia, and 27 are used in

the artificial conversions of biomass components. These represent 1025 unique KEGG metabolites,

of which 602 (59%) are unique to B. malayi and 423 (41%) are shared with iCEL1273.

We also used life stage-specific gene expression data to constrain the reactions of iDC625. In

total, we obtained relative expression data for 11,840 B. malayi and 823 Wolbachia genes across ten

different life-stages; 87.6% of the B. malayi genes and 96.4% of the Wolbachia genes were

expressed in at least one stage. This yielded 11 total models: unconstrained (open), L3, L3 6 days

post-infection (L3D6), L3 9 days post-infection (L3D9), L4, adult female 30 days post-infection (F30),

adult female 42 days post-infection (F42), adult female 120 days post-infection (F120), adult male 30

days post-infection (M30), adult male 42 days post-infection (M42), and adult male 120 days post-

infection (M120).

Wolbachia weight impacts model performance
Since the presence of Wolbachia directly impacts model dynamics, both through the production of

metabolites that contribute to the biomass objective function as well as the consumption of metabo-

lites to maintain its own growth, the relative weight between bacteria and worm must be considered

in the model. This weight is implemented by weighting the Wolbachia contribution to the biomass

objective function (see Materials and methods), as well as constraining reactions assigned to the

endosymbiont. Using these constraints in a pFBA framework, we examined how changes in Wolba-

chia weights affect the maximum flux through the objective function of the model. As the availability

of a carbon source and of oxygen are two of the most important determinants of the model’s activi-

ties, we examined the model under four different nutrient conditions: high oxygen (580 units) and

high glucose (250 units) (HOHG), high oxygen and low glucose (45 units) (HOLG), low oxygen (90

units) and high glucose (LOHG), and low oxygen and low glucose (LOLG). These units are not
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calibrated to any real-world quantities, so our choices were inherently arbitrary. The low values were

as low as possible where metabolic pathways were functional and relatively stable; these pathways

were utilized in different ways as levels of both nutrients were increased, so our high values were

chosen after the point where pathway utilization became stable again.

By applying these constraints to the otherwise unconstrained model and varying the relative

weight of Wolbachia, we found that the maximum production of the biomass objective function

occurs at Wolbachia weights of 0.04, 0.02, 0.02, and 0.01 under HOHG, HOLG, LOHG, and LOLG,

respectively (Figure 2).

The behavior of the life stage models under changing weights was relatively similar, except for

F120 and M120, which had by far the least biomass production. In all cases the models were more

sensitive to increasing the Wolbachia weight under low oxygen than under low glucose conditions,

as evidenced by the relative gradients associated with LOHG compared to HOLG (Figure 2). Inter-

estingly, the maximum objective function flux under both HOHG and HOLG conditions were

Figure 1. The iDC625 genome scale metabolic model. Network representation of our metabolic reconstruction, where the large colored circles

represent reactions that are connected by metabolites in light grey.
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Figure 2. The effect of the Wolbachia weight on the maximum objective function flux under different nutrient

conditions and life stages. The life stage models were generated by mapping different stage-specific expression

data on the unconstrained (Open) model: larval stage 3 (L3), L3 6 days post-infection (L3D6), L3 9 days post-

infection (L3D9), L4, adult female 30 days post-infection (F30), adult female 42 days post-infection (F42), adult

female 120 days post-infection (F120), adult male 30 days post-infection (M30), adult male 42 days post-infection

(M42), and adult male 120 days post-infection (M120). The dashed line indicates the Wolbachia weight of 0.1,

which is used in all subsequent experiments.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The effect of the Wolbachia weight on the maximum objective function flux when

supplemented with excess pyruvate.
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identical for all eleven models at the maximum Wolbachia weight tested (Supplementary file 1 -

Supplemental Table 1); this indicates that the effects of a very high Wolbachia weight overwhelm

the life stage-specific reaction constraints as well as any benefits from an excess carbon source.

Under all conditions the model was unfeasible with no Wolbachia (which agrees with the experimen-

tally determined essential role of the endosymbiont), and as the Wolbachia weight increased the

objective function peaked rapidly followed by a steady decline. Since the negative impact to the

objective function was minimal until 0.18, we assigned a weight of 0.1 under all nutrient conditions.

This was chosen to minimize the impact on the objective function, while still being conservative in

allowing reasonable flux through Wolbachia reactions.

As Wolbachia population dynamics have been well-studied in B. malayi (McGarry et al., 2004;

Grote et al., 2017), it is tempting to attempt to calibrate our model to life stage-specific population

sizes. However, our model is concerned with the total metabolic capacity of the bacterium, which

may not correlate directly with population size, and there is very little known about the nutrients

available in the environments occupied by many of the life stages, especially metabolically inert

stages like L3 (Li et al., 2009). Further, we cannot directly measure the change in Wolbachia in

response to changing conditions because our models are designed such that the Wolbachia weight

is a parameter in the biomass optimization, not an outcome of that function.

One approximation is to compare the model performance at a high Wolbachia weight between

different conditions, which indicates how well a model is able to tolerate the Wolbachia-associated

resource drain, though the conditional structure of this measurement is reversed compared to a

direct measurement. With this in mind, we attempted to validate our models against a previous find-

ing that Wolbachia populations expanded in adult male B. pahangi worms when supplemented with

exogenous pyruvate (Voronin et al., 2019; Figure 2—figure supplement 1). At a Wolbachia weight

of 1.0, the objective function averaged over HOHG, HOLG, LOHG, and LOLG increased for all life

stage models when excess pyruvate was made available (Supplementary file 1-supplemental table

1: ’The objective flux under a high Wolbachia weight’). The increase was largest in the three adult

male models (10.3%), compared to adult females (6.16%), the larval stages (7.20%), or the uncon-

strained model (5.88%). This effect was not simply an artifact of our choice of Wolbachia weight, as

the same trend was observed when measuring the maximum flux achieved under any Wolbachia

weight with and without the addition of excess pyruvate (Supplementary file 1-supplemental table

2: ’The maximum objective flux achieved with varying Wolbachia weight’).

Altering nutrient conditions reveals a metabolic landscape rich in
alternative energy production pathways
Over the course of its lifecycle, B. malayi encounters a range of different nutrient conditions and

likely regulates enzyme expression to alter metabolic flux to optimize growth in each condition. For

example, adult worms are found in the lymphatic system where the expectation is that the parasite

is exposed to a substantially lower oxygen environment compared to earlier life stages like the L3.

We therefore performed a series of pFBA simulations in which we examined the impact of changes

in two key metabolites on worm growth, oxygen and glucose, in the different life stage models (Fig-

ure 3). Fumarase is one of the measured reactions and is part of the tricarboxylic acid (TCA) cycle

that converts fumarate into malate. In addition to being located directly downstream of Complex II

in the TCA cycle, it is also directly upstream of the anaerobic reverse Complex II (Figure 4). Given

that fumarase is reversible, flux measurements provide an indication of the activity of both aerobic

and anaerobic metabolism. As expected, pFBA predicts a reliance on anaerobic pathways under low

oxygen conditions (Figure 3). However, at an oxygen concentration of 205 flux units (Figure 3, verti-

cal-dashed line), there is a switch to the aerobic pathway in the unconstrained and L3 models. Inter-

estingly, the acetate and propanoate waste transporters are no longer used above this threshold;

the predicted presence of these waste products is consistent with previous studies of helminth

anaerobic metabolism (Tielens et al., 2010; Müller et al., 2012).

To further explore the impact of glucose and oxygen availability on B. malayi metabolism, we

conducted detailed analyses under the four diverse nutrient conditions previously described: HOHG,

HOLG, LOHG, and LOLG. For each condition, the model was provided with sufficient fatty acids (50

units), amino acids (100 units), and several cofactors: ammonia, phosphate, H+, adenine, pyridoxal

phosphate, heme, folate, cholesterol, oleic acid, pantothenate, choline, riboflavin, putrescine,
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Figure 3. Reaction fluxes when varying oxygen and glucose. The activities of the objective function and five other reactions are shown for a range of 25

oxygen and 25 glucose availabilities for each life stage model. The life stage data were generated by mapping different stage-specific expression data

on the unconstrained (Open) model: larval stage 3 (L3), L3 6 days post-infection (L3D6), L3 9 days post-infection (L3D9), L4, adult female 30 days post-

infection (F30), adult female 42 days post-infection (F42), adult female 120 days post-infection (F120), adult male 30 days post-infection (M30), adult

male 42 days post-infection (M42), and adult male 120 days post-infection (M120). For each, pFBA was performed for all 625 combinations of oxygen

and glucose; the color of each pixel in the heatmap indicates the activity of the reaction at that nutrient availability, with white, dark blue, and dark red

indicating no activity, maximum forward, and maximum reverse, respectively. As each reaction has a different activity profile, each has its own color

legend. The four black boxes on each graph indicate what we discuss as low and high concentrations of oxygen (90 and 580 units) and glucose (45 and

250 units), and the vertical dashed line indicates the anaerobic-aerobic threshold at 205 units of oxygen.

Curran et al. eLife 2020;9:e51850. DOI: https://doi.org/10.7554/eLife.51850 7 of 28

Research article Computational and Systems Biology Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.51850


nicotinate, UTP, CTP, Fe2+, and N-acetyl-D-glucosamine; in all simulations, the maximum usage of

fatty acids, amino acids, and cofactors was less than provided.

We observe that the model produces the most biomass under HOHG conditions, as expected.

Instead of using the full TCA cycle, the model predicts a reliance on the glyoxylate shunt to produce

malate and succinate (Figure 4). A large proportion (74.6%) of malate is processed by the TCA cycle

to isocitrate which is recycled back into the glyoxylate shunt, and 18.2% is predicted to be
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processed through anaerobic pathways to produce succinate, a phenomenon termed the Crabtree

effect (Postma et al., 1989; Pfeiffer and Morley, 2014), in which anaerobic pathways are used by

the cell in the presence of high oxygen and glucose. Succinate produced through both pathways is

subsequently exported from the cell as waste. The majority of the oxygen imported (74.5%) is used

to generate ATP through oxidative phosphorylation, while only 6.2% (36 units) is predicted to be

used by Wolbachia.

Under HOLG conditions, growth is predicted to fall to 82% of optimal biomass production. While

the glyoxylate shunt is still used, succinate is no longer exported, but instead is processed by the

TCA cycle to produce energy, with CO2 subsequently exported as waste. Similar to HOHG, 71.2% of

the oxygen is used for oxidative phosphorylation in the mitochondria, while 6.0% (35 units) is used

by Wolbachia.

Under LOHG conditions, biomass production falls to 69%. Here, the glycolytic pathway is used to

generate energy, with glucose metabolized to phosphoenolpyruvate (PEP) producing approximately

half of the total NADH used by the model, which is then transported into the mitochondria via the

malate-aspartate shuttle. The other half of the NADH is produced by the classical anaerobic pathway

involving the conversion of some PEP (37.3%) to pyruvate, which is subsequently transported into

the mitochondria, metabolized to acetate, and excreted as waste. However, most of the PEP

(59.0%) is processed by the nematode-specific anaerobic pathway. Through this pathway, PEP is

metabolized into malate and transported to the mitochondria where it is processed to succinate by

the reverse Complex II, and ultimately converted to propanoate and exported as waste. Under these

conditions, most of the oxygen in the model (61.0%) is used to generate ATP through oxidative

phosphorylation, while 37.8% (34 units) is used by Wolbachia.

Under LOLG conditions biomass production is reduced to 37% of the optimal. Glucose is con-

verted to malate and transported into the mitochondria as observed under LOHG conditions.

Approximately half is processed to succinate by the reverse Complex II, while the other half is used

to generate NADH via conversion to oxaloacetate, a-ketoglutarate (AKG), succinyl-CoA, and then

succinate. All of the succinate is then converted to propanoate and exported. Under these condi-

tions 69.8% of the oxygen is being consumed by oxidative phosphorylation, and 29.6% (27 units) is

used by Wolbachia.

Interestingly, the model predicts a potentially novel form of glutamate metabolism, representing

a combination of the malate-aspartate shuttle and the TCA cycle (Figure 4). It is similar to the utiliza-

tion of malate under LOLG conditions, except that succinate is recycled by the TCA cycle instead of

being exported. In this pathway, glutamate is first transported into the mitochondria in exchange for

aspartate, before combining with oxaloacetate to yield AKG and aspartate. AKG is then processed

by the TCA cycle to regenerate oxaloacetate. The net reaction results in the conversion of glutamate

to aspartate and CO2, along with the production of key energy metabolites: GTP, 2 x NADH, and

ubiquinone. This is almost equivalent to the energy produced by the catabolism of a single molecule

of acetyl CoA by the TCA cycle: 2 x CO2, GTP, 3 x NADH, and ubiquinone. Given that the gluta-

mate/aspartate transporter is driven by the proton-motive force, it is not known if this pathway

would be energetically favourable in vivo (Bremer and Davis, 1975; Bakker et al., 2001). However,

the striking resemblance to the catabolism used by intestinal epithelial cells (Blachier et al., 2009)

and to the relatively recently described ‘glutamine addiction’ pathway used by many cancer cells

(Wise and Thompson, 2010; Mazat and Ransac, 2019) suggests it may be physiologically relevant.

It has previously been suggested that Wolbachia may function to supplement mitochondrial

energy production in filarial nematodes (Darby et al., 2012); our model predictions support this

hypothesis. Under LOLG conditions, Wolbachia is predicted to export the maximum amount of ATP

possible (100 units) into the B. malayi cytosol. It was also suggested that Wolbachia uses pyruvate as

its primary carbon source (Voronin et al., 2016), but under LOLG conditions pyruvate import is

nearly zero, and Wolbachia is using the novel glutamate metabolic pathway described above. Under

LOHG conditions, Wolbachia ATP export drops to 90% compared to LOLG conditions. Pyruvate

import increases substantially (nine units instead of 1), and the model uses both the TCA cycle and

the glutamate metabolic pathway to generate energy. The Wolbachia metabolic pathways appear

much the same under the other conditions, except that ATP export drops to 71%, and 44% of LOLG

for HOLG and HOHG, respectively.
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Life stage specific metabolic models of B. malayi reveal a dynamic
reliance on alternative pathways
To determine how metabolic pathway dependencies may vary across the B. malayi life cycle, pFBA

was performed under the four different nutrient conditions for each of the ten life cycle stage mod-

els (Figure 5). As expected, the models produced the most biomass under HOHG conditions, and

the unconstrained (open) model produced the most under all conditions. In general, models are able

to produce more biomass when presented with additional nutrients, which is why biomass produc-

tion increases when moving from low glucose to high glucose, or from low oxygen to high oxygen

conditions.

There was little difference under LOLG conditions between any of the models, except for adult

worms at 120 dpi (M120 and F120). This indicates that the different reaction constraints are playing

a minor role under these conditions, and that the concentrations of glucose and oxygen are the lim-

iting factors.

While the L3 model experiences a large benefit under LOHG or HOLG conditions compared to

LOLG, there is no increased benefit when moving from either to HOHG conditions. This indicates

that the reaction constraints imposed for this stage limit the model’s ability to exploit increases in

both nutrients, in contrast to the open model which sees biomass increasing when moving from

either LOHG or HOLG to HOHG. The M120 model appears to be saturated for these nutrients even

under LOLG conditions, as its biomass production never increases when more of either nutrient is

made available. The F120 model appears to be nearly saturated and receives only a modest benefit

from additional glucose or oxygen.

Besides measuring the biomass production for each model under different nutrient conditions,

we also quantified the number of reactions used by the models (Figure 6). We found that the Wol-

bachia compartment changes the least among the different models and conditions, while the mito-

chondrial compartment shows the most variation. This also allows us to identify ‘enzymatically

constrained’ models, which is a term that relates to the number of possible ways a model is able to

achieve its maximum objective flux; if there are multiple alternate metabolic pathways that can be

used to satisfy the objective function, a model would be considered enzymatically unconstrained.

Models generally become less constrained as they are provided with more nutrients.

Figure 5. Biomass production across life stages under different nutrient conditions. The maximum biomass produced by each life stage model under

LOLG, LOHG, HOLG, and HOHG conditions.
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It is interesting to note that both the L3D6 and L3D9 models appear to be substantially more

enzymatically constrained than L3. These two stages represent the time when B. malayi is molting,

specifically during the apolysis stage of molting where a new cuticle is being synthesized to replace

the old cuticle. These reduced usage numbers, combined with reduced biomass production (Fig-

ure 5), may reflect this specialized function and large energetic expenditure. Differences between

these related models extend to pathway utilization as well. Under HOHG conditions, the L3 model

uses the whole TCA cycle—though fatty acids are used as the sole carbon source instead of glu-

cose—while the other two stages exhibit the apparent Crabtree effect. Unlike the unconstrained

model, none of these three larval-stage models export any significant amount of succinate. Addi-

tional differences include L3D9 exporting a large quantity of acetate, and L3D6 and L3D9 exporting

propanoate (Figure 3).

Figure 6. Reaction utilization across life stages. The number of reactions used by each model in each compartment to achieve its maximum objective

function flux, under A) LOHG, B) HOHG, C) LOLG, and D) HOLG conditions. The black bars indicate the number of reactions used in the most

parsimonious solution, while the stacked white bars indicate the number of reactions used in all possible solutions that yield the same value for the

objective function. The larger the height discrepancy between the two bars, the more redundant pathways the model has available to achieve the same

objective function flux.
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Metabolomics data identify intermediates throughout, at the lowest
levels in L3
To help validate our reconstruction, we performed untargeted metabolomics on worm extracts from

four different life cycle stages. Applying two complementary approaches, our analyses identified 146

unique metabolites from a ‘hybrid’ analysis and 492 from a ‘predictive’ analysis (see Materials and

methods for details); of these, 103 and 316 metabolites were found in at least three samples, respec-

tively. Directly relating these data to the model predictions is unfortunately non-trivial, as the metab-

olomics analyses detect the size of the pool of some metabolite at one point in time, while our pFBA

predictions are steady-state rates.

Most of the TCA cycle intermediates (Figure 4) were detected in one or both of our metabolo-

mics data sets. Phosphoenolpyruvate was only detected in adults in the hybrid analysis but was

found in the microfilaria and L3 stages as well as in the predicted analysis. Pyruvate was detected

only in the adult worms in the hybrid analysis, and at the highest levels in males. Oxaloacetate was

detected in all stages in the predicted analysis, but at the lowest levels in the adults. Citrate and iso-

citrate were detected in the adults and one microfilaria sample in the predicted analysis, and only in

the adults in the hybrid analysis. Alpha-ketoglutarate was detected in both analyses in the adults

and one microfilaria sample, highest in the females. Succinate, fumarate, and malate were detected

in the adults and microfilaria, with none in the L3 samples. This pattern was consistent in both analy-

ses, except for succinate which was missing from the hybrid analysis. No acetyl-CoA or succinyl-CoA

were detected in either analysis.

We were able to detect several fatty acid degradation intermediates as well, in particular carni-

tine-conjugated fatty acids. Carnitine and acetylcarnitine were detected in all samples in both analy-

ses and were found to be highest in males, followed by females, microfilaria, and finally L3. Other

short-chain acylcarnitines, butyrylcarnitine and valerylcarnitine were detected in all samples except

L3 in the hybrid analysis. Consistent with above, these metabolites were found to be highest in

males, followed by females, and then microfilaria. Propionylcarnitine was detected only in the adult

samples in the hybrid analysis. The only long-chain fatty acid intermediate detected was palmitoyl-

carnitine, and only in the microfilaria and one male sample in the predicted analysis.

If we accept that higher levels of these intermediates imply increased metabolic activity, then we

observe a general trend of the highest activity in the adults (in particular males metabolizing fatty

acids), followed by the microfilaria, with L3 having the lowest levels if any were detected. This fits

with the observation that L3 is a non-feeding stage, which has been likened to the dauer stage of C.

elegans (Li et al., 2009). Though we were not able to use these metabolomics data to quantitively

validate our models, we include them here as they may prove useful to the wider research commu-

nity (Supplementary file 2: Metabolomic analysis of four Brugia malayi life stages).

Modeling of B. malayi metabolism predicts novel therapeutic targets
To identify critical reactions in the metabolic network that represent potential therapeutic targets,

we performed a series of in silico knockouts in which each reaction constraint was set to zero (i.e. no

flux was allowed through that reaction). Of the 1011 enzymatic reactions in iDC625, 815 had no

impact on the biomass objective function when knocked out (Figure 7A), 94 were found to have a

low impact (biomass �50% of baseline), and 102 were found to be essential (biomass <50% of base-

line). The biomass breakpoints for no impact and essential were actually set to within 0.0001 flux

units (<0.0002% of the biomass) of the true values to account for floating point errors.

This set of essential reactions was generated under HOHG conditions, but proved to be quite

robust to the model conditions. Increasing the Wolbachia weight from 0.1 to 0.5 decreased the max-

imum biomass production by ~20% but had no effect on the reactions predicted as essential, and

even increasing it to 0.9 only reclassified one reaction as non-essential (KEGG reaction R07618 from

the Wolbachia compartment). The only change under LOLG conditions was to reclassify this same

reaction as non-essential. Under HOLG conditions three new reactions were classified as essential

(R00081, R00086, and R02161 from the mitochondrial compartment), though these same reactions

from the Wolbachia compartment were already classified as essential. Four new essential reactions

were identified under LOHG conditions (R00658, R01061, R01512, and R01518 from the cytosolic

compartment), though again these same reactions from the Wolbachia compartment were already

classified as essential.
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Figure 7. Essential reactions in the model. (A) Breakdown of the essentiality of the model reactions by their compartment. No impact indicates the

model’s optimized biomass objective function was unaffected, low impact indicates biomass was �50% of baseline, and essential indicates that

biomass was <50% of baseline. (B) A Venn diagram of the overlap in predicted essential reactions between our model, the previously published

iCEL1273 C. elegans metabolic reconstruction, and experimentally determined essential reactions in C. elegans. All three sets of reactions represent

only those that are present in both iDC625 and iCEL1273. (C) A heatmap showing the effects of double knockout combinations of 129 reactions that

resulted in biomass <50% of baseline. A value of 1.0 (light yellow) indicates that there was no effect from the knockout, while a value of 0.0 (black)

indicates that the model was unable to produce any biomass. Pathways are defined as containing one or more reactions, and 16 of the major pathways

are labeled on the heatmap (P1 – P16). The legend on the right describes the interactions observed between the pathways, and their general functions.
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Our set of essential reactions was compared to those predicted in the iCEL1273 C. elegans

model, as well as experimentally determined essential reactions (Yilmaz and Walhout, 2016). The

authors used the same definition for essential reactions, selecting those that reduced the model’s

biomass by 50% or more; of the 102 reactions we predict to be essential, 71 were found in the

iCEL1273 model. They predicted 159 essential genes, corresponding to 125 KEGG reactions, 56 of

which are also found in iDC625. They also list 461 C. elegans genes that have been experimentally

determined to be essential; these correspond to 463 KEGG reactions, 273 of which are also found in

iDC625. There were only 14 essential reactions shared by iCEL1273 and iDC625 (Figure 7B), but this

low overlap is likely because both sets of model predictions are missing many biologically essential

reactions. This is suggested by the large significant overlap between each model’s predictions and

the experimentally determined essential reactions; even though they are separated by 400 million

years of evolution and possess different life cycle strategies (parasitic v free-living), 73% of the pre-

dicted iDC625 essential reactions overlap with the experimentally determined essential reactions of

C. elegans (significance determined by one-tailed Fisher’s Exact Test; hypergeometric p-value

= 1.9E�11).

In addition to single reactions, we also investigated reaction pairs exhibiting synthetic lethal rela-

tionships. Such relationships may exist, for example, when two reactions operate in alternative path-

ways that can each lead to production of the same key metabolite. This ‘two hit’ strategy may offer

greater long-term potential through the development of combination therapies that ultimately

reduce the risk of emergence of resistance, both through requiring the pathogen to simultaneously

acquire resistance to two independent targets, and through the use of lower drug dosages that can

result from increased efficacy (Lehár et al., 2009; Ejim et al., 2011; Spitzer et al., 2011; Aziz et al.,

2015).

Of the 909 reactions which were predicted to inhibit growth by less than 50% when knocked out

individually, 129 were involved in at least one pair of knockouts that together reduced biomass pro-

duction to less than 50% (Figure 7C). Analyses reveal that the model possesses alternative pathways

to produce nicotinate—important in redox reactions—and that knocking out different combinations

of these pathways had a dramatic impact on biomass production (Figure 7C; P1, P2, P3, and P11).

Our simulations also predict that the loss of one half of the TCA cycle or the other can be compen-

sated for by the model, but not both, and only if the Wolbachia TCA cycle is functional (Figure 7C;

P4, P5, P6, and P15). While purine biosynthesis pathways are predicted to be essential by our in sil-

ico single knockouts, pyrimidine biosynthesis pathways are only predicted as essential through syn-

thetic lethal interactions, suggesting redundancy in these pathways (Figure 7C; P7, P8, P9, and P10).

Finally, we saw evidence of some redundancy in the B. malayi pentose phosphate pathways

(Figure 7C; P12 and P13), and observed an interesting, nearly-lethal interaction between part of the

pentose phosphate pathway involved in the metabolism of fructose 6-phosphate and the mitochon-

drial oxidative phosphorylation reactions (Figure 7C; P14 and P16).

Fosmidomycin, MDL-29951, and Tenofovir possess antifilarial activity
To validate the performance of our model, we selected a subset of reactions for targeted inhibition

using known drugs. Of the 102 reactions predicted to be essential (<50% baseline biomass produc-

tion), 80 were associated with one or more genes (see Supplementary file 3: List of essential Brugia

malayi genes, and prioritization information for details), of which 77 resulted in no biomass produc-

tion when knocked out in silico (33 in the cytosol, 41 in Wolbachia, and three in the mitochondria).

This subset was chosen because they were considered less likely to be model artifacts. Reactions

were first ranked by the number of inhibitors to their cognate protein identified in the ChEBML data-

base (Supplementary file 3: List of essential Brugia malayi genes, and prioritization information;

Table 1. Details about the three drugs tested for anti-filarial activity against B. malayi adult worms.

Drug Predicted target pathway Developed for Concentration (mM)

Fosmidomycin Isoprenoid precursor biosynthesis Antibiotic/antimalarial 12.5

MDL-29951 Gluconeogenesis Epilepsy 12.5

Tenofovir Purine metabolism Hepatitis B 12.5
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Gaulton et al., 2012; Davies et al., 2015; Gaulton et al., 2017). Hits lacking gene expression data

were filtered out, as were those with more than three putative human homologs. We then prioritized

hits based on the number and quality of published studies on those inhibitors, with extra consider-

ation given to human clinical trials. This resulted in a short list of potentially druggable reactions:

R01068, R00036, R05688, R00127, R00762, R05637/R05633, R04560/R01127, R00178, and R01920/

R02869. We did not pursue R01068 as we have previously demonstrated significant antifilarial activ-

ity when its cognate gene is knocked down with RNAi (Voronin et al., 2016), nor did we pursue

R00036 as it has been previously investigated by other groups as an antifilarial (Lentz et al., 2013).

Due to the limited availability of adult B. malayi worms for testing, we assayed three of the predicted

inhibitors (Table 1). They were chosen as they had all undergone previous clinical testing in humans

and were available for order at a reasonable price from suppliers without requiring custom chemical

synthesis. Future work may test additional inhibitors.

Table 2. Expression of the predicted drug target genes across B. malayi life stages.

Target gene

Life stage expression (FPKM)

L3 L3D6 L3D9 L4 F30 F42 F120 M30 M42 M120

Fosmidomycin Wbm0179 12 17 18 11 27 11 16 37 31 3

MDL-29951 Bm13850 45 21 22 30 22 24 6 31 17 14

Wbm0158 68 66 69 49 27 40 80 29 40 95

Tenofovir Bm9070 0 0 0 0 0 1 1 1 4 26

Wbm0321 34 13 14 4 5 3 15 0 18 6

Tenofovir-associated Bm3965 18 19 20 11 57 33 14 15 19 17

Bm14014 419 101 119 105 76 93 21 75 49 32

A)
*

***
** B)

**
*

Figure 8. Anthelmintic activity against adult B. malayi worms. (A) Shows the number of Wolbachia detected per worm, normalized against the control

group and (B) shows the number of microfilariae produced per worm, normalized against the control group. In both data sets significance was detected

using a single factor ANOVA, followed by 2-tailed t-tests between each drug and the control with a Bonferroni correction. Error bars indicate the

standard deviations; * indicates p<0.05; ** indicates p<0.01; *** indicates p<0.001.
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As mentioned above, reactions were only prioritized as potential targets if their cognate genes

were expressed across the B. malayi life stages (Table 2). The predicted Fosmidomycin target, Wol-

bachia gene Wbm0179 (1-deoxy-D-xylulose 5-phosphate reductoisomerase) has moderate expres-

sion that is consistent across most stages, high in early adult males but dropping off over time. The

target gene of MDL-29951, Bm13850 (fructose biphosphatase), has moderate expression that is

highest in L3 but relatively consistent across stages. Wolbachia also has a homolog of this gene,

Wbm0158, that is expressed at a higher level especially in the late adult stages. Tenofovir was identi-

fied as a ChEMBL hit of B. malayi Bm9070 (an adenylate kinase), which has very low expression in

most stages, but moderate in adult males. There is a Wolbachia homolog of this gene as well,

Wbm0321, with low expression throughout the life stages. There are two other B. malayi genes that

are associated with this reaction: Bm3965 (a UMP-CMP kinase) has moderate expression, highest in

adult females but quite consistent across stages; and Bm14014 (adenylate kinase isoenzyme 1) has

very high expression, highest in L3 but still high in male and female adults.

These three predicted drug targets were subsequently validated by testing their effects on worms

in vitro. Fosmidomycin, MDL-29951, and Tenofovir were found to reduce the number of Wolbachia

per worm to 53% (±35%; p=0.041), 24% (±13%; p=7.2�10�4), and 30% (±23%; p=0.0013) of control,

respectively (Figure 8). We also observed two of the drugs impacting fecundity, with Fosmidomycin

and Tenofovir reducing the number of microfilariae produced per worm to 66% (±12%; p=0.0091)

and 65% (±18%; p=0.013) of control, respectively. Fosmidomycin treatment also appeared to lead

to a consistent phenotype affecting motility, but this was not efficiently detected with the Wormina-

tor assay (Supplementary file 1-supplemental table 3: ’Motility of B. malayi was not affected by

drug treatment’).

Discussion
We present the first constraints based metabolic model for B. malayi, which we term iDC625. While

the model captures many known features of nematode metabolism, simulations under a variety of

different conditions yielded a number of emergent behaviours, including switching between aerobic

and anaerobic metabolic pathways, a predicted Crabtree effect under high oxygen and glucose, and

a novel pathway that relies on the catabolism of glutamate to aspartate to generate energy. This

suggests that in addition to being robust, the model is capable of generating novel biological

hypotheses.

A high quality compartmentalized metabolic model allows us to study the metabolic processes of

the cell in detail, including pathways that have been poorly studied in the past; in particular, the

anaerobic metabolic pathways used by parasitic nematodes are unlike those studied in most other

eukaryotes (Del Borrello et al., 2019). Our model is the first to incorporate this pathway and is

therefore likely to yield accurate predictions as low oxygen environments are biologically relevant

for parasitic nematodes.

An emergent behaviour predicted by the model was the exhibition of the Crabtree effect, a previ-

ously described phenomenon observed in yeast where anaerobic fermentation pathways are acti-

vated in aerobic conditions, but only in the presence of high levels of glucose (Postma et al., 1989;

Pfeiffer and Morley, 2014). It is interesting to note that succinate export flux mirrors the activity

pattern of fumarase (Figure 3), potentially indicating that the Crabtree effect occurs only under con-

ditions that result in succinate export. This suggests further investigation of this effect, perhaps

through in vitro studies of worms exposed to different oxygen and glucose concentrations.

The glyoxylate pathway is primarily discussed in the literature as a way for plants to process fatty

acids into glucose and starches, but it is also found in fungi, some protists, and bacteria

(Kondrashov et al., 2006). The relevant genes have been detected in several Metazoan species, but

the nematodes are the only group where the pathway is widely accepted to be functional, and

where it is regarded as a conduit from fatty acids to glucose during embryogenesis. It involves many

of the same enzymes as the TCA cycle but includes a ‘shortcut’ from isocitrate to succinate and

malate. It has been suggested that this pathway may also play a role in energy metabolism

(Butler et al., 2012)—in particular when metabolizing fatty acids—and our results appear to support

that this hypothesis is plausible.

Besides predicting the use of metabolic pathways, our model has the ability to identify reactions

essential to growth as potential therapeutic targets. Previous predictions of essentiality based on a
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compartmentalized model of C. elegans metabolism, iCEL1273, were broadly consistent with in vitro

gene essentiality screens (Yilmaz and Walhout, 2016), suggesting the process by which we made

our predictions is likely to be biologically relevant.

Two of the highly prioritized drug target hits identified in our study were aldolase isozymes aldo-

1 (Bm5580) and aldo-2 (Bm3135). Knocking out the cognate reactions led to unrecoverable states in

the model, both genes have several druggable homologs in ChEMBL, and the expression of both

genes was consistent across the adult life stages (aldo-1 had the highest stage-specific expression

out of any of the prioritized genes). These were not pursued in this work, as in a previous study we

examined the effects of knocking down these genes with RNAi in adult female B.

malayi (Voronin et al., 2016). While the knockdown of aldo-1 had no significant effects, that of

aldo-2 showed effects including a decrease in the Wolbachia population, a reduction in fecundity of

female worms, and an increase in apoptotic embryos. This shows that our model is capable of pre-

dicting viable targets in the adult worms.

We validated our predictions of essential reactions by observing the effects of three existing

drugs on B. malayi adults. Fosmidomycin was originally investigated as an antibiotic in the 1980s,

but more recently has been studied as an anti-malarial drug (Umeda et al., 2011; Jomaa et al.,

1999; Armstrong et al., 2015). It acts on the non-mevalonate isoprenoid biosynthesis pathway,

which is generally only found in some bacteria and plants, in addition to the apicoplast of Plasmo-

dium falciparum. This helps to contribute to the drug’s excellent safety profile. Tenofovir is currently

licensed by the FDA for treatment of HIV and Hepatitis B (Agarwal et al., 2015). It is used as a

nucleoside reverse transcriptase inhibitor, and its action against B. malayi may work by a similar

mechanism, by competitive inhibition with AMP of adenylate kinase. MDL-29951 was identified as

an inhibitor of fructose 1,6-bisphosphatase as a potential treatment for diabetes (Wright et al.,

2003). Interestingly, this enzyme has recently and independently been proposed as a drug target

against Leishmania species (Yuan et al., 2017). That study also solved several crystal structures of

the enzyme, which would prove valuable for future refinements of the drug. There have also been

several other inhibitors generated and tested against this enzyme from different species, which

could provide a rich starting point for future work to refine the antiparasitic activity (Dang et al.,

2009; Dang et al., 2010; Tsukada et al., 2010; Kaur et al., 2017). Both Tenofovir and MDL-29951

were expected to act against B. malayi, but primarily resulted in a significant reduction of Wolbachia

populations when tested. The mechanism of action of these drugs against the endosymbiont is

unclear, but Wolbachia does possess a homolog of both drug targets—(Wbm0321 (adenylate kinase)

for Tenofivir; Wbm0158 (fructose-1,6-biphosphatase) for MDL-29951)—that the drugs may be acting

against.

All three of the drugs tested in this study appear to possess activity against adult B. malayi

worms, via reduction in Wolbachia populations and/or microfilaria production. The successful valida-

tion of these effects suggests that our metabolic model is a useful approximation of the worm. Con-

sistent with metabolic reconstructions generated for other organisms such as Yeast and E. coli, we

expect future iterations of our metabolic reconstruction will undergo further modifications involving,

for example, the inclusion of new reactions or refinement of existing reactions as new experimental

data is generated. Further research on this model may therefore yield even more therapeutic

targets.

Materials and methods

Metabolic reconstruction and flux balance analyses
A draft metabolic reconstruction was generated as described previously (Song et al., 2013;

Blazejewski et al., 2015; Cotton et al., 2016). Briefly, sets of metabolic enzymes were identified

from the B. malayi gene models using DETECT V2 (Hung et al., 2010), BLASTP (Camacho et al.,

2009) searches against enzymes curated in the SWISSPROT database (Bateman and UniProt Con-

sortium, 2015), PRIAM (Claudel-Renard et al., 2003), EFICAz (Tian et al., 2004), and the BRENDA

database (Schomburg et al., 2002). Assignment of metabolic pathways and gap-filling in the recon-

struction were performed by Pathway Tools (Karp et al., 2016) and comparisons to our previously

published Onchocerca volvulus metabolic reconstruction. As an example, if our reconstruction was

missing one reaction out of a pathway that was complete in the O. volvulus network, that reaction
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would be added to our model if reactions existed to consume the resulting metabolites. The net-

work was then manually curated to ensure that the major pathways—such as the TCA cycle, fatty

acid metabolism, and anaerobic metabolism—were complete and could be used by the model. The

model was divided into three compartments representing the cytosol and mitochondria of B. malayi,

as well as the Wolbachia endosymbiont. Where orthologous relationships could be inferred, B.

malayi reactions were assigned to either the cytosol or mitochondrion on the basis of similar desig-

nations in the iCEL1273 metabolic model for Caenorhabditis elegans (Yilmaz and Walhout, 2016).

Additional compartment assignments were performed with reference to literature sources. In the

absence of such information, reactions were duplicated such that a cytosolic and a mitochondrial

form were both available. Reaction reversibility is a very important determinant of model perfor-

mance, and was primarily determined here by comparison to the previously published O.

volvulus (Cotton et al., 2016) and C. elegans (Yilmaz and Walhout, 2016) models. Additional reac-

tions that led to the formation of gasses such as CO2 were also set to be irreversible (with the excep-

tion of known gas-consuming reactions such as the consumption of oxygen in oxidative

phosphorylation and fatty acid catabolism).

Metabolites are confined to a single compartment and can only participate in reactions in other

compartments if shuttled there by an explicit transport reaction. Most of these transporters were

taken from the iCEL1273 model, except when contraindicated by Berg, 2002. Since Wolbachia lacks

the genes necessary to produce NAD+, coenzyme A (CoA), ubiquinol, and folate (Voronin et al.,

2016), reactions were added to allow the transport of each metabolite into the Wolbachia compart-

ment from the cytosol. The integrity of the model was tested using FBA to ensure that it was able to

produce biomass (as defined below), and the major metabolite fluxes were manually traced to

ensure they were not the product of futile cycles or other biologically unfeasible artifacts.

All network analysis methods, including FBA, were performed using the cobrapy package version

0.5.10 (Ebrahim et al., 2013), which is a Python-based implementation of the popular COBRA tool-

box of FBA-associated methods (Schellenberger et al., 2011). One drawback of FBA is that there

are usually many different sets of reaction fluxes that can lead to the same solution, with no

accepted way to choose the most biologically relevant. Parsimonious FBA (pFBA) is a permutation of

this algorithm that first maximizes the objective function, and then identifies the solution with the

smallest sum over all reaction fluxes. This is predicted to yield more biologically relevant solutions,

and helps to ensure that analyses of the model under different conditions are likely to yield compa-

rable sets of reaction fluxes.

The biomass objective function
The overall biomass objective function is defined as

B¼ d � ðBBþ 0:1 �BWÞ;

where d is a positive scaling factor that can be used to calibrate the model output to equal some

physical measurement, such as growth rate in bacteria; this becomes more challenging to interpret

and measure in eukaryotes. The value has no effect on our results or conclusions but was set to

6.17336 so as to be consistent with our previous models. BB and BW are the B. malayi- and Wolba-

chia-specific biomass objective functions, and the coefficient on BW controls the Wolbachia load (see

Figure 2). The specific biomass objective functions are defined as

BB ¼ 0:7089 �AAþ 0:2027 �AAM þ 0:0198 �RNAþ 0:0169 � Satþ 0:0132 �Unsatþ
0:013 �Miscþ 0:0123 �Lipidsþ 0:0082 �Cof þ 0:005 �DNA

and

BW ¼ 0:4 �AAW þ 0:25 �RNAW þ 0:24 �LipidsW þ 0:1 �DNAW þ 0:01 �CofW :

Here, variables with no subscript pertain to the B. malayi cytosol, those with an M subscript per-

tain to the B. malayi mitochondria, and those with a W subscript pertain to the Wolbachia cell. AA

indicates the quantity of amino acids that have been expressed and assembled into proteins; RNA

and DNA indicate the quantity of nucleotides that have been assembled into their respective

nucleic acids; Sat and Unsat refer to the quantity of saturated and unsaturated fatty acids,
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respectively; Lipids refers to the quantity of membrane-associated or other lipids; Cof refers to the

quantity of cofactors; Misc and refers to the quantity of several miscellaneous compounds.

The polymer assembly reactions are defined as

AAþ 0:35 �ADPþ 2:35 �PO4þ 2 �GDPþ 2:35 �Hþ ¼ AARAWþ
2:35 �H2Oþ 0:35 �ATPþ 2 �GTP�

for amino acids,

RNAþ 0:35 �ADPþ 0:35 �PO4 þ 0:35 �Hþ ¼ RNARAW þ 0:35 �H2Oþ 0:35 �ATP

for RNA, and

DNAþ 0:35 �ADPþ 0:35 �PO4 þ 0:35 �Hþ ¼DNARAW þ 0:35 �H2Oþ 0:35 �ATP

for DNA.

The amino acid proportions making up each quantity of protein are defined by

AARAW ¼ 0:066 �Gluþ 0:049 �Glyþ 0:06 �Alaþ 0:063 �Lysþ 0:054 �Aspþ 0:056�
Argþ 0:041 �Glnþ 0:082 � Serþ 0:025 �Metþ 0:011 �Trpþ 0:044 �Pheþ 0:032�
Tyrþ 0: � 22 �Cysþ 0:093 �Leuþ 0:024 �Hisþ 0:042 �Proþ 0:053 �Asnþ 0:057�

Valþ 0:056 �Thrþ 0:069 � Ile

and

AARAW
W ¼ 0:068 �Gluþ 0:067 �Glyþ 0:065 �Alaþ 0:086 �Lysþ 0:053 �Aspþ 0:043�

Argþ 0:03 �Glnþ 0:077 � Serþ 0:024 �Metþ 0:007 �Trpþ 0:042 �Pheþ 0:033 �Tyrþ
0:013 �Cysþ 0:089 �Leuþ 0:019 �Hisþ 0:032 �Proþ 0:053 �Asnþ 0:071 �Valþ

0:044 �Thrþ 0:085 � Ile:

The proportions making up each quantity of RNA and DNA are defined by

RNARAW ¼ 0:324 �ATPþ 0:208 �GTPþ 0:178 �CTPþ 0:290 �UTP;

RNARAW
W ¼ 0:345 �ATPþ 0:214 �GTPþ 0:145 �CTPþ 0:295 �UTP;

DNARAW ¼ 0:354 � dATPþ 0:146 � dGTPþ 0:146 � dCTPþ 0:354 � dTTP;

DNARAW
W ¼ 0:329 � dATPþ 0:171 � dGTPþ 0:171 � dCTPþ 0:329�dTTP:

The remaining biomass categories are defined by

Sat¼ 0:392 �Hexþ 0:42 �Octþ 0:1 �Dodþ 0:088 �Tet;

where the compounds are hexadecanoic acid, octadecanoic acid, dodecanoic acid, and tetradeca-

noic acid, respectively;

Unsat¼ 0:084 �Araþ 0:369 �Oleþ 0:547 �Lin;

where the compounds are arachidonate, oleic acid, and linoleate, respectively;

Lipids¼ 0:453 �Pchþ 0:073 �Choþ 0:314 �Petþ 0:078 � Sphþ 0:039 �Pmyþ 0:043 �Pse;

where the compounds are phosphatidylcholine, cholesterol, phosphatidylethanolamine, sphingo-

myelin, 1-phosphatidyl-D-myo-inositol, and phosphatidylserine, respectively;

Cof ¼ 0:125 �NADþ þ 0:125 �NADPþþ 0:125 �CoAþ 0:125 �FADþ 0:125 �Pypþ
0:125 �Hemeþ 0:125 �Uagþ 0:125 �TFH;

where the compounds are nicotinamide adenine dinucleotide, nicotinamide adenine dinucleotide

phosphate, coenzyme A, flavin adenine dinucleotide, pyridoxal phosphate, heme, UDP-N-acetyl-

alpha-D-glucosamine, and tetrahydrofolate, respectively;
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Misc¼ 0:36 � Sprþ 0:079 �Ggpþ 0:561 � Spn;

where the compounds are spermidine, geranylgeranyl diphosphate, and spermine, respectively.

Generation of transcriptomic data for the Wolbachia endosymbiont
during molting
Previously published transcriptome data were used for this study, with the exception of the Wolba-

chia trascriptome during the molting of the worm from L3, L3 day 6, and L3 day 9. These data were

generated as described in Grote et al., 2020. In brief, all B. malayi worms were obtained from FR3

(Filariasis Research Reagent Resource Center; BEI Resources, Manassas, VA, USA). Infective third-

stage larvae (iL3) were recovered from mosquitoes (Aedes aegypti) and mammalian stage larvae

were recovered from gerbils (Meriones unguiculatus) at 6 and 9 days post infection (dpi). Total RNA

was prepared from B. malayi worms and Wolbachia as previously described (Grote et al., 2017).

RNA was prepared from three biological replicates of infective L3 (iL3; 2000 larvae each), 3 repli-

cates of 6 dpi larvae (1500 each) and 2 replicates of 9 dpi larvae (1300 each). Libraries were pre-

pared using the NEBNext Ultra II RNA Library Prep Kit for Illumina (New England Biolabs) according

to manufacturer instructions. Libraries were sequenced at NYU’s GenCore on the Illumina Next-

Seq500 platform with 150 bp paired-end reads. Sequence reads from each sample were analyzed

with the Tuxedo suite of tools (Trapnell et al., 2010; Trapnell et al., 2013; Kim et al., 2013). Reads

were mapped with Tophat2’s Bowtie2-very-sensitive algorithm to the genome assembly of Wolba-

chia of B. malayi(Foster et al., 2005). Each biological replicate received an average of 1.3 million

reads that mapped to the Wolbachia genome. The resulting BAM files were then used with HtSeq to

obtain raw read counts. Differential gene expression analysis was performed using EdgeR

(Robinson et al., 2010), Data were combined with previously published stages 16 dpi (L4), and male

and female worms at 30, 42 and 120 dpi (Grote et al., 2017).

Generation of life stage specific metabolic models
To understand how metabolic pathway dependencies may vary across the B. malayi life cycle, we

integrated new and existing stage-specific RNA-Seq datasets to generate life stage specific meta-

bolic models. Of the 849 enzymatic reactions in the model with gene evidence, 837 had stage-spe-

cific expression data, allowing constraints to be placed on their associated metabolic flux. RNA-Seq

enzyme expression was used to apply constraints on reaction flux as we have done previously

(Song et al., 2013). In brief, the expression of each gene was normalized across life stages, and the

relative expression for each life stage was applied to the upper and lower bounds of all associated

reactions. For example, if the expression of a gene in one particular life stage was measured to be

30% of its maximum across all life stages, the corresponding lower and upper reaction bounds for

that life stage model would be set to (0, 300) or (�300, 300) in arbitrary flux units, for irreversible

and reversible reactions, respectively; the default bounds are (0, 1000) or (�1000, 1000) for irrevers-

ible and reversible reactions, respectively. As we cannot determine whether a measured expression

of zero indicates no expression or that the transcripts were simply not sequenced, all reactions with

a measured expression of zero were left unconstrained in the model. This yielded 11 distinct meta-

bolic models: open or unconstrained (i.e. without any expression constraints), L3, L3D6, L3D9, L4,

F30, F42, F120, M30, M42, and M120; where L3D6 indicates third-stage larvae at 6 days post-infec-

tion, and F30 and M30 indicate adult female and male worms 30 days post-infection, respectively.

Metabolomics sample preparation and run
All parasites were obtained from FR3 (Filariasis Research Reagent Resource Center; BEI Resources,

Manassas, VA, USA) where they were isolated and separated by sex from infected gerbils (Meriones

unguiculatus) or mosquitoes (Aedes aegypti). Worms were flash-frozen and shipped to the New York

Blood Center for processing. Stages used for metabolomics analysis included L3 larvae from mosqui-

toes, adult male and female worms at 120 dpi, and microfilaria. The number of worms per sample

were 20 adult female worms, 40 adult males, 2 � 106 microfilariae, and 200 L3 larvae per biological

replicate. Samples were washed in 1x PBS and run in triplicate. Adult male and female worms were

picked individually from PBS and each biological was weighed. The microfilaria and L3 samples were

spun down, the PBS pipetted off, and weighed directly into a metabolomics 2 mL screw cap vial
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with total amounts ranging from 1.3 mg (adult males) to 15.8 mg (microfilaria). Metabolites were

extracted and the data analyzed as described below.

Metabolomics extraction and analysis
Metabolite extraction
The mass of the weighed worm samples was used to scale the metabolite extraction to a ratio of

16.5 mg / 1 mL extraction solvent. Freezing 80% acetonitrile was added directly to each vial contain-

ing the samples, along with zirconium disruption beads (0.5 mm, RPI) and homogenized for 3 min at

4˚C in a BeadBlasterTM with a 30 s on, 30 s off pattern. The resulting lysate was centrifuged at

21,000 x g for 3 min, and 90% of the supernatant volume was transferred to a 1.5 mL microfuge

tube for speed vacuum concentration, no heating. The dry extracts were resolublized in a volume of

LCMS grade water 1/10th of that used for the homogenization step, sonicated in a water bath for 3

min, and transferred to a glass insert for analysis.

Data acquisition
All data were acquired by liquid chromatography coupled to high resolution tandem mass spectrom-

etry (LC-MS/MS). The LC column was a MilliporeTM ZIC-pHILIC (2.1 � 150 mm, 5 mm) coupled to a

Dionex Ultimate 3000TM system and the column oven temperature was set to 25˚C for the gradient

elution. A flow rate of 100 mL/min was used with the following buffers; A) 10 mM ammonium carbon-

ate in water, pH 9.0, and B) neat acetonitrile. The gradient profile was as follows; 80–20%B (0–30

min), 20–80%B (30–31 min), 80–80%B (31–42 min). Injection volume was set to 2 mL for all analyses

(42 min total run time per injection). MS analyses were carried out by coupling the LC system to a

Thermo Q Exactive HFTM mass spectrometer operating in heated electrospray ionization mode

(HESI). Method duration was 30 min with a polarity switching data-dependent Top five method for

both positive and negative modes. Spray voltage for both positive and negative modes was 3.5kV

and capillary temperature was set to 320˚C with a sheath gas rate of 35, aux gas of 10, and max

spray current of 100 mA. The full MS scan for both polarities utilized 120,000 resolution with an AGC

target of 3e6 and a maximum IT of 100 ms, and the scan range was from 67 to 1000 m/z. Tandem

MS spectra for both positive and negative mode used a resolution of 15,000, AGC target of 1e5,

maximum IT of 50 ms, isolation window of 0.4 m/z, isolation offset of 0.1 m/z, fixed first mass of 50

m/z, and 3-way multiplexed normalized collision energies (nCE) of 10, 35, 80. The minimum AGC tar-

get was 1e4 with an intensity threshold of 2e5. All data were acquired in profile mode.

Data analysis
Metabolomics data were processed with two approaches called the hybrid analysis and predictive

analysis. The resulting relative metabolite intensities for both methods were then processed with an

in-house pipeline for statistical analyses and plot generation using a variety of custom Python code

and R libraries including: pheatmap, MetaboAnalystR, manhattanly. For the hybrid analysis, peak

height intensities were extracted based on the established accurate mass and retention time for

each metabolite as adapted from the Whitehead Institute (Chen et al., 2016), and verified with

authentic standards and/or high resolution MS/MS manually curated against the NIST14MS/MS

(Simón-Manso et al., 2013) and METLIN (Smith et al., 2005) spectral libraries. The theoretical m/z

of the metabolite molecular ion was used with a ± 10 ppm mass tolerance window, and a ± 0.2 min

peak apex retention time tolerance within the expected elution window (1–2 min). The median mass

accuracy vs the theoretical m/z for the library was �4.3 ppm (n = 127 detected metabolites). Median

retention time range (time between earliest and latest eluting sample for a given metabolite) was

0.24 min (30 min LCMS method). A signal to noise ratio (S/N) of 3X was used compared to blank

controls throughout the sequence to report detection, with a floor of 10,000 (arbitrary units). For the

predictive analysis, metabolites were detected and quantified by matching the predicted m/z of the

metabolite as follows. All predicted model metabolites (n = 865) were filtered to the subset with

HMDB ID and a neutral chemical formula (n = 553). The formula of each metabolite was then used

to predict both the positive and negative mode molecular ions excluding adducts, multiply charged

species, or more complex ion types that is [M+H]+ and [M-H]- (n = 1106 total m/z values for extrac-

tion). A ± 10 ppm mass tolerance window was again used to extract the peak intensities for all m/z

values with a ± 0.2 min peak apex retention time tolerance, centering the window on the retention
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time of the highest intensity peak for each metabolite across all samples. This approach does not

discriminate between isomers, for instance 95 of the 553 metabolites in the predicted dataset

shared a chemical formula with another metabolite, but in many cases the isomerization was due to

stereochemistry (e.g., R-lactic acid vs S-lactic acid) while in other cases formula isomers could con-

found the data interpretation (dGMP vs AMP). The resulting putative metabolite peak heights were

further filtered as follows, after applying the 3X S/N threshold. Metabolites were limited to those

that were detected in at least three replicates (n = 3 per group). Next, an average intensity was cal-

culated for each metabolite across all samples and the data were sorted from high intensity to low

intensity. Duplicate metabolite names were removed, thereby keeping the row result from whichever

polarity gave a stronger signal (e.g., glutamine was detected in both polarities at 11.5 min, but gave

a stronger signal in positive mode).

Validation of drug targets
For validation, 15 adult female and 15 adult male worms (120 dpi) were cultured in vitro for each

drug treatment or control group. Worms were cultured for six days in a 12-well plate with two

worms per well, in complete culture medium (RPMI-1640 supplemented with 10% FBS, 100 U/mL

penicillin, 100 mg/mL streptomycin, 2 mM L-glutamine) at 37˚C under 5% CO2. Three drugs were

assayed: Fosmidomycin, MDL-29951, and Tenofovir, each at a concentration of 12 mM. Media was

changed every other day.

Microfilarial release by female worms was determined by quantifying the number present in the

media on the 6th day of treatment and collection of adult worms. Two technical replicates and 10

biological replicates were used to determine microfilaria production. Averages are presented with

their standard deviations. Significance was determined by a single factor ANOVA, followed by t-tests

between each treatment group and the control using a Bonferroni correction.

To analyze the number of Wolbachia per worm, DNA was extracted from adult male worms using

the QIAmp DNA Mini Kit (QIAGEN) according to the manufacturer’s protocol. Wolbachia per indi-

vidual worm was calculated by genomic qPCR using primers for a single-copy Wolbachia gene (wsp;

accession AAW71020). Each treatment or control group had 8 (or 9) biological replicates, and each

replicate contained three male worms. Averages are presented with their standard deviations. Signif-

icance was determined by a single factor ANOVA, followed by t-tests between each treatment

group and the control using a Bonferroni correction.

The Worminator system (Storey et al., 2014) was used to assess changes in motility upon drug

treatment. Motility of adult female worms was assessed using one female worm per well in a 12 well

plate. Each treatment or control had eight biological replicates.

Data availability
All of our metabolic models–the unconstrained and life stage-specific variants–are freely available at

https://github.com/ParkinsonLab/Brugia_metabolic_network.

Our transcriptomics data for the B. malayi molt (life stages L3 to L3D6 to L3D9) are available

through the Sequence Read Archive (PRJNA557263).

All of our metabolomics data – from both the hybrid and predictive analyses – are freely available

at https://github.com/ParkinsonLab/Brugia_metabolic_network (Curran et al., 2020; copy archived

at https://github.com/elifesciences-publications/Brugia_metabolic_network).
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