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Figure 1. Classification and variability of neuronal cell types. (A) Neuronal cell types are identifiable by features

clustering around a distinct point (blue, green and yellow) or a line (orange) in feature space. The clustering

implies that neuron types are defined by either a single set point (blue, green and yellow) or by multiple set points

spread along a line (orange). (B) Phenotypic variability of a single neuron type could result from distinct set points

that subdivide the neuron type but appear continuous when data from multiple animals are combined (modular),

from differences in components of a set point that do not extend along a continuum but that in different animals

cluster at different locations in feature space (orthogonal), or from differences between animals in the range

covered by a continuum of set points (offset). These distinct forms of variability can only be made apparent by

measuring the features of many neurons from multiple animals.

Pastoll et al. eLife 2020;9:e52258. DOI: https://doi.org/10.7554/eLife.52258 2 of 18

Research Article Neuroscience

https://doi.org/10.7554/eLife.52258


Figure 1—figure supplement 1. A quantitative adaptation of the gap statistic clustering algorithm. (A–C) Logic of the gap statistic. (A) Simulated

clustered dataset with three modes (k = 3) (open gray circles) (upper) and the corresponding simulated reference dataset drawn from a uniform

distribution with lower and upper limits set by the minimum and maximum values from the corresponding clustered dataset (open gray diamonds).

Data were allocated to clusters by running a K-means algorithm 20 times on each set of data and selecting the partition with the lowest average

intracluster dispersion. Red, green, blue and yellow dashed ovals show a realization of the data subsets allocated to each cluster when kEval = 1, 2, 3

and 4 modes. (B) The average value of the log intracluster dispersion for the clustered (open circles) and reference (open diamonds) datasets for each

value of k tested in panel (A). (C) Gap values resulting from the difference between the clustered and reference values for each k in panel (B). Many

(�500 in this paper) reference distributions are generated and their mean intracluster dispersion values are subtracted from those arising from the

clustered distribution to maximize the reliability of the Gap values. (D) A procedure for selecting the optimal k depending on the associated gap values.

Quantitative procedure for selecting optimal k (kest). DGap values (open circles) are obtained by subtracting from the Gap value of a given k the Gap

value for the previous k (DGapk = Gapk – Gapk-1). For each DGapk, if the DGap value is greater than a threshold (filled triangles) associated with that

DGapk, that DGapk will be kest, if no DGap exceeds, the threshold, kest = 1. In the figure, for DGapk = 2, 3, 4 (brown, pink and cyan), the DGap value

exceeds its threshold only when DGapk = 3. Therefore kest = 3. (E–G) Determination of DGapk thresholds. (E) Histograms of DGap values calculated

from 20,000 simulated datasets drawn from uniform distributions for each DGapk (brown, pink and cyan, respectively, for DGapk = 2, 3, 4) for a single

dataset size (n = 40). DGap thresholds (filled triangles) are the values beyond which 1% of the DGap values fall and vary with DGapk. (F) Histograms of

DGap values for a range of dataset sizes (n = 20, 40, 100) and their associated thresholds. (G) Plot of the DGap thresholds as a function of dataset size

and DGapk. For separate DGapk, DGap threshold values are fitted well by a hyperbolic function of dataset size. These fits provide a practical method of

finding the appropriate DGap threshold for an arbitrary dataset size.

Pastoll et al. eLife 2020;9:e52258. DOI: https://doi.org/10.7554/eLife.52258 3 of 18

Research Article Neuroscience

https://doi.org/10.7554/eLife.52258


Figure 1—figure supplement 2. Discrimination of continuous from modular organizations using the adapted gap statistic algorithm. (A) Simulated

datasets (each n = 40) drawn from continuous (uniform, k = 1 mode) (upper) and modular (multimodal mixture of Gaussians with k = 2 modes) (lower)

distributions, and plotted against simulated dorsoventral locations. Also shown are the probability density functions (pdf) used to generate each

dataset (light blue) and the densities estimated post-hoc from the generated data as kernel smoothed densities (light gray pdfs). (B) Histograms

showing the distribution of kest from 1000 simulated datasets drawn from each pdf in panel (A). kest is determined for each dataset by a modified gap

statistic algorithm (see Figure 1—figure supplement 1 above). When kest = 1, the dataset is considered to be continuous (unclustered), when kest �2,

the dataset is considered to be modular (clustered). The algorithm operates only on the feature values and does not use location information. (C)

Illustration of a set of clustered (k = 2) pdfs with the distance (in standard deviations) between clusters ranging from 2 to 6 (upper). Systematic

evaluation of the ability of the modified gap statistic algorithm to detect clustered organization (kest �2) in simulated datasets of different size (n = 20

to 100) drawn from the clustered (filled blue) and continuous (open blue) pdfs (lower). The proportion of datasets drawn from the continuous

distribution that have kest �2 is the false positive (FP) rate (pFP = ~0.07). The light gray filled circle shows the smallest dataset size (n = 40) with

SD = 5, where the proportion of datasets detected as clustered (pdetect) is ~0.8. (D). Plot showing how pdetect at n = 40, SD = 5 changes when datasets

are drawn from pdfs with different numbers of clusters (n modes from 2 to 8). Further evaluation of the analysis of additional clusters is represented in

the following figure.
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Figure 1—figure supplement 3. Additional evaluation of the adapted gap statistic algorithm. (A–C) Plots showing how pdetect (the ability of the

modified gap statistic algorithm to detect clustered organization) depends on dataset size and separation between cluster modes in simulated datasets

drawn from clustered pdfs with different numbers of modes. The gray markers indicate n = 40, SD = 5 (as shown in Figure 1E). In each plot, pdetect is

shown as a function of simulated dataset size and separation between modes when k = 3 (A), k = 5 (B) and k = 8 (C), which was the maximum number

of clusters evaluated. (D–F) Histograms showing the counts of kest from the 1000 simulated n = 40, SD = 5 datasets (gray filled circles) illustrated in

panels (A–C), respectively. (G) pdetect as a function of dataset size and mode separation with k = 5 when cluster modes are unevenly sampled. Sample

sizes from clusters vary randomly with each dataset. A single mode can contribute from all to none of the points in any simulated dataset. (H) pdetect as

a function of dataset size and mode separation with k = 5 when the distance between mode centers increases by a factor of sqrt(2) between sequential

cluster pairs. Data are shown for different initial separations (the distance between the first two cluster centers) ranging from 1 to 4 (with corresponding

separations between the final cluster pair ranging from 4 to 16).
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Figure 1—figure supplement 4. Comparing the adapted gap statistic algorithm with discontinuity measures for discreteness. (A) Counts of log

discontinuity ratio scores generated from a simulated uniform data distribution. The data distribution was ordered and then sampled either at positions

drawn at random from a uniform distribution (dark blue) or at positions with a fixed increment (light blue). For the data sampled at random positions,

approximately half of the scores are >0 and for even sampling all scores are >0. Therefore, a threshold score >0 does not distinguish discrete from

continuous distributions. (B) Comparison of pdetect as a function of dataset size for the adapted gap statistic algorithm, the discontinuity (upper) and the

discreteness algorithm (lower). Each algorithm is adjusted to yield a 7% false positive rate. Each column shows simulations of data with different

numbers of modes (k).
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Figure 1—figure supplement 5. Evaluation of modularity of grid firing using an adapted gap statistic algorithm. Examples of grid spacing for

individual neurons (crosses) from different mice. Kernel smoothed densities (KSDs) were generated with either a wide (solid gray) or a narrow (dashed

lines) kernel. The number of modes estimated using the modified gap statistic algorithm is � 2 for all but one animal (animal 4) with n � 20 (animals 3

and 7 have < 20 recorded cells). We did not have location information for animal 2.
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Figure 2. Dorsoventral organization of intrinsic properties of stellate cells from a single animal. (A–C) Waveforms (gray traces) and example responses

(black traces) from a single mouse for step (A), ZAP (B) and ramp (C) stimuli (left). The properties derived from each protocol are shown plotted against

recording location (each data point is a black cross) (right). KSDs with arbitrary bandwidth are displayed to the right of each data plot to facilitate

visualization of the property’s distribution when location information is disregarded (light gray pdfs). (A) Injection of a series of current steps enables

the measurement of the resting membrane potential (Vrest) (i), the input resistance (IR) (ii), the sag coefficient (sag) (iii) and the membrane time constant

(tm) (iv). (B) Injection of ZAP current waveform enables the calculation of an impedance amplitude profile, which was used to estimate the resonance

resonant frequency (Res. F) (i) and magnitude (Res. mag) (ii). (C) Injection of a slow current ramp enabled the measurement of the rheobase (i); the

Figure 2 continued on next page
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Figure 2 continued

slope of the current-frequency relationship (I-F slope) (ii); using only the first five spikes in each response (enlarged zoom, lower left), the AHP minimum

value (AHPmin) (iii); the spike maximum (Spk. max) (iv); the spike threshold (Spk. thr.) (v); and the spike width at half height (Spk. HW) (vi).
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Figure 2—figure supplement 1. Large environment for housing. (A, B) The large cage environment viewed from

above (A) and from inside (B).
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Figure 3. Distinct and dorsoventrally organized properties of layer 2 stellate cells. (A) Representative action potential after hyperpolarization waveforms

from a SC (left), a pyramidal cell (middle) and an unidentified cell (right). The pyramidal and unidentified cells were both positively labelled in Wfs1Cre

mice. (B) Plot of the first versus the second principal component from PCA of the properties of labelled neurons in Wfs1Cre mice reveals two

populations of neurons. (C) Histogram showing the distribution of rheobase values of cells positively labelled in Wfs1Cre mice. The two groups

Figure 3 continued on next page
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Figure 3 continued

identified in panel (B) can be distinguished by their rheobase. (D) Plot of the first two principal components from PCA of the properties of the L2PC

(n = 44, green) and SC populations (n = 836, black). Putative pyramidal cells (x) and SCs (+) are colored according to their dorsoventral location (inset

shows the scale). (E) Proportion of total variance explained by the first five principal components for the analysis in panel (D). (F) Histograms of

the locations of recorded SCs (upper) and L2PCs (lower). (G) All values of measured features from all mice are plotted as a function of the dorsoventral

location of the recorded cells. Lines indicate fits of a linear model to the complete datasets for SCs (black) and L2PCs (green). Putative pyramidal cells

(x, green) and SCs (+, black). Adjusted R2 values use the same color scheme.
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Figure 4. Inter-animal variability and dependence on environment of intrinsic properties of stellate cells. (A) Examples of rheobase as a function of

dorsoventral position for two mice. (B, C) Each line is the fit of simulated data from a different subject for datasets in which there is no inter-subject

variability (B) or in which intersubject variability is present (C). Fitting data from each subject independently with linear regression models suggests

intersubject variation in both datasets (left). By contrast, after fitting mixed effect models (right) intersubject variation is no longer suggested for

the dataset in which it is absent (B) but remains for the dataset in which it is present (C). (D) Each line is the fit of rheobase as a function of dorsoventral

location for a single mouse. The fits were carried out independently for each mouse (left) or using a mixed effect model with mouse identity as a

random effect (right). (E) The intercept (I), sum of the intercept and slope (I + S), and slopes realigned to a common intercept (right) for each mouse

obtained by fitting mixed effect models for each property as a function of dorsoventral position.
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Figure 4—figure supplement 1. Properties of SCs in medial and lateral slices. Membrane properties of SCs from slices containing more medial (blue)

and more lateral (red) parts of the MEC plotted as a function of dorsal ventral position. Neurons from more medial slices had a higher spike threshold,

a lower spike maximum and a less-negative spike after-hyperpolarization (see Supplementary file 6). Properties are labelled as in Figure 2.
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Figure 5. Rheobase and resonant frequency do not have a detectable modular organization. (A, B) Rheobase (A) and resonant frequency (B) are

plotted as a function of dorsoventral position separately for each animal. Marker color and type indicate the age and housing conditions of the animal

(‘+’ standard housing, ‘x’ large housing). KSDs (arbitrary bandwidth, same for all animals) are also shown. The number of clusters in the data (kest) is

indicated for each animal (k̂).
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Figure 6. Significant modularity is not detectable for any measured property. (A, B) Histograms showing the kest (k̂) counts across all mice for each

different measured sub-threshold (A) and supra-threshold (B) intrinsic property. The maximum k evaluated was 8. The proportion of each measured

property with kest>1 was compared using binomial tests (with N = 15) to the proportion expected if the underlying distribution of that property is

always clustered with all separation between modes �5 standard deviations (pink text), or if the underlying distribution of the property is uniform

(purple text). For all measured properties, the values of kest (k̂) were indistinguishable (p>0.05) from the data generated from a uniform distribution and

differed from the data generated from a multi-modal distribution (p<1�10�6).
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Figure 7. Feature relationships and inter-animal variability after reducing dimensionality of the data. (A, B) Partial correlations between the

electrophysiological features investigated at the level of individual neurons (A) and at the level of animals (B). Partial correlations outside of the 95%

basic bootstrap confidence intervals are color coded. Non-significant correlations are colored white. Properties shown are the resting membrane

potential (Vm), input resistance (IR), membrane potential sag response (sag), membrane time constant (Tm), resonance frequency (Rm), resonance

magnitude (Rm), rheobase (Rheo), slope of the current frequency relationship (FI), peak of the action potential after hyperpolarization (AHP), peak of the

action potential (Smax) voltage threshold for the action potential (Sthr) and half-width of the action potential (SHW). (C) Proportion of variance

explained by each principal component. To remove variance caused by animal age and the experimenter identity, the principal component analysis

used a reduced dataset obtained by one experimenter and restricted to animals between 32 and 45 days old (N = 25, n = 572). (D) Loading plot for the

first two principal components. (E) The first five principal components plotted as a function of position. (F) Intercept (I), intercept plus the slope (I + S)

and slopes aligned to the same intercept, for fits for each animal of the first five principal components to a mixed model with location as a fixed effect

and animal as a random effect.
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Figure 8. Models for intra- and inter-animal variation. (A) The configuration of a cell type can be conceived of as a trough (arrow head) in a

developmental landscape (solid line). In this scheme, the trough can be considered as a set point. Differences between cells (filled circles) reflect

variation away from the set point. (B) Neurons from different animals or located at different dorsoventral positions can be conceptualized as arising

from different troughs in the developmental landscape. (C) Variation may reflect inter-animal differences in factors that establish gradients (upper left)

and in factors that are uniformly distributed (lower left), combining to generate set points that depend on animal identity and location (right). Each line

corresponds to schematized properties of a single animal.
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