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Abstract Cryo-electron tomography (cryoET) has become a powerful technique at the interface

of structural biology and cell biology, due to its unique ability for imaging cells in their native state

and determining structures of macromolecular complexes in their cellular context. A limitation of

cryoET is its restriction to relatively thin samples. Sample thinning by cryo-focused ion beam

(cryoFIB) milling has significantly expanded the range of samples that can be analyzed by cryoET.

Unfortunately, cryoFIB milling is low-throughput, time-consuming and manual. Here, we report a

method for fully automated sequential cryoFIB preparation of high-quality lamellae, including rough

milling and polishing. We reproducibly applied this method to eukaryotic and bacterial model

organisms, and show that the resulting lamellae are suitable for cryoET imaging and subtomogram

averaging. Since our method reduces the time required for lamella preparation and minimizes the

need for user input, we envision the technique will render previously inaccessible projects feasible.

Introduction
Cryo-electron tomography (cryoET) is a powerful imaging technique at the interface of cell biology

and structural biology, due to its capabilities for imaging cells in a near-native state and determining

structures of macromolecular machines in their cellular context (Beck and Baumeister, 2016;

Koning et al., 2018; Kooger et al., 2018; Oikonomou and Jensen, 2017; Plitzko et al., 2017).

Unfortunately, cryoET is restricted to samples that are well below 800 nm in thickness, and requires

sample thinning techniques for specimens like mammalian cells, C. elegans, yeast, cyanobacteria

and biofilms. Biological cryoFIB milling is an emerging sample thinning technique, which uses a gal-

lium ion beam to ablate segments of the sample in order to generate thin lamellae that can be

imaged by cryoET (Marko et al., 2007; Rigort et al., 2010). Unlike previous methodologies, cryoFIB

milling produces specimens without observable artifacts, in which in situ structural information is pre-

served. To date, its use has provided important insights into the cellular mechanisms of organisms

too thick for direct imaging (e.g. Ader et al., 2019; Albert et al., 2017; Böck et al., 2017;

Bykov et al., 2017; Cai et al., 2018; Chaikeeratisak et al., 2019; Delarue et al., 2018;

Khanna et al., 2019; Mahamid et al., 2019; Mahamid et al., 2016; Rast et al., 2019;

Swulius et al., 2018; Weiss et al., 2019). Unfortunately, however, cryoFIB milling for cryoET is at an

early stage of technical maturation and the available techniques are highly manual procedures with

relatively low throughput.

In current lamella preparation workflows (Marko et al., 2007; Medeiros et al., 2018;

Rigort et al., 2010; Strunk et al., 2012; Zhang et al., 2016), samples are vitrified on transmission

electron microscopy (TEM) grids by plunge-freezing. Grids are then transferred to a FIB-scanning
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electron microscope (SEM) instrument, where potential targets are identified by SEM and FIB imag-

ing (Figure 1—figure supplement 1A/B). Using a series of ‘rough milling’ steps, sections above and

below the desired lamella are sequentially removed by reducing the separation between two milling

areas and using decreasing FIB milling currents (e.g. 700 to 100 pA) (Figure 1—figure supplement

1C–E). Once the lamella is thinned to ~500 nm, additional targets are identified and thinned by

rough milling in the same manner. To generate lamellae with a final thickness of 100–250 nm, the

user returns to each target location and thins (‘polishes’) each lamella using a low (e.g. �50 pA) cur-

rent (Figure 1—figure supplement 1F).

Using this method, up to 16 lamellae can be generated in a 10 hr session (Medeiros et al.,

2018). However, for such a session, the procedure requires constant attention from the operator.

This includes, visually monitoring milling and providing manual inputs every 5–15 min, for example

to execute a series of repetitive tasks such as target identification, positioning milling patterns,

changing FIB currents, monitoring drift and visually determining milling end points. This results in a

strenuous procedure with a low throughput relative to the time invested by the user, as well as idle

times due to input delays from the operator. To overcome these issues, automated sequential cryo-

FIB milling has become of paramount interest for the field.

Results

Setup of a sequential automated milling session
Complementary to efforts from the de Marco and Raunser/Plitzko labs (Buckley et al., 2020;

Tacke et al., 2020), here we report an automated sequential FIB milling method aimed at preparing

lamellae for subsequent cryoET imaging. Automation was implemented on two separate Zeiss Cross-

beam 550 FIB-SEM instruments, using routines that are available in the SmartFIB software package

(Zeiss Microscopy GmbH, Oberkochen, Germany). Particularly important are the modules for stage

backlash and drift correction, which are critical for reliable targeting of lamella preparation sites.

This allows the user to set up all milling targets and then execute milling in an unattended, fully auto-

mated manner.

To begin an automated milling session, FIB current alignments are verified to ensure accurate

milling (Figure 1A). Grids are then loaded into the FIB-SEM instrument. To simplify navigation and

target identification, an overview image of the SEM grid is captured and linked to the stage coordi-

nates as described in the methods. Using the overview image for stage navigation, the first milling

site is identified and centered in both the SEM and FIB views (Figure 1B). To ensure accurate target-

ing of the milling site, mechanical stage movement errors were reduced by implementing

backlash correction for all autonomous stage movements. Next, a series of operations is executed

before saving the targets final position (Figure 1C–E). First, stage backlash correction is manually

executed and the target is re-centered in the FIB image (Figure 1C). Second, the target’s stage

coordinates are saved to the stage navigation menu. Third, the stage is manually moved off-target

and autonomously returned to the saved target location (Figure 1D). In case the target is not prop-

erly centered, the above three steps are repeated (Figure 1E), otherwise the user can proceed.

Next, patterns with specific currents for rough milling (e.g. 700, 300 and 100 pA) and polishing

(e.g. 50 pA) are manually placed onto the target’s FIB image (Figure 1F/F’). This is achieved by

either generating a new set of patterns with user-defined pattern size, milling depth, milling current

and material type; or by choosing a previously designed set of patterns, to reproduce a milling

approach and decrease the needed setup time. To further improve the accuracy of targeting, we

also incorporated an additional targeting step based on drift correction (Figure 1F/F’) for both

rough milling and polishing. To implement this, each set of milling patterns receives a drift correc-

tion box, with user-defined dimensions, which is manually placed in a location close to the target. By

capturing and saving an image of the area encompassed by the drift correction box, the milling pat-

terns are anchored to their positions on the target.

After separately saving the first target’s rough milling and polishing patterns to the queue, further

targets are added by repeating the described procedure. This setup process takes ~9 min per

target.
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Processes during a sequential automated milling session
To begin sequential automation, exposure of rough milling patterns saved in the queue is initiated

(Figure 1G). For each set of patterns, the stage automatically moves to the target position and exe-

cutes stage backlash correction. Next, image shifts are determined between the drift correction

image that was recorded during the setup procedure and a drift correction image that is recorded

after arriving at the target location. Any existing shifts are compensated for, using FIB beam shifts,

to achieve precise milling at the target location. The rough milling patterns are then exposed, from

the highest to the lowest current. Previously, manual milling methods used a real-time view in order

to visually determine the time that a FIB current needed to cut through the specimen by visual end

point detection. In our automated approach, the exposure time is calculated by the software using a

user-specified milling depth, milling current, pattern size and material type. After exposing the
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Figure 1. Schematic of the automated sequential cryoFIB milling workflow. (A) FIB currents are aligned and calibrated, and the sample is loaded into

the FIB-SEM instrument. (B) A target cell is identified on the grid with the SEM and FIB. (C) To correct for errors in mechanical stage movements,

backlash correction of the stage is performed. The resulting stage location is saved in the stage navigator. (D) The stage is randomly moved out of

position by the user. Using the saved coordinates in the stage navigator, the stage is autonomously moved back to the target. (E) The accuracy of this

autonomous stage movement is determined by the user. If the target is not centered in the FIB image, backlash correction is repeated until accurate

targeting is achieved (C–E). (F/F’) Rough milling, polishing and drift correction patterns are placed onto the image. Rough milling and polishing

patterns are saved separately to the queue. The procedure (B–F’) is repeated to select additional targets. (G/H) Rough milling and lamellae polishing

are executed automatically. (I) The grids with milled lamellae are removed and stored.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Schematic of the manual cryoFIB milling workflow.
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rough milling patterns for the first target, the procedure is automatically repeated for the remaining

targets in the queue.

Subsequently, the user can decide whether to perform polishing for all targets in a manual or

automated manner (Figure 1H). The automation of polishing follows the same routine as described

above.

Application of sequential automated milling
During the development of this method, we tested automated sequential milling on two separate

Zeiss Crossbeam 550 instruments using the model organisms Saccharomyces cerevisiae strain SK1

(hereafter ‘yeast’) and the multicellular cyanobacteria Anabaena sp. PCC 7120 (hereafter ‘cyanobac-

teria’) in nine independent milling sessions (sessions A-I, Table 1). In these sessions, we aimed to

generate between 5 and 20 lamellae (Figure 2). Rough milling success, as defined by the presence

of an intact lamella at the targeted location after rough milling, was 98% (n = 123). The only failures

in lamellae production were the result of user error, when rough milling was accidentally executed

on the same target twice and on a grid bar (session F and I, respectively). With sessions B.1 and B.2,

we also demonstrated the robustness of the targeting routine by successfully generating 10 lamellae

spread across two grids containing two different samples (Table 1).

While these results present a significant step forward in TEM lamellae preparation, we next set

out to implement automated sequential lamella polishing. In a series of sessions (B.2-I), we milled

between 5 and 20 targets. In total, the success rate (intact lamella detected after polishing) of auto-

mated sequential polishing was 88% (n = 106 rough lamellae). Importantly, 9 of the 13 failed polish-

ing attempts occurred in session C in which the rough-milled lamellae were left in the FIB-SEM

instrument for 10 hr before beginning automated polishing. Prior to polishing, these rough lamellae

showed signs of bending, which likely resulted in failure in lamellae polishing. In fact, when we

repeated session C without a delay between rough milling and polishing (sessions H and I), we did

not observe bending and obtained 95% polishing success. Therefore, we find it advisable to execute

rough milling and polishing in quick succession.

Assessment of sample quality
In order to assess sample quality, we transferred the grids from all sessions to the cryoTEM. Of the

lamellae that were generated in a fully automated manner (n = 93), 16% were lost in transfer and 3%

exhibited contamination or cracks prohibiting data collection. From the collected tomograms, we

Table 1. Overview and success rates of milling sessions.

Session Sample Type Rough Milling
Rough Milling

Success
Polishing

Polishing
Success

Instrument
#

A Cyanobacteria Automated 10/10 Manual 10/10 1

B.1 Yeast Automated 5/5 Manual 5/5*

1
B.2 Cyanobacteria Automated 5/5 Automated 5/5*

C Yeast Automated 20/20 Automated 11/20† 1

D Cyanobacteria Automated 7/7 Automated 7/7 1

E Cyanobacteria Automated 7/7 Automated 7/7 1

F Cyanobacteria Automated 18/19‡ Automated 16/18 1

G Yeast Automated 10/10 Automated 10/10 2

H Yeast Automated 20/20 Automated 18/20 2

I Yeast Automated 19/20§ Automated 19/19 2

Total
Automated

121/123 (98%)
Total

Automated
93/106 (88%)

* Rough milling of both B.1 and B.2 was performed in the same session.
† Lamellae were left in the instrument for 10h beore polishing, leading to lamellae bending and a lower success rate.
‡ User selected one target twice for rough milling, leading to a failure in rough milling.
§ User accidentally milled a target on the grid bar rendering it unusable.
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determined the lamellae thicknesses to range from 117 to 379 nm when final polishing patterns are

placed 300 nm apart (Figure 2—figure supplement 1 and Figure 2—figure supplement 2). A pos-

sible contributor to the range of lamellae thicknesses is minute drift during polishing. The average

thickness of lamellae generated in a fully automated manner (session B.2-I; 243 nm) is comparable to

the thickness of manually polished lamellae (session A/B.1; 258 nm).

CryoET imaging of the lamellae generated during the automated session revealed distinct cellular

features and macromolecular complexes (Figure 3). Yeast tomograms contained nuclei, nuclear pore

complexes, mitochondria, endoplasmic reticula, cytoplasmic ribosomes and vacuoles. In one particu-

lar tomogram (Figure 3B/C), we observed microtubules inside the nucleus and were able to deter-

mine the number of protofilaments without averaging. Cyanobacterial tomograms showed thylakoid

membranes, phycobilisomes and septal junctions (Figure 3E). To further assess sample and data

quality, we performed subtomogram averaging of cyanobacterial septal junctions, which were
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Figure 2. Representative images of lamellae generated by automated sequential rough milling. (A) SEM grid

overview image including 20 yeast targets (asterisks) on which rough milling was performed in an automated

sequential manner (session C). Bars, 200 mm. (B) Representative SEM and FIB images of yeast and cyanobacteria

cells captured before and after fully automated sequential rough milling (session B.1 and B.2). Bars, 5 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Further examples of lamellae generated in a fully automated manner.

Figure supplement 2. Distribution of lamellae thicknesses.

Figure supplement 2—source data 1. Source data for Figure 2—figure supplement 2.

Zachs et al. eLife 2020;9:e52286. DOI: https://doi.org/10.7554/eLife.52286 5 of 14

Tools and resources Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.52286


c

PG

CM

CM

TM

TM

PB

PB

NE

V

*

Tube 

Plug

Arches

Cap

Tube

Plug
Arches

Cap

R

MT

PG

CM

CM

TM

TM

PB

PB

1
2

3

4

5
678

9

10

11

12
13

~
2

8
4

 n
m

MIT

CP

CA B

D

E

NPC

F

Isosurface

MT

Figure 3. Automated sequential cryoFIB milling results in high-quality lamellae and cryotomograms. (A) CryoTEM overview image of a lamella (session

H) containing three yeast cells. Red mark indicates the area imaged in (B). Bar, 5 mm. (B) A 22.85 nm thick slice through a cryo-tomogram of a yeast cell

(session H) [indicated by red mark in (A)]. The tomogram shows a nuclear pore complex (NPC), nuclear envelope (NE), microtubules (MT), cytoplasm

(CP), cytoplasmic ribosomes (R), mitochondria (MIT) and a putative vacuole (V). Bar, 200 nm. (C) Top view of the microtubule indicated by dashed red

box in (B). From a single slice through the tomogram it is possible to identify 13 protofilaments that make up the microtubule. (D) Cross-section of the

tomogram showing the microtubule in (C) inside the generated lamella. From this view, we also determined the lamella thickness to be ~284 nm. (E)

Shown is a 14 nm thick slice through a cryo-tomogram of a septum between two cyanobacteria cells (session F). The thickness of the lamella was

determined to be ~208 nm. Arrowheads indicate septal junctions. The inset shows a magnified view of the septal junction indicated by a red

arrowhead. Other cellular features include cytoplasmic membranes (CM), phycobilisomes (PB), thylakoid membranes (TM) and septal peptidoglycan

(PG). Bars, 100 nm and 25 nm (inset). (F) Subtomogram average generated by extracting 343 septal junction particles from nine tomograms and

performing fivefold symmetrization. Shown are longitudinal and perpendicular slices (thickness 0.68 nm) and a surface rendering of the symmetrized

average. The observed characteristic structural modules were similar to a recent study that applied manual cryoFIB milling (Weiss et al., 2019) (also see

Figure 3—figure supplement 1). Bars, 25 nm.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Figure supplement 1. Comparison of data quality between manual and automated milling.

Figure supplement 1—source data 1. Source data for Figure 3—figure supplement 1.
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characterized recently by a manual cryoFIB milling/cryoET approach (Weiss et al., 2019). From nine

lamellae, a total of 412 subvolumes were extracted, averaged and classified in order to remove mis-

aligned particles. The 343 remaining subvolumes were then averaged and symmetrized. The result-

ing structure had the same architecture as previously described, including a cap module with five

arches, a plug module and a tube module (Figure 3F). Fourier shell correlation (FSC) analyses indi-

cate that the average had a resolution that is similar to a structure that was calculated using the

same number of particles extracted from tomograms generated in a previous study by manual mill-

ing (Weiss et al., 2019; Figure 3—figure supplement 1).

Discussion
In conclusion, our automated sequential cryoFIB milling method allows for the production of high-

quality lamellae for cryoET imaging and will impact cryoFIB/cryoET projects in several ways. First,

the time investment by the operator is significantly reduced from ~10 hr in a manual milling session

to ~2.4 hr for an automated sequential milling session, assuming 16 targets are milled. Second, by

removing the need for frequent user inputs and idle times, the minimum required machine time is

reduced from 30 to 45 min (Medeiros et al., 2018) (i.e. 16 lamellae in 10 hr) to ~25.75 min (~9 min

setup plus ~16.75 min milling) per lamella. Note that the stated values are dependent on key param-

eters including the sample type, sample thickness, lamellae sizes and stage stability. Instrument 2,

for example, required an additional stage settling time (3 min) before polishing each target. Third,

based on the robustness and customizable nature of the method, the procedure can be adapted to

a wide range of samples and milling techniques (Toro-Nahuelpan et al., 2020; Wolff et al., 2019).

Fourth, the automated procedure will allow the user to systematically explore novel milling methods

by reusing uniform milling patterns. Fifth, the method can generally be combined with correlated

approaches that allow for target pre-screening, for instance cryo-light microscopy or cryo-FIB-SEM

volume imaging (Eibauer et al., 2012; Gorelick et al., 2019; Koning et al., 2014; Schertel et al.,

2013; Schorb et al., 2017; Sviben et al., 2016; Vidavsky et al., 2016). Altogether, the develop-

ment of automated sequential cryoFIB milling renders cryoET applicable to previously unfeasible

projects.

Materials and methods

Overview of the equipment and workflow
The method was established and tested on two different Crossbeam 550 FIB-SEM instruments (Carl

Zeiss Microscopy) equipped with copper band-cooled mechanical cryo-stages and integrated

VCT500 vacuum transfer systems (Leica Microsystems). The detectors used included an InLens sec-

ondary electron detector for determining grid topology (Carl Zeiss Microscopy) and a SE2 detector

for identifying milling targets and visually assessing the ice thickness (Carl Zeiss Microscopy). In our

workflow, EM grids were prepared with the yeast strain Saccharomyces cerevisiae SK1 and the cya-

nobacterial strain Anabaena sp. PCC 7120, clipped into FIB milling Autogrids (ThermoFisher Scien-

tific, Waltham, MA). These grids were then mounted onto a pre-tilted Autogrid holder

(Medeiros et al., 2018) (Leica Microsystems GmbH, Vienna, Austria) using a VCM loading station

(Leica Microsystems). With the VCT500 shuttle, the Autogrid holder was transferred to an ACE600

cryo-sputter coater (Leica Microsystems). Under cryogenic conditions the plunge-frozen sample were

sputter-coated with a ~4 nm thick layer of tungsten. After sputter coating, the samples were trans-

ferred into the Crossbeam 550 using the VCT500 shuttle. In the Crossbeam 550, the gas injection

system (GIS) was used to deposit an organometallic platinum precursor layer onto each grid. Auto-

mated sequential FIB milling was subsequently set up and executed. Sample preparation, plunge-

freezing, Autogrid mounting, holder loading and vacuum cryo-transfer steps were executed similarly

to what was described in Medeiros et al. (2018). Any deviations to the previously published proto-

col are described below.

Cell culture and plunge freezing
FIB milling tests were performed using the cyanobacterial strain Anabaena sp. PCC 7120 and the

yeast strain Saccharomyces cerevisiae SK1 (Table 2). Yeast and cyanobacterial strain identities were
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determined according to standard microbiological procedures. The cyanobacterial cell line origi-

nates from Rippka et al. (1979). The cyanobacterial strain was grown and prepared for FIB milling

as previously described in Weiss et al. (2019). The yeast strain was generated in this study. Meiotic

yeast cells were cultured as previously described in Wild et al. (2019) and prepared for plunge

freezing as described by Medeiros et al. (2018), with minor modifications. Briefly, yeast cells were

harvested and 4 mL of cell suspension, OD600 ~1.5, was applied on glow-discharged copper EM grids

(R2/2, Quantifoil, Großlöbichau, Germany). Grids were back-blotted twice for 3–5 s each time, at 4˚C

with 95% humidity and plunged into liquid ethane/propane using a Vitrobot (ThermoFisher).

Equipment calibration
To ensure that automated sequential FIB milling was successful, the Crossbeam 550 was properly

aligned. While the SEM column alignments are stable and non-essential during automated milling,

the FIB alignment between different currents at a given voltage (30 kV for biological cryo-samples)

should be checked and optimized. Typically, this calibration is done weekly or when deemed neces-

sary and takes roughly 60 min to complete. In case of deviation, on-the-fly adjustments are possible

on a loaded cryo-sample, however, standard calibration procedures are best performed on a silicon

wafer due to its structural homogeneity, which allows better evaluation of the FIB beam shape.

Once inserted into the chamber, the stage was tilted by 54˚ to be perpendicular to the FIB beam

and then moved to the working distance (i.e. coincidence point). Using the ‘spot’ function in an

unexposed sample region, the beam was focused to its spot size allowing it to burn a hole into the

silicon. When the current is properly calibrated, the beam will produce a spot that is round with

sharp edges. This was best seen when using a mixed signal of the InLens and SE2 detector. If a

beam spot had imperfections, like a tailing edge, beam parameters including focus, stigmatism and

aperture alignments need to be improved and saved. After optimizing these parameters for each

current, all currents were aligned against the reference current. This was best performed by position-

ing an easily recognizable structure, like a burnt hole, in the middle of the reference current image

and then centering this feature in each of the other currents. Finally, to ensure that the currents were

properly aligned, a location is imaged by each current. If properly aligned, switching between cur-

rents should not lead to focus changes or beam offsets.

Sample coating
To enhance conductivity and decrease the effects of charging, the plunge-frozen sample was coated

with a ~4 nm layer of tungsten. This was autonomously executed by an ACE600 sputter coating pro-

gram in an argon atmosphere (8.0E-3 mbar) and with a current of 90 mA. After inserting the holder

into the FIB-SEM, a protection layer of organometallic platinum precursor was deposited onto each

grid to minimize the effects of curtaining. For cold deposition of platinum precursor, the holder was

moved 3 mm below the coincidence point and tilted to 20˚. By positioning the GIS needle above

each grid and opening the GIS for 45 s, a layer of platinum precursor was deposited onto the sam-

ple. Since the GIS needle was mounted at a similar angle as the FIB column, deposition of platinum

occurred preferentially on the side of the cells where the FIB beam hits the sample, ensuring the

best protection. For deposition under cryo-conditions, it is essential that the heating element of the

GIS needle and reservoir are turned off to keep the system at room temperature (28˚C).

Table 2. Strains used in this work.

Strain Identifier Genotype Source or reference

Anabaena sp.
PCC7120

Cyanobacteria Wild Type Rippka et al. (1979)

Saccharomyces cerevisiae SK1 Yeast diploid, homozygous
for ndt80D::HIS3 ho::LYS2
ura3 leu2::hisG trp1::hisG
his3::hisG

This study

Zachs et al. eLife 2020;9:e52286. DOI: https://doi.org/10.7554/eLife.52286 8 of 14

Tools and resources Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.52286


Stage registration
To assist in the identification of targets, overview images of an entire EM grid are taken. On the

Zeiss Crossbeam 550, these images can be coupled to the stage navigation. To calibrate stage regis-

tration a high-resolution (4096 � 3072 pixels, 35x magnification) overview image was taken with the

SE2 detector, which provided the best information for identifying targets inside the vitrified ice and

determining ice thickness. This overview image was then loaded onto the stage navigation bar and

registered by correlating three distinctive points on the image to their specific positions on the stage

as observed in the live SEM view. After completion, double clicking on a desired target in the navi-

gation bar automatically moves the stage to the location of interest. In addition, backlash correction

was also included for all automated stage movements, using the user preference settings of the soft-

ware SmartSEM (Carl Zeiss Microscopy).

Defining milling materials
To permit unsupervised automation of lamellae production, the Crossbeam 550 was calibrated to

mill a cross-section with a specified depth through the sample. To ensure proper milling, the system

needs to be calibrated for a distinct ‘material’ so that the correct milling parameters like dose are

applied during milling. For cryo-TEM lamella preparation, the material ‘vitrified ice’ was created

using a dose calibration of 20 mC/cm2 being equivalent to a milling depth of 1 mm in cross-section

mode. No attempts were made to make sample specific material types, however, this would also be

possible.

Parameters for imaging and milling
For SEM imaging, voltages from 1.9 to 5 kV and a constant current of 28 pA were used. To capture

SEM images, we most commonly used the InLens detector to obtain surface information of the sam-

ple. During FIB imaging, on the other hand, a fixed voltage of 30 kV and a low current (20 pA) was

used. FIB images were usually captured by using the SE2 detector, which is less sensitive to imag-

ing-induced charging. During automated sequential milling a total of four currents were used for

rough milling (700 pA, 300 pA and 100 pA) and polishing (50 pA). For milling, we defined the pat-

terns to be executed using bi-directional and cross-section cycle mode with a 10 mm milling depth. It

is important to note that the milling parameters (milling current, pattern size, milling depth, etc.) are

adjustable on-the-fly to optimize each set of patterns for the target location and desired milling

strategy.

Automated sequential FIB milling protocol
To generate high-quality lamellae, it was essential to prepare the FIB-SEM and sample for auto-

mated sequential milling. Preparations included checking and calibrating the FIB currents, coating

the plunge-frozen sample with a layer of tungsten and organometallic platinum, and performing

stage registration. Once these steps were executed, automated sequential milling was initiated by

identifying and setting up milling targets.

The grid overview image in the stage navigator was used to identify a milling target. The identi-

fied target was then manually centered in the live FIB view with the aid of the SEM. To improve the

accuracy of automated stage movements, backlash correction was performed manually and imple-

mented for all automated stage movements. The target’s stage coordinates were then saved in the

stage navigator. To ensure that the instrument was able to perform targeting during automation,

the stage was manually moved away from the target and then instructed to move back to its saved

location. The target was located using the live FIB view and if it was >1 mm from desired location, it

was manually centered again. If manual centering was required, the new stage location was saved

and the instrument’s ability to perform targeting was tested again. To ensure successful milling dur-

ing automation, it was essential to refine the stage location until the stage was able to perform tar-

geting successfully.

Once an accurate stage movement was achieved, milling patterns were placed onto a targets FIB

image captured using SmartFIB. In SmartFIB, each pattern contains specific milling conditions (i.e.

current, milling depth, size, shape, etc.) and a designated FIB milling location. SmartFIB allows the

placing of multiple patterns with different conditions onto a single FIB image in order to perform

automated milling. Patterns were placed and their properties were changed by using the SmartFIB
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GUI in the ‘attributes’ tab. When testing this methodology, we placed eight rectangular milling pat-

terns: six rough milling and two polishing patterns (Table 3). The final polishing patterns were

spaced 300 nm apart, since we generally expected the generated lamellae to be thinner than the

specified value. To make uniform lamellae, it was also possible to save these eight patterns as a rec-

ipe, which can be dragged and dropped onto images of other milling targets. To then save these

milling patterns, it was essential to separate the rough and polishing patterns. This was accom-

plished by deleting the polishing patterns from our recipe, saving only the rough milling patterns,

undoing the deletion of the polishing patterns (using the SmartFIB ‘undo’ button), deleting all rough

milling patterns and then saving only the polishing patterns.

To improve the targeting accuracy of this methodology, a drift correction step was also added to

each set of rough milling and polishing patterns immediately before being saved. This was done in

the SmartFIB ‘attributes’ tab, by capturing and saving an image of a defined region of the FIB view.

During the automated protocol SmartFIB would use this image to perform image recognition before

beginning milling and compensate for small shifts (generally between 0 and 2 mm) to ensure the mill-

ing patterns are placed correctly on the target. When testing this methodology, it was important to

use the same drift correction image for both the rough milling and polishing patterns. This ensured

that the same region is exposed during rough milling and polishing.

After saving a set of rough and polishing patterns, the described method can be repeated for fur-

ther targets. For an automated protocol, about 9 min were needed to set up each target. Once sat-

isfied with the number of targets, all rough milling recipes in the SmartFIB queue were selected and

exposed. Exposure of a typical rough milling target took about 12 min. Upon completion, rough

milling targets were observed using the SEM and FIB to determine their quality. To then initiate pol-

ishing, it is possible to either tick all polishing recipes and expose them, or individually move to each

target using SmartFIB, take a FIB image, manually drag polishing patterns into place and expose the

lamella. Polishing typically took about 4.75 min. Once all targets are polished, the lamellae are

removed from the instrument and stored. Note that instrument 2 (Table 1) suffered from stage drift,

which caused issues during polishing. Unfortunately, SmartFIB does not have an integrated wait

time, however, using a set of low current (1–5 pA) patterns, we were able to apply a wait time of 3

min to allow the stage to settle before polishing. An overview of all the milling attempts that were

performed can be found in Table 1.

Cryo-electron tomography, tomogram reconstruction and
subtomogram averaging
Data was collected on a Titan Krios 300kV electron microscope (ThermoFisher) equipped with a field

emission gun, imaging filter (Gatan, Pleasanton, U.S.) (slit width 20 eV) and K2 or K3 direct electron

detector (Gatan). To generate an overview of each grid, grid montages were collected at 135x mag-

nification using SerialEM (Mastronarde, 2005). Cyanobacteria data was collected with UCSF Tomo

Table 3. Dimensions and currents used for each milling pattern during automated sequential

lamellae preparation.

Milling Pattern # Pattern Attributes

Milling pattern 1 and 2
(Rough Milling 1)

30 kV 700 pA
9 � 5 mm rectangle
Generates 2 mm thick lamella

Milling Pattern 3 and 4
(Rough Milling 2)

30 kV 300 pA
8 � 2 mm rectangle
Generates 1 mm thick lamella

Milling Pattern 5 and 6
(Rough Milling 3)

30 kV 100 pA
7.5 � 1 mm rectangle
Generates 500 nm thick lamella

Milling Pattern 7 and 8
(Lamella Polishing)

30 kV 50 pA
7 � 0.5 mm rectangle
Generates 300 nm thick lamella

Drift Correction Pattern
(Rough Milling and Polishing)

3 � 3 mm rectangle
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(Zheng et al., 2007) at 2˚ increments between +60˚ and �60˚. Data was collected at a defocus of �8

mm, total accumulated dose of ~140 e- / Å2 and pixel size of 3.38 Å. Yeast tomograms were col-

lected using SerialEM between +60˚ and �60˚ at 2˚ increments with a defocus of �8 mm, total accu-

mulated dose of ~120 e- / Å2 and pixel size of 4.57 Å. Tomogram reconstruction and subtomogram

averaging was performed according to Weiss et al. (2019). Briefly, tomograms were reconstructed

using the IMOD package (Kremer et al., 1996) and septal junction subtomogram averaging was

performed using PEET (Nicastro et al., 2006). A total of 412 particles were extracted and averaged

in a box of 44 � 44 � 44 pixels with a pixel size of 6.8 Å. PEET classification was then used to

remove misaligned particles (343 final particles). 5-fold symmetry was applied to obtain the final

average. The FSC (Fourier Shell Correlation) was generated by using the PEET command calcFSC.
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Cai S, Böck D, Pilhofer M, Gan L. 2018. The in situ structures of mono-, di-, and trinucleosomes in human
heterochromatin. Molecular Biology of the Cell 29:2450–2457. DOI: https://doi.org/10.1091/mbc.E18-05-0331,
PMID: 30091658

Chaikeeratisak V, Khanna K, Nguyen KT, Sugie J, Egan ME, Erb ML, Vavilina A, Nonejuie P, Nieweglowska E,
Pogliano K, Agard DA, Villa E, Pogliano J. 2019. Viral capsid trafficking along treadmilling tubulin filaments in
Bacteria. Cell 177:1771–1780. DOI: https://doi.org/10.1016/j.cell.2019.05.032, PMID: 31199917

Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D,
Poterewicz G, Chung JK, Plitzko JM, Groves JT, Jacobs-Wagner C, Engel BD, Holt LJ. 2018. mTORC1 controls
phase separation and the biophysical properties of the cytoplasm by tuning crowding. Cell 174:338–349.
DOI: https://doi.org/10.1016/j.cell.2018.05.042, PMID: 29937223

Eibauer M, Hoffmann C, Plitzko JM, Baumeister W, Nickell S, Engelhardt H. 2012. Unraveling the structure of
membrane proteins in situ by transfer function corrected cryo-electron tomography. Journal of Structural
Biology 180:488–496. DOI: https://doi.org/10.1016/j.jsb.2012.09.008, PMID: 23000705

Gorelick S, Buckley G, Gervinskas G, Johnson TK, Handley A, Caggiano MP, Whisstock JC, Pocock R, de Marco
A. 2019. PIE-scope, integrated cryo-correlative light and FIB/SEM microscopy. eLife 8:e45919. DOI: https://doi.
org/10.7554/eLife.45919, PMID: 31259689

Khanna K, Lopez-Garrido J, Zhao Z, Watanabe R, Yuan Y, Sugie J, Pogliano K, Villa E. 2019. The molecular
architecture of engulfment during Bacillus subtilis sporulation. eLife 8:e45257. DOI: https://doi.org/10.7554/
eLife.45257, PMID: 31282858

Koning RI, Celler K, Willemse J, Bos E, van Wezel GP, Koster AJ. 2014. Correlative cryo-fluorescence light
microscopy and cryo-electron tomography of Streptomyces. Methods in Cell Biology 124:217–239.
DOI: https://doi.org/10.1016/B978-0-12-801075-4.00010-0, PMID: 25287843

Koning RI, Koster AJ, Sharp TH. 2018. Advances in cryo-electron tomography for biology and medicine. Annals
of Anatomy - Anatomischer Anzeiger 217:82–96. DOI: https://doi.org/10.1016/j.aanat.2018.02.004, PMID: 2
9526767

Zachs et al. eLife 2020;9:e52286. DOI: https://doi.org/10.7554/eLife.52286 12 of 14

Tools and resources Structural Biology and Molecular Biophysics

http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10707
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10707
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10707
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10376
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10376
https://www.ebi.ac.uk/pdbe/emdb/empiar/entry/10376
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10708
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10708
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10708
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10710
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10710
http://www.ebi.ac.uk/pdbe/entry/emdb/EMD-10710
https://doi.org/10.7554/eLife.40712
http://www.ncbi.nlm.nih.gov/pubmed/30714902
https://doi.org/10.1073/pnas.1716305114
http://www.ncbi.nlm.nih.gov/pubmed/29229809
https://doi.org/10.1016/j.tcb.2016.08.006
http://www.ncbi.nlm.nih.gov/pubmed/27671779
https://doi.org/10.1126/science.aan7904
https://doi.org/10.1126/science.aan7904
http://www.ncbi.nlm.nih.gov/pubmed/28818949
https://doi.org/10.7554/eLife.32493
https://doi.org/10.7554/eLife.32493
http://www.ncbi.nlm.nih.gov/pubmed/29148969
https://doi.org/10.1091/mbc.E18-05-0331
http://www.ncbi.nlm.nih.gov/pubmed/30091658
https://doi.org/10.1016/j.cell.2019.05.032
http://www.ncbi.nlm.nih.gov/pubmed/31199917
https://doi.org/10.1016/j.cell.2018.05.042
http://www.ncbi.nlm.nih.gov/pubmed/29937223
https://doi.org/10.1016/j.jsb.2012.09.008
http://www.ncbi.nlm.nih.gov/pubmed/23000705
https://doi.org/10.7554/eLife.45919
https://doi.org/10.7554/eLife.45919
http://www.ncbi.nlm.nih.gov/pubmed/31259689
https://doi.org/10.7554/eLife.45257
https://doi.org/10.7554/eLife.45257
http://www.ncbi.nlm.nih.gov/pubmed/31282858
https://doi.org/10.1016/B978-0-12-801075-4.00010-0
http://www.ncbi.nlm.nih.gov/pubmed/25287843
https://doi.org/10.1016/j.aanat.2018.02.004
http://www.ncbi.nlm.nih.gov/pubmed/29526767
http://www.ncbi.nlm.nih.gov/pubmed/29526767
https://doi.org/10.7554/eLife.52286
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Rigort A, Bäuerlein FJ, Leis A, Gruska M, Hoffmann C, Laugks T, Böhm U, Eibauer M, Gnaegi H, Baumeister W,
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