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Abstract Understanding why identical stimuli give differing neuronal responses and percepts is

a central challenge in research on attention and consciousness. Ongoing oscillations reflect

functional states that bias processing of incoming signals through amplitude and phase. It is not

known, however, whether the effect of phase or amplitude on stimulus processing depends on the

long-term global dynamics of the networks generating the oscillations. Here, we show, using a

computational model, that the ability of networks to regulate stimulus response based on pre-

stimulus activity requires near-critical dynamics—a dynamical state that emerges from networks

with balanced excitation and inhibition, and that is characterized by scale-free fluctuations. We also

find that networks exhibiting critical oscillations produce differing responses to the largest range of

stimulus intensities. Thus, the brain may bring its dynamics close to the critical state whenever such

network versatility is required.

Introduction
Understanding how neurons coordinate their activity to produce emergent dynamics and behaviors

is crucial to understanding how the brain gives rise to conscious perception. An influential approach

for elucidating neural correlates of consciousness (Dehaene and Changeux, 2011; Engel and

Singer, 2001; Tononi and Koch, 2008) has been that of threshold-stimulus detection (Li et al.,

2014; Linkenkaer-Hansen et al., 2004; Wyart and Tallon-Baudry, 2009). In these tasks, subjects

are given a stimulus that is set at the edge of perception, meaning that on 50% of trials subjects per-

ceive it, and on 50% of trials they do not. In trials where the stimulus is perceived, primary sensory

regions exhibit larger event-related potentials (Pins and Ffytche, 2003), larger event-related

desynchronization (Vidal et al., 2015), and stronger phase-locking to the stimulus (Palva et al.,

2005). However, what causes some trials to evoke stronger ERPs, event-related desynchronization,

or phase-locking than other trials—with dramatic consequences for perception—cannot be

explained by differences in the stimuli, which are held identical throughout the threshold-stimulus

detection experiments. The alternative is that awareness of stimuli depends on brain processes that

unravel around the time of the stimulation, for example that pre-stimulus neuronal activity biases

stimulus processing and conscious perception (Aru et al., 2012).

One candidate mechanism for gating stimulus processing is alpha oscillations (Jensen and Maza-

heri, 2010), which inhibit unwanted stimuli from reaching consciousness (Capilla et al., 2014;

Händel et al., 2011; Jensen et al., 2012; Jensen and Mazaheri, 2010; Thut et al., 2006). Fluctua-

tions in alpha oscillations, possibly modulated by attention (Macdonald et al., 2011), may determine
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whether a stimulus is perceived or not. This was confirmed in threshold-stimulus experiments relating

higher pre-stimulus alpha activity to decreased stimulus detection (Ergenoglu et al., 2004;

Hanslmayr et al., 2005; Linkenkaer-Hansen et al., 2004). In addition to amplitude, the pre-stimulus

alpha phase also predicts stimulus awareness (Busch et al., 2009; Mathewson et al., 2009;

VanRullen, 2016).

Regardless of the attentional state, neuronal oscillations in the alpha band exhibit spontaneous

amplitude fluctuations. However, these fluctuations are not random, but exhibit a specific temporal

structure: autocorrelations with scale-free decay that extends up to time scales of hundreds of sec-

onds (Linkenkaer-Hansen et al., 2001), also called long-range temporal correlations (LRTC). This

scale-free character of the oscillations emerges in neuronal networks with balanced excitatory and

inhibitory forces (Poil et al., 2012) and is considered a sign of critical-state dynamics (Bak et al.,

1987; Chialvo, 2010). Thus, oscillations exhibiting LRTC are referred to as ‘critical oscillations’. Criti-

cality in the brain has also been associated with scale-free neuronal avalanches, and different compu-

tational models have used this link to indicate that critical dynamics are beneficial for processing

information (Beggs and Plenz, 2003), for example evoked responses show the largest dynamic

range (Gautam et al., 2015; Kinouchi and Copelli, 2006; Larremore et al., 2011) and this has sub-

sequently been confirmed experimentally (Gautam et al., 2015; Shew et al., 2009). However, it is

not known whether critical-state dynamics of alpha oscillations is beneficial for stimulus processing.

Importantly, it remains entirely unknown whether pre-stimulus bias of post-stimulus processing

depends on brain dynamics being close to the critical point.

To answer this question, we consider the network response in terms of phase-locking to the stim-

ulus, which is thought to play a role in reorganizing neuronal networks for efficient stimulus process-

ing (Hanslmayr et al., 2005; Min et al., 2007; Sauseng et al., 2007; Voloh and Womelsdorf,

2016). We rely on an extension of a model of critical oscillations (CROS) (Poil et al., 2012), which

exhibits dynamics comparable to human M/EEG (Dalla Porta and Copelli, 2019). We use the model

to investigate the network phase-locking response as a function of network connectivity, stimulus

size, and pre-stimulus alpha amplitude and phase. We then related short-term fluctuations in infor-

mation processing in these networks, with a long-term characteristic of the oscillatory dynamics: their

level of criticality. To evaluate the criticality of alpha oscillations, we used detrended fluctuation anal-

ysis (DFA, see Materials and methods), which can discriminate between random fluctuations in the

amplitude of oscillations and critical oscillations with long-range temporal correlations. In addition,

DFA has the advantage, over other measures of criticality such as neuronal avalanches, that it can be

estimated noninvasively at electrode level. This will allow future experiments with EEG/MEG record-

ings to test whether for example the criticality of sensory cortices biases stimulus processing. We

show that pre-stimulus amplitude and phase regulation occurs for critical, but not for subcritical or

supercritical networks. Thus, critical-state dynamics in a neuronal network is associated with versatile

functions, allowing it to flow between low- and high-responsivity states on sub-second time scales.

In addition, we show that a critical network can differentiate the widest range of stimulus sizes.

Together, our results suggest that understanding how close neuronal networks are to criticality is

essential for understanding their function.

Results

Unstimulated network produces multi-level criticality
To test the effect of critical oscillations on neuronal network functionality, we adapted a model of

ongoing neuronal activity (CROS) (Poil et al., 2012) (see Materials and methods). CROS consists of

75% excitatory and 25% inhibitory integrate-and-fire neurons arranged in a 50 � 50 grid (Figure 1—

figure supplement 1A). The two parameters that need to be set when creating a network are the

percentage of neurons within a local range (circular radius four neurons) that each excitatory and

each inhibitory neuron connects to (Figure 1—figure supplement 1A). The firing rate grew monoto-

nously for both excitatory and inhibitory neurons, as we increased excitatory connectivity (Figure 1—

figure supplement 1B,C). Networks oscillated in the 8–16 Hz range (Figure 1—figure supplement

1D), with the power of the oscillation increasing as we move towards an excitation-dominated

regime (Figure 1—figure supplement 1E). Importantly, the model exhibits multi-level criticality,

with spatial and temporal power-law scaling behavior in network activity, which arises through a
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common mechanism of balanced E/I connectivity (Figure 1—figure supplement 1F–J). To illustrate

the importance of the level of criticality on network function, we will show detailed data from three

networks throughout the paper: a subcritical (45% excitatory/90% inhibitory connectivity - blue), a

critical (60%/75% - green), and a supercritical one (75%/60% - red)(e.g., Figure 1E).
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Figure 1. Dynamic range is maximized when network exhibits critical-state dynamics. (A) A stimulus is connected to a random subset of excitatory

neurons on the grid. (B) We stimulated 1800 excitatory neurons in three example subcritical, critical and supercritical networks. The top plots show the

total number of excitatory (red) and inhibitory (blue) spikes with millisecond resolution. Plots below show individual spikes for all 2500 excitatory and

inhibitory neurons in the networks. In all cases, the response to the stimulus is oscillatory with a periodicity characteristic of an alpha (8–16 Hz) rhythm.

(C) The phase-locking factor at a time point post-stimulus is calculated as the normalized vector sum of phase angles across trials (inset left). A value of

1 corresponds to all trials having the same phase, a value of 0 corresponds to a uniform distribution of phases. Post-stimulus phase-locking response to

a stimulus is dependent on the size of the stimulus. Shown for different stimulus sizes in a critical network. (D) Dynamic range was calculated as the

orders of magnitude of neurons stimulated between the 10th and 90th percentile, of a sigmoid fit to the phase-locking response, at a time point where

the network shows response to the stimulus (150 ms post-stimulus). Shown for example sub-critical (blue), critical (green) and super-critical (red)

networks. (E) Dynamic range is dependent on E/I connectivity balance. The black line indicates critical neuronal avalanches, as measured when the

networks were not stimulated. The networks used to illustrate the functionality of different criticality regimes are shown as triangles on the phase-space

with the colors of sub-critical (blue), critical (green) and super-critical (red). (F) Dynamic range of phase-locking response increases with long-range

temporal correlations (LRTC) at 150 ms post-stimulus (Spearman correlation). Networks binned based on average DFA for each of the 256 excitatory/

inhibitory connectivity parameter combinations, and dynamic range calculated as the mean of networks in that bin.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The CROS model produces critical state dynamics in the form of neuronal avalanches and long-range temporal correlations

(LRTC) of oscillations, when excitation is balanced by inhibition.

Figure supplement 2. Critical networks exhibit maximum dynamic range of phase-locking factor at multiple post-stimulus latencies.

Figure supplement 3. Critical networks show maximal dynamic range of phase-locking factor.
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Dynamic range of phase-locking response is strongest for critical
networks
Previously, it was shown that criticality maximizes the dynamic range of evoked firing-rate responses

(Gautam et al., 2015; Kinouchi and Copelli, 2006; Larremore et al., 2011). However, event-related

responses in large oscillatory networks also reflect a reset in the oscillatory phase following stimula-

tion, leading to the phase-locking of the oscillation to the stimulus (Makeig et al., 2002; Min et al.,

2007; Palva et al., 2005). As such, the firing rate and phase-locking responses reflect fundamentally

different aspects of network activity, for example evoked firing-rate responses may increase the

overall network activity without affecting the phase of oscillatory activity in a particular frequency

band. In fact, evoked firing-rate responses are not an appropriate measure of network response in

networks with strong oscillations: they fluctuate continuously with the phase of the ongoing oscilla-

tion, making it difficult to judge the firing-rate response in absolute values, that is without relating it

to the ongoing oscillation. In that respect, the phase-locking response is a more appropriate way to

detect changes in network activity occurring due to external stimulation.

To test whether criticality maximizes the dynamic range also for phase-locked oscillatory

responses, we attached a stimulus to n excitatory neurons distributed randomly on the grid

(Figure 1A). The stimulus had the same weight as any of the excitatory to excitatory synapses in the

network (winput = wEE = 0.0085), and lasted for one time step (1 ms). We found that the stimulus

response in our networks is indeed oscillatory, which may result in stimulus phase-locking

(Figure 1B). We then investigated how changing the stimulus size, n, altered the phase-locking

response of a network to the stimulus. In Figure 1C, we can see that a critical network increases the

level of post-stimulus phase-locking as stimulus size is increased. This shows that the CROS model is

capable of showing oscillatory responses to a stimulus, as has been seen in human subjects

(Palva et al., 2005). We calculated the dynamic range, which gives an indication of how well a net-

work can give differing responses to stimuli of different sizes (see Materials and methods). Critical

networks show a wider dynamic range than their sub-/super-critical counterparts (Figure 1D–F), and

this effect is robust over a wide range of post-stimulus latencies (Figure 1—figure supplement 2).

Interestingly, in the case of supercritical networks, the strong, ongoing oscillatory activity prevents

the phase-locking response from saturating (PLF ~1), even at the largest stimulus sizes (Figure 1D,

Figure 2—figure supplement 1). Another factor that can shape stimulus response, other than stimu-

lus size, is the strength of the external stimulus. We found that an 8-fold increase in the external

input strength was sufficient to bring the PLF of supercritical networks to saturation, for the largest

stimulus size (Figure 1—figure supplement 3B). However, such a large increase in the input

strength also leads to a stronger PLF for the smaller stimulus sizes in the case of subcritical and criti-

cal networks, which means they no longer show weak PLF responses reducing their dynamic range.

Of all tested strengths and networks, the maximal dynamic range occurs for critical networks at a

multiplier ~1 (Figure 1—figure supplement 3C). Overall, our results show that critical networks dis-

criminate the widest range of stimulus sizes through their post-stimulus phase-locking response.

Pre-stimulation amplitude influence on phase-locking requires critical
dynamics
The ongoing oscillations showed a phase-locking response in the post-stimulus period (~65–250 ms)

to the stimulus, which depended on the criticality of the network (Figure 2A,B), as well as on the

stimulus size (Figure 2—figure supplement 1). Considering the complex variation of activity in a

critical network, we wondered whether critical networks function differently depending on their

instantaneous state. For this purpose, we assessed the network phase-locking response to a stimulus

of 5 neurons, and related it to the pre-stimulus amplitude averaged over the �150 to �50 ms time

range, in the 8–16 Hz frequency band. We found that critical networks exhibit strong negative pre-

stimulus amplitude regulation (Figure 2C–E), whereas sub-critical or super-critical networks show no

pre-stimulus amplitude regulation (Figure 2D,E). We confirmed this result statistically by showing

that pre-stimulus amplitude regulation was more prominent for networks with stronger LRTC

(Figure 2F, Figure 2—figure supplement 2).

To test whether this function is generic to criticality and not specific to the chosen stimulus size,

we investigated the three combinations of excitatory/inhibitory connectivity and found that the criti-

cal network—unlike the sub-/super-critical networks—showed significant pre-stimulus amplitude
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modulation for a wide range of stimulus intensities (Figure 2G). Changing the weight of the external

input also affects the range of stimuli over which networks show pre-stimulus amplitude regulation

(Figure 2—figure supplement 3B). Nonetheless, the range of stimuli over which the critical
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Figure 2. Pre-stimulus amplitude regulation of response requires critical-state dynamics. (A) Ongoing oscillations phase-lock to stimulus. Example

shown for five neurons stimulated, for sub-critical (blue), critical (green), and super-critical networks (red). (B) Phase-locking response at 150 ms post-

stimulus depends on the balance between excitation and inhibition, being highest for sub-critical networks, lowest for super-critical networks, and with

intermediate values in the critical regime. The locations of the three example networks are highlighted on the phase space by triangles with

corresponding colors. black line indicates critical neuronal avalanches. (C) To calculate the PLF response across trials with similar pre-stimulus

amplitude, we split trials in 10 bins based on the pre-stimulus amplitude in the �150 to �50 ms time range, for the 8–16 Hz frequency band. Trials

belonging to different pre-stimulus amplitude bins show different phase-locking response post-stimulus. Color indicates the percentile interval of the

pre-stimulus amplitude bin. (D) Power of pre-stimulus oscillation can alter the phase-locking response of a network to the stimulus, in the presence of

critical oscillations. Shown for example sub-critical (blue), critical (green), and super-critical (red) networks. Pre-stimulus amplitude regulation, Regamp,

was computed as the Spearman correlation coefficient between the pre-stimulus amplitude percentile bins, and the PLF of the trials in each bin. (E) The

strength of pre-stimulus amplitude regulation is dependent on a balance between excitation and inhibition in terms of connectivity. The black line

indicates critical neuronal avalanches, as measured when the networks were not stimulated. Here shown for a stimulus size of 5 neurons. (F) Pre-stimulus

amplitude regulation (Regamp) is more prominent for stronger LRTC (DFA) at 150 ms post-stimulus (Spearman correlation). DFA was measured for the

non-stimulated networks, and Regamp was measured for the same networks, but with a five neuron stimulus. Networks binned based on DFA as in

Figure 1F. (G) Critical networks exhibit pre-stimulus amplitude regulation for the widest range of stimuli. Supercritical networks also show regulation,

but only at very high stimulus sizes. mean ± sem corresponding to 10 individual networks with the same excitatory/inhibitory connectivity as the

selected sub-critical (blue), critical (green), super-critical (red) networks. Horizontal lines at the bottom of the plot show the range of stimuli for which the

networks show significant pre-stimulus regulation (two-sided t-test, null hypothesis mu = 0, Bonferroni corrected for 3 � 16 comparisons).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The phase-locking factor depends on excitatory-inhibitory connectivity, and increases with the stimulus size.

Figure supplement 2. Critical networks exhibit maximum amplitude regulation at multiple post-stimulus latencies.

Figure supplement 3. Critical networks exhibit robust pre-stimulus amplitude regulation for a wide range of input stimulus strengths.
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networks show pre-stimulus amplitude regulation is superior to that of the subcritical and supercriti-

cal networks, regardless of the strength of the input weight (Figure 2—figure supplement 3C).

Pre-stimulation phase influence on phase-locking requires critical
dynamics
Having identified a strong interaction between criticality of oscillations and pre-stimulus amplitude

on stimulus-evoked phase-locking, we asked whether a similar effect is present for the phase of the

pre-stimulus oscillation. For the sub- and super-critical networks there was no pre-stimulus phase

regulation of response at a stimulus size of 5 neurons (Figure 3A). In contrast, the critical network

showed large differences in post-stimulus phase-locking for different pre-stimulus phase bins

(Figure 3A). These networks showed the weakest response on the descending side of the alpha

cycle, when the network is inhibited, and the strongest response on the rising side of the alpha cycle,

when the network is in an excitable state (Figure 3—figure supplement 1). Looking across the con-

nectivity parameter space, we found that pre-stimulus phase dependence of post-stimulus phase-

locking requires a balance in E/I connectivity (Figure 3B), and is significantly correlated with critical-

ity as reflected in LRTC (Figure 3C, Figure 3—figure supplement 2). The pre-stimulus phase influ-

ence on phase-locking also generalized to other stimulus sizes. Given the three combinations of

excitatory/inhibitory connectivity indicated in Figure 3D, we found that the critical networks show

pre-stimulus regulation over the widest range of stimulus sizes. We found that changing the weight

of the external input also affects the range of stimuli over which pre-stimulus phase regulation is
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Figure 3. Pre-stimulus phase regulation of response requires critical-state dynamics. (A) The phase of pre-stimulus oscillations can alter the phase-

locking response of a network to a stimulus in the presence of critical oscillations. Trials are split into 32 evenly spaced bins based on pre-stimulus

phase (�5 ms) with an equal number of trials in each bin. Phase-locking at 150 ms post-stimulus was calculated for each bin. Pre-stimulus phase

regulation of response, Regphase, was calculated based on the post-stimulus PLF distribution of the bins and examples are shown for sub-critical (blue),

critical (green) and super-critical (red) networks. Super-critical networks show higher PLF per bin than sub-critical networks because the former have

stronger alpha oscillations which carry the phase of alpha oscillations for a longer time into the post-stimulus period without adjusting the phase due to

the stimulus. (B) Pre-stimulus phase regulation is dependent on E/I connectivity balance. The black line indicates critical neuronal avalanches, as

measured when the networks were not stimulated. Here, shown for a stimulus size of 5 neurons. (C) Pre-stimulus phase regulation is more prominent for

stronger LRTC at 150 ms post-stimulus (Spearman correlation). DFA was computed for the unstimulated networks, and Regphase for the same networks,

but with five neurons stimulated. Networks binned based on DFA exponent, as in Figure 1F. (D) Critical networks exhibit pre-stimulus phase regulation

over the widest range of stimulus sizes. Supercritical networks also show regulation, but only at very high stimulus sizes. mean ± sem corresponding to

10 individual networks with the same excitatory/inhibitory connectivity as the selected sub-critical (blue), critical (green), super-critical (red) networks.

Black shaded line is the significance threshold calculated as the 95% percentile of pre-stimulus phase regulation based on bootstrapping of pre-

stimulus and post-stimulus phases (see Supplementary information - Materials and methods).

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Critical networks show maximal phase-locking response on the rising side of the alpha oscillation, and minimal phase-locking

response on the falling side of the alpha oscillation.

Figure supplement 2. Critical networks exhibit maximum phase regulation at multiple post-stimulus latencies.

Figure supplement 3. Critical networks exhibit maximum phase regulation for a wide range of input-stimulus strengths.
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significant (Figure 3—figure supplement 3B). Nonetheless, pre-stimulus phase-regulation occurs for

a wider range of stimuli in critical networks than in their subcritical or supercritical counterparts,

regardless of the strength of the input weight (Figure 3—figure supplement 3C).

The relationship between criticality and network versatility is robust to
changes in model parameters
Model parameters were selected through an optimization process which aimed at getting power-

law avalanche distributions and robust LRTC (as described in more detail in Materials and methods),

but did not include any criteria to maximize the dynamic range of phase-locking response, or pre-

stimulus amplitude or phase regulation. Therefore, we expect that the functional consequences of

criticality on stimulus processing that emerged out of the model, are generic to criticality, and not

specific to the actual parameters. To verify this, we repeated our analysis for two versions of the

model where the synaptic weight of excitatory to excitatory connections (wEE) was multiplied by a

factor of 0.75, or by a factor of 1.25. Multiplication of wEE by a factor of 0.75 reduced the overall

activity in the network, which means that stronger connectivity is required to achieve the same

dynamics, leading to a shift up of the critical line through the phase space (Figure 4). Increasing wEE

had the opposite effect on the critical line. Importantly, the functional consequences of criticality—

maximized dynamic range, pre-stimulus amplitude and phase regulation—followed this shift in the
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Figure 4. The relationship between criticality and network versatility is robust to changes in the strength of excitatory connections. Phase-space plots of

LRTC (A,E), Dynamic Range (B,F) Amplitude Dependence (C,G), and Phase Dependence (D,H), for networks with the weight of the excitatory to

excitatory connections (wEE) multiplied by a factor of 0.75 (top row) or 1.25 (bottom row). black line indicates critical neuronal avalanches, as measured

when the networks were not stimulated.
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critical line. This suggests that the relationship between criticality and versatility in stimulus process-

ing is not coincidental on the specific choice of parameters, but generic to criticality.

Discussion
In this study, we establish for the first time a link between critical-state dynamics of oscillations and

the ability of a network to respond differently depending on the amplitude of ongoing alpha oscilla-

tions. This functionality has been investigated in many human studies (Ergenoglu et al., 2004;

Hanslmayr et al., 2005; Linkenkaer-Hansen et al., 2004), where a low oscillation power in relevant

sensory areas in the pre-stimulus period has been seen as a pre-requisite of conscious perception. In

non-relevant areas, on the other hand, it has been suggested that a high oscillation power serves to

functionally inhibit that region (Smith et al., 2012). Our findings are also consistent with the notion

that alpha oscillations create periodic fluctuations in excitability (Klimesch et al., 2007), which are

indexed by the phase of the oscillations. Pre-stimulus phase has been shown to bias perception

(Busch et al., 2009; Mathewson et al., 2009; VanRullen, 2016) and we found that this function is

also likely to be modulated by the criticality of the network. In addition, we show that oscillatory

spiking neuronal networks have an optimal dynamic range when they are critical, which is in agree-

ment with previous work on non-oscillatory networks (Gautam et al., 2015; Kinouchi and Copelli,

2006; Larremore et al., 2011; Shew et al., 2009), and suggests that optimal dynamic range is a

generic property of critical systems. Thus, since the level of criticality affects network response in

terms of stimulus phase-locking, and phase-locking plays a role in the generation of event-related

responses (ERPs) (Makeig et al., 2002; Min et al., 2007), we predict that criticality will also affect

the different time components of ERPs.

There is much debate as to the cause of amplitude fluctuations during threshold stimulus detec-

tion tasks, with top-down mechanisms such as attention and expectation being suggested

(Jensen et al., 2012; Melloni et al., 2011). Here, we show that a network with balanced excitatory

and inhibitory connectivity produces spontaneous amplitude fluctuations that have a functional role,

meaning that the network goes through periods of high and low sensitivity to external stimuli. In the

unbalanced state, the network loses this function and either reliably reacts (in the sub-critical case),

or ignores the stimulus (super-critical case). Thus, top-down mechanisms are not required for fluctua-

tions in alpha power; however, it is plausible that attentional mechanisms can actively regulate the

level of fluctuations to shift the network’s operating point relative to the critical state, allowing the

network to react in the required manner (Wyart and Tallon-Baudry, 2009). How do these findings

relate to task performance? Pre-stimulus activity regulation of post-stimulus response has been

found beneficial, by enhancing detection of stimuli that are attended to (Capilla et al., 2014) or

expected (Mayer et al., 2016), and reducing detection of irrelevant stimuli. The spontaneous fluctu-

ations in amplitude observed at criticality, with impact on conscious perception, may serve to flexibly

switch between the different stimuli competing for attention. To this is added another advantage of

being in the critical state: it requires minimal attentional modulations to reach the sub- or super-criti-

cal states, and thus to enhance aspects of stimuli, for example in the case of stimulus discrimination

(Tomen et al., 2014).

However, is this network ability to regulate perception based on pre-stimulus amplitude always

optimal for performing a task? In tasks where continuous detection ability is required, fluctuations in

pre-stimulus activity will actually decrease task performance in those periods of amplitude that pro-

duce smaller post-stimulus response. In addition, the broadening of attention to external stimuli in

the critical state, is accompanied by increased susceptibility to task-unrelated mentation, or mind-

wandering (Hellyer et al., 2014). When people experience periods of mind-wandering during task-

performance, this results in reduced phase-locking to a stimulus (Baird et al., 2014). In these cases a

more sub-critical network would actually perform better in terms of constant attention

(Irrmischer et al., 2018; Tomen et al., 2014) and a super-critical network would perform better in

terms of constant functional inhibition. Our results are in line with the predictions of Cramer et al.

(2019), which suggest that the critical state is not optimal for all information processing require-

ments: complex tasks benefit from criticality, whereas in simple tasks, the high susceptibility to stim-

uli, memory capacity and entropy of a critical regime might impair performance.

We have shown that critical networks have overall the widest dynamic range of phase-locking

response, and pre-stimulus amplitude and phase regulation. However, we also found that
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supercritical networks can show differential PLF and pre-stimulus regulation for the large stimulus

sizes where the PLF response of critical networks saturates. One way in which the brain can take

advantage of the information processing benefits of different states is to regulate its dynamics with

respect to the critical point in a task-dependent manner (Pfeffer et al., 2018). Zierenberg et al.

(2020) show that the brain could also combine networks with different distances to the critical point,

such that the resulting ensemble has a dynamic range of stimulus response wider than any of the

ensemble networks. This strategy could plausibly be employed to extend the range of stimulus sizes

over which pre-stimulus amplitude and phase regulation occur.

Although our computational model abstracts many biophysiological neuronal mechanisms, it cap-

tures essential features of neuronal dynamics: alpha oscillations, long-range temporal correlations,

and scale-free avalanches, which emerge at a specific balance of excitatory and inhibitory connectiv-

ity. We showed that the relationship between criticality and the maximal versatility of network func-

tion is not specific to the selection of model parameters, which suggests that it is generic to

criticality. Future studies should test whether our results also hold for more physiologically realistic

models, for example where excitatory and inhibitory currents balance each other (Haider et al.,

2006; Rudolph and Destexhe, 2003).

Previously, non-oscillatory neuronal models have shown maximized dynamic range at criticality

(Gautam et al., 2015; Kinouchi and Copelli, 2006; Larremore et al., 2011; Shew et al., 2009).

While it is plausible that non-oscillatory models could also show a pre-stimulus ‘amplitude’ regulation

effect based on the level of pre-stimulus firing—and that this effect is likely to be maximal at critical-

ity—it is unclear how a phase regulation effect could occur without an ongoing oscillation. Future

studies could investigate whether the presence of oscillations is important for pre-stimulus phase

and amplitude regulation to occur, in models with a different type of critical phase transition (such

as absorbing/sustained) (Del Papa et al., 2017; Levina et al., 2007).

Overall our study highlights the importance of critical-state dynamics (Chialvo, 2010) for under-

standing neuronal network function, and shows that it is possible to integrate oscillatory mechanisms

into this framework. Importantly, while the quantitative hallmarks of criticality require long-time mon-

itoring of spatial and temporal dynamics that are statistically stable, our results show that the con-

cept of critical brain dynamics is compatible with time-varying functions—an important notion in

contemporary theories of neuronal oscillations and their role in neuronal communication and in

attention.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Software, algorithm Brian Simulator https://briansimulator.org RRID:SCR_002998

Software, algorithm MATLAB https://www.mathworks.
com/products/matlab

RRID:SCR_001622

Software, algorithm circular statistics https://mathworks.com/
matlabcentral/fileexchange/
10676-circular-statistics-
toolbox-directional-statistics

RRID:SCR_016651

Software, algorithm R Project for
Statistical Computing

http://www.r-project.org/ RRID:SCR_001905

CRitical OScillations (CROS) model
We used an adapted version of the model described in Poil et al. (2012), with synaptic weights opti-

mized for power-law avalanches and long-range temporal correlations. The model was implemented

using the Brian2 simulator for spiking neural networks (Stimberg et al., 2014; RRID:SCR_002998).

Specifically, we modeled networks of 75% excitatory and 25% inhibitory integrate-and-fire neurons

arranged on a 50x50 open grid. Placing neurons on the grid using uniform sampling may result, by

chance, in clusters of excitatory or inhibitory neurons. To avoid this, we first positioned inhibitory

neurons on the grid according to Mitchell’s best candidate algorithm (Mitchell, 1991), which results
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in a more even spatial distribution. The remaining spaces were filled with excitatory neurons. Net-

works differ in their two connectivity parameters, CE and CI , which are the percentage of other neu-

rons within a local range (a circle with radius = 4 neurons centered on the presynaptic neuron) that

each excitatory and each inhibitory neuron connects to, respectively. Connectivity parameters were

set between 25 and 100% at 5% intervals, and 10 different networks were created for each combina-

tion of CE and CI . Border neurons had fewer connections because these neurons had a lower num-

ber of neurons in their local range. Within local range, connection probability decreases

exponentially with distance. More specifically, the probability, P, of a connection at a distance r was

given by:

P rð Þ ¼min ae�r
;1ð Þ (1)

where a is optimized separately for excitatory and inhibitory neurons such that the overall connectiv-

ity probability within a neuron’s local range is equal to CE or CI , depending on whether the neuron

is excitatory or inhibitory. For example in the case of an excitatory neuron i, with connectivity proba-

bility CE, where the set of neighboring neurons within the local range is J, and Jj j is the number of

neighbors, a will have to satisfy the following equation:

j2J

X

P rj
� �

¼
j2J

X

min ae�rj
;1ð Þ ¼CE Jj j (2)

As such, we used the Nelder-Mead optimization algorithm to determine the value of a which min-

imizes the following function:

f að Þ ¼
j2J

X

min ae�rj
;1ð Þ�CE Jj j

�

�

�

�

�

�

�

�

(3)

Neuron model
Neurons were modeled using a synaptic model integrating received spikes, and a probabilistic spik-

ing model. Each time step (dt) of 1 ms starts with each neuron, i, updating the input Ii with spikes

received from the presynaptic neurons Ji, together with an exponential synaptic decay:

Ii tþ dtð Þ ¼ Ii tð Þþ
X

Ji

j

WijSj tð Þ

 !

1�
dt

t I

� �

(4)

The weights Wij are fixed, and depend on the type of the pre- and post-synaptic neuron. t I is the

decay constant of inputs, and S is a is a binary vector, with Sj=1 if the pre-synaptic neuron j fired in

the previous time step, and Sj=0 otherwise.

The activation of a neuron Ai, is then updated with these excitatory and inhibitory inputs,

together with an exponential decay, t P, and a baseline activation level A0:

Ai tþ dtð Þ ¼ Ai tð Þþ Ii tð Þð Þ 1�
dt

t P

� �

þA0

dt

t P

(5)

The spiking probability Ps
i is calculated as a function of the neuron activation A at the current

timestep, as follows:

Ps
i tð Þ ¼

0; Ai tð Þ<0

Ai tð Þ; 0� Ai tð Þ � 1

1; Ai tð Þ>1

8

>

<

>

:

(6)

We determine whether the neuron spikes with the probability PS. If a neuron spikes, the neuron

activation A is reset to the reset value, Ar. At the next time step, all neurons that it connects to will

have their input updated again according to Equation 4.

Model parameters
All model parameters were the same as in the original paper (Poil et al., 2012) apart from the syn-

aptic weights. Neuron model: (t I = 9 ms), Synaptic model: Excitatory neurons (t P = 6 ms, A0 =

0.000001, Ar = -2), Inhibitory neurons (t P = 12 ms, A0 =0, Ar = -20). To improve the range and
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stability of the long-range temporal correlations from the original model, an evolutionary algorithm

(Smit and Eiben, 2011) was applied to the synaptic weights. The parameters that could vary were

the 2 connectivity parameters (taking values between 0 and 100%), and the natural logarithm of the

magnitude of the 4 synaptic weights, WEE, WIE, WEI and WII (taking values between -5 and 1). For

each run, a fitness value was calculated based on the avalanches size and duration distributions (see

Materials and methods - Neuronal Avalanches), and the LRTCs (see Materials and methods -

Detrended fluctuation analysis of long-range temporal correlations).

fitness¼
1

1�DFAj jþ 1�ksizej jþ j1�kdurationj
(7)

The optimum weights (Wij, connecting the presynaptic neuron j to the postsynaptic neuron i)

found by the algorithm were (WEE = 0.0085,WIE = 0.0085,WEI = �0.569,WII = �2).

Network activity analysis
A network signal was created by summing the total number of neurons spiking at each time-step

with a Gaussian white noise signal of the same length with mean = 0 and s = 3. This level of white

noise was set to allow all networks to achieve a time-varying phase, which is not the case without

adding the noise, when there are silent periods in the network. Detrended fluctuation analysis, oscil-

lation power, and phase-locking factor, which are described below, were calculated on this pre-proc-

essed signal, with Gaussian noise added. The analysis of neuronal avalanches was performed on the

raw signal, consisting of the total number of neurons spiking at each time step.

Oscillation power
The power spectrum was computed using the Welch method with a Hamming window with 211 FFT

points.

Neuronal avalanches
A neuronal avalanche is defined as a period where neurons are spiking above a certain threshold—in

our case set to half median of activity. The size of the avalanche is the number of spikes during this

period. We then computed the k index (Poil et al., 2012; Shew et al., 2009), which determines the

difference between the distribution of our data and a power-law, by calculating the average differ-

ence of the cumulative distribution of a power-law function, P, (with exponent �1.5 for size and

�2.0 for duration) and that of our experimental data, A, at 10 equally spaced points on a logarithmic

axis (b) and adding 1.

k¼
1

10

X

10

i¼1

P bið Þ�A bið Þð Þþ 1 (8)

A subcritical distribution is characterized by k <1, and a supercritical distribution by k >1, whereas

k = 1 indicates a critical network.

Detrended fluctuation analysis of long-range temporal correlations
Detrended fluctuation analysis (DFA) was used to analyze the scale-free decay of temporal (auto)cor-

relations, also known as long-range temporal correlations (LRTC). The DFA was introduced as a

method to quantify correlations in complex data with less strict assumptions about the stationarity

of the signal than the classical autocorrelation function or power spectral density (Hardstone et al.,

2012; Linkenkaer-Hansen et al., 2001). In addition, DFA facilitates a reliable analysis of LRTC up to

time scales of at least 10% of the duration of the signal (Chen et al., 2002; Gao et al., 2006). DFA

exponents in the interval of 0.5 to 1.0 indicate scale-free temporal correlations (autocorrelations),

whereas an exponent of 0.5 characterizes an uncorrelated signal. The main steps from the broad-

band signal to the quantification of LRTC using DFA have been explained in detail previously

(Hardstone et al., 2012; Linkenkaer-Hansen et al., 2001). In brief, the DFA measures the power-

law scaling of the root-mean-square fluctuation of the integrated and linearly detrended signals, F(t),

as a function of time-window size, t (with an overlap of 50% between windows). The DFA exponent

is the slope of the fluctuation function F(t), and can be interpreted as the strength of the

Avramiea et al. eLife 2020;9:e53016. DOI: https://doi.org/10.7554/eLife.53016 11 of 17

Research article Neuroscience

https://doi.org/10.7554/eLife.53016


autocorrelations in signals. For our analyses we computed DFA on the amplitude envelope of the

signal filtered in the 8–16 Hz range, and the exponent was fit between 2 and 50 s.

Unstimulated networks
To assess the dynamics of unstimulated networks we allowed connectivity to take values between

25 and 100% at 5% intervals. For all 256 possible parameter combinations of excitatory and inhibi-

tory connectivity, we created 10 different networks and ran each network for 2 � 106 time-steps

(2000 s).

Stimulation networks
To test network response to a stimulus we took one sample network for each combination of excit-

atory and inhibitory connectivity parameters, and for each run of the network we stimulated n excit-

atory neurons where n e {1, 2, 3, 5, 9, 15, 25, 43, 74, 126, 216, 369, 632, 1081, 1800}. The stimulated

neurons were randomly distributed across the grid. For all 256 possible parameter combinations of

excitatory and inhibitory connectivity, and stimulus size, we used the same 10 different networks as

in the unstimulated case, and ran each network for 2 � 106 time-steps (2000 s). During the stimula-

tion runs all neurons in the receptive field simultaneously received a stimulus once in every 500–1500

ms. The stimulus had the same weight as any of the excitatory-excitatory connections in the network

(winput = wEE = 0.0085), and was applied simultaneously, for one timestep = 1 ms, to all the n excit-

atory neurons which the stimulus connected to. Additionally, we investigated the effect of the stimu-

lus strength on network dynamics by modulating winput by a factor of 1/64 to 64 times the original

value, on a log2 scale.

Phase-locking factor
Stimulus response was calculated in the network in terms of the phase-locking factor (Palva et al.,

2005). Data were filtered using a one-way causal FIR filter (order 250) between 8 and 16 Hz. The use

of a causal FIR filter ensured that pre-stimulus phase and amplitude were not contaminated by the

stimulus responses, at the cost of delaying the peak response to the stimulus by 125 ms. The phase

at any point in time was obtained by taking the angle of the Hilbert transform. Phase-locking factor

(PLF) measures the uniformity of phases across trials at a time-point post-stimulus and was calculated

as the mean vector length of all phases (Berens, 2009; RRID:SCR_016651):

PLF¼
1

N

X

T

i

zi





















(9)

where T is the set of trials, of size N, and zi is the unit vector whose angle corresponds to the

momentary phase in trial i, at the time point for which PLF is calculated.

Dynamic range
We fit a sigmoid to the PLF response at 150 ms post-stimulus, as a function of the number of neu-

rons stimulated. The dynamic range is calculated as the orders of magnitude of neurons stimulated

between the 10% and 90% of the sigmoid we fit (Kinouchi and Copelli, 2006).

Pre-stimulus amplitude regulation of PLF
To calculate the PLF response corresponding to different levels of pre-stimulus amplitude, we sepa-

rated trials into 10 percentile bins, based on the average amplitude in the �150 to �50 ms time-

range, calculated for the 8–16 Hz frequency band. The percentile binning procedure ensured an

equal number of trials across bins, which is important because the PLF value reflects the distribution

of phases, but is also determined by the number of trials (e.g., the PLF value for uniformly randomly

distributed phases is dependent on the number of trials). PLF at 150 ms post-stimulus was calculated

separately for each of the 10 bins. The regulation measure Regamp was calculated as the Spearman

correlation between the index of the bin and the PLF for that bin.
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Pre-stimulus phase regulation of PLF
To calculate the pre-stimulus phase regulation of PLF, trials were split into 32 overlapping bins of

width p/8 based on the pre-stimulus phase in the 8–16 Hz frequency range at time �5 ms. To get an

equal number of trials in each bin, x randomly selected trials from each bin were picked where x was

the smallest number of trials in a bin. PLF at 150 ms post-stimulus was calculated separately for each

bin. If no phase regulation takes place, a uniform distribution of post-stimulus PLF is expected. The

calculation of phase regulation uses the phase-locking factor of each of 32 phase bins as the weight

for the unit vector of that phase. The sum of the 32 vectors is then normalized by the sum of all

PLFs. For this calculation, we used the circ_r function from the circ_stats package (Berens, 2009;

RRID:SCR_016651):

Regphase ¼
1

P

P

i

PLFi

X

P

i

PLFizi

































(10)

where P is the set of 32 bins, zi is the unit vector whose angle corresponds to the phase at the center

of each bin i, and PLFi is the phase-locking factor across all trials belonging to bin i. This measure

gives a value of Regphase between 0 (PLF is same for all bins) and 1 (PLF is non-zero in one bin, and

zero in all others).

Association between criticality and network function
Criticality was measured by the LRTC (DFA) of alpha oscillations in the non-stimulated networks.

Network function was measured by pre-stimulus amplitude and phase modulation, as well as

dynamic range, of the stimulated networks. To get robust estimators for criticality as well as our 3

indicators of network function, we averaged the values across all 10 network initializations, for each

excitatory/inhibitory connectivity parameter combination (n=256). Before correlating criticality to

network function, we had to address another aspect: a disproportionate amount of networks had

low DFA. To this end, we binned the n=256 datapoints corresponding to each aspect of network

function (pre-stimulus amplitude and phase modulation, dynamic range), by DFA, in bins of size

0.02, covering a DFA range of 0.5 to 0.9. The association between criticality and pre-stimulus ampli-

tude regulation, for example, was computed as the Spearman correlation between the mean values

of the 20 DFA bins, and the mean Regamp for the networks belonging to that bin. The same type of

pre-processing was performed for pre-stimulus phase regulation and dynamic range. To identify the

time ranges where criticality predicts network function, we calculated the Spearman correlation men-

tioned earlier, for all timepoints between 0 and 500 ms post-stimulus. To correct for multiple com-

parisons, we used the cluster-based correction with permutation (Nichols and Holmes, 2002), with

a significance threshold a ¼ 0:001. We will exemplify again the process by looking at the association

between criticality and pre-stimulus amplitude regulation, but the steps are the same for the other

indicators of network function. First, we calculated the cluster significance threshold, to determine

which clusters could have arisen by chance. While keeping the ordering of the DFA bins the same,

we permuted the corresponding Regamp values, separately for each timepoint between 0 and 500

ms post-stimulus. We then computed the Spearman correlation coefficients rS between DFA and the

permuted Regamp, for each timepoint, and identified all clusters – sets of contiguous timepoints with

a p-value for the Spearman correlation p � a. We defined cluster size Sc ¼
P

Tc

t

rtS

�

�

�

�, where t is a time-

point belonging to the set of contiguous timepoints Tc in cluster c, and rtS

�

�

�

� is the absolute value of

the Spearman correlation coefficient at time t. We then calculated the maximum cluster size Smaxi for

the permuted dataset i to be
c2C
maxSc, where C is the set of all clusters C. We repeated this process

10000 times, which gave us a distribution of Smaxi over different permutations of the data. We set the

cluster significance threshold TSmax to correspond to the 1� að Þ � 100 percentile of Smaxi . We then

identified all clusters from the actual (non-permuted data), consisting of contiguous timepoints with

with a p-value for the Spearman correlation p � a, and kept only those clusters, whose cluster size

Sc>TSmax :
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Baseline level of pre-stimulus regulation
For this, we generated 10 synthetic runs (equal to the number of simulations of the CROS model for

each excitatory/inhibitory connectivity combination)—each consisting of 2000 pairs of pre/post stim-

ulus phase (equal to the number of times that the CROS model was stimulated throughout a run)

drawn from a uniform distribution, and calculated pre-stimulus phase regulation for each of the 10

synthetic runs. Then we computed the average phase regulation across all 10 runs. We repeated this

process 10000 times to get the 95% percentile of phase regulation. We used this as a significance

threshold to determine whether 10 individual subcritical, critical, or supercritical networks, at a cer-

tain stimulus size, showed pre-stimulus phase regulation above what is expected from a random dis-

tribution of pre/post-stimulus phases. As seen in Figure 3D, sub-critical networks at strong stimuli

show phase regulation well below this threshold. That is because these networks respond reliably to

the strong stimuli regardless of the pre-stimulus phase, thus the distribution of responses across

phases is more uniform than expected from a random distribution. Some supercritical networks

show phase regulation below threshold for the weaker stimuli, because they have strong alpha oscil-

lations which maintain the phase of oscillations similar for a long time after they have been binned

uniform.

Robustness of relationship between network versatility and criticality
To verify that our results are not dependent on the specific model parameters, we used two variants

of the model, where the weight of excitatory to excitatory connections (wEE) was multiplied by a fac-

tor of 0.75 and 1.25, respectively. For each combination of excitatory and inhibitory connectivity, we

created five different networks. We then ran each network for 2 � 106 time-steps (2000 s), for all

combinations of stimulus size and weight of excitatory to excitatory connections (wEE).
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