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Abstract Previous research showed that spontaneous neuronal activity presents sloppiness: the

collective behavior is strongly determined by a small number of parameter combinations, defined

as ‘stiff’ dimensions, while it is insensitive to many others (‘sloppy’ dimensions). Here, we analyzed

neural population activity from the auditory cortex of anesthetized rats while the brain

spontaneously transited through different synchronized and desynchronized states and

intermittently received sensory inputs. We showed that cortical state transitions were determined

by changes in stiff parameters associated with the activity of a core of neurons with low responses

to stimuli and high centrality within the observed network. In contrast, stimulus-evoked responses

evolved along sloppy dimensions associated with the activity of neurons with low centrality and

displaying large ongoing and stimulus-evoked fluctuations without affecting the integrity of the

network. Our results shed light on the interplay among stability, flexibility, and responsiveness of

neuronal collective dynamics during intrinsic and induced activity.

Introduction
How biological systems achieve a tradeoff between stability and flexibility is a central question in

biology. A candidate explanation for the coexistence of these two features is sloppiness

(Machta et al., 2013; Transtrum et al., 2015). In general, sloppiness is a property of complex mod-

els exhibiting large parameter uncertainty when fit to data, meaning that different combinations of

parameters lead to a similar system behavior, while changes in some few critical parameters, called

stiff parameters, significantly modifies it. In this way, biological systems can be either robust to large

fluctuations of input/environmental signals which effects are embedded in a high-dimensional sub-

space of insensitive parameters, or, on the contrary, by tuning some few parameters, configured to

be highly sensitive and selective to relevant signals.

Recently, it has been shown that the spontaneous activity of neural circuits presents sloppiness

both in vitro and in vivo (Panas et al., 2015), suggesting that collective activity is stabilized by a sub-

set of highly active and stable neurons, while the activity and co-activity of the remaining neurons

present larger spontaneous fluctuations without strongly affecting the collective statistics. However,

this view is challenged by extensive research showing that the spontaneous cortical activity transits

through different synchronized and desynchronized cortical states (Marguet and Harris, 2011;

Harris and Thiele, 2011; Luczak et al., 2013; Pachitariu et al., 2015) that represent statistically
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different collective behaviors (Hahn et al., 2017) with different information processing capabilities

(Pachitariu et al., 2015; Engel et al., 2016; Beaman et al., 2017). Moreover, how sensory inputs

affect sloppiness is unknown and it is a relevant question to understand how sensory stimuli change

the network state in a way that responsiveness and stability are ensured. In the present study, we

examined how changes in neural network parameters correlate with spontaneous transitions among

cortical states and stimulus-evoked responses.

To answer these questions, we recorded the neuronal spiking activity in the primary auditory cor-

tex (A1) of six anesthetized rats. We analyzed the joint activity of groups of neurons while the cortex

spontaneously transited through different synchronized and desynchronized cortical states and

Figure 1. Experiment and analysis designs. (A) Each recording session was divided into NE adjacent epochs of

100 s. (B) Each epoch contained a series of stimulus presentations. Stimuli consisted on acoustic clicks. For each

100-s epoch we collected the spontaneous activity, that is the activity during 1.5-s intervals preceding each

stimulus (red intervals), to build concatenated binary data. (C) Binary data was obtained by discretizing time in bins

of dt = 10 ms. Within each time bin, the ensemble activity of N neurons was described by a binary vector,

s
!
¼ s1; s2; . . . ; sN½ �, where si ¼ þ1 if the i-th neuron generated a spike (black) and si ¼ �1 otherwise (white). (D)

Maximum entropy models were used to describe the binary patterns of subsets of 10 neurons, during each 100-s

epoch. The model parameters 
 ¼ h; Jf g represents the intrinsic tendency of neuron i towards activation (si ¼ þ1)

or silence (si ¼ �1), noted hi, and the effective interaction between neurons i and j, noted Jij.
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intermittently received external acoustic stimuli. We used a statistical model to describe the joint

spiking activity with a small number of parameters. We found that the estimated parameters of neu-

ronal ensemble activity presented sloppiness and that sensory inputs and cortical state transitions

evolved in different pathways in parameter space. Specifically, we found that cortical state transi-

tions evolve along stiff dimensions, whereas sensory-evoked activity evolves along sloppy dimen-

sions. Finally, we showed that stiff parameters are related to the activity and co-activity of neurons

with high centrality within the functional network of the recorded neurons.

Results
We recorded spontaneous and stimulus-evoked population activity from the primary auditory cortex

(A1) of urethane-anesthetized rats (n = 6) using multisite silicon microelectrodes (see

Materials and methods). The data was composed of activity from Npop well-isolated single units

(Npop ¼ 44-147 neurons) and some spike-trains from multi-unit activity (3-103 spike-trains). Unless

otherwise specified, the analyses present here focused on single-unit activity only. We analyzed the

data during spontaneous activity and in response to acoustic ’clicks’ (5-ms square pulses; inter-stimu-

lus interval, 2.5 or 3.5 s). To track the evolution of the neuronal activity, we divided each recording

session into NE adjacent epochs of 100 s, each one containing 12–29 stimulus presentations. Within

each 100-s epoch the data was separated into spontaneous activity, that is the activity during 1.5-s

intervals preceding each stimulus (i.e., 18–43.5 s of spontaneous activity in total for each epoch), and

stimulus-evoked activity, that is the activity right after the stimulus onset (Figure 1A–B).

Description of spontaneous activity patterns using maximum entropy
models
We first examined the temporal evolution of the spontaneous activity across the NE epochs. Because

we were interested in the evolution of the statistics of ensemble activity, we described the collective

activity of groups of N single-units using a maximum entropy model (MEM) (Schneidman et al.,

2006; Shlens et al., 2009; Tkačik et al., 2015) in each epoch (see Materials and methods and

Figure 1C–D). These models allowed us to describe the patterned activity with a small number of

parameters. To fit the model, time was discretized in bins of dt = 10 ms. Within each time bin, the

ensemble activity of N neurons was described by a binary vector, s
!
¼ s1; s2; . . . ; sN½ �, where

si ¼ þ1 if the i-th neuron fired a spike in that time bin and si ¼ �1 otherwise. The collective activity

was determined by the probability distribution P s
!

� �

over all 2N possible binary patterns. The MEM

fits Pdata s
!

� �

by finding a distribution PMEM s
!

� �

that maximizes its entropy under the constraint that

Figure 2. Fitting maximum entropy models (MEMs) to spontaneous activity patterns. (A) Comparison between the

probability distribution of empirical binary patterns and the probability distribution predicted by MEMs (black

dots) and independent models (gray dots), for all epochs and all neuronal ensembles. Every point represents a

binary pattern that has appeared in the data at least once. Red line represents the identity line. (B) Jensen-

Shannon divergence (DJS) between spiking data and MEMs, and between spiking data and independent models,

across time, averaged across neuronal ensembles. Error bars are smaller than the widths of the traces. Data in (A)

and (B) correspond to one example rat (#1). (C) Goodness-of-fit (1/DJS) for MEMs and for independent models,

averaged over all models (i.e., all ensembles and all epochs), for each rat. Error bars indicate SEM.
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the activation rates (hsii) and the pairwise correlations (<sisj>) found in the data are preserved in

the model. It is known that the maximum entropy distribution that is consistent with these con-

straints is the Boltzmann distribution, P s
!

� �

/ e�E s
!

ð Þ, where E s
!

� �

is the energy of the pattern s
!
,

given by: E s
!

� �

¼ �
P

N

i¼1

hisi þ
1

2

P

N

j¼1

Jijsisj

" #

(Schneidman et al., 2006; Tkačik et al., 2015). The

Figure 3. The sensitivity of model parameters was more stable than activity observables. (A) Similarity (i.e.,

Pearson correlation coefficient) of mean firing rates (red) and pairwise correlations (purple) as a function of elapsed

time Dt. (B) Jensen-Shannon divergence (DJS) between the distribution of empirical spiking patterns in epoch t and

the distribution of binary patterns of the pairwise MEM in epoch t + Dt, averaged over all t. (C) Left: Similarity of

Fisher information matrix (FIM) elements, biases (hi), and couplings (Jij) as a function of elapsed time Dt. Right:

FIMs at time t = 0 h and t = 1 h. Data in (A), (B), and (C) correspond to one example rat (#1); traces show averages

over neuronal ensembles and shaded areas correspond to SEM. (D) Similarity of FIM elements, rates, biases,

correlations, and couplings after 1/2 hour (i.e., Dt = 30 min), averaged across all neuronal ensembles, for each rat.

Error bars indicate SEM.
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Figure 4. Model parameters presented sloppiness and predominantly evolved along sloppy dimensions. (A)

Distribution of FIM elements, for all epochs, all neuronal ensembles, and all rats. (B) Eigenvalues of the FIM,

average across epochs and neuronal ensembles, for an example rat (# 1). Shaded areas represent SEM. Stiff and

sloppy dimensions correspond to FIM eigenvectors of lowest and highest ranks, respectively. (C) Projection of


 t0ð Þ into the first three eigenvectors of the FIM from a given epoch t, for all t0 6¼ t. Data from one neuronal

ensemble from rat 1. (D) Projection of 
 t0ð Þ into the first and the 20th eigenvectors of the FIM from epoch t, noted

nt;1 and nt;20, respectively, for all t
0 6¼ t. Top inset: distribution of projections into nt;1. Right inset: distribution of

projections into nt;20. Note higher variance of projections into nt;20 than into nt;1. Data from one neuronal ensemble

from rat 1. (E) Average variance of projections of 
 t0ð Þ into the different eigenvectors of the FIM at epoch t (for all

t0 6¼ t), for the different rats. Traces represent average over neuronal ensembles and shaded areas represent SEM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Parameters projections into FIM eigenvectors: data vs. stationary surrogates.
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model parameter hi represents the intrinsic tendency of neuron i towards activation (si ¼ þ1) or

silence (si ¼ �1) and the parameter Jij represents the effective interaction between neurons i and j.

Once we learned the parameters 
 ¼ h; Jf g using a gradient descent algorithm (see

Materials and methods), the expected probability of any pattern is known. For each recording ses-

sion and for each of the NE epochs, we fitted the model using the spontaneous binarized activity

from an ensemble of N = 10 randomly selected single neurons from the entire population of Npop sin-

gle neurons. We chose N = 10 because 100-s epochs provided around 5000 observed spontaneous

patterns, which is a reasonable amount to get an estimate of the distribution of the 210 = 1024 possi-

ble patterns. To accurately estimate models of larger N, the epochs ought to be much larger pre-

venting possibility to investigate the temporal evolution of the model along the experiment. We

finally repeated the process of randomly choosing N = 10 single units Q times for each experiment

(for datasets 3 and 5: Q ¼ 10 ensembles, otherwise: Q ¼ 20). In summary, for each recording session,

we built Q� NE models, each composed of 10 units. Before studying the evolution of the model

parameters 
 tð Þ across epochs (t ¼ 0, 1, 2..), we first evaluated how well the MEM fitted the data.

For each epoch, we used the Jensen-Shannon divergence (DJS, see Materials and methods) to

measure the similarity between the probability distribution of the empirical and model binary pat-

terns (Figure 2A–C). We compared this similarity to the distribution of binary patterns predicted

Figure 5. Spontaneous neuronal activity evolved along stiff dimensions during cortical state transitions. (A)

Silence density was used to characterize the cortical state. Green inset: low values of the silence density indicate

desynchronized cortical states (each row represents the spike train of a single-unit). Red inset: high values of the

silence density indicate synchronized cortical states. Data from rat 1. (B) Difference in collective pattern statistics,

that is DJS, between different epochs, t and t0, as a function of the corresponding difference in silence density,

noted d. Each gray dot corresponds to a pair of epochs (t; t0). The solid line indicates the average relation between

DJS and d; error bars indicate SD. Data from all neuronal ensembles from rat 1. (C) Correlation coefficient between

DJS and d, for all rats. *: p < 0.001. (D) Top: Distribution of the absolute value of the correlations between the

cortical state and the activity observables, noted rcsj j. Bottom: Distribution of parameter sensitivity values for

biases (h parameters) and couplings (J parameters), for all models from all rats. (E) rcsj j vs. sensitivity s of all activity

variables (i.e., firing rates and pairwise correlations). Correlation: rc = 0.36; p <0.001. Data from rat 4 (Npop = 72). (F)

Correlation between rcsj j and the sensitivity for each dataset. *: p < 0.001. Error bars indicate correlation 95%

confidence interval. (G) rcsj j for sloppy and stiff variables. *: p < 0.001, paired t-test. Error bars indicate SEM.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Alternative definition of sensitivity.

Ponce-Alvarez et al. eLife 2020;9:e53268. DOI: https://doi.org/10.7554/eLife.53268 6 of 24

Research article Neuroscience

https://doi.org/10.7554/eLife.53268


Figure 6. Stimulus-evoked neuronal activity evolved along sloppy dimensions. (A) Population responses to

acoustic clicks. (B–C) Median-split of sensitivity s was used to separate stiff neurons and sloppy neurons. The mean

responses for stiff and sloppy neurons are shown in the case of excited responses (B) and suppressed responses

(C). The responses were normalized by the average pre-stimulus activity r0. Shaded areas correspond to SEM.

Data in (A), (B), and (C) correspond to one example rat (#1). (D) Modulation index (MI) as a function of associated

sensitivity of firing rates (si, with 1 � i � Npop), for each dataset. Each dot corresponds to a single neuron of the

recorded population. The correlation between MI and sensitivity was negative for all datasets (rc: correlation

coefficient; p: p-value). Solid lines indicate exponential fits. (E) Correlation between MI(t), calculated in epoch t,

and nt;1
�

�

�

�, for all neuronal ensembles of each of the rats. On each box, the central mark indicates the median, and

the bottom and top edges of the box indicate the 25th and 75th percentiles, respectively. Asterisks indicate

significantly negative medians (p < 0.001, two-sided signed rank test). (F) Difference of the MI of sloppy neurons

minus the MI of stiff neurons as a function of cortical state (i.e., silence density), averaged for all rats (black trace;

error bars indicate SEM). The gray bars indicate the distribution of silence density values.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Alternative definition of sensitivity.
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from independent-MEMs, for which only the activation rates were preserved (i.e., only h was opti-

mized). We found that the empirical distribution was well approximated by MEMs and that, for all

recording sessions, the goodness-of-fit (i.e., 1=DJS) was orders of magnitude higher for MEMs than

for independent-MEMs (Figure 2C), leading to excellent model performances (i.e., Kullback-Leibler

ratio equal to 0.95 ± 0.03 on average, see Materials and methods).

Temporal evolution of activity observables, model parameters, and
their sensitivity
We next analyzed the temporal evolution of the different spiking data statistics and the model

parameters. We first measured the temporal variation of the activity observables (i.e., firing rates

and pairwise correlations) by calculating the average Pearson correlation (or similarity g; see

Materials and methods) between the values in epoch t and those in epoch t þ Dt (Figure 3A). This

similarity rapidly decayed with t, indicating that the observables substantially changed over time. We

next examined how much these variations influenced the evolution of the collective activity charac-

terized by the distribution of binary patterns. For this, we evaluated how well the data in a given

epoch t could be explained by the MEM constructed using the data at time t þ Dt. Specifically, we

calculated DJSh i Dtð Þ, given by the average Jensen-Shannon divergence between the distribution of

data binary patterns in epoch t, that is Pdata;t, and the distribution of binary patterns predicted by

the MEM constructed using the data in epoch t þ Dt, that is PMEM;tþDt (see Materials and methods).

We found that DJSh i Dtð Þ increased as a function of t, indicating that the collective activity changed

during the recording session, so that the model parameters 
 tð Þ at epoch t did not predict the col-

lective activity at epoch t þ Dt (Figure 3B). Indeed, the model parameters substantially changed over

time, with a rapidly decaying similarity (Figure 3C, orange and purple traces).

Figure 7. Central and highly active neurons were associated to stiff parameters. (A) Distribution of firing rates of

sloppy and stiff neurons. (B) Distribution of correlations among sloppy neurons and among stiff neurons. (C) The

distribution of correlations was also calculated for the links (i.e, pairs of neurons with associated parameters Jij).

Note that, in principle, links can be related to pairs composed of one sloppy and one stiff neuron. (D) Distribution

of betweenness centrality of sloppy and stiff neurons. (E) Connectivity graph: each node represents a neuron and

links represent significant correlations between pairs of neurons. The graph was plotted using force-directed

layout, that is using attractive forces between strongly connected nodes and repulsive forces between weakly

connected nodes. Left: the nodes were colored as a function of betweenness centrality. Right: the nodes were

colored as a function of associated sensitivity s. Note the high overlap between both color labeling methods,

indicating that sensitivity was highly predictive of the centrality of the nodes. (F) Distribution of neuron-to-

population couplings of sloppy and stiff units. Panels A–F show data from rat 1. (G) Area under the receiver

operating curve (AUC) quantifying the separation of distributions of sloppy and stiff classes. All AUC values were

significantly higher than 0.5 (p < 0.001).

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Alternative definition of sensitivity.
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As shown in Panas et al. (2015), changes in model parameters can differently contribute to col-

lective activity, since the model can be sensitive to changes in some few combinations of parame-

ters. Following this, we next evaluated the sensitivity of model parameters by calculating the Fisher

information matrix (FIM, see Materials and methods) for each neuronal ensemble and each epoch.

The FIM measures how much the model log-likelihood PMEM s
!
j


� �

changes with respect to changes

in the parameters 
. We first notice that the FIM had the highest stability across time, compared to

the data firing rates and correlations and the model parameters (Figure 3C, blue trace). Indeed, the

similarity after 1/2 hour was g ¼ 0.882 ± 0.002 for the FIM, g ¼ 0.732 ± 0.003 for the firing rates, g ¼

0.551 ± 0.004 for the biases, g ¼ 0.364 ± 0.004 for the correlations, g ¼ 0.234 ± 0.003 for the cou-

plings (F4,495 = 305.73, p<0.001, one-way ANOVA followed by Tukey’s post hoc analysis)

(Figure 3D). Altogether these results show that the sensitivity of the model parameters remained rel-

atively stable despite substantial changes in firing rates, correlations, collective activity and the

model parameters themselves.

Spontaneous neuronal activity presents sloppiness
Having shown that the sensitivity of model parameters was relatively stable during the recording ses-

sions, we next studied the structure of the FIMs. First, we noted that most elements of the FIM had

near-zero values (Figure 4A) indicating that most of the parameters had a small effect on the model

log-likelihood. In contrast, a small fraction of elements had values strongly different from zero as

revealed by the heavy tail of the distribution of FIM values (Figure 4A). To identify the parameter

combinations that had the strongest effect on model behavior, we decomposed the FIM into eigen-

vectors and classified them according to their eigenvalue (Figure 4B). We observed that, except for

some few eigenvalues, most of the FIM eigenvalues were small, corresponding to combinations of

parameters that had little effect on model behavior. These unimportant parameter combinations

defined the sloppy dimensions of the model. The few eigenvectors with large eigenvalues defined

the stiff parameter dimensions along which the model behavior was strongly affected.

In the following we showed that the temporal evolution of the model parameters occurred pre-

dominantly along the sloppy dimensions. For this, we projected the parameters 
 t0ð Þ, calculated at

time t0, into the eigenvectors of the FIM at time t, denoted nt;1; nt;2; . . . ; nt;k; . . ., where k is the rank

of the eigenvector (Figure 4C). For each dimension, or eigenvector, we obtained a distribution of

projections of parameters 
 t0ð Þ (Figure 4D). To quantify how much the parameters varied along

each eigenvector, we calculated the average variance of each projection as a function of the rank of

the eigenvector. We found that the projection variance increased as a function of the eigenvector’s

rank for all datasets (Figure 4E). This indicates that the model parameters predominantly evolved

along sloppy dimensions (i.e., FIM eigenvectors of highest rank k), while they remained relatively sta-

ble along stiff dimensions (i.e., FIM eigenvectors of lowest rank k). Using stationary surrogate data,

we controlled that these parameter fluctuations were not fully explained by estimation errors and,

furthermore, that parameter fluctuations along sloppy dimensions were those that deviated the

most from the stationary case (see Figure 4—figure supplement 1). Nevertheless, we noted that

the projection variance into the stiff dimensions, albeit small, was not zero. This means that the

model also evolved along parameter dimensions that had a strong impact on the collective activity.

We hypothesized that changes in collective behavior, associated to changes in stiff parameters, were

related to changes in cortical state.

Cortical state transitions evolve along stiff dimensions
To test this hypothesis, we first measured the cortical state in each epoch t using silence density,

CS tð Þ, defined as the fraction of 20-ms time bins with zero population activity, that is no spikes from

any neuron (see Materials and methods) (Luczak et al., 2013; Pachitariu et al., 2015; Mochol et al.,

2015). To obtain the most accurate estimate of silence density, we used all the spikes from the

merge of all the single-units and multi-units in the calculation of CS tð Þ. During the course of the

experiment, we observed large fluctuations in silence density, with low and high values associated to

desynchronized and synchronized cortical states, respectively (Figure 5A). We found that differences

in collective dynamics in different epochs, quantified by DJS t; t0ð Þ ¼ DJS Pdata;t;Pdata;t0
� �

, significantly

co-varied with the changes in cortical state, given by d ¼ CS tð Þ � CS t0ð Þj j (averaged correlation
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coefficient 0.56 ± 0.08, p < 0.001) (Figure 5B–C). Thus, changes in collective behavior correlated

with changes in cortical state.

We next asked which activity observables, that is the firing rate of each neuron and all pairwise

correlations, related more to cortical state transitions. For this, we calculated the absolute correla-

tion, rcsj j, between the cortical state CS tð Þ and the activity observables. We found that rcsj j was

broadly distributed between 0 and 0.94, thus some observables correlated more with the cortical

state (Figure 5D, top panel). Next, to relate the sensitivity of model parameters (their stiffness) to

the activity observables, we measured the sensitivity of a given parameter by its average contribu-

tion to the first eigenvector of the FIM and we associated it to the corresponding observable

(Panas et al., 2015). We defined the sensitivity sne at the neuronal ensemble level and the sensitivity

s at the population level (see Materials and methods). Note that the ranges of the sensitivity of

biases (h) and couplings (J) were similar (Figure 5D, bottom panel), and that sensitivities calculated

in the first and the second halves of the recording session were highly correlated (correlation coeffi-

cient > 0.82, for all rats; average: 0.89 ± 0.03). We found a significant positive correlation between

the associated sensitivity (s) and the correlation with the cortical state ( rcsj j) in 5/6 datasets

(Figure 5E–F). Thus, the observables that correlated more with the cortical state were those with

the highest associated sensitivity. This result led us to separate the activity observables into two clas-

ses, called ’sloppy’ and ’stiff’, based on whether the associated sensitivity (s) was lower or higher

than the median of s. We found that stiff variables were significantly more correlated with the corti-

cal state than the sloppy variables (p<0.01 for all datasets, paired t-test; Figure 5G). This relation-

ship was preserved when using an alternative, more general definition of sensitivity that considered

the contribution to all eigenvectors of the FIM, instead of the contribution to the first eigenvector

only (see Figure 5—figure supplement 1). Altogether, these results indicate that neuronal activity

and co-activity preferentially evolved along sensitive (stiff) parameter dimensions during cortical

state transitions.

Sensory-evoked activity evolves along sloppy dimensions
The above results indicate that, although intrinsic spontaneous dynamics predominantly evolved

along sloppy dimensions (Figure 4F), cortical state transitions were governed by changes in stiff

parameters (Figure 5G). We next investigated which parameter dimensions were explored when the

neural network was driven by external sensory inputs, that is during stimulus-evoked activity

(Figure 6A). We observed that evoked responses (which could be increased or decreased with

respect to pre-stimulus baseline firing rate) were larger for sloppy neurons than for stiff neurons

(Figure 6B–C). To quantify the responsiveness of each neuron, we calculated the modulation index

(MI, see Materials and methods) of each neuron in response to acoustic stimuli. We next calculated

the relation between MI, calculated during evoked activity, and the sensitivity s associated to firing

rates, calculated during the spontaneous activity as above. We found that the more responsive neu-

rons were those with the lowest associated sensitivity (Figure 6D–E). This indicates that stimulus-

evoked neuronal activity evolved mostly along sloppy dimensions. This result was replicated when

using a more general definition of sensitivity that considered the contribution to all eigenvectors of

the FIM (see Figure 6—figure supplement 1A). Finally, we evaluated the difference, noted DMI,

between the MI of sloppy and stiff neurons as a function of cortical state CS tð Þ. Specifically, first, the

MI values in each epoch were averaged according to different ranges of the silence density. Second,

the MI values of sloppy and stiff neurons were compared within each range. We found that DMI was

maximal during desynchronized activity, and minimal during synchronized activity (Figure 6F, see

also Figure 6—figure supplement 1B). Thus, the cortical activity during stimulus response evolved

predominantly along sloppy dimensions for the desynchronized cortical state, while, in the synchro-

nized state, the dominance of sloppy fluctuations was reduced, and stiff fluctuations became

comparable.

Finally, correlations between cortical state fluctuations and sensitivity and between MI and sensi-

tivity could reflect a dependency between sensitivity and model estimation errors. To test this, we

evaluated the mean error on the model estimation of the observables and test its interaction with

sensitivity, cortical state fluctuations, and MI (see Appendix 1 and Appendix 1—figure 1). We found

that model estimation errors correlated with sensitivity, but they could not fully explain neither the

positive correlation between sensitivity and cortical state nor the negative correlation between sensi-

tivity and MI.
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Stiff parameters were associated to central neurons within the neuronal
network
In this section, we further investigate the properties of neurons and pairs of neurons with respect to

their associated parameter sensitivity. As above, we separated the neurons and pairs of neurons into

two classes, called ’sloppy units/pairs’ and ’stiff units/pairs’, based on whether the associated sensi-

tivity (s) was lower or higher than the median s (units were associated to parameters hi, and pairs or

links were associated to parameters Jij). With this dichotomization, we found that stiff units were sig-

nificantly more active than sloppy units (Figure 7A). We quantified this by performing receiver oper-

ating characteristic (ROC) analysis and used the area under the ROC curve (AUC) as a measure of

how well the firing rates distributions of the two classes were separated (AUC = 0.961–0.998, p <

0.001, for all rats; Figure 7G). Stiff neurons were also significantly more correlated among them than

sloppy neurons (AUC = 0.615–0.932, p < 0.001, for all rats; Figure 7B,G). The distributions of corre-

lations remained well separated when calculated for the links, that is pairs of neurons with associated

parameters Jij (AUC = 0.541–0.766, p < 0.001, for all rats; Figure 7C,G).

To further investigate the structure of correlations, we evaluated the centrality of stiff and sloppy

neurons within the observed network of neurons. For this we used the betweenness centrality (BC),

a measure of node centrality in a graph or network, which in our case was given by the functional

connectivity matrix among the recorded neurons (see Materials and methods). The BC measures the

extent to which a node in the graph tends to lay on the shortest path between other nodes. Thus, a

node with higher BC has more influence over the network, because more information passes through

that node. We found that stiff neurons had significantly more centrality in the functional connectivity

graph than sloppy neurons (AUC = 0.740–0.831, p<0.001, for all rats; Figure 7D,G). This indicates

that stiff neurons were part of the core of the graph, while sloppy neurons were part of the graph

periphery, as clearly shown using graph visualization (Figure 7E; Fruchterman and Reingold, 1991).

BC values were correlated with firing rates (correlation coefficient: 0.59 ± 0.11), which could suggest

that differences in BC between stiff and sloppy neurons were simply a consequence of differences in

firing rates. However, using surrogate data that preserved the observed firing rates and produced

correlations through global modulations, we found that neither the structure of correlations nor the

BC values could be trivially predicted by globally modulated firing rates but they were rather sug-

gestive of functional interactions (see Appendix 1 and Appendix 1—figure 2). Thus, in addition to

different firing rates, different correlations and BC values were supplementary features of stiff and

sloppy neurons.

Moreover, previous work has shown that cortical neurons differ in their coupling to the population

activity, with neurons that activate most often when many others are active and neurons that tend to

activate more frequently when others are silent (Okun et al., 2015). Thus, along with centrality, we

calculated the neuron-to-population coupling, given by the Pearson correlation between the activity

of each neuron i and the number of coactive neurons (excluding neuron i; see

Materials and methods). We found that stiff neurons were significantly more coupled to the popula-

tion activity than sloppy neurons (AUC = 0.603–0.939, p < 0.001, for all rats; Figure 7F,G). In sum-

mary, stiff units were more active, more central, more coupled among them, and more coupled to

the population activity than sloppy units. The same results were found when using a more general

definition of sensitivity that considered the contribution to all eigenvectors of the FIM (Figure 7—

figure supplement 1).

Discussion
We here studied the changes in activity caused by intrinsic (i.e. cortical state) and extrinsic (i.e., stim-

ulus-evoked) sources in A1 neuronal ensembles in an estimated parameter space. The parameter

space was obtained using the maximum entropy principle, providing a handful number of parame-

ters describing the probability of all possible binary activity patterns. These parameters differed in

their impact on collective activity that was sensitive to a few combinations of parameters, called stiff

dimensions, but insensitive to many others called sloppy dimensions. Our results suggest that spon-

taneous cortical state transitions and stimulus-driven activity evolved along different parameter

dimensions. Indeed, in one hand, while most of the fluctuations during spontaneous activity evolved

along sloppy dimensions, some residual ongoing fluctuations evolved along stiff dimensions, and

these fluctuations were correlated with synchronized/desynchronized cortical state transitions. On
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the other hand, stimulus-induced activity was larger in sloppy dimensions than in stiff dimensions, an

effect that was most prominent during the desynchronized cortical state. Note that the observation

that both spontaneous and stimulus-driven activities predominantly evolve along sloppy dimensions

results from the strong similarity of spontaneous and evoked activity, reported in several previous

studies (Arieli et al., 1996; Kenet et al., 2003; MacLean et al., 2005; Luczak et al., 2009). Finally,

by classifying the neurons as stiff versus sloppy neurons (i.e., those contributing more or less to the

principal stiff dimension) we found that the firing rates and the functional connectivity topology sig-

nificantly differed between the two classes of neurons. It should be noted, however, that, since sensi-

tivity is a continuous variable, the two classes of neurons that we defined here do not represent two

disjoint groups but rather represent two parts of a continuum.

The observation that stimulus-induced activity evolved along sloppy dimensions can have impor-

tant functional implications. It suggests that a stimulus can modulate the activity of a subset of

sloppy neurons without entirely affecting the collective activity. This could be an efficient functional

architecture to encode sensory information without perturbing other ongoing or memory-stored

processes. Consistent with this view and with previous studies (Margolis et al., 2012; Mizuseki and

Buzsáki, 2013; Panas et al., 2015), our results suggest that the integrity of the network is ensured

by a core of highly active stiff neurons, which have strong functional connections among them (either

through anatomical connections or common inputs), while topologically peripheral sloppy neurons

(within the functional connectivity graph) can be largely modulated by external inputs. A similar sub-

network of highly active, interconnected neurons has been recently identified in the mice neocortex

(Yassin et al., 2010). Importantly, sensory input was not required to drive these cells. Previous stud-

ies of complex systems have derived general principles of core/periphery network structures: the

network periphery is more variable, evolvable, and plastic than the network core, while the network

core facilitates system robustness (Kitano, 2004; Csermely et al., 2013). Thus, we hypothesize that

sloppy neurons could also be more affected by synaptic plasticity, allowing for network reconfigura-

tion without loss of stability. Consistent with this, previous work on whole-brain fMRI has observed

core stability and peripheral flexibility over the course of learning (Bassett et al., 2013), and recent

analyses of functional networks from calcium imaging data recorded in mouse primary auditory cor-

tex revealed a stable core and a variable periphery over time (Betzel et al., 2019). Furthermore, we

observed that stimulus responses evolved more pronouncedly along sloppy dimensions in the

desynchronized state, while in the synchronized state fluctuations along sloppy and stiff dimensions

were comparable (Figure 6F). This supports the view that responses along sloppy dimensions pro-

vide information processing benefits, since previous studies have shown that auditory stimuli in

rodents (Marguet and Harris, 2011; Pachitariu et al., 2015) and visual stimuli in both rats

(Goard and Dan, 2009) and monkeys (Beaman et al., 2017) are better represented in the

desynchronized state as compared to the synchronized state.

The properties of spontaneous and induced cortical dynamics observed in the present anesthe-

tized condition are likely to be relevant also during wakefulness. Indeed, several studies reported

the existence of synchronized cortical states during wakefulness (for review see Zagha and McCor-

mick, 2014), and global fluctuation resembling transitions between up and down periods during

alert or quiescent wakefulness (Petersen et al., 2003; Luczak et al., 2007; Poulet and Petersen,

2008; Zagha et al., 2013; Tan et al., 2014; Engel et al., 2016) or even during task engagement

(Sachidhanandam et al., 2013). Moreover, sloppiness has been observed in asynchronous spontane-

ous activity under light anesthesia (Panas et al., 2015), we thus expect to observe a similar stiff-

sloppy architecture in the awake state. However, we believe that the comparison of Fisher informa-

tion matrices during wakefulness and during different levels of anesthesia could provide valuable

information about the principles governing vigilance.

We found that stiff neurons were more linked to the observed neuronal population activity than

sloppy neurons. Stiff neurons had higher centrality in the functional connectivity graph and higher

coupling to the population activity than sloppy neurons. Previous research showed that neurons dif-

fer in their coupling to the population activity, with neurons that activate most often when many

others are active, called ‘choristers’, and neurons that tend to activate more frequently when others

are silent, called ‘soloists’ (Okun et al., 2015). Our results suggest that stiff and sloppy neurons are

chorister and soloist neurons, respectively. In other words, changes in the activity of stiff/chorister

neurons lead to changes in collective behavior (i.e., cortical states), while the activity of sloppy/solo-

ist neurons can spontaneously fluctuate or respond to stimuli without strongly affecting the collective
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behavior. Thus, we believe that the roles of stiff/chorister neurons and sloppy/soloist neurons are

important to understand tradeoffs between responsiveness and stability of the network. Further-

more, we here studied the evolution of neuronal activity on the time scale of hours and found that

fluctuations on stiff parameter dimensions were the weakest and were related to cortical state transi-

tions, which time scale is in the order of tens of minutes (Hahn et al., 2017; Mochol et al., 2015).

Previous studies have reported prominent changes on neuronal activity and tuning properties over

days, but with stable decoding performances of population activity (Chestek et al., 2007; Ziv et al.,

2013; Panas et al., 2015). However, we hypothesize that learning or adaptation to changing envi-

ronments could lead to large changes in collective activity. In that case, particular attention could be

paid to the influence of high-order areas on the activity of subsets of stiff and sloppy neurons from

sensory areas, as top-down regulation might be a mechanism to control the stabilizing network core.

The existence of cortical neurons with different sensitivities (from sloppy to stiff neurons) provides

new valuable architectural constrains for models of the brain state and its transitions. Several past

studies have modeled the synchronized brain dynamics as transitions between two attractors.

Depending on the model specificity those transitions could be noise driven (Mejias et al., 2010;

Mochol et al., 2015; Jercog et al., 2017) or caused by some fatigue mechanism (Compte et al.,

2003; Hill and Tononi, 2005; Mattia and Sanchez-Vives, 2012). To make the system works in a

desynchronized regime it was enough to increase the background input to the network

(Bazhenov et al., 2002; Hill and Tononi, 2005; Curto et al., 2009; Destexhe, 2009; Mochol et al.,

2015). Given our present results, the models could be extended to include a network core/periphery

architecture, a non-homogeneous background input preferentially targeting the network core, and

different stimulus spatial distributions. Such a model would provide insights on the interplay

between cortical state transitions and sensory representation. Moreover, our findings question the

view that the mechanisms by which background and stimulus inputs impact the dynamics are similar,

as assumed in the simple bi-stable rate model (Mochol et al., 2015).

Finally, we here described the patterned activity of small (N = 10) neuronal ensembles using

MEMs. It is known that MEMs of small sizes can present departures from the observed distribution

of summed activities and higher-order correlations (Tkačik et al., 2014). Recent advancements on

learning algorithms allow to construct MEMs of ~100 neurons. However, these models cannot be

used in a time-resolved manner, as we did here, due to limited data in each epoch. Small model

sizes are thus the cost to pay to study the evolution of collective activity over time in a meaningful

time scale (i.e., the one of cortical state transitions).

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers

Additional
information

Biological sample
(Sprague–Dawley rat)

Sprague–Dawley rat https://doi.org/10.1073/
pnas.1410509112

six rats, 250–400 g

Software, algorithm Matlab MathWorks RRID:SCR_001622 All analyses

Software, algorithm Klustakwik http://klustakwik.sourceforge.net/ RRID:SCR_014480 Spike sorting (detection and initial clustering)

Software, algorithm EToS http://etos.sourceforge.net/ Spike sorting (detection and initial clustering)

Software, algorithm Klusters http://neurosuite.sourceforge.net/ Spike sorting (clustering)

Ethics statement
All experiments were carried out in accordance with protocols approved by the Animal Ethics Com-

mittee of the University of Barcelona (Comité d’Experimentació Animal, Universitat de Barcelona,

Ref 116/13).

Experimental techniques
We analyzed the neuronal activity recorded in the primary auditory cortex (A1) of 6 anesthetized rats

(Sprague–Dawley; 250–400 g). The experimental procedures and spikes sorting procedures have

been previously described in Mochol et al. (2015). Briefly, rats were anesthetized with urethane (1.5
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g/kg body weight) and silicon microelectrodes (Neuronexus) with 32 or 64 channels were inserted in

deep layers (depth, 600–1,200 mm) of the primary auditory cortex. The spiking activity from single

units and multi-units (i.e., neurons that were not well isolated) was simultaneously recorded during

spontaneous activity and in response to acoustic ‘clicks’ (5 ms square pulses; interstimulus interval,

2.5 or 3.5 s; see Table 1). In some datasets, double clicks (5 ms square pulses; 50- or 100 ms inter-

click interval) were also presented, but, in the present study, we analyzed only the responses to sin-

gle click. The spiking data is publicly available here: https://github.com/adrianponce/Spont_stim_

spiking_A1.

Cortical state
Long continuous recordings (mean, ~2 h) were divided into NE 100-s epochs, and cortical state was

estimated in each epoch based on spontaneous pooled population activity, that is the merge of sin-

gle and multiunit spike trains during the 1.5-s intervals preceding each stimulus presentation. Corti-

cal state was quantified using silence density defined as the fraction of 20-ms time bins with no

population activity. Silent and active periods were obtained from the merge of consecutive empty

and nonempty bins, respectively.

Maximum entropy models
The spontaneous spiking activity of ensembles of N single neurons was studied using statistical

modeling based on maximum entropy principle. The ensemble activity was binarized in non-overlap-

ping time bins of dt = 10 ms, during which neuron i either did (si ¼ þ1) or did not (si ¼ �1) gener-

ate one or more spikes. The state of the neural ensemble is described by a binary pattern

s
!
¼ s1; s2; . . . ; sN½ �, and thus the collective activity is described by the probability distribution

P s
!

� �

over all 2N possible binary patterns. We estimated P s
!

� �

using a Maximum entropy model

(MEM). The MEM finds P s
!

� �

by maximizing its entropy under the constraint that some empirical sta-

tistics are preserved. A pairwise-MEM provides a solution under the constraint that the activation

rates (<si>) and the pairwise correlations (<sisj>) are preserved. The maximum entropy distribution

P s
!

� �

that is consistent with these expectation values is given by the Boltzmann distribution

(Schneidman et al., 2006; Tkačik et al., 2015):

Pðs
!
Þ ¼

e�Eð s
!
Þ

P

fs
!
g

e�Eð s
!
Þ
; (1)

where E s
!

� �

is the energy of the pattern s
!
, given by:

E s
!

� �

¼�
X

N

i¼1

hisi�
1

2

X

N

i¼1

X

N

j¼1

Jijsisj; (2)

and Z ¼
P

fs
!
g

e�Eð s
!
Þ is the partition function.

Table 1. Number of neurons (SU: single-units, MU: multi-unit), number of 100 s epochs, number of stimulus presentations in 100 s

epochs, and number of neuronal ensembles, for each dataset.

No. of neurons No. of 100 s epochs Stimulus presentations in 100 s epochs No. of neuronal ensembles (Q)

Rat 1 SU: 81; MU: 3 163 12–14 20

Rat 2 SU: 147; MU: 13 74 12–14 20

Rat 3 SU: 44; MU: 30 70 12–20 10

Rat 4 SU: 72; MU: 103 59 10–20 20

Rat 5 SU: 58; MU: 39 29 28–29 10

Rat 6 SU: 112; MU: 83 28 17–29 20
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The model parameter hi, called intrinsic bias, represents the intrinsic tendency of neuron i towards

activation (si ¼ þ1) or silence (si ¼ �1) and the parameter Jij represents the effective interaction

between neurons i and j. The estimation of the model parameters 
 ¼ h; Jf g was achieved through a

gradient descent algorithm (see below). For each recording session, we constructed models for Q

ensembles of N ¼ 10 randomly selected single neurons from the entire population of Npop single neu-

rons and learned the model parameters using the spontaneous binarized activity within each 100-s

epoch. Thus, for each recording session, we built Q� NE models of 10 units. We were interested on

the evolution of the model parameters over time, that is 
 tð Þ. Note that, for a given model, the num-

ber of free parameters is the sum of intrinsic biases and effective couplings, N þ N N � 1ð Þ=2 ¼ 55,

that is 
 ¼ h1; h2; . . . ; hN ; J12; J13; . . .½ �.

Estimation of MEM parameters
The MEM parameters 
 ¼ h; Jf g were iteratively adjusted to minimize the absolute difference

between the empirical activation rates ( sih i) and correlations ( sisj


 �

) and those ( sih imodel, sisj


 �

model
)

predicted by the model through Metropolis Monte Carlo simulations (100,000 samples). Specifically,

each iteration is given by: hnewi ¼ holdi � a sih imodel� sih i
� �

, and Jnewij ¼ Joldij � a sisj


 �

model
� sisj


 �

� �

,

where a is the learning rate (a ¼ 0.1). In our study we stopped the re-estimations once the differen-

ces between the empirical and model values are less than a tolerance threshold (0.005) or if this tol-

erance was not reached within a maximum number of iterations (100).

MEM goodness-of-fit
The goodness-of-fit of the MEMs was evaluated using the Jensen–Shannon divergence (DJS)

between the probability distribution of the empirical and model binary patterns (Marre et al.,

2009). DJS is a symmetric version of the Kullback-Leibler divergence (DKL) and is given as:

DJS Pdata;PMEMð Þ ¼
1

2
DKL Pdata;

PdataþPMEMð Þ

2

� �

þ
1

2
DKL PMEM;

PdataþPMEMð Þ

2

� �

; (3)

Where PMEM was given by the Boltzmann distribution of the model, Pdata was estimated from the

N-dimensional binary patterns observed in the data, and:

DKL P1;P2ð Þ ¼
xf g

X

P1 xð Þ log
P1 xð Þ

P2 xð Þ
: (4)

The fitting of MEM (second-order model) was compared to the fit obtained using independent-

MEM, that is in which only for which only the activation rates (<si>) are preserved (i.e., only h is opti-

mized; first-order model). In this case, the pattern energy is given by: E s
!

� �

¼�
P

N

i¼1

hisi.

Furthermore, the performance of the model can be evaluated using the Kullback-Leibler ratio, R

(Shlens et al., 2009). This ratio is given by comparing the Kullback-Leibler divergence between the

distribution P1 of the first-order model (i.e., independent-MEM) and the distribution of the actual

data, D1 ¼ DKL P1;Pdatað Þ, with the Kullback-Leibler divergence between the distribution P2 of the

second-order model and the distribution of the actual data, D2 ¼ DKL P2;Pdatað Þ. Specifically, the Kull-

back-Leibler ratio is defined as:

R¼
D1�D2

D1

: (5)

This ratio can range between 0 and 1, with one giving the highest performance.

Fisher information matrix
Because in the MEM, all the information about the collective activity is contained in the probability

distribution of the binary patterns, P s
!

� �

, one can define the model parameter space as P s
!
j


� �

. We

were interested in knowing which parameters, or combination of parameters, have a strong effect

on the collective activity. To measure how distinguishable two models, with parameters 
 and
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þ d
, are based on their predictions, we used the Fisher information matrix (FIM). Indeed, the Kull-

back-Leibler divergence between the two models can be written as:

DKLðW;Wþ dWÞ ¼ FIMkldWkdWlþOðdW3Þ; (6)

where 1 � k; l� 55, and the matrix FIM is given by:

FIMkl ¼
s
!
f g

X

P s
!
jW

� �

q logPðs
!
jWÞ

qWk

q logPðs
!
jWÞ

qWl

: (7)

The FIM represents the curvature of the log-likelihood of the model, logP s
!
j


� �

, with respect to

the model parameters. It quantifies the sensitivity of the model to changes in parameters. By calcu-

lating the eigenvalues of the FIM, we can determine which combinations of parameters affect the

most the model’s behavior.

In the case of MEM, the FIM can be easily obtained by using Equations 1, 2, and 7. As a result,

the FIM is given by the covariance matrix of observables associated to the parameters which can be

calculated from the model through Metropolis Monte Carlo simulations (500,000 steps), that is:

FIMkl ¼ xkxlh i� xkh i xlh i; (8)

with 1 � k; l� 55 and x
!
¼ s1; s2; . . . ; sN ; s1s2; s1s3; . . .½ �.

Sensitivity measures
The FIM was calculated for every neuronal ensemble at every 100-s epoch and it was decomposed

into eigenvectors, noted nt;1; nt;2; . . . ; nt;k; . . ., where k is the rank of the eigenvector and t denotes

the epoch. Following Panas et al. (2015), within each neuronal ensemble, we measured the sensitiv-

ity of a given parameter by its averaged contribution to the first eigenvector of the FIM, that is the

sensitivity of i-th parameter is given by sne;i ¼
1

NE

P

t nt;1 ið Þ
�

�

�

�, with 1 � i � N.

We next constructed a sensitivity measure for the entire population of Npop neurons. For this, we

defined the set of all single neuron indices and all pairs of neurons I ¼ 1; . . . ;Npop; 1; 2ð Þ; 1; 3ð Þ; . . .
� 	

.

This set has L ¼ Npop þ
Npop Npop�1ð Þ

2
elements. For each element j of I, we defined the sensitivity sj as

the average of sen;i over the neuronal ensembles that contained the j-th single neuron or the pair of

neurons (i.e., those neuronal ensembles for which i maps to j). In other words, sne denotes the sensi-

tivity within an ensemble of N ¼ 10 neurons and has 55 elements, and s denotes the sensitivity within

the entire population of Npop neurons and has L elements. This allows comparison of s with statistics

derived from the population of Npop neurons.

Parameters that contributed less to the first eigenvector could in principle contribute to the other

stiff dimensions (those with lower rank k, e.g., k ¼ 2). For this reason, we also considered an alterna-

tive definition of sensitivity that considers the weighted contribution to all eigenvectors of the FIM.

For each neuronal ensemble and each 100-s epoch t, we defined the weighted sensitivity of the

parameter i as the temporal average of its contribution to the eigenvectors of the FIM, weighted by

the associated eigenvalues (at;1; . . . ; at;55):

swne;i ¼
1

NE

X

NE

t¼1

X

55

k¼1

at;k nt;k ið Þ
�

�

�

�

at;1 þ at;2 þ . . . þ at;55
: (9)

As previous, from swne one can construct a weighted sensitivity sw at the population level.

Finally, we separated the activity observables into two classes, called “sloppy” and “stiff”, based

on whether the associated sensitivity s was lower or higher than the median sensitivity.

Similarity measures
Temporal variations of model parameters and data statistics were quantified using the average cor-

relation between the parameters/statistics at time t and the parameters/statistics at time t þ Dt. For

example, let r
!

tð Þ the average firing rates of the neurons during the epoch t, the similarity measure is

given by:
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g Dtð Þ ¼
1

NE �Dt

X

NE�Dt

t¼1

� r
!

tð Þ; r
!

tþDtð Þ
h i

; (10)

Where NE is the number of epochs and � is the Pearson correlation coefficient. In the case of FIM,

the matrix was vectorized to calculate �.

To evaluated how well the data in a given epoch t could be explained by the MEM constructed

using the data at time t þ Dt. Specifically, we defined the similarity measure DJSh i Dtð Þ, given by the

average Jensen-Shannon divergence between the distribution of data binary patterns in epoch t,

that is Pdata;t, and the distribution of binary patterns predicted by the MEM constructed using the

data in epoch t þ Dt, that is PMEM;tþDt. This measure is given as:

DJSh i Dtð Þ ¼
1

NE �Dt

X

NE�Dt

t¼1

DJS Pdata;t ;PMEM;tþDt

� �

: (11)

In other words, 1= DJSh i Dtð Þ quantifies how well, on average, the model with parameters 
 tþDtð Þ

represents the data from epoch t.

Modulation index
We quantified the responsiveness of the neurons to sensory stimuli through the modulation index

(MI) defined as:

MI ¼
rstim� rspon
�

�

�

�

rstimþ rspon
; (12)

where rspon is the pre-stimulus average spike count, calculated in the 0.5-s pre-stimulus interval, and

rstim is the average spike count calculated from stimulus onset to 0.5 s after stimulus onset. With this

definition, strongly increased or suppressed stimulus responses, with respect to pre-stimulus activity,

lead to high MI values.

Betweenness centrality
For each recording session, we analyzed the network defined by the Pearson correlation matrix of

the activities of all single units. The centrality of a neuron, or node, within the network was quantified

using the betweenness centrality (BC) measure. BC is given by the number of shortest paths that

pass through a given node. The correlation matrix was compute for all 100-s epochs and, for each

matrix element, we tested whether the mean of the NE correlation values differs from 0 (t test fol-

lowed by Bonferroni correction), resulting in a binary graph G with entries equal to 1 if correlation

were significantly different from zero (corrected p-value < 0.05) and 0 otherwise. The BC for each

node of the graph was given by:

BC ið Þ ¼
k 6¼i 6¼l

X

p kl; ið Þ

p klð Þ
(13)

where p klð Þ is the total number of shortest paths from node k to node l and p kl; ið Þ is the number of

those paths that pass through i.

Neuron-to-population coupling
To quantify the coupling of each neuron to the activity of the neuronal population, we calculated, for

each epoch, the Pearson correlation between the activity of each neuron (si) and the number of

coactive neurons (i.e., with si ¼ þ1) at each time bin (dt = 10 ms) from the neuronal population of

single units (without including the neuron i). The neuron-to-population coupling was given by the

average of the correlation coefficient across epochs.

ROC analysis
We used the receiver operating characteristic curve (ROC) to evaluate the separation between the

distributions of observables from sloppy and stiff classes. Let Xsloppy and Xstiff be the sloppy variables,

that is those variables with associated sensitivity (s) lower than the median s, and the stiff variables,
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that is those variables with associated sensitivity (s) higher than the median s, respectively. The ROC

curve, f cð Þ, is build by plotting the probability of P Xsloppy>c
� �

against the probability of P Xstiff>cð Þ, for

each all c. The area under the ROC curve (AUC) is a measure of separation between P Xsloppy

� �

and

P Xstiffð Þ, and it is given by:

AUC¼

Z

f cð Þdc: (14)

AUC ranges between 0 and 1, with AUC = 0 if P Xsloppy

� �

and P Xstiffð Þ are completely separated

and Xsloppy>Xstiff , AUC = 1 if P Xsloppy

� �

and P Xstiffð Þ are completely separated and Xstiff>Xsloppy, and

AUC = 0.5 if P Xsloppy

� �

and P Xstiffð Þ are undistinguishable. We used a permutation test (1000 re-sam-

ples), in which observables and classes were randomly associated, to assess AUC values that were

significantly different from 0.5.

Stationary surrogates
To construct the stationary surrogates we first randomly selected a reference epoch t. Second, we

generated binary data using the MEM estimated from the spiking data at this reference epoch,

that isusing parameters 
 tð Þ, through Monte Carlo simulations of the model to obtain 5000 binary

patterns. Third, we repeated the Monte Carlo simulations NE times. Finally, for each of the NE pieces

of surrogate data, we estimated new MEM parameters, 
0, using gradient descend, and we calcu-

lated the corresponding Fisher Information Matrix (FIM) using 500,000 Monte Carlo steps as

described above. By construction, the obtained surrogate data were stationary and had the same

length of the original spiking data. Thus, parameter fluctuations in the surrogate data were only due

to model estimation errors.
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Appendix 1

Estimation errors and sensitivity
Correlations between cortical state fluctuations and parameter sensitivity and between MI and

sensitivity could reflect a dependency between sensitivity and model estimation errors. To test

this, we here evaluated the error on the model estimation of the observables (firing rates and

correlations) as a function of sensitivity. For each epoch t, the firing rates and covariances

estimated by the MEM can be calculated from the model parameters by means of the

Boltzmann distribution. The estimated moments sih i and sisj


 �

are given by:

sih i ¼
s
!
f g

X

P s
!

� �

si; (15)

sisj


 �

¼
s
!
f g

X

P s
!

� �

sisj: (16)

The estimated firing rates and the covariances are given as ri ¼ sih iþ 1ð Þ= 2dtð Þ and Cij ¼

sisj


 �

� sih i sj


 �

(Appendix 1—figure 1A-B). We found that the firing rates and covariances

estimated from the data and those estimated by the MEM highly correlated (average

correlation coefficient for rates: 0.999 � 0.001; for covariances: 0.956 � 0.018, Appendix 1—

figure 1C), indicating acceptable fits of the models. Indeed, the model performances,

evaluated through the Kullback-Leibler ratio R, were also high (average equal to 0.95 ± 0.03,

Appendix 1—figure 1D).

Appendix 1—figure 1. Estimation errors and sensitivity. (A-B) Comparison between the firing

rates and covariances measured in the data and those estimated by the MEM. Data from rat 4.

Each point represents the activity of a neuron (in panel A) or co-activity of a pair of neurons (in

panel B) from a given neuronal ensemble and at a given epoch. The data of all neuronal

ensembles and all epochs are presented. Insets show the resulting differences between

statistics estimated from the data and from the model. (C) Correlation between the firing rates

and covariances measured in the data and those estimated by the MEM, for each dataset. (D)

Average Kullback-Leibler ratios for all learned models of each dataset. Error bars indicate

SEM. (E) Correlation between sensitivity s and estimation errors Err. (F) Full squares:
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correlation between sensitivity and rcsj j (same values as in Figure 5F). Open circles: correlation

between estimation errors and rcsj j. For each dataset the correlation coefficients were

compared, given the observed correlations in panel E using Meng’s z-test for dependent

correlations, *: p < 0.01. (G) Full squares: correlation between sensitivity of firing rates and MI

(same values as in Figure 6D). Open circles: correlation between firing rate estimation errors

and MI. *: p < 0.01, Meng’s z-test for dependent correlations. In panels (C) and (E–G), error

bars indicate correlation 95% confidence interval.

We next defined the estimation errors as the averaged squared difference between the

values estimated from the data and those estimated by the model:

EE ri½ � ¼
1

NE

X

NE

t¼1

Drt;i

sDr

; (17)

EE Cij

� �

¼
1

NE

X

NE

t¼1

DCt;i;j

sDC

; (18)

where Drt;i ¼ r
data;t
i � r

model;t
i

� �2

and DCt;i;j ¼ C
data;t
ij �C

model;t
ij

� �2

, and sDr and sDr denote the

standard deviations of Drt;i and DCt;i;j, respectively —this normalization is needed because Drt;i

and DCt;i;j had different magnitudes. Using the same procedure as for sensitivity s, we

obtained, for each dataset, a variable Err that represented the mean estimation error of the

Npop neurons and all pairwise combinations.

Since estimation errors correlated with sensitivity (average: 0.192 ± 0.055; Appendix 1—

figure 1E), we asked whether the correlations between sensitivity and cortical state observed

in Figure 5F could be fully predicted by correlations between errors and cortical state. We

found that correlations between sensitivity s and rcsj j were higher than correlations between

estimation errors and rcsj j (0.252 � 0.056 vs. 0.168 � 0.017 on average; Appendix 1—figure

1F). We used Meng’s z-test for dependent correlations to compare the correlations between

sensitivity s and rcsj j and those between estimation errors and rcsj j, given the correlation

between s and errors, and found significant differences in 4/6 datasets (p < 0.05). This was the

case for datasets with the highest model performances (datasets 1–4).

Finally, we tested whether estimation errors for firing rates correlated with the modulation

index (MI) of the neurons and compared the results with those obtained in Figure 6D. We

found that correlations between estimation errors and MI were substantially weaker than

correlations between estimation errors and MI (�0.506 ± 0.043 vs. �0.086 ± 0.017 on average;

p<0.05 for all datasets, Meng’s z-test for dependent correlations; Appendix 1—figure 1G).

We concluded that, although estimation errors correlated with sensitivity, they did not fully

explain neither the correlation between sensitivity and cortical state (for the datasets with

highest model performance) nor the correlation between sensitivity and MI.

Non-homogeneous Poisson process surrogate data
In Figure 7A–D we found that stiff neurons were more active, more coupled among them, and

more central than sloppy neurons. We here investigated the possibility that correlations and

BC values could be trivially predicted by firing rates. We tested whether the structure of

correlation could arise from spontaneous global fluctuations increasing or decreasing the firing

of the neurons, instead of functional connectivity among them. For this, we constructed

surrogate data that preserved the mean firing rate of the neurons, and the number and

duration of silent (i.e., no spikes, empty 20 ms time bins) and active (i.e., non-empty 20 ms

time bins) periods in each epoch, but without other structured correlations among the units.

To do this, we generated non-homogeneous Poisson process (NHPP) surrogate data as

follows. We first calculated the average spontaneous firing rates of the single neurons during

active periods in the original data, re
!
¼ re;1; re;2; . . . ; re;Npop

� �

, given by the number of spikes, in a

given epoch e, divided by the total duration of active periods within this epoch. During silent

periods the firing rate of all single units was zero. Next, for each unit i and within each epoch
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e, we generated non-homogeneous Poisson spike trains using the estimated firing rate as the

intensity le;i tð Þ of the point process, that is le;i tð Þ was a step function with le;i tð Þ ¼ re;i, for times

t within active periods, and le;i tð Þ ¼ 0, otherwise. The resulting surrogate data preserved the

firing rate of each neuron and silence periods of population activity (Appendix 1—figure 2A,

E).

Appendix 1—figure 2. Correlations and centrality in non-homogeneous Poisson process surro-

gate data. (A) Relation between firing rates in the original data and firing rates in the non-

homogeneous Poisson process (NHPP) surrogates. R2 indicates the fraction of explained

variance. The black line indicates the identity line. (B) Relation between the mean pairwise

correlation in the original data and that in NHPP surrogates. Each point represents the mean

correlation (averaged over neurons) in a given epoch. (C) Relation between pairwise

correlations, averaged over the NE epochs, in the original data and those in NHPP

surrogates. Each point represents a pair of neurons. (D) Relation between BC values in the

original data and those in NHPP surrogates (see Materials and methods for calculation of BC).

Data in (A), (B), (C), and (D) correspond to one example rat. (E) Explained variance for firing

rates, correlations, and BC values, averaged over datasets. Error bars indicate SEM. (F)

Correlation between firing rates and BC values, averaged over datasets. Error bars indicate

SEM.

Despite being independent during active periods, the units in the NHPP data were

correlated due to common global fluctuations across epochs and silent and active periods.

Indeed, the mean correlation values in each epoch, Ch ie, from the original and the surrogate

data were highly correlated (Appendix 1—figure 2B,E), although Ch ie was systematically

lower in the surrogate data than in the original data. We tested how well this simple model

predicted the structure of correlations, by calculating the pairwise correlations, Cij, and the BC

values in the surrogate data, and comparing them to the values obtained in the original data

(Appendix 1—figure 2C-D). We found that neither Cij nor BC were predicted by the NHPP:

the average fraction of explained variance was equal to R2 = 0.148 � 0.07 and R2 = 0.184 �

0.07 for Cij and BC, respectively (Appendix 1—figure 2E). Moreover, the correlation between

firing rates and BC values was substantially reduced in the NHPP, with correlation coefficients

equal to 0.59 � 0.11 and 0.19 � 0.15 for the original and the NHPP, respectively (p < 0.01, t-

test). We concluded that correlations and centrality measures were not fully predicted by

globally modulated firing rates but were rather suggestive of functional interactions.
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