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Abstract Our understanding of nonlinear stimulus transformations by neural circuits is hindered

by the lack of comprehensive yet interpretable computational modeling frameworks. Here, we

propose a data-driven approach based on deep neural networks to directly model arbitrarily

nonlinear stimulus-response mappings. Reformulating the exact function of a trained neural

network as a collection of stimulus-dependent linear functions enables a locally linear receptive

field interpretation of the neural network. Predicting the neural responses recorded invasively from

the auditory cortex of neurosurgical patients as they listened to speech, this approach significantly

improves the prediction accuracy of auditory cortical responses, particularly in nonprimary areas.

Moreover, interpreting the functions learned by neural networks uncovered three distinct types of

nonlinear transformations of speech that varied considerably from primary to nonprimary auditory

regions. The ability of this framework to capture arbitrary stimulus-response mappings while

maintaining model interpretability leads to a better understanding of cortical processing of sensory

signals.

Introduction
Creating computational models to predict neural responses from the sensory stimuli has been one

of the central goals of sensory neuroscience research (Hartline, 1940; Hubel and Wiesel, 1959;

Hubel and Wiesel, 1962; Döving, 1966; Laurent and Davidowitz, 1994; Wilson, 2001; Bou-

dreau, 1974; Mountcastle, 1957). Computational models can be used to form testable hypotheses

by predicting the neural response to arbitrary manipulations of a stimulus and can provide a way of

explaining complex stimulus-response relationships. As such, computational models that provide an

intuitive account of how sensory stimuli are encoded in the brain have been critical in discovering

the representational and computational principles of sensory cortices (Marr and Poggio, 1976).

One simple yet powerful example of such models is the linear receptive field model, which is com-

monly used in visual (Hubel and Wiesel, 1959; Theunissen et al., 2001) and auditory

(Theunissen et al., 2000; Klein et al., 2006) neuroscience research. In the auditory domain, the lin-

ear spectrotemporal receptive field (STRF) (Theunissen et al., 2001; Klein et al., 2006; Aertsen and

Johannesma, 1981) has led to the discovery of neural tuning to various acoustic dimensions, includ-

ing frequency, response latency, and temporal and spectral modulation (Miller et al., 2002;

Woolley et al., 2005; Chi et al., 1999). However, despite the success and ease of interpretability of
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linear receptive field models, they lack the necessary computational capacity to account for the

intrinsic nonlinearities of the sensory processing pathways (David and Gallant, 2005). This shortcom-

ing is particularly problematic in higher cortical areas where stimulus representation becomes

increasingly more nonlinear (Christianson et al., 2008; Wu et al., 2006). Several extensions have

been proposed to address the limitations of linear models (Paninski, 2004; Sharpee et al., 2004;

Brenner et al., 2000; Kaardal et al., 2017; Ahrens et al., 2008; Mesgarani et al., 2009;

Hong et al., 2008; Schwartz and Simoncelli, 2001; Schwartz et al., 2002; Butts et al., 2011;

McFarland et al., 2013; Vintch et al., 2015; Harper et al., 2016) (see (Meyer et al., 2016) for

review). These extensions improve the prediction accuracy of neural responses, but this improve-

ment comes at the cost of reduced interpretability of the underlying computation, hence limiting

novel insights that can be gained regarding sensory cortical representation. In addition, these meth-

ods assume a specific model structure whose parameters are then fitted to the neural data. This

assumed model architecture thus limits the range of the nonlinear transformations that they can

account for. This lack of a comprehensive yet interpretable computational framework has hindered

our ability to understand the nonlinear signal transformations that are found ubiquitously in the sen-

sory processing pathways (Hong et al., 2008; Abbott, 1997; Khalighinejad et al., 2019).

A general nonlinear modeling framework that has seen great progress in recent years is the multi-

layer (deep) neural network model (DNN) (Hinton et al., 2006; LeCun et al., 2015). Theses biologi-

cally inspired models are universal function approximators (Hornik et al., 1989) and can model any

arbitrarily complex input-output relation. Moreover, these data-driven models can learn any form of

nonlinearity directly from the data without any explicit assumption or prior knowledge of the nonli-

nearities. This property makes these models particularly suitable for studying the encoding proper-

ties of sensory stimuli in the nervous system (Batty et al., 2016; McIntosh et al., 2016; Klindt et al.,

2017) whose anatomical and functional organization remains speculative particularly for natural stim-

uli. A major drawback of DNN models, however, is the difficulty in interpreting the computation that

they implement because these models are analytically intractable (the so-called black box property)

(Mallat, 2016). Thus, despite their success in increasing the accuracy of prediction in stimulus-

response mapping, their utility in leading to novel insights into the computation of sensory nervous

systems is lacking.

To overcome these challenges, we propose a nonlinear regression framework in which a DNN is

used to model sensory receptive fields. An important component of our approach is a novel analysis

method that allows for the calculation of the mathematically equivalent function of the trained neural

network as a collection of stimulus-dependent, linearized receptive fields. As a result, the exact com-

putation of the neural network model can be explained in a manner similar to that of the commonly

used linear receptive field model, which enables direct comparison of the two models. Here, we

demonstrate the efficacy of this nonlinear receptive field framework by applying it to neural

responses recorded invasively in the human auditory cortex of neurosurgical patients as they listened

to natural speech. We demonstrate that not only these models more accurately predict the auditory

neural responses, but also uncover distinct nonlinear encoding properties of speech in primary and

nonprimary auditory cortical areas. These findings show the critical need for more complete and

interpretable encoding models of neural processing, which can lead to better understanding of corti-

cal sensory processing.

Results

Neural recordings
To study the nonlinear receptive fields of auditory cortical responses, we used invasive electrocorti-

cography (ECoG) to directly measure neural activity from five neurosurgical patients undergoing

treatment for epilepsy. One patient had high-density subdural grid electrodes implanted on the left

hemisphere, with coverage primarily over the superior temporal gyrus (STG). All five patients had

depth electrodes (stereotactic EEG) with coverage of Heschl’s gyrus (HG) and STG (Figure 1A).

While HG and the STG are functionally heterogenous and each contain multiple auditory fields

(Nourski et al., 2014; Galaburda and Sanides, 1980; Morosan et al., 2001; Hickok and Saberi,

2012; Hamilton et al., 2018), HG includes the primary auditory cortex, while the STG is considered

mostly a nonprimary auditory cortical area (Clarke and Architecture, 2012). The patients listened to
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Figure 1. Predicting neural responses using linear and nonlinear regression models. (A) Neural responses to speech were recorded invasively from

neurosurgical patients as they listened to speech. The brain plot shows electrode locations and t-value of the difference between the average response

of a neural site to speech versus silence. The neural responses are predicted from the stimulus using a linear spectrotemporal receptive field model

(Lin) and a nonlinear convolutional neural network model (CNN). Input to both models is a sliding time-frequency window with 400 ms duration. (B)

Actual and predicted responses of three example sites using the Lin and CNN models. (C) Prediction accuracy of neural responses from the Lin and

CNN models for sites in STG and HG. (D) Improved prediction accuracy over Lin model for linear-nonlinear (LN), short-term plasticity (STP), and CNN

models. (E) Dependence of prediction accuracy on the duration of training data. Circles show average across electrodes and bars indicate standard

error. The dashed line is the upper bound of average prediction accuracy for the Lin model across electrodes. The x-axis is in logarithmic scale.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. A MATLAB file containing four variables — group (location of electrode based on anatomy; 1 = Heschl’s gyrus, 2 = superior temporal

gyrus), rsquared_lin (noise-adjusted R-squared values of test set prediction by linear model), rqsuared_cnn (noise-adjusted R-squared values of test set

prediction by CNN model), improvement (difference of the last two, as used in the Figure 5B prediction).

Figure supplement 1. Selecting stimulus window length for prediction.

Figure supplement 2. Hyperparameter optimization.
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stories spoken by four speakers (two females) with a total duration of 30 min. All patients had self-

reported normal hearing. To ensure that patients were engaged in the task, we intermittently

paused the stories and asked the patients to repeat the last sentence before the pause. Eight sepa-

rate sentences (40 s total) were used as the test data for evaluation of the encoding models, and

each sentence was repeated six times in a random order.

We used the envelope of the high-gamma (70–150 Hz) band of the recorded signal as our neural

response measure, which correlates with the neural firing in the proximity of electrodes (Ray and

Maunsell, 2011; Buzsáki et al., 2012). The high-gamma envelope was extracted by first filtering

neural signals with a bandpass filter and then calculating the Hilbert envelope. We restricted our

analysis to speech-responsive electrodes, which were selected using a t-test between the average

response of each electrode to speech stimuli versus the response in silence (t-value > 2). This crite-

rion resulted in 50 out of 60 electrodes in HG and 47 out of 133 in STG. Electrode locations are plot-

ted in Figure 1A on the average FreeSurfer brain (Fischl et al., 2004) where the colors indicate

speech responsiveness (t-values).

We used the auditory spectrogram of speech utterances as the acoustic representation of the

stimulus. Auditory spectrograms were calculated using a model of the peripheral auditory system

that estimates a time-frequency representation of the acoustic signal on a tonotopic axis

(Yang et al., 1992). The speech materials were split into three subsets for fitting the models – train-

ing, validation, and test. Repetitions of the test set were used to compute a noise-corrected perfor-

mance metric to reduce the effect of neural noise on model comparisons. The remainder of the data

was split between training and validation subsets (97% and 3%, respectively). There was no stimulus

overlap between the three subsets. We used the prediction accuracy on the validation set to choose

the best weights for the model throughout training.

Linear and nonlinear encoding models
For each neural site, we fit one linear (Lin) and one nonlinear (CNN) regression model to predict its

activity from the auditory spectrogram of the stimulus (Figure 1A). The input to the regression mod-

els was a sliding window with a duration of 400 ms with 10 ms steps, which was found by maximizing

the prediction accuracy (Figure 1—figure supplement 1). The linear encoding model was a conven-

tional STRF that calculates the linear mapping from stimulus spectrotemporal features to the neural

response (Theunissen et al., 2001). The nonlinear regression model was implemented using a deep

convolutional neural network (CNN; LeCun et al., 1998) consisting of two stages: a feature extrac-

tion network and a feature summation network. This commonly used nonlinear regression framework

(LeCun et al., 1990; Krizhevsky et al., 2012; Pinto et al., 2009) consists of extracting a high-dimen-

sional representation of the input (feature extraction) followed by a feature summation network to

predict neural responses. The feature extraction network comprises three convolutional layers each

with eight 3 � 3 2D convolutional kernels, followed by two convolutional kernels with 1 � 1 kernels

to reduce the dimensionality of the representation, thus decreasing the number of model parame-

ters. The feature summation stage was a two-layer fully connected network with 32 nodes in the hid-

den layer and a single output node. All hyperparameters of the network were determined by

optimizing the prediction accuracy (Figure 1—figure supplement 2). All hidden layers had rectified

linear unit (ReLU) nonlinearity (Nair and Hinton, 2010), and the output node was linear. A combina-

tion of mean-squared error and Pearson correlation was used as the training loss function (see Mate-

rials and methods).

Predicting neural responses using linear and nonlinear encoding models
Examples of actual and predicted neural responses from the Lin and CNN models are shown in

Figure 1B for three sample electrodes. We examined the nonlinearity of each neural site by compar-

ing the prediction accuracy of Lin and CNN models. As Figure 1B shows, the CNN predictions (red)

are more similar to the actual responses (black) compared to Lin predictions (blue). This observation

confirms that the CNN model can capture the variations in the neural responses to speech stimuli

more accurately. To quantify this improvement across all sites, we calculated the noise-adjusted

R-squared value (Dean et al., 2005) (see Materials and methods) between the predicted and actual

neural responses for each model. The scatter plot in Figure 1C shows the comparison of these val-

ues obtained for Lin and CNN models for each electrode, where the electrodes are colored by their
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respective brain region. Figure 1C shows higher accuracy for CNN predictions compared to Lin pre-

dictions for the majority of electrodes (87 out of 97; avg. difference: 0.10; p<<1, t-test). Even though

the overall prediction accuracy is higher for HG electrodes than ones in STG, the absolute improved

prediction of CNN over Lin is significantly higher for STG electrodes (avg. improvement 0.07 in HG,

0.13 in STG; p<0.003, two sample one-tailed t-test). This higher improvement in STG electrodes

reveals a larger degree of nonlinearity in the encoding of speech in the STG compared to HG.

To compare the CNN model with other common nonlinear extensions of the linear model, we

predicted the neural responses using linear-nonlinear (LN) and short-term plasticity (STP) models

(Abbott, 1997; David et al., 2009; David and Shamma, 2013; Tsodyks et al., 1998; Lopez Espejo

et al., 2019). Figure 1D shows the improvement of each model over the linear model, averaged

separately across electrodes in HG and STG. While all models improve the prediction accuracy sig-

nificantly compared to the linear model, the CNN accuracy is considerably higher than the other

two, particularly in higher auditory areas (STG) which presumably contain more nonlinearities.

Since models with more free parameters are more difficult to fit to limited data, we also exam-

ined the effect of training data duration on prediction accuracy for both Lin and CNN models

(Figure 1E, see Materials and methods). While we can calculate an upper bound for achievable

noise-corrected R-squared for the linear model (David and Gallant, 2005), deep neural networks

are universal approximators (Hornik et al., 1989) and hence do not have a theoretical upper bound.

Assuming a logarithmic relationship between prediction error (1� �2) and amount of training data,

our data suggests that doubling the amount of training data reduces CNN’s prediction error on

average by 10.8% ± 0.5% (standard error). Figure 1E also shows that the CNN predicts the neural

responses significantly better than the Lin model even if the duration of the training data is short.

The consistent superiority of the CNN model shows the efficacy of the regularization methods which

help avoid the problem of local minima during the training phase.

Interpreting the nonlinear receptive field learned by CNNs
The previous analysis demonstrates the superior ability of the CNN model to predict the cortical

representation of speech particularly in higher order areas, but it does not show what types of non-

linear computation result in improved prediction accuracy. To explain the mapping learned by the

CNN model, we developed an analysis framework that finds the mathematical equivalent linear func-

tion that the neural network applies to each instance of the stimulus. This equivalent function is

found by estimating the derivative of the network output with respect to its input (i.e. the data Jaco-

bian matrix [Wang et al., 2016]). We refer to this linearized equivalent function as the dynamic spec-

trotemporal receptive field (DSTRF). The DSTRF can be considered an STRF whose spectrotemporal

tuning depends on every instance of the stimulus. As a result, the linear weighting function of the

CNN model that is applied to each stimulus instance can be visualized in a manner similar to that of

the STRF (see Videos 1 and 2).

Video 1. The spectrotemporal receptive field (STRF)

model applies a weight function to the stimulus to

predict the neural response.

https://elifesciences.org/articles/53445#video1

Video 2. The dynamic spectrotemporal receptive field

(DSTRF) applies a time-varying, stimulus-dependent

weight function to the stimulus to predict the neural

response.

https://elifesciences.org/articles/53445#video2
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Figure 2. Calculating the stimulus-dependent dynamic spectrotemporal receptive field. (A) Activation of nodes in a neural network with rectified linear

(ReLU) nonlinearity for the stimulus at time t. (B) Calculating the stimulus-dependent dynamic spectrotemporal receptive field (DSTRF) for input instance

Xt by first removing all inactive nodes from the network and replacing the active nodes with the identity function. The DSTRF is then computed by

multiplying the remaining network weights. Reshaping the resulting weight matrix expresses the DSTRF in the same dimensions as the input stimulus

and can be interpreted as a multiplicative template applied to the input. Contours indicate 95% significance (jackknife). (C) Comparison of piecewise

linear (rectified linear neural network) and linear (STRF) approximations of a nonlinear function. (D) DSTRF vectors (columns) shown for 40 samples of the

stimulus. Only a limited number of lags and frequencies are shown at each time step to assist visualization. (E) Normalized sorted singular values of the

DSTRF matrix show higher diversity of the learned linear function in STG sites than in HG sites. The bold lines are the averages of sites in the STG and

in HG. The complexity of a network is defined as the sum of the sorted normalized singular values. (F) Comparison of network complexity and the

improved prediction accuracy over the linear model in STG and HG areas. (G) Histogram of the average number of switches from on/off to off/on states

at each time step for the neural sites in the STG and HG.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. A MATLAB file containing one variable — complexity (neural network complexity, as used in Figure 5A prediction).

Figure 2 continued on next page
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Finding the DSTRF is particularly straightforward for a neural network with rectified linear unit

nodes (ReLU), because ReLU networks implement piecewise linear functions (Figure 2C). A rectified

linear node is inactive when the sum of its inputs is negative or is active and behaves like a linear

function when the sum of its inputs is positive (Figure 2A). Obtaining a linear equivalent of a CNN

for a given stimulus consists of first removing the weights that connect to the inactive nodes in the

network (Figure 2B) and replacing the active nodes with identity functions. Next, the remaining

weights of each layer are multiplied to calculate the overall linear weighting function applied to the

stimulus. Because the resulting weighting vector has the same dimension as the input to the net-

work, it can be visualized as a multiplicative template similar to an STRF (Figure 2B). The mathemati-

cal derivation of DSTRF is shown in Materials and methods (see also Figure 2—figure supplement

1).

To assign significance to the lag-frequency coefficients of the DSTRFs, we used the jackknife

method (Efron, 1982) to fit multiple CNNs (n = 20) using different segments of the training data.

Each of the 20 CNNs were trained by systematically excluding 1/20 of the training data. As a result,

the response to each stimulus sample in the test data can be predicted from each of the 20 CNNs,

resulting in 20 DSTRFs. The jackknife method results in a distribution for each lag-frequency coeffi-

cient of the DSTRF. The resulting DSTRF is the average of this distribution, where the variance signi-

fies the uncertainty of each coefficient. We denoted the significance of the DSTRF coefficients by

requiring all positive or all negative values for at least 19 out of the 20 models (corresponding to p =

%95, jackknife) as shown by contours in Figure 2B. We used this method to mask the insignificant

coefficients of the DSTRF (p>0.05, jackknife) by setting them to zero.

An example of DSTRF at different time points for one electrode is shown in Figure 2D where

each column is the vectorized DSTRF (time lag by frequency) that is applied to the stimulus at that

time point (for better visibility only part of the actual matrix is shown). This matrix contains all the

variations of the receptive fields that the network applies to the stimulus at different time points. On

one extreme, a network could apply a fixed receptive field to the stimulus at all times (similar to the

linear model) for which the columns of the matrix in Figure 2D will all be identical. At the other

extreme, a network can learn a unique function for each instance of the stimulus for which the col-

umns of the matrix in Figure 2D will all be different functions. Because a more nonlinear function

results in a higher number of piecewise linear regions (Pascanu et al., 2014; Figure 2C), the diversity

of the functions in the lag-frequency by time matrix (columns in Figure 2D) indicates the degree of

nonlinearity of the function that the network has learned. To quantify this network nonlinearity, we

used singular-value decomposition (Strang, 1993) of the lag-frequency by time matrix. Each singular

value indicates the variance in its corresponding dimension; therefore, the steepness of the sorted

singular values is inversely proportional to the diversity of the learned functions. The sorted normal-

ized singular values for all electrodes in HG and STG are shown in Figure 2E, demonstrating that

the neural network models learn considerably more diverse functions for STG electrodes (statistical

analysis provided below). This result confirms the increase in nonlinearity observed earlier in STG

electrodes compared to HG electrodes.

Complexity of the nonlinear receptive field
We defined the complexity of the CNN model as the sum of the normalized singular values of the

lag-frequency by time matrix (Figure 2D). The complexity for all electrodes in HG and STG is shown

in Figure 2F and is compared against the improved prediction accuracy of the CNN over the linear

model. Figure 2F shows a significantly higher complexity for STG electrodes than for HG electrodes

(HG avg.: 41.0, STG avg.: 59.7; p<0.001, two sample t-test), which also correlates with the prediction

improvement of each electrode over the linear model (r = 0.66, p<0.001). Alternatively, a separate

metric to measure the degree of network nonlinearity is the average number of nodes that switch

between active and inactive states at each time step. The histogram of the average switches for HG

Figure 2 continued

Figure supplement 1. Converting convolution to matrix multiplication.

Figure supplement 2. DSTRF robustness across initializations.

Figure supplement 3. Comparing DSTRFs to STRFs.
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Figure 3. Characterizing the types of DSTRF variations. Three types of DSTRF variations are shown over time for three example sites that exhibit each

of these types more prominently. The DSTRFs have been masked by 95% significance per jackknifing (n ¼ 20). (A) The STRF of the three example sites.

(B) Example site E1: Gain change of DSTRF, shown as the time-varying magnitude of the DSTRF at three different time points. Although the overall

shape of the spectrotemporal receptive field is the same, its magnitude varies across time. E2: Temporal hold property of an DSTRF, seen as the tuning

of this site to a fixed spectrotemporal feature but with shifted latency (lag) in consecutive time frames. E3: Shape change property of DSTRF, seen as

the change in the spectrotemporal tuning pattern for different instances of the stimulus. (C) From top to bottom, distribution of gain change, temporal

hold, and shape change values for sites in HG and STG. Horizontal lines mark quartiles. Temporal hold and shape change show significantly higher

values in the STG.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. A MATLAB file containing three variables, one for each type of quantified nonlinearity — nonlin_gain_change (gain change nonlinearity),

nonlin_temporal_hold (temporal hold nonlinearity), nonlin_shape_change (shape change nonlinearity).

Figure supplement 1. Calculating temporal hold.

Figure supplement 2. Nonlinearity robustness to initialization and data.
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and STG electrodes shows significantly higher val-

ues for STG electrodes (Figure 2G; p<0.01, one-

tailed two sample t-test). This observation vali-

dates the finding that the larger improvement of

prediction accuracy in STG is due to the imple-

mentation of a more diverse set of linear tem-

plates, whereas the HG electrodes require a

smaller number of linear functions to accurately

capture the stimulus response relationships in this

area. Importantly, these results are not dependent

on network parameters and network initialization.

While the hyperparameters and the training of the

network can change the internal implementation of the input-output function, the function itself is

robust and remains unchanged (Materials and methods and Figure 2—figure supplement 2). Fur-

thermore, the linearized functions averaged over all samples closely resemble the STRF for the corre-

sponding electrode, with the similarity decreasing with the complexity of the neural site (Figure 2—

figure supplement 3).

Identifying and quantifying various types of nonlinear receptive field
properties
We showed that the nonlinear function of the CNN model can be expressed as a collection of linear-

ized functions. To investigate the properties of these linearized functions learned by the models for

various neural sites, we visually inspected the DSTRFs and observed three general types of variations

over time, which we refer to as: I) gain change, II) temporal hold, and III) shape change. We describe

and quantify each of these three nonlinear computations in this section using three example electro-

des that exhibit each of these types more prominently (Video 3). The STRFs for the three examples

sites are shown in Figure 3A.

Gain change nonlinearity
The first and simplest type of DSTRF change is gain change, which refers to the time-varying magni-

tude of the DSTRF. This effect is shown for one example site (E1) at three different time points in

Figure 3B. Although the overall shape of the spectrotemporal filter applied to the stimulus at these

three time points is not different, the magnitude of the function varies considerably over time. This

variation in the gain of the stimulus-response function that is learned by the CNN may reflect the

nonlinear adaptation of neural responses to the acoustic stimulus (Abbott, 1997; Rabinowitz et al.,

2011; Mesgarani et al., 2014a). We quantified the degree of gain change for each site by calculat-

ing the standard deviation of the DSTRF magnitude over the stimulus duration.

Temporal hold nonlinearity
The second type of DSTRF change is temporal hold, which refers to the tuning of a site to a fixed

spectrotemporal feature but with shifted latency in consecutive time frames (Figure 3B). This partic-

ular tuning nonlinearity results in a sustained response to arbitrarily fast spectrotemporal features,

hence resembling a short-term memory of that feature. An example of temporal hold for a site (E2)

is shown in Figure 3B where the three plots show the DSTRF of this site at three consecutive time

steps. Even though the overall shape of the spectrotemporal feature tuning remains the same, the

latency (lag) of the feature shifts over time with the stimulus. This nonlinear property decouples the

duration of the response to an acoustic feature from the temporal resolution of that feature. For

example, temporal hold could allow a network to model a slow response to fast acoustic features.

This computation cannot be done with a linear operation because a linear increase in the analysis

time scale inevitably results in the loss of temporal resolution, as shown in the STRF of site E2 in

Figure 3A.

We quantified the temporal hold for each site by measuring the similarity of consecutive DSTRFs

once the temporal shift is removed. This calculation assumes that when there is temporal hold non-

linearity, the DSTRFt t ; fð Þ is most correlated with DSTRFtþn t � n; fð Þ. To quantify temporal hold, we

compared the correlation values for all time points 1 � t � T in two conditions: when the consecutive

Video 3. Visualization of gain change, temporal hold,

and shape change for three example electrodes, each

demonstrating one type of nonlinearity more prominently.

https://elifesciences.org/articles/53445#video3

Keshishian et al. eLife 2020;9:e53445. DOI: https://doi.org/10.7554/eLife.53445 9 of 24

Research article Neuroscience

https://elifesciences.org/articles/53445#video3
https://doi.org/10.7554/eLife.53445


DSTRF is shifted by n lags and when it is not shifted. For each n, the two conditions are compared

using a one-tailed Wilcoxon signed-rank test (Materials and methods). The largest n for which there

is a significant positive change between the shit and no-shift conditions (p < 0.05) quantifies the tem-

poral hold for that electrode (Figure 3—figure supplement 1). This calculation assumes that the

duration of temporal hold does not depend on instances of the stimulus. An interesting path for

future inquiry would be to study the dependence of this effect on specific stimuli.

Shape change nonlinearity
The last dimension of DSTRF variation is shape change, which refers to a change in the spectrotem-

poral tuning of a site across stimuli. Intuitively, a model that implements a more nonlinear function

will have a larger number of piecewise linear regions, each exhibiting a different DSTRF shape. An

example of shape change for a site (E3) is shown in Figure 3B, showing three different spectrotem-

poral patterns at these three different time points. To quantify the degree of change in the shape of

the DSTRF for a site, we repeated the calculation of network complexity but after removing the

effect of temporal hold from the DSTRFs (see Materials and methods). Therefore, shape change is

defined as the sum of the normalized singular values of the shift-corrected lag-frequency by time

matrix (Figure 2D). Thus, the shape change indicates the remaining complexity of the DSTRF func-

tion that is not due to temporal hold, or gain change (aligned samples differing only in amplitude

are captured by the same set of eigenvectors). This stimulus-dependent change in the spectrotem-

poral tuning of sites reflects a nonlinearity that appears as the sum of all possible shapes in the

STRF, as shown in Figure 3B.

The distribution of the three nonlinearity types defined here across all neural sites in HG and STG

areas are shown in Figure 3C. Looking at these distributions can give us a better understanding of

the shared nonlinear properties among neural populations of each region. The degree of gain

change for electrodes in HG and STG areas spans a wide range. However, we did not observe a sig-

nificant difference between the gain change values in STG and HG sites (HG avg.: 4.6e-3, STG avg.:

4.9e-3; p=0.23, Wilcoxon rank-sum), suggesting a similar degree of adaptive response in HG and

STG sites. The distribution of temporal hold values for all sites in the STG and HG shows significantly

larger values in STG sites (HG avg.: 10.1, STG avg.: 15.7; p<1e-4, Wilcoxon rank-sum). This increased
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Figure 4. Characterizing the spectrotemporal tuning of electrodes with clustering. (A, B) The average shift-corrected DSTRF for two example sites and

average k-means clustered DSTRFs based on the similarity of DSTRFs (correlation distance). Each cluster shows tuning to a distinct spectrotemporal

feature. The average DSTRF shows the sum of these different features. The average spectrograms over the time points at which each cluster DSTRF was

selected by the network demonstrate the distinct time-frequency pattern in the stimuli that caused the network to choose the corresponding template.
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temporal hold is consistent with the previous findings showing increased temporal integration in

higher auditory cortical areas (King and Nelken, 2009; Berezutskaya et al., 2017), which allows the

stimulus information to be combined across longer time scales. The shape change values are signifi-

cantly higher on average in STG sites than in HG (HG avg.: 38.8, STG avg.: 46.8; p=0.005, Wilcoxon

rank-sum), demonstrating that STG sites have more nonlinear encoding, which requires more diverse

receptive field templates than HG sites. Finally, similar to DSTRF shape, these quantified nonlinearity

parameters were highly consistent across different network initializations and different segments of

the test data (Figure 3—figure supplement 2).

Finding subtypes of receptive fields
As explained in the shape change nonlinearity, the nonlinear model may learn several subtypes of

receptive fields for a neural site. To further investigate the subtypes of receptive fields that the CNN

model learns for each site, we used the k-means algorithm (Lloyd, 1982) to cluster shift-corrected

DSTRFs based on their correlation similarity. The optimal number of clusters for each site was deter-

mined using the gap statistic method (Tibshirani et al., 2001). The optimal number of clusters across

all sites differed from 1 to 6; the majority of sites, however, contained only one main cluster (84.9%

of sites; mean number of clusters = 1.43 ± 1.26 SD). Figure 4 shows the DSTRF clustering analysis

for two example sites, where for each cluster the average DSTRF and the average auditory stimulus

for the time points that have DSTRFs belonging to that cluster are shown. The average DSTRFs in

Figure 4 show two distinct receptive field shapes that the CNN models apply to the stimulus at dif-

ferent time points. In addition, the average spectrograms demonstrate the distinct time-frequency

power in the stimuli that caused the model to choose the corresponding template.

B. Predicting model accuracy improvement (r = 0.76***)A. Predicting network complexity (r = 0.94***)
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Figure 5. Contribution of DSTRF variations to network complexity and prediction improvement. (A) Predicting the complexity of the neural networks

from gain change, temporal hold, and shape change using a linear regression model. The main effect of regression analysis shows the significant

contribution of all nonlinear parameters in predicting the network complexity in both STG and in HG sites. Legend shows prediction R-values separately

for each region. (B) Predicting the improved accuracy of neural networks over the linear model from the three nonlinear parameters for each site in the

STG and HG. The main effect of the regression analysis shows different contribution of the three nonlinear parameters in predicting the improved

accuracy over the linear model in different auditory cortical areas. Figure legends shows prediction R-values separately for each region.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Complexity and accuracy improvement predicted values.

Figure supplement 2. Covarying nonlinear parameters.
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Contribution of nonlinear variations to network complexity and
prediction improvement
So far, we have defined and quantified three types of nonlinear computation for each neural site –

gain change, temporal hold, and shape change – resulting in three numbers describing the stimulus-

response nonlinearity of the corresponding neural population. Next, we examined how much of the

network complexity (Figure 2F) and improved accuracy over a linear model (Figure 1D) can be

accounted for by these three parameters. We used linear regression to calculate the complexity and

prediction improvement for each site from the gain change, temporal hold, and shape change

parameters (Figure 5). The predicted and actual complexity of the models are shown in Figure 5—

figure supplement 1. The high correlation value (r = 0.94, p < 1e-41) confirms the efficacy of these

three parameters to characterize the complexity of the stimulus-response mapping across sites.

Moreover, the main effects of the regression (Seber and Lee, 2012) shown in Figure 5A suggest a

significant contribution from all three parameters to the overall complexity of DSTRFs in both HG

and STG. The high correlation values between the actual and predicted improved accuracy (Fig-

ure 5—figure supplement 1; r = 0.76, p < 1e-16) show that these three parameters also largely pre-

dict stimulus-response nonlinearity. The contribution of each nonlinear factor in predicting the

improved prediction, however, is different between the HG and STG areas, as shown by the main

effects of the regression in Figure 5B. The gain change (effect = 0.183, p = 0.005) and temporal

hold (effect = 0.202, p = 1e-4) factors contributed to the improved accuracy in STG sites, while the

gain change is the main predictor of the improvement in HG sites (effect = 0.250, p = 2e-5), with a

modest contribution from shape change (effect = 0.087, p = 0.028). This result partly reiterates the

encoding distinctions we observed in HG and STG sites where temporal hold and shape change

were significantly higher in STG than HG (Figure 3). Notably, the three types of DSTRF variations

are not independent of each other and covary considerably (Figure 5—figure supplement 2). This

interdependence may explain why the shape change parameter significantly predicts the improved

prediction accuracy in HG, but not in STG, because shape change covaries considerably more with

the temporal hold parameter in STG (correlation between shape change and temporal hold r ¼ 0:24,

p ¼ 0:09 in HG; r ¼ 0:57, p < 1e - 4 in STG). In other words, sites in STG appear to exhibit multiple

nonlinearities simultaneously, making it more difficult to discern their individual contributions.

Together, these results demonstrate how our proposed nonlinear encoding method can lead to a

comprehensive, intuitive way of studying nonlinear mechanisms in sensory neural processing by uti-

lizing deep neural networks.

Discussion
We propose a general nonlinear regression framework to model and interpret any complex stimulus-

response mapping in sensory neural responses. This data-driven method provides a unified frame-

work that can discover and model various types of nonlinear transformations without needing any

prior assumption about the nature of the nonlinearities. In addition, the function learned by the net-

work can be interpreted as a collection of linear receptive fields from which the network chooses for

different instances of the stimulus. We demonstrated how this method can be applied to auditory

cortical responses in humans to discover novel types of nonlinear transformation of speech signals,

therefore extending our knowledge of the nonlinear cortical computations beyond what can be

explained with previous models. While the unexplained noise-corrected variance by a linear model

indicates the overall nonlinearity of a neural code, this quantity alone is generic and does not inform

the types of nonlinear computations that are being used. In contrast, our proposed method unravels

various types of nonlinear computation that are present in the neural responses and provides a quali-

tative and quantitative account of the underlying nonlinearity.

Together, our results showed three distinct nonlinear properties which largely account for the

complexity of the neural network function and could predict the improved prediction accuracy over

the linear model. Extracting these nonlinear components and incorporating them in simpler models

such as the STRF can systematically test the contribution and interaction of these nonlinear aspects

more carefully. However, such simplification and abstraction proved nontrivial in our data because

the different types of variation we describe in this paper are not independent of each other and

covary considerably. Interestingly, the prediction accuracy improvement of the STP model was signif-

icant only in STG responses. The improved prediction accuracy using STP model was also correlated
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with the gain change parameter (partial r ¼ 0:24, p ¼ 0:018, Spearman, controlling for temporal

hold and shape change) and not temporal hold or shape change (p > 0.2 for partial correlations with

improvement), meaning that sites with larger gain change saw a greater increase from the STP

model. Our STP models included four recovery time constant t and four release probability u

parameters. We performed a simplified comparison using the average t and u for each electrode

with our parameters. A partial correlation analysis of u, which is an indicator of plasticity strength,

revealed only a positive correlation with gain change (partial r ¼ 0:28, p ¼ 0:006, Spearman, control-

ling for temporal hold and shape change; p > 0.8 for partial correlation of u and temporal hold and

shape change). On the other hand, t had a negative correlation with temporal hold (partial

r ¼ �0:22, p ¼ 0:032, Spearman, controlling for gain change and shape change; p > 0.16 for partial

correlation with gain change; p > 0.7 for partial correlation with shape change). These findings are in

line with our hypothesis that the gain change nonlinearity captures the nonlinear adaptation of the

neural responses to the short-term history of the stimulus.

The increasing nonlinearity of the stimulus-response mapping throughout the sensory pathways

(King and Nelken, 2009; Chechik et al., 2006) highlights the critical need for nonlinear computa-

tional models of sensory neural processing, particularly in higher cortical areas. These important non-

linear transformations include nonmonotonic and nonlinear stimulus-response functions

(Sadagopan and Wang, 2009), time-varying response properties such as stimulus adaptation and

gain control (Abbott, 1997; Rabinowitz et al., 2011; Mesgarani et al., 2014a; Dean et al., 2008),

and nonlinear interaction of stimulus dimensions and time-varying stimulus encoding

(Machens et al., 2004). These nonlinear effects are instrumental in creating robust perception, which

requires the formation of invariant perceptual categories from a highly variable stimulus (Leaver and

Rauschecker, 2010; Chang et al., 2010; de Heer et al., 2017; Bidelman et al., 2013;

Mesgarani et al., 2014b; Steinschneider, 2013; Russ et al., 2007). The previous research on

extending simple receptive field models that have tried to address the linear system limitations

include generalized linear models (Paninski, 2004), linear-nonlinear (LN) models (Sharpee et al.,

2004; Brenner et al., 2000; Kaardal et al., 2017), input nonlinearity models (Ahrens et al., 2008;

David et al., 2009), gain control models (Hong et al., 2008; Schwartz and Simoncelli, 2001;

Schwartz et al., 2002), context-dependent encoding models, and LNLN cascade models

(Butts et al., 2011; McFarland et al., 2013; Vintch et al., 2015; Harper et al., 2016) (see

(Meyer et al., 2016) for review). Even though all these models improve the prediction accuracy of

neural responses, this improvement comes at the cost of reduced interpretability of the computa-

tion. For example, the multifilter extensions of the auditory STRF (Sharpee et al., 2004;

Brenner et al., 2000; Kaardal et al., 2017; Butts et al., 2011; McFarland et al., 2013;

Vintch et al., 2015; Harper et al., 2016) lead to nonlinear interactions of multiple linear models,

which is considerably less interpretable than the STRF model. Our approach extends the previous

methods by significantly improving the prediction accuracy over the linear, linear-nonlinear, and STP

models while at the same time, remaining highly interpretable.

The computational framework we propose to explain the neural network function (Nagamine and

Mesgarani, 2017) can be used in any feedforward neural network model with any number of layers

and nodes, such as in fully connected networks, locally connected networks (Coates and Ay, 2011),

or CNNs (LeCun and Bengio, 1995). Nonetheless, one limitation of the DSTRF method is that it can-

not be used for neural networks with recurrent connections. Because feedforward models use a fixed

duration of the signal as the input, the range of the temporal dependencies and contextual effects

that can be captured with these models is limited. Nevertheless, sensory signals such as speech have

long-range temporal dependencies for which recurrent networks may provide a better fit. Although

we found only a small difference between the prediction accuracy of feedforward and recurrent neu-

ral networks in our data (about 1% improvement in HG, 3% in STG), the recent extensions of the

feedforward architecture, such as dilated convolution (Luo and Mesgarani, 2018) or temporal con-

volutional networks (Lea et al., 2016), can implement receptive fields that extend over long dura-

tions. Our proposed DSTRF method would seamlessly generalize to these architectures, which can

serve as an alternative to recurrent neural networks when modeling the long-term dependencies of

the stimulus is crucial. Furthermore, while we trained a separate model for each electrode, it is possi-

ble to use a network with shared parameters to predict all neural sites. This direction can also be

used to examine the connectivity and specialization of the representation across various regions

(Kell et al., 2018).
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In summary, our proposed framework combines two desired properties of a computational sen-

sory-response model; the ability to capture arbitrary stimulus-response mappings and maintaining

model interpretability. We showed that this data-driven method reveals novel nonlinear properties

of cortical representation of speech in the human brain which provides an example for how it can be

used to create more complete neurophysiological models of sensory processing in the brain.

Materials and methods

Participants and neural recordings
Five patients with pharmacoresistant focal epilepsy were included in this study. All patients under-

went chronic intracranial encephalography (iEEG) monitoring at Northshore University Hospital to

identify epileptogenic foci in the brain for later removal. Four patients were implanted with stereo-

electroencephalographic (sEEG) depth arrays only and one with both depth electrodes and a high-

density grid (PMT, Chanhassen, MN). Electrodes showing any sign of abnormal epileptiform dis-

charges, as identified in the epileptologists’ clinical reports, were excluded from the analysis. All

included iEEG time series were manually inspected for signal quality and were free from interictal

spikes. All research protocols were approved and monitored by the institutional review board at the

Feinstein Institute for Medical Research (IRB-AAAD5482), and informed written consent to partici-

pate in research studies was obtained from each patient before electrode implantation. A minimum

of 45 electrodes per brain area was determined to be sufficient for our between region significance

comparison analyses.

iEEG signals were acquired continuously at 3 kHz per channel (16-bit precision, range ±8 mV, DC)

with a data acquisition module (Tucker-Davis Technologies, Alachua, FL). Either subdural or skull

electrodes were used as references, as dictated by recording quality at the bedside after online visu-

alization of the spectrogram of the signal. Speech signals were recorded simultaneously with the

iEEG for subsequent offline analysis. The envelope of the high-gamma response (70–150 Hz) was

extracted by first filtering neural signals with a bandpass filter and then using the Hilbert transform

to calculate the envelope. The high-gamma responses were z-scored and resampled to 100 Hz.

Brain maps
Electrode positions were mapped to brain anatomy using registration of the postimplant computed

tomography (CT) to the preimplant MRI via the postop MRI. After coregistration, electrodes were

identified on the postimplantation CT scan using BioImage Suite. Following coregistration, subdural

grid and strip electrodes were snapped to the closest point on the reconstructed brain surface of

the preimplantation MRI. We used FreeSurfer automated cortical parcellation (Fischl et al., 2004) to

identify the anatomical regions in which each electrode contact was located with a resolution of

approximately 3 mm (the maximum parcellation error of a given electrode to a parcellated area

was <5 voxels/mm). We used Destrieux parcellation, which provides higher specificity in the ventral

and lateral aspects of the medial lobe. Automated parcellation results for each electrode were

closely inspected by a neurosurgeon using the patient’s coregistered postimplant MRI.

Stimulus
Speech materials consisted of continuous speech stories spoken by four speakers (two male and two

female). The duration of the stimulus was approximately 30 minutes and was sampled at 11025 Hz.

The data was split into two segments for training (30 min) and validation (50 s). Additionally, eight

sentences totaling 40 s were used for testing the model and presented to the patients six times to

improve the signal-to-noise ratio. There was no overlap between the training, test, and validation

sets. The input to the regression models was a sliding window of 400 ms (40 timesteps), which was

chosen to optimize prediction accuracy (Figure 1—figure supplement 1). The windowing stride was

set to one to maintain the same final sampling rate, and as a result, the two consecutive input vec-

tors to the regression models overlapped at 39 time points.

Acoustic representation
An auditory spectrogram representation of speech was calculated from a model of the peripheral

auditory system (Yang et al., 1992). This model consists of the following stages: (1) a cochlear filter
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bank consisting of 128 constant-Q filters equally spaced on a logarithmic axis, (2) a hair cell stage

consisting of a low-pass filter and a nonlinear compression function, and (3) a lateral inhibitory net-

work consisting of a first-order derivative along the spectral axis. Finally, the envelope of each fre-

quency band was calculated to obtain a time-frequency representation simulating the pattern of

activity on the auditory nerve. The final spectrogram has a sampling frequency of 100 Hz. The spec-

tral dimension was downsampled from 128 frequency channels to 32 channels to reduce

the number of model parameters.

Calculating spectrotemporal receptive fields (STRFs)
Linear STRF models were fitted using the STRFlab MATLAB toolbox (Theunissen et al., 2001;

STRFlab, 2020). For each electrode, a causal model was trained to predict the neural response at

each time point from the past 400 ms of stimulus. The optimal model sparsity and regularization

parameters were chosen by maximizing the mutual information between the actual and predicted

responses for each electrode.

Extensions of the linear model
We used the Neural Encoding Model System (NEMS) python library (David, 2018) to fit both linear-

nonlinear (LN) and short-term plasticity (STP) models (Abbott, 1997; David et al., 2009; David and

Shamma, 2013), using its TensorFlow backend. For the LN model, we used a rank-4 time-frequency

separable model with four gaussian kernels for selecting frequency bands, a 400 ms (40 sample)

finite impulse response (FIR) filter for each selected frequency band, followed by a double exponen-

tial static nonlinearity with trainable parameters:

s xð Þ ¼ bþ a � exp �exp �ek � x� cð Þð Þð Þ (1)

We chose this nonlinearity because it performed better than the ReLU in our data. Each gaussian

kernel is applied to the input spectrogram separately to create a four-channel output. Each channel

is then convolved with its corresponding FIR filter and the final nonlinearity is applied to the sum of

the output channels.

For the STP model, we added a short-term plasticity module to the setup above, between the fre-

quency selection kernels and the temporal response filters. The STP module is parameterized by the

Tsodyks-Markram model (Tsodyks et al., 1998; Lopez Espejo et al., 2019) and has two parameters

for each of the four selected frequency bands: release probability u determining the strength of plas-

ticity, and time constant t determining the speed of recovery. The corresponding STP equations for

channel i are as follows, where xi and yi are the input and output to the module and di is the change

in gain due to plasticity:

di tð Þ ¼ di t� 1ð Þþ xi t� 1ð Þ 1� di t� 1ð Þ½ �ui�
di t� 1ð Þ

t i

(2)

yi tð Þ ¼ di tð Þxi tð Þ (3)

DNN architecture
We designed a two-stage DNN consisting of feature extraction and feature summation modules

(Figure 1A). In this framework, a high-dimensional representation of the input is first calculated (fea-

ture extraction network), and this representation is then used to regress the output of the model

(feature summation network). The feature extraction stage consists of three convolutional layers with

eight 3x3 2D convolutional kernels each, followed by a convolutional layer with four 1x1 kernels to

reduce the dimensionality of the representation. The output of this stage is the input to another con-

volutional layer with a single 1x1 kernel. A 1x1 kernel that is applied to an input with N channels has

1x1xN parameters, and its output is a linear combination of the input channels, thus reducing the

dimension of the latent variables and, consequently, the number of trainable parameters. The fea-

ture summation stage is a two-layer fully connected network with a hidden layer of 32 nodes, fol-

lowed by an output layer with a single node. All layers except the output layer have L2

regularization, dropout (Srivastava et al., 2014), ReLU (Nair and Hinton, 2010) activations, and no

bias. The output layer has regularization, linear activation, and a bias term. The parameters of the
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model, including the number of layers, the size of the convolutional kernels, and the number of fully

connected nodes, were found by optimizing the prediction accuracy (Figure 1—figure supplement

2).

DNN training and cross-validation
The networks were implemented in Keras using the TensorFlow backend. A separate network was

trained for each electrode. Kernel weight initializations were performed using a method specifically

developed for DNNs with rectified linear nonlinearities (He et al., 2015) for faster convergence. We

used ReLU nonlinearities for all layers except the last layer, and dropouts with p ¼ 0:3 for the convo-

lutional layers and p ¼ 0:4 for the first fully connected layer were used to maximize prediction accu-

racy. The convolutional layers had strides of one, and their inputs were padded with zeros such that

the layer’s output would have the same dimension as the input. We applied an L2 penalty (Ridge)

with regularization constant of 0.001 to the weights of all the layers. Each training epoch had a batch

size of 128, and optimization was performed using Adam with an initial learning rate of 0.0001. Net-

works were trained with a maximum of 30 epochs, with early stopping when the validation loss did

not decrease for five consecutive epochs. The weights that resulted in the best validation loss during

all training epochs were chosen as the final weights. The loss function was a linear combination of

the MSE and Pearson’s correlation coefficient:

1

n

X

i

yi � ŷið Þ2�
P

i yi ��yið Þ ŷi� �̂yi
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

i yi��yið Þ2Pi ŷi� �̂yi
� �2

q (4)

in which y is the high-gamma envelope of the recorded neural data from a given electrode, and ŷ is

the predicted response of the neural network. We chose this loss because it outperformed the MSE

loss in our data.

Evaluating model performance (noise-corrected correlation)
To account for the variations in neural responses that are not due to the acoustic stimulus, we

repeated the test stimulus six times to more accurately measure the explainable variance. To obtain

a better measure of the model’s goodness of fit, we used a noise-corrected R-squared value instead

of the simple correlation. Having n responses to the same stimulus, r1 to rn, we defined Ro and Re as

the averages of odd and even numbered trials. Then, we calculated the noise-corrected correlation

according to the following equations, where �2c is our reported R-squared of the noise-corrected

Pearson correlation. Assume that Re and Ro consist of the same true signal (R̂) with variance s2

R̂
and i.

i.d. gaussian noise (ne, no) with variance s2

n. Given Re, Ro, and model prediction P, we want to find

the correlation between P and the true signal R̂ (Schoppe et al., 2016).

Re ¼ R̂þ ne;Ro ¼ R̂þ no;sRe
¼ sRo

¼ sR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2

R̂
þs2

n

q

(5)

�P;Ro
¼COV P;Roð Þ

sPsRo

¼COV P; R̂
� �

þCOV P;noð Þ
sPsR

»

COV P; R̂
� �

sPsR

»�P;Re
(6)

�Ro;Re
¼COV Ro;Reð Þ

sRo
sRe

¼COV R̂; R̂
� �

þCOV R̂;ne
� �

þCOV no; R̂
� �

þCOV no;neð Þ
s2
R

»

s2

R̂

s2
R

(7)

�c ¼
1

2
�P;Re

þ �P;Ro

� �

ffiffiffiffiffiffiffiffiffiffiffi

�Ro;Re

p ¼COV P; R̂
� �

sPsR

sR

sR̂

¼COV P; R̂
� �

sPsR̂

¼ �P;R̂ (8)

Computing DSTRFs for convolutional neural networks
The first step for calculating the dynamic spectrotemporal receptive field (DSTRF) of a CNN consists

of converting the CNN into a multilayer perceptron (MLP) (Figure 2—figure supplement 1) because

calculating DSTRFs for an MLP is more straightforward. To achieve this task, we must first convert

each convolutional layer to its equivalent locally connected layer, which is essentially a sparse fully

connected layer. To do so, we find the equivalent matrix W for convolutional kernels K1 � Kl, where
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Ki is the i-th kernel of the convolutional layer. Transforming all layers of the CNN into fully connected

layers results in an MLP network. The input and output tensors of the fully connected layers have

only a single dimension, which is usually not the case for convolutional layers. Hence, the inputs and

outputs of all layers in the equivalent network are the flattened versions of the original network.

Assume that all zeros tensor W has dimensions M � N � C �M � N � L where M and N are,

respectively, the rows and columns of the input to a convolutional layer; C is the number of channels

in the input; and L is the number of kernels in a layer. Additionally, assume Kl (the l-th kernel of the

layer) has dimensions H �W � C, where H and W are the height and width of the kernel, respec-

tively, and C is defined as before. We begin by populating W according to Equation 9 for all values

of m, n, and l. Then, we reshape W to M � N � Cð Þ � M � N � Lð ) to obtain the 2D matrix that will trans-

form the flattened input of the convolutional layer to the flattened output. Of course, W can be

directly populated as a 2D matrix for improved performance.

W m� H

2

�

c:mþ H

2

�

c;n� W

2

�

c:nþ W

2

�

c;1:C;m;n; l
� �

¼Kl (9)

The calculation of DSTRFs for the equivalent MLP network involves few steps (Figure 2B). The

DSTRF of a network with ReLU activations and no bias in the intermediate layers is equivalent to the

gradient of the network’s output with respect to the input vector (Nagamine and Mesgarani,

2017):

DSTRF� xtð Þ ¼ qŷt

qxt
¼ qŷt

qzlt

qzlt
qhl�1

t

qhl�1

t

qzl�1
t

qzl�1

t

qhl�2
t

. . .
qh1t
qz1t

qz1t
qxt

(10)

¼ qŷt

qzlt
W l

l�1

qhl�1

t

qzl�1
t

W l�1

l�2
. . .

qh1t
qz1t

W1

IN (11)

where zlt is the weighted sum of inputs to nodes in layer l for input xt, h
l
t represents the output of

nodes in layer l to the same input, and � denotes the dependence on the parameters of the network.

In a network with ReLU nodes:

qh �ð Þ
qz �ð Þ ¼

1 if z>0

0 if z<0

�

(12)

which means that we can replace the product of qh �ð Þ
qz �ð Þ and W l

l�1
with an adjusted weight matrix Ŵ l

l�1
,

where m and n are indices of nodes in layer l and l� 1:

Ŵ l
l�1

xtð Þ m;n½ � ¼ W l
l�1

m;n½ � if hlt m½ �>0
0 otherwise

�

(13)

DSTRF xtð Þ ¼ Ŵ l
l�1

Ŵ l�1

l�2
. . .Ŵ1

IN (14)

Because DSTRF can be defined as the gradient of the output with respect to the input of the net-

work, we can avoid the manual calculation process by utilizing TensorFlow’s built-in automatic differ-

entiation capability.

Inference of statistical bounds on DSTRF coefficients
To estimate the statistical confidence on the values of DSTRFs, we used the jackknife method

(Efron, 1982). We partitioned the full training data into 20 segments with roughly the same length.

We then removed one segment at a time and fit a model using the remaining 19 segments. This pro-

cedure results in 20 total trained models for each electrode. During the prediction phase, we calcu-

late the DSTRF from each model for a given stimulus, which results in a distribution for each lag-

frequency value. The resulting DSTRF is the mean of this distribution, and the standard error for

each coefficient is calculated using the jackknife formula:

�̂¼ 1

n

X

n

i¼1

�̂i ; SEjack ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� 1

n

X

n

i¼1

�̂i� �̂
� �2

s

; (15)
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where �̂i is the estimate of the coefficient when removing the i-th block of the data, �̂ is the aver-

age of the n estimates, and SEjack is the standard error estimate. To assign significance to the coeffi-

cients, we found the lag-frequency coefficients that were all positive or all negative for at least %95

of the models (19 out of 20). We denote patches of significant coefficients with black contours.

Complexity estimation
To quantify the nonlinearity of the network receptive field, we measure the diversity of the equiva-

lent linear functions that the network learns for different instances of the stimulus. To measure this

function diversity, we calculated the singular-value decomposition (Strang, 1993) of the matrix con-

taining all the linearized equivalent functions of a network (Figure 2D). Each singular value indicates

the variance in its corresponding dimension; therefore, the steepness of the sorted singular values is

inversely proportional to the diversity of the functions that are learned by the network. We define

the complexity of the network as the sum of the normalized singular values where si is the i-th ele-

ment of the singular values vector, and D is the length of the vector:

complexity¼ 1

i
max si

X

D

i¼1

si (16)

Estimation of gain change
We calculated the magnitude of the DSTRF at each time point using its standard deviation (equa-

tion 17, F = 32, T = 40). The gain change parameter for each site was then defined as the standard

deviation of the DSTRF magnitude over the duration of the test stimulus. This quantity measures the

degree to which the magnitude of the DSTRF changes across different instances of the stimuli.

DSTRFtj j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

F

f¼1

P

T

t¼1

DSTRFt f ;t½ ��DSTRFt

� �2

F �T � 1

v

u

u

u

t

(17)

gain change¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

t¼1

DSTRFtj j � DSTRF
�

�

�

�

� �2

N� 1

v

u

u

u

t

(18)

Estimation of temporal hold
Calculation of the temporal hold parameter for a given recording site involves three steps. For a

given DSTRF at time t, DSTRFt t ; fð Þ, we first calculate its correlation with DSTRFtþn t ; fð Þ and its shift-

corrected version, DSTRFtþn t � n; fð Þ:

at nð Þ ¼ corr DSTRFt t ; fð Þ ; DSTRFtþn t ; fð Þð Þ ; 1� n� 30 (19)

bt nð Þ ¼ corr DSTRFt t ; fð Þ ; DSTRFtþn t � n; fð Þð Þ ; 1� n� 30 (20)

The upper limit 30 corresponds to 300 ms and was empirically found to be sufficient for the range

of temporal hold seen in our data. Next, for each n, we perform a one-tailed Wilcoxon signed-rank

test to determine if there is a significant positive change between bt nð Þ and at nð Þ pairs across the

entire test set (t¼ 1 . . .T). Finally, the temporal hold is defined as the largest n for which the test

yields a significant result (p < 0.05). Intuitively, these steps find the largest duration in time for which

a spectrotemporal pattern persists, assuming that the latency of that pattern shifts over time to

keep it aligned with a specific feature in the stimulus (see Figure 3—figure supplement 1 for

examples).

Estimation of shape change
The shape change parameter represents the diversity of the linear functions that is not due to the

gain change or temporal hold nonlinearities. To calculate this parameter, we first removed the effect

of temporal hold nonlinearity by time-aligning the DSTRF instances to the average DSTRF across the

entire stimuli. This operation is done by finding the best shift, nt; for DSTRFs at each time instant,
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DSTRFt t � nt ; fð Þ. The values of nt are found iteratively by maximizing the correlation between

DSTRFt t � nt ; fð Þ and the average DSTRF over the entire stimulus duration:

DSTRF t ; fð Þ ¼ 1

T

PT
t¼1

DSTRFt t ; fð Þ. At the end of each iteration, the average DSTRF is updated

using the new shifted DSTRFs, and this operation is repeated until nt values converge, or a maximum

number of iterations is reached. In our data, nt converged within fifty iterations. After removing the

temporal hold effect, we repeated the same procedure used for the calculation of network complex-

ity (Equation 16) but instead, used the time-aligned DSTRFs to perform the singular-value decom-

position. Aligned DSTRFs with same spectrotemporal features but different gain values are captured

by the same eigenvectors. The sum of the sorted normalized singular values indicates the diversity

of the linear functions learned by the network due to a change in their spectrotemporal feature

tuning.

Dependence of DSTRFs on stimulus and initialization
We used neural networks as our nonlinear encoding model which are fitted using stochastic gradient

descent algorithms. Because reaching the global minimum in such optimization methods cannot be

guaranteed, it is possible that our results may depend on the initialization of network parameters

prior to training and the stochasticity involved in training. We tested the robustness of the DSTRF

shapes using n ¼ 10 different random initializations of the network weights (He et al., 2015). For

each electrode, we split the network instances into two groups of n=2, and compared the average

DSTRFt t ; fð Þ across the two groups. We also looked at the relation between the amplitude of an

DSTRF and its consistency (Figure 2—figure supplement 1).

We did a similar analysis for the nonlinearity values extracted from the network, comparing the

parameters extracted from the average DSTRFs of each group. In addition, the DSTRFs are esti-

mated by inputting the held-out data (test set) into the neural networks. As a result, the DSTRFs are

inherently stimulus dependent. To study the effect of limited test data on DSTRF shapes and the

nonlinearity values, we repeated our analysis twice by using non-overlapping halves of the test data.

Results are shown in Figure 3—figure supplement 2.

Code availability
The codes for pre-processing the ECoG signals and calculating the high-gamma envelope are avail-

able at http://naplab.ee.columbia.edu/naplib.html (Khalighinejad et al., 2017). Python codes for

training the CNN encoding models and computing the DSTRFs, and MATLAB functions for calculat-

ing the nonlinearity parameters (gain change, temporal hold, and shape change), are available at

https://github.com/naplab/DSTRF (Keshishian, 2020; copy archived at https://github.com/elifes-

ciences-publications/DSTRF). The videos and a link to the Git repository are also available on the

project website: http://naplab.ee.columbia.edu/dstrf.html.
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