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Abstract Efficient precision genome engineering requires high frequency and specificity of

integration at the genomic target site. Here, we describe a set of resources to streamline reporter

gene knock-ins in zebrafish and demonstrate the broader utility of the method in mammalian cells.

Our approach uses short homology of 24–48 bp to drive targeted integration of DNA reporter

cassettes by homology-mediated end joining (HMEJ) at high frequency at a double strand break in

the targeted gene. Our vector series, pGTag (plasmids for Gene Tagging), contains reporters

flanked by a universal CRISPR sgRNA sequence which enables in vivo liberation of the homology

arms. We observed high rates of germline transmission (22–100%) for targeted knock-ins at eight

zebrafish loci and efficient integration at safe harbor loci in porcine and human cells. Our system

provides a straightforward and cost-effective approach for high efficiency gene targeting

applications in CRISPR and TALEN compatible systems.

Introduction
Designer nucleases have rapidly expanded the way in which researchers can utilize endogenous

DNA repair mechanisms for creating gene knock-outs, reporter gene knock-ins, gene deletions, sin-

gle nucleotide polymorphisms, and epitope tagged alleles in diverse species (Bedell et al., 2012;

Beumer et al., 2008; Carlson et al., 2012; Geurts et al., 2009; Yang et al., 2013). A single dsDNA

break in the genome results in increased frequencies of recombination and promotes integration of

homologous recombination (HR)-based vectors (Hasty et al., 1991; Hoshijima et al., 2016; Orr-

Weaver et al., 1981; Rong and Golic, 2000; Shin et al., 2014; Zu et al., 2013). Additionally, in vitro

or in vivo linearization of targeting vectors stimulates homology-directed repair (HDR) (Hasty et al.,

1991; Hoshijima et al., 2016; Orr-Weaver et al., 1981; Rong and Golic, 2000; Shin et al., 2014;

Zu et al., 2013). Utilizing HDR or HR at a targeted double-strand break (DSB) allows directional
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knock-in of exogenous DNA with base pair precision, however, reported frequencies vary widely,

and engineering targeting vectors with long homology arms is not straightforward.

Previous work has shown Xenopus oocytes have the ability to join or recombine linear DNA mole-

cules that contain short regions of homology at their ends, and this activity is likely mediated by exo-

nuclease activity allowing base pairing of the resected homology (Grzesiuk and Carroll, 1987).

More recently, it was shown in Xenopus, silkworm, zebrafish, and mouse cells that a plasmid donor

containing short (�40 bp) regions of homology to a genomic target site can promote precise inte-

gration at the genomic cut site when the donor plasmid is cut adjacent to the homology (Aida et al.,

2016; Hisano et al., 2015; Nakade et al., 2014). Gene targeting in these studies is likely mediated

by the alternative-end joining/microhomology-mediated end joining (MMEJ) pathway or by a single

strand annealing (SSA) mechanism (Ceccaldi et al., 2016), collectively referred to as a homology

mediated end joining (HMEJ). In contrast, in human cell culture, linear donors using a similar strategy

with homologous ends have been reported to show inefficient integration until homology domains

reach ~600 bp (Zhang et al., 2017), suggesting different repair pathways may predominate depend-

ing on cell type. In the initial reports using short regions of homology for in vivo gene targeting in

zebrafish, the level of mosaicism in F0 injected animals was high, resulting in inefficient recovery of

targeted alleles through the germline (Aida et al., 2016; Hisano et al., 2015; Luo et al., 2018;

Nakade et al., 2014). Most recently, studies in Drosophila show efficient integration of exogenous

DNA in flies and S2 cells using 100 bp homology arms flanked by a CRISPR target site for in vivo

homology liberation (Kanca et al., 2019). Together, these studies suggest a strategy that combines

short homology flanked donors with in vivo homology arm liberation should lead to efficient preci-

sion targeting in zebrafish and mammalian cells.

Here, we present GeneWeld, a HMEJ strategy for targeted integration directed by short homol-

ogy and demonstrate efficient germline transmission rates for recovery of targeted alleles in zebra-

fish. We provide a suite of donor vectors, called pGTag, that can be easily engineered with

homologous sequences (hereafter called homology arms) to a gene of interest and a web interface

for designing homology arms (www.genesculpt.org/gtaghd/). We demonstrate that 24 or 48 base

pairs of homology directly flanking cargo DNA promotes efficient gene targeting in zebrafish, pig,

and human cells. Our results also suggest that longer homology arms up to 1 kb in length do not

increase the frequency of on-target integration in zebrafish in comparison to 24 or 48 bp. Our

experiments illustrate that Cas9 mediated in vivo release to expose homology on the knock-in cas-

sette ends is integral for enhancing targeted integration. Using short homology-arm mediated end

joining, we can achieve germline transmission rates averaging approximately 50% across several

zebrafish loci when pre-selecting reporter-positive embryos to raise to adulthood. Southern blot

analysis in the F1 generation reveals we can recover single copy integration alleles with precision at

both 5’ and 3’ ends at high frequency, enabling efficient recovery of zebrafish with precise site-

directed gene modifications. We present a strategy to delete and replace up to 48 kb of genomic

DNA with a donor containing homology arms flanking two distal CRISPR/Cas9 sites in a gene.

Finally, we show that short homology arm-directed targeted integration of a GFP reporter into safe

harbor loci in porcine and human cells increased 10-fold in comparison to homologous recombina-

tion. The tools and methodology described here provide a tractable solution to creating precise tar-

geted integrations and open the door for other genome editing strategies using short homology.

Results

A single short homology domain drives efficient CRISPR targeted
integration
To develop baseline gene targeting data, we engineered variable length homology domains to tar-

get noto, using a similar strategy to Hisano et al. (2015). Homology lengths were based on observa-

tions that DNA repair enzymes bind DNA and search for homology in 3 or 4 base pair lengths

(Figure 1a; Conway et al., 2004; Singleton et al., 2002). We engineered a 2A-TagRFP-CAAX-SV40

donor vector to contain a sgRNA site that matches a site in exon 1 of the zebrafish noto gene. The

donor vector used a 2A peptide sequence in frame with noto and TagRFP to allow separation of the

fluorescent protein from the nascent protein of the disrupted noto gene during translation. For fluo-

rescence to be detected, the integrated reported gene is required to be in frame with the open
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Figure 1. A single short homology arm 5’ to the sgRNA target site in the noto gene targets integration in zebrafish embryos. (a) Schematic for noto

homology arm and donor vector design. Bold letters show the noto sgRNA target sequence in the genome. This sgRNA target sequence was also used

to target Cas9 cutting in the donor vector. Black bars represent the different homology arm lengths 12, 24, or 48 bp, used to target the 2A-tagRFP-

CAAX donor vector into the noto exon 1 target site. PAM sequences are underlined. Red arrows indicate the Cas9 cut site 3 bp upstream of the PAM.

The 3 nucleotide spacer lacking homology to the genome is represented by the lowercase sequence ‘aaa’ located in between the donor vector PAM

and the 5’ end of the homology arm. (b) Targeting efficiency of noto exon1 2A-tagRFP-CAAX donor vectors containing a single 5’ homology arm of 12,

24, or 48 bp. Data represents mean +/- s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test. (c) Live

confocal image of noto-2A-TagRFP-CAAX-SV40 targeted embryo showing specific RFP expression in the notochord. Scale bar, 100 mm. (d) Sanger

Figure 1 continued on next page
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reading frame of noto. The sgRNA site was followed by 12, 24 or 48 bp of sequence homologous to

the 5’ region directly adjacent to the Cas9 cut site in noto exon 1 (Figure 1a). The noto exon 1

sgRNA targeting efficiency was tested by co-injection with Cas9 mRNA into zebrafish embryos. At 3

dpf, 5 larvae were pooled for genomic DNA extraction and PCR to generate a noto exon 1 ampli-

con. MiSeq analysis showed 95% of the amplified alleles contained indels at the noto sgRNA geno-

mic target site (Supplementary file 1 Table S1-S2). Injection into the cytoplasm of the 1 cell stage

embryo of the donor cargo DNA together with noto exon 1 sgRNA and Cas9 mRNA resulted in effi-

cient targeted integration, as observed by notochord-specific RFP expression and PCR amplification

of junction fragments between the noto gene and the targeting donor (Figure 1a-c;

Supplementary file 1 Table S2-S3). The frequency of embryos with notochord-specific RFP expres-

sion increased with the length of the homology arm up to 48 bp (Figure 1b), suggesting that longer

homology arms promote increased precise integration of the targeting construct.

To examine the targeted alleles, we performed junction fragment analysis by PCR amplification of

the junction between the noto gene and the targeted construct. Junction fragment analysis in the

RFP expressing embryos injected with the 12 bp homology arm construct revealed precise integra-

tion at the 5’ end in 56% of the sequenced alleles (5/9 junctions) (Figure 1d). The imprecise allele

was a single base insertion between the homology domain and PAM that creates a frame shift and

would not produce RFP expression. 95% of the recovered alleles following injection with the 24 bp

homology arm construct (19/20 junctions) were precise, with the one imprecise allele containing a

duplication of the homology domain. This latter allele most likely occurred by non-homologous end

joining (NHEJ) rather than homology directed repair. 79% of the recovered alleles from embryos

injected with 48 bp homology arm construct (15/19 junctions) were also precise (Figure 1d). In these

experiments we did not analyze the 3’ end of the integration, since the targeting construct only had

a 5’ homology arm and the 3’ junctions are likely resolved by the NHEJ pathway, similar to previous

reports (Auer et al., 2014; Maresca et al., 2013; Suzuki et al., 2016). Taken together, these experi-

ments suggested that short homology arms can promote precise integration of a targeting construct

by homology directed repair at relatively high frequency, however, imprecise alleles containing sin-

gle base substitutions and insertions generated by NHEJ are also recovered.

A universal guide RNA to liberate donor homology for targeted
integration
To simplify targeting construct design and allow for consistent, reproducible liberation of the donor

cargo in vivo by Cas9, we previously designed a universal guide RNA sequence, UgRNA

(Wierson et al., 2019a), with optimal base composition using CRISPRScan (Figure 1—figure supple-

ment 1a; Moreno-Mateos et al., 2015). The UgRNA does not have predicted targets in the zebra-

fish, pig, or human genomes, and in vivo use shows efficient double strand break induction and

homology mediated repair at a target site in a fluorescent reporter integrated into the zebrafish

noto gene (Wierson et al., 2019a). The UgRNA and a CGG PAM sequence were cloned 5’ to the 24

bp noto homology arm in the 2A-TagRFP-CAAX-SV40 donor vector (Figure 1—figure supplement

1b). To test the ability of the UgRNA guide to direct a Cas9 double strand break to the vector in

vivo and promote efficient targeted integration, zebrafish embryos were co-injected with Cas9

mRNA, UgRNA, noto sgRNA, and the noto targeting construct. 21% of injected embryos showed

notochord-specific RFP expression, suggesting that Cas9 cutting at the vector UgRNA site efficiently

exposes the donor vector 5’ homology arm and drives precise targeted integration (Figure 1—fig-

ure supplement 1c, Supplementary file 1 Tables S2-S3). This frequency was similar to the above

experiments that used the gene specific noto sgRNA to cut the targeting construct.

Figure 1 continued

sequencing of cloned 5’ junction fragments from RFP positive F0 embryos, aligned to the expected sequence from a precise integration event.

Numerator represents correct clones, denominator represents total clones sequenced. Junctions are considered precise if the homology arm does not

contain any mismatch and there are no insertions or deletions up- or downstream of the programmed homology.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. The Universal sgRNA (UgRNA) promotes high efficiency targeted integration.
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Dual homology arm liberation directs precise 5’ and 3’ integration in
somatic tissue
We leveraged the activity of the UgRNA to develop GeneWeld, a strategy for targeted integration

that promotes high frequency precision integration at both 5’ and 3’ junctions of the genomic target

site. The donor vector contains 5’ and 3’ homology arms cloned on either side of the targeting cas-

sette, which are flanked by UgRNA sites (Figure 2a) . The strategy takes advantage of DNA ends

cut by CRISPR/Cas9 to initiate targeted integration directed by short homology (Figure 2a). A high

efficiency nuclease introduces a DSB in the chromosomal target, and a second nuclease makes two

DSBs in the vector at the UgRNA sites, exposing both 5’ and 3’ short homology arms. The comple-

mentarity between the chromosomal DSB and the donor 5’ and 3’ homology arms likely activates a

MMEJ/SSA or other non-NHEJ DNA repair mechanism, together referred to as HMEJ. The reagents

needed for this gene targeting strategy include Cas9 mRNA to express the Cas9 nuclease, a guide

RNA targeting the genomic sequence of interest, the universal sgRNA UgRNA, and the UgRNA

donor vector with 5’ and 3’ homology arms complementary to the genomic target site (Figure 2a).

We built a series of vectors, pGTag, which contain sites on both sides of the cargo for cloning a

short homology arm that is complementary to the 5’ or 3’ sequence flanking the genomic target

site. The vectors also include the UgRNA sequence outside the sites for homology arm cloning

(Figure 2a, b). A 3 bp spacer that lacks homology to the nucleotides that sit 5’ to the start of the

homology arm in the genome was added between the universal sgRNA PAM CGGand the homology

arm (Figure 2c), in order to maintain the length of the homology arm at 24 or 48 bp. The 5’ and 3’

homology arms can be cloned simultaneously into the vector in a 1-pot reaction using type II restric-

tion enzyme sites, or can be cloned sequentially. The final donor targeting vector contains a cargo

flanked by 5’ and 3’ homology arms with UgRNA sequences on both ends. Following injection, we

hypothesize that cleavage by Cas9 at the UgRNA sites liberates the DNA cargo from the plasmid

Figure 2. GeneWeld strategy and pGTag vector series. (a) GeneWeld reagent components are designed for simultaneous nuclease targeting of

genome and donor to reveal short regions of homology. Red arrowheads represent nuclease DSB cut sites. Components include: 1 - Designer nuclease

mRNA, either Cas9 to target both the genome and donor, or Cas9 to target the donor and TALEN to cut the genome; 2 - sgRNA for targeting Cas9 to

genome; 3 - Universal sgRNA to liberate donor cargo and homologous ends; and 4 - pGTag donor of interest with short homology arms. (b) Stippled

and striped boxes represent sticky ends created by Type IIs restriction endonucleases BfuAI and BspQI, allowing digestion and ligation of both

homology arms into the donor vector in a single reaction. Homology arm fragments are formed by annealing complementary oligonucleotides to form

dsDNA with sticky ends for directional cloning into the vector. XFP = Green or Red Fluorescent Protein. pA = SV40 or b-actin 3’ untranslated region.

Red and green fluorescent proteins were cloned into the pGTag vectors, and for each color, subcellular localization sequences for either nuclear

localization (NLSs) and membrane localization (CAAX) are provided. (c) Schematic of GeneWeld targeting in vivo. After designer nuclease creates

targeted double-strand breaks in the genome and donor, end resection likely precedes homology recognition and strand annealing, leading to

integration of the donor without vector backbone.
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backbone and exposes both 5’ and 3’ donor homology arms for interaction with DNA on either side

of the genomic DSB (Figure 2c).

To test this strategy, we targeted four genes in zebrafish, notochord homeobox (noto), tyrosinase

(tyr), endothelial cell adhesion molecule a (esama), and connexin 43.4 (cx43.4), with efficient gRNAs

which either produced a mutant phenotype or displayed 80–96% indel formation

(Supplementary file 1 Tables S1-S2). The frequency of expression from the pGTag targeting vector

reporter genes was measured in somatic tissue following injection (Figure 3a-d). Injection of 24 or

48 bp homology arm noto 2A-eGFP-SV40 donors resulted in 24% of zebrafish embryos showing

extensive reporter expression in the notochord (Figure 3a,e), indicating a similar in frame and pre-

cise integration efficiency compared to targeting with the single 5’ homology arm 2A-TagRFP-

CAAX-SV40 vector (Supplementary file 1 Tables S2-S3). The results also suggest that when using

the UgRNA to liberate the cargo, 24 bp of homology directs targeted integration as efficiently as 48

bp, further reducing the cost of homology arms for construction of targeting vectors.

Targeting exon 4 of tyr or exon 2 of esama with a 24 bp homology arm 2A-TagRFP-CAAX-SV40

donor did not result in detectable RFP signal in pigmented cells where tyr is expressed, similar to

previous reports for tyr (Hisano et al., 2015). However, PCR amplification and sequencing of a frag-

ment of the expected size that spans the exon-integration cassette junction from injected embryos

indicated the 2A-RFP cassette was precisely integrating in frame in tyr exon 4 (Figure 3—figure sup-

plement 1). This suggested the level of RFP expression was below the threshold of detection. To

amplify the fluorescent signal, we built pGTag 24 bp homology arm 2A-Gal4/VP16-b�actin3’UTR

targeting vectors with 24 bp homology arms to integrate the Gal4/VP16 trans-activator into the tyr

and esama target sites. The Gal4 vectors were injected into transgenic zebrafish embryos carrying a

14xUAS-RFP reporter, Tg(UAS:mRFP)tpl2 (Balciuniene et al., 2013). This resulted in strong RFP sig-

nal in 64% of tyr injected animals (Figure 3b,e), however, the embryos were highly mosaic, with only

9% of embryos displaying extensive RFP expression throughout most of the pigmented cells. Target-

ing esama exon 2 with 2A-Gal4/VP16 in the Tg(UAS:mRFP)tpl2 transgenic background resulted in

21% of embryos displaying extensive RFP expression specifically in the vasculature where esama is

expressed (Figure 3c,e). This approach was extended to five additional loci, targeting 2A-Gal4/VP16

to filamin a (flna) exon 4, moesin a (msna) exon 2 and 6, aquaporin 1a1 (aqp1a1) exon 1, aquaporin

8a1 (aqp8a1) exon 1, and annexin a2a (anxa2a) exon 3. At these loci, mosaic expression of RFP was

observed following injection in 4–55% of Tg(UAS:mRFP)tpl2 embryos in domains consistent with the

normal expression of these genes (Supplementary file 1 Table S2 and S3). Taken together, these

results suggest that our short homology arm targeting strategy promotes high efficiency integration

in somatic tissue and allows endogenous gene expression patterns to be followed in living embryos.

Previous work in zebrafish indicated that longer homology arms (200 bp to 1 kb in length), in

combination with restriction enzyme digestion either in vitro or in vivo to liberate a linear donor tem-

plate, could promote efficient targeted integration (Hoshijima et al., 2016; Shin et al., 2014). Using

the pGTag vectors with UgRNA sites for in vivo homology arm liberation, we tested whether 1 kb

long homology arms altered the efficiency of integration in comparison with 24 or 48 bp of short

homology. Targeted integration of a 2A-TagRFP-CAAX-SV40 cassette into exon 2 of cx43.4 with 24

and 48 bp homology arms resulted in 38–56% and 29–47% of injected embryos showing broad RFP

expression throughout the nervous system and vasculature (Figure 3d,f). Increasing the length of

the 5’ and 3’ homology arms to 1 kb did not significantly change the frequency of RFP expression

compared to 24 bp (p=0.1693) or 48 bp (p=0.6520) (Figure 3f), with 26–47% of injected embryos

showing the expected neuronal and vascular RFP expression pattern (Supplementary file 1 Table

S2-S3). Injection without the UgRNA leaves the 1 kb homology circular donor intact, and reduced

targeting to 0–3% (Figure 3f Circular HR 1 kb; p=0.0067; Supplementary file 1 Table S2-S3), as

expected given the low frequency of homologous recombination in zebrafish embryos. For compari-

son with previous reports using in vitro liberation of long homology arm cassettes before injection,

the 1 kb homology arm vector digested with restriction enzymes that cut within the homology arms,

reducing the 5’ arm to approximately 900 bp and the 3’ homology arm to 700 bp. The linear DNA

template was gel purified before injection. The frequency of RFP expressing embryos after injection

of the linear 1 kb homology arm template was significantly reduced to approximately 5% (Figure 3f

Linear HR 1 kb; p=0.0111; Supplementary file 1 Table S2-S3). No expression was observed when

the linear template was injected without genomic gRNA (Linear control) (Supplementary file 1 Table

S3). Together, these results suggest long homology arms do not enhance the frequency of
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Figure 3. HMEJ strategy promotes efficient somatic targeting of knock-in cassettes in zebrafish. (a–d) Live confocal images of F0 injected embryos

showing fluorescent reporter expression after GeneWeld targeted integration. (a, a’) Mid somite stage embryo targeted at noto with 2A-eGFP. (b, b’) 5

days post fertilization (dpf) Tg(UAS:mRFP)tpl2 embryo targeted at tyr with 2A-Gal4/VP16. (c) 2 dpf and (c’) 3dpf Tg(UAS:mRFP)tpl2 embryo targeted at

esama with �2A-Gal4/VP16. (d, d’) 31 hr post fertilization embryo targeted at cx43.4 with 2A-tagRFP-CAAX. (e) Fraction of embryos with reporter gene

expression following GeneWeld targeting at noto, tyr and esama. 5’ and 3’ homology lengths flanking donor cargos indicated in base pairs as 24/24 or

48/48. (f) Comparison of the fraction of RFP expressing embryos after targeting cx43.4 exon 2 using GeneWeld 24/24 bp homology, GeneWeld 48/48

bp homology, Geneweld 1 kb/1 kb homology, Circular HR 1 kb/1 kb (injection did not include UgRNA, *p=0.0067), Linear HR 1 kb/1 kb (donor was

digested and the linear DNA fragment containing the homology arm targeting construct was gel purified before injection, *p=0.0111). Data represents

mean +/- s.e.m. of 3 independent targeting experiments. p values calculated using Students t test. Scale bars, 100 mm.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure 3 continued on next page
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integration at the genomic target site, compared with short 24 or 48 bp homology arms, when using

the UgRNA to target double strand breaks and liberate the donor homology arms in vivo.

The comparison of short and long homology arm length on integration efficiency was also tested

by targeting the 2A-Gal4/VP16 cassette to the esama exon two target site. Increasing the homology

arms from 24 bp to 1 kb dramatically increased the percentage of RFP positive embryos, from 20–

23% to 82–94% (p=0.0001 Figure 3—figure supplement 2, Supplementary file 1 Table S3). How-

ever, the majority of RFP was not vascular specific, suggesting off-target integration of the Gal4/

VP16 cassette. A high frequency of RFP-positive embryos was also observed when the donor tem-

plate was injected without UgRNA (27–53%) (Figure 3—figure supplement 2 Circular HR 1 kb) or

the donor template was digested in vitro and the linear template gel purified before injection (83–

94%) (Figure 3—figure supplement 2 Linear HR 1 kb). Common repetitive elements, enhancers, or

a cryptic promoter in the intronic sequence of the esama 1 kb homology arms may lead to off target

integration and ectopic RFP expression. These results underscore the utility of short homology arms,

which simplifies donor vector construction and leads to efficient precision targeted integration.

Efficient germline transmission of precision targeted integration events
To determine the efficiency of recovering precision integration alleles through the germline, we tar-

geted short homology arm Gal4/VP16 or tagRFP GTag cassettes into 9 independent zebrafish loci.

Embryos from the noto, tyr, esama, and cx43.4 GTag targeting experiments described above were

raised to adulthood and outcrossed to screen for germline transmission of the reporter integrations.

Three out of five (60%) adults from the noto injected embryos that had shown widespread noto-

chord RFP expression transmitted a noto-2A-TagRFP-CAAX tagged allele through the germline (Fig-

ure 4, Table 1, Supplementary file 1 Table S4-S5). At the tyr locus, although RFP expression in tyr-

2A-Gal4/VP16 injected Tg(UAS:mRFP)tpl2 embryos was highly mosaic, three out of eight (37.5%)

embryos raised to adulthood transmitted germline tagged alleles (Figure 4, Table 1,

Supplementary file 1 Table S4-S5). For esama, 12/18 (66.7%) adults that displayed widespread vas-

culature RFP expression as embryos transmitted esama-2A-Gal4/VP16 alleles to their F1 progeny

(Figure 4, Table 1, Supplementary file 1 Table S4-S5). While no germline integration events were

observed with cx43.4, other experiments with different integration cassettes showed similar germ-

line integration frequencies (Table 2, Supplementary file 1 Table S4-S5 and data not shown). We

extended the germline transmission analysis to include six additional loci: flna, two target sites in

msna (exon 2 and 6), aqp1a1, aqp8a1, and anxa2a. Overall the data reveal high rates of germline

transmission, with a combined average of 49%, that ranged from 22–100% across all targeted loci

(Figure 4, Table 1, Supplementary file 1 Table S4-S5). In addition, the founders from these experi-

ments transmitted gametes that produced expression of RFP consistent with the targeted locus at

frequencies from 2% to 64% of the F1 embryos, with an average of 17.4% (Supplementary file 1

Table S4-S5). Together, as inferred from expression of RFP, these results suggest that the 5’ and 3’

short homology arms liberated with the UgRNA in vivo promote targeted integration that is effi-

ciently transmitted through the germline in zebrafish.

Precise 5’ and 3’ junctions and single copy integration in germline GTag
alleles
We performed Genomic Southern blot analyses and PCR junction fragment sequencing of F1 GTag

alleles to determine whether the cassettes were precisely integrated at the 5’ and 3’ sides of the

genomic target site. Southern blot analysis and sequencing of four tyr-2A- Gal4/VP16 F1 progeny

from founder F0#1 demonstrated a single copy integration of the Gal4/VP16 cassette (Table 2 and

Figure 4—figure supplement 1) with precise sequence at both 5’ and 3’ ends of the integration site

(Table 2 and Figure 4—figure supplement 2). Analysis of four F1 progeny from two noto-2A-

TagRFP-CAAX-SV40 founder adults confirmed a single copy integration in noto exon 1 in one of the

Figure 3 continued

Figure supplement 1. Integration of a 2A-tagRFP reporter gene into tyr.

Figure supplement 2. Comparison of targeted integration efficiency at esama using short vs long homology arms and GeneWeld vs. in vitro linearized

donor template.
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Figure 4. Live confocal images of F1 zebrafish with inherited germline alleles of integrated GTag reporters. (a, a’) Tg(noto-2A-TagRFP) embryo at mid

somite stage showing expression in the notochord and floor plate. (b, b’) Tg(tyr-2A-Gal4/VP16); Tg(UAS:mRFP)tpl25 dpf larva displaying expression in

the melanocytes. (c, c’) Tg(esama-2A-Gal4/VP16); Tg(UAS:mRFP)tpl24 dpf larva showing expression in the vascular system. (d, d’) Tg(flna-2A-Gal4/VP16);

Tg(UAS:mRFP)tpl21 dpf embryo showing widespread expression. (e, e’ and f, f’) Exon 2 and exon 6 msna targeted Tg(msna-2A-Gal4/VP16); Tg(UAS:

mRFP)tpl2 2dpf embryos showed expression in the central nervous system and vasculature. (g, g’ and h, h’) Tg(aqp1a1-2A-Gal4/VP16; Tg(UAS:mRFP)tpl2)

and Tg(aqp8a1-2A-Gal4/VP16); Tg(UAS:mRFP)tpl22 dpf embryos display RFP expression in the trunk and tail vasculature. Scale bars, 100 mm.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Molecular analysis of F1 GeneWeld GTag targeted alleles at tyr and noto.

Figure supplement 2. Sequence of PCR junction fragments amplified from genomic DNA from F1 transgenic zebrafish adults generated by GeneWeld

short homology directed targeted integration.

Figure supplement 3. Sequence of PCR junction fragments amplified from genomic DNA from F1 transgenic zebrafish adults generated by GeneWeld

short homology directed targeted integration.

Figure supplement 4. Sequence of PCR junction fragments amplified from genomic DNA from F1 transgenic zebrafish adults generated by GeneWeld

short homology directed targeted integration.
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lines (noto F0 #1 F1s), however the RFLP pattern indicated imprecise integration, while the second

noto founder (noto F0#2) transmitted an allele with two RFLP fragments, suggesting an additional

off-target integration (Figure 4—figure supplement 1d-f). Sequencing of PCR junction fragments in

the noto F1 progeny revealed precise 5’ integration but imprecise 3’ integration, that could repre-

sent repair by NHEJ and are consistent with the Southern blot analyses (Table 2 and Figure 4—fig-

ure supplement 2). While these data show recovery of a precise single copy integration at tyr,

imprecise and possible off-target integrations such as those detected at noto can occur, as we previ-

ously observed when integrating a genomic reporter into noto (Wierson et al., 2019a).

Table 1. Germline transmission of zebrafish GeneWeld GTag integrations.

Genomic
target Exon

5’/3’ Homology arm
length

Reporter
expression

Number of germline transmitting
adults

Percentage of germline transmitting
adults

noto E1 24/24 24% 3/5 60%

tyr E4 24/24 64% 3/8 38%

cx43.4* E2 24/24 50% 0/1 0%

cx43.4* E2 48/48 38% 0/4 0%

esama E4 24/24 21% 12/18 67%

flna E4 48/42 100% 3/4 75%

msna E2 48/48 55% 1/4 25%

msna E6 48/48 26% 1/3 33%

aqp1a1 E1 48/48 4% 2/9 22%

aqp8a1 E1 48/48 14% 1/1 100%

anxa2â E3 48/48 35% 4/4 100%

Total 30/61 49%

F0’s raised to adulthood were outcrossed and screened for germline transmission of fluorescence reporter expression. F0s transmitting/F0s outcrossed x

100 = Germline transmission percentage. At least 75 F1 embryos from each F0 adult were screened for fluorescence.

*Other experiments showed cx43.4 alleles could be transmitted through the germline in 3/11 F0 fish (27%) with a similar vector (data not shown). cx43.4

indel alleles result in sex determination defects, suggesting germline defects could contribute to variable frequencies for germline transmission of targeted

integration alleles (data not shown).

T̂ransmission is based on expression in the vasculature only.

Table 2. Summary of zebrafish GeneWeld GTag integrations.

Genomic
target

# of germline transmitting
adults

# of precise 5’ junctions by
PCR

# of precise 3’ junctions by
PCR

# of precise integrations by
Southern

noto 3/5 8/8 0/3 and n/d 0/2

tyr 3/8 1/1 1/1 1/1

esama 12/18 8/10* 9/10* n/d

flna 3/4 4/4 n/d n/d

msna 1/4 12/12 1/12 n/d

aqp1a1 2/9 1/1 1/1 n/d

aqp8a1 1/1 1/1 1/1 n/d

Total 25/49 (51%) 35/37 (95%) 13/28 (46%) 1/3 (33%)

F1 or F2 embryos were analyzed for junction fragments.
*Embryos from a single esama F0 founder inherited a mix of precise and imprecise junction alleles. Multiple positive FI embryos were obtained in which at

least one of the embryos contained precise junctions. A polymorphism in the homology domain was also detected in the esama 5’ junction from F0 #4.

One of the F1s from F0#5 also contained an imprecise junction at the 5’ end. esama F1 3’ junctions all contain a single nucleotide variant in the homology

arm. Interestingly, this was corrected to the genomic sequence. One esama F1 3’ junction also included a 20 bp insertion.

n/d – not determined.
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Junction fragment analysis of F1 alleles from 5 additional targeted sites in esama, flna, msna,

aqp1a1, and aqp8a1 revealed precise integration events at the 5’ side for nearly all genes examined

(35/37 or 95% across seven genes) (Table 2 and Figure 4—figure supplement 3 and 4). This result

is expected, since screening for fluorescent reporter expression selects for in-frame integration of

the cassette at the 5’ end. At the esama locus the 3’ junctions were also precise in 9/10 F1s exam-

ined from 6 different F0s, and both aqp1a1 and app8a1 F1 alleles had precise 3’ junctions (Table 2

and Figure 4—figure supplement 3). Junction fragment analysis of 12 F1 msna-2A-Gal4/VP16 from

a single founder had precise 5’ integrations, but only one out of the 12 had a precise 3’ junction (Fig-

ure 4—figure supplement 3). A lower frequency of precise 3’ integrations (13/28 or 46% across six

genes) was observed over all loci (Table 2 and Figure 4—figure supplement 2–4). Together, these

results indicate that using short homology arm vectors and in vivo UgRNA liberation can promote

precise, single copy integration by HMEJ at a genomic sgRNA site at high frequency in the germline,

without insertion of donor vector backbone sequences, however, precision at the 3’ end is reduced

likely due to a lack of selection.

Homology engineered to distant genomic sgRNA sites seeds deletion
tagging in somatic tissue
To further demonstrate the utility of short homology arm directed targeted integration, we tested

whether the pGTag donor could function to bridge two sgRNA genomic cuts, resulting in simulta-

neous deletion of intervening sequences and integration of exogenous DNA to create a ‘deletion

tagged’ allele. Guide RNAs that target sites in the retinoblastoma1 (rb1) gene were designed to

exons 2 and 4, which are located 394 bp apart, and tested for efficiency (68% and 32% indel forma-

tion, Supplementary file 1 Table S1). A more distal guide was designed in exon 25 which sits ~48.4

kb from the exon 2 sgRNA site and had 19% indel induction (Figure 5a and Supplementary file 1

Table S1). The pGTag-2A-Gal4/VP16 donor contained a 48 bp 5’ homology arm with sequence

upstream of the sgRNA site in exon 2, and a 48 bp 3’ homology arm of sequence downstream of

the sgRNA site in either exon 4 or exon 25. Injection of the exon 2–4 or exon 2–25 pGTag-2A-Gal4/

VP16 donor into Tg(UAS:mRFP)tpl2 embryos resulted in embryos showing broad and ubiquitous RFP

expression (Figure 5b–c). Targeting msna at exons 2 and 6 (88% and 98% indel formation,

Supplementary file 1 Table S1), located 7.8 kb apart, with a pGTag-2A-Gal4/VP16 donor containing

48 bp 5’ exon 2 and 3’ exon 6 homology arms (Figure 5d) resulted in RFP expression in a pattern

consistent with the expression of msna (Figure 5e,e’). The frequency of RFP positive embryos was

similar after targeting rb1 exon 2–4 (44–78%) and msna exon 2–6 (50–85%) and did not seem to be

affected by increasing the size of the deleted region from 394 bp to 48.4 Kb in rb1 exon 2–25 (49–

70%) (Figure 5f). Somatic junction fragment analysis detected precise integration of the 2A-Gal4/

VP16 cassette in both genes at the 5’ upstream exon (rb1 97%; msna 85%) and 3’ downstream exon

(rb1 67%; msna 45%) (Figure 5—figure supplement 1). However, only one out of 16 (6%) rb1 tar-

geted F0 founders transmitted a rb1-e2-25-2A-Gal4/VP16 integration allele through the germline

(Supplementary file 1 Table S4-S5). The allele contained a precise 5’ junction at the exon 2 target

site, but the 3’ junction could not be amplified by PCR. None of the 10 msna e2-e6 2A-Gal4/VP16

targeted F0 zebrafish transmitted a deletion tagged allele to the next generation

(Supplementary file 1 Table S4-S5). In contrast, targeting 2A-Gal4/VP16 to msna exon 2 or 6 alone

resulted in 2 out of 7 F0s transmitting a targeted allele to the next generation (Supplementary file

1 Table S4-S5).

Together, these results demonstrate simultaneous targeting of two distal genomic cut sites in

somatic tissue can create precise integration at both ends of a pGTag reporter cassette, but these

events were not efficiently passed through the germline. We attempted deletion tagging at three

additional loci, kdrl, s1pr1, and vegfaa, which showed 32–81% expression in F0 embryos, but did

not recover germline transmission to the F1 generation (Supplementary file 1 Table S2-S5). While

HMEJ driven by short homology arms and liberation by the UgRNA can efficiently promote precision

targeted integration at a single double strand break in somatic and germline tissue, efficient simulta-

neous deletion and integration to bride two target sites in the germline likely occurs at a much lower

frequency.

Wierson et al. eLife 2020;9:e53968. DOI: https://doi.org/10.7554/eLife.53968 11 of 25

Research article Developmental Biology Genetics and Genomics

https://doi.org/10.7554/eLife.53968


Integration of exogenous DNA using HMEJ in porcine and human cells
is more efficient than HR
To determine if HMEJ integration directed by short homology functions efficiently in large animal

systems, we tested our targeting strategy in S. scrofa fibroblasts (Figure 6a–c). A cassette that drives

ubiquitous eGFP expression from the UbC promoter (Figure 6a) was designed based on the pGTag

Figure 5. Deletion tagged alleles created with the GeneWeld strategy in zebrafish somatic tissue. (a) Schematic for Gal4/VP16 reporter integration to

tag a deletion allele of rb1 exons 2–4 (top) and rb1 exons 2–25 (bottom). Arrowheads designate CRISPR/Cas9 DSBs. CRISPR sgRNAs in two exons are

expected to excise the intervening genomic DNA. The targeting vector contains a 5’ homology arm flanking the upstream exon target site and a 3’

homology arm flanking the downstream exon target site. (b, b’) Live confocal image of F0 Tg(UAS:mRFP)tpl2 embryo after 2A-Gal4/VP16 deletion

tagging at rb1 exons 2–4. (c, c’) Live confocal image of F1 Tg(rb1-e2-2A-Gal4/VP16) embryo from a founder targeted at rb1 exons 2–25. A deletion from

exon 2–25 was not observed in the F1 generation, but the 5’ junction was in frame. (d) Schematic for 2A-Gal4/VP16 deletion tagging of msna exons 2–6.

(e, e’) Live confocal image of F0 Tg(UAS:mRFP)tpl2 embryo after 2A-Gal4/VP16 deletion tagging at msna exons 2–6. (f) Somatic reporter efficiency of

targeted deletion tagging using 48 bp homology arms for rb1 exons 2–4, rb1 exons 2–25, and msna exons 2–6. Data represents mean +/- s.e.m. of 4

(rb1) and 5 (msna) independent targeting experiments. Scale bars 200 mm (b, c, c’, e); 100 mm (b’, e’).

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Sequences of 5’ and 3’ junction fragments from rb1 exon 2–4, rb1 exon 2–25, and msna exon 2–6 deletion tagged alleles in F0

injected embryos.
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Figure 6. HMEJ-based targeted integration with UgRNA-based vectors promotes efficient knock-in in porcine fibroblasts and human K-562 cells. (a)

Strategy for integration using HMEJ and HR donors into intron 1 of S. scrofa ROSA26 locus. Arrowheads CRISPR/Cas9 (for HMEJ donor) and TALEN

(genome) DSBs. (b) Targeting efficiency of the HMEJ donor vs the HR donor as reported by GFP positive colonies out of total colonies. (c) Percent of

GFP positive colonies analyzed containing properly sized junction fragments, comparing HMEJ and HR donors. Data are from three independently

targeted cell populations. Data represents mean +/- s.e.m. of 3 independent targeting experiments. (d) Diagram of HR and HMEJ strategies for

targeted integration of a MND:GFP reporter cassette into the human AAVS1 locus. (e) Flow cytometry analysis of GFP expression 14 days post-

electroporation for each targeting modality: HR (left), HMEJ without universal sgRNA (middle), and HMEJ with universal sgRNA (right). Stable gate was

drawn to measure the uniformly expressing population formed by targeted integration and was set based on episome only controls. (f) Quantification

of stable GFP expressing population as measured by flow cytometry at day 14. Data are from three independently targeted cell populations. Data

represents mean +/- s.e.m. of 3 independent targeting experiments. p values calculated using two-tailed unpaired t-test.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. HMEJ-mediated targeted integration of an MND:GFP reporter at the AAVS1 locus in human K-562 cells.

Figure supplement 2. Direct sequencing of 5’ junction PCR products derived from three independently targeted bulk cell populations.
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vector series, with UgRNA sites on either side of 48 bp homology arms that flank the cassette

(UgRNA donor). The 5’ and 3’ homology arms contained sequences that map to a TALEN cut site in

intron 1 of the ROSA26 safe harbor locus. Fibroblasts were electroporated with TALENs, UgRNA,

and Cas9 RNAs, and the ROSA26 UbC:GFP UgRNA targeting vector. The efficiency of precision

integration was compared to cells electroporated with just the TALEN pair and a donor containing

760 bp homology arms (HR Donor), which would integrate through homologous recombination (HR).

GFP expression was observed in 23% of colonies using the UgRNA donor, compared to 2% of colo-

nies using the HR donor with 760 bp homology arms (Figure 6b). 5’ and 3’ junctions were observed

in over 50% of the UgRNA donor GFP+ colonies while none of the HR donor GFP+ colonies con-

tained both junctions (Figure 6c). Sequencing of junctions from 8 UgRNA donor GFP+ colonies that

were positive for both junctions showed precise integration in 7/8 colonies at the 5’ junction and 8/8

colonies at the 3’ junction.

We next tested the efficiency of HMEJ targeted integration in human K-562 cells using a donor

vector with a MND:GFP reporter (Halene et al., 1999) and 48 bp homology arms designed to target

a CRISPR/Cas9 site in the AAVS1 safe harbor (Figure 6d–f). K-562 cells were electroporated with

AAVS1 sgRNA, UgRNA, Cas9 and the UgRNA HMEJ donor or an HR donor with long 806 bp homol-

ogy arms. Cells were FACs sorted by GFP at day 14 following electroporation. Over 50% of cells tar-

geted with the HMEJ 48 bp homology arm donor were GFP positive, compared to only 6% of cells

electroporated with the 806 bp homology arm HR donor, indicating HMEJ promoted efficient inte-

gration and stable expression of the MND:GFP cassette at the AAVS1 locus (Figure 6—figure sup-

plement 1). GFP expression was maintained over 50 days, and 5’ precise junction fragments were

observed following PCR amplification in bulk cell populations (Figure 6—figure supplement 2).

These results demonstrate that the HMEJ strategy using short homology arms outperforms tradi-

tional HR techniques for targeted integration in mammalian cell systems and is effective without anti-

biotic selection.

Discussion
Here we adapted the short homology arm targeted integration approach described by Hisano et al.

(2015) to develop a vector suite, pGTag, and detailed protocol for efficient site-directed gene tar-

geting in zebrafish. We extended this strategy to mammalian cells and show efficient recovery of

precision targeted integration at safe harbor loci in pig fibroblasts and human K-562 cells. The

pGTag vector series has been deposited at Addgene, and the open source protocol and homology

arm website design tool are available at The Gene Sculpt suite (genescultp.org) (Mann et al., 2019).

We engineered our targeting vectors with knock-in cassettes flanked by enzyme sites to clone short

homology arms that are first assembled by oligonucleotide annealing. We also placed a universal

sgRNA sequence outside the homology arm cloning sites, which allows for Cas9 liberation of the tar-

geting cassette in vivo. The pGTag cassettes contain 2A-fluorescent protein or 2A-Gal4/VP16 report-

ers for visualizing integrated reporter expression in injected embryos. Together, these design

elements, that include simultaneous double strand breaks by Cas9 at the genomic target site and

vector universal sgRNA sites, and preselection of fluorescent reporter expression that requires in

frame fusion and precise 5’ targeted integration, may enhance the efficient recovery of germline

alleles over previous reports in zebrafish (Hisano et al., 2015; Hoshijima et al., 2016; Shin et al.,

2014). Our results show 49% of all adult zebrafish preselected for on target reporter expression as

embryos transmitted precision targeted knock-in alleles through the germline, with 17.4% of gam-

etes carrying the edited allele of interest (Supplementary file 1 Table S4-S5). We demonstrated effi-

cient targeted integration of cargos up to 2 kb in length in zebrafish, pig fibroblasts, and human

K-562cells. Both CRISPR/Cas9 and TALEN genomic sites are targeted with high efficiency, providing

flexibility in design and increasing genome-wide accessibility.

Our initial targeting experiments at noto using a single 5’ homology arm and single noto sgRNA

to target the genome and donor vector showed an increase in targeting efficiency as the length of

the homology arm increased from 12 to 48 bp. However, when targeting was performed with

homology on both sides of the cargo flanked by the universal UgRNA sites, short and long homol-

ogy arms were equally efficient at targeted integration (Figure 3e). This may reflect enhanced effi-

ciency of in vivo cargo liberation by the UgRNA. Positive integration events of tagged alleles are

selected by fluorescence reporter expression, reflecting the endogenous pattern of expression of
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the targeted gene. Our observations indicate this correlates with predominantly precise integration

events as analyzed by PCR and sequencing in both somatic tissue and through the germline. We

speculate that inclusion of homology at the 3’ end of our cargo creates competition for the donor

DNA ends, as not all editing events are precise at both 5’ and 3’ junctions (Figure 4—figure supple-

ment 1 and 2). Thus, it is conceivable that precise events at the 3’ end could preclude precise inte-

gration at the 5’ end during some editing events, and vice versa. It is tempting to speculate that

these data hint at synthesis dependent strand annealing (SDSA) as a possible DNA repair mechanism

for pGTag donor integration (Ceccaldi et al., 2016). After strand invasion using either of the homol-

ogy domains and replication through the reporter, second DNA end capture may abort before or

after replication through the opposing homology domain, resulting in imprecision, as greater than

or equal to 150 bp is required for proper second end capture in yeast (Mehta et al., 2017). Our tar-

geting results are similar to a recent study in zebrafish that reported short homology directed inte-

gration of a 2A fluorescent reporter near the termination codon at three genes (Luo et al., 2018).

Our study robustly demonstrates the short homology targeted integration strategy can be reproduc-

ibly applied at many loci to generate zebrafish knock-in mutations which transmit through the germ-

line at high frequency.

Using two sgRNAs we attempted to simultaneously delete a section of the rb1 gene and intro-

duce a 2A-Gal4/VP16 reporter cassette to create a deletion tagged allele. While we found evidence

of efficient deletion and tagging in F0 targeted embryos, we were unable to recover germline

alleles. It is possible that the inability to recover rb1 tagged alleles was due to the essential require-

ment for this tumor suppressor gene, in either somatic tissue or germline stem cells. Our previous

targeted mutagenesis at rb1 revealed it is necessary to significantly reduce the amount of TALENs

or CRISPR/Cas9 sgRNA injected into the embryo in order to prevent complete bi-allelic inactivation

and allow for recovery of viable mosaic adults that transmit indel mutations through the germline

(Solin et al., 2015). Combined with previous work that indicates stem cells are susceptible to apo-

ptosis following gene editing (Ihry et al., 2018; Li et al., 2018), these factors may have contributed

to the lack of recovery of rb1 deletion tagged alleles. Additional experiments at non-essential genes

are needed to determine the efficiency of simultaneous gene deletion and tagging.

Previous studies in zebrafish examined whether homology arm length (Shin et al., 2014) or in

vivo I-SceI cleaved, linear templates with exposed homology arms (Hoshijima et al., 2016) would

enhance targeting efficiency. We compared the effect of short and long homology arm length on

targeted integration in somatic tissue using our pGTag vectors and targeting strategy. Increasing

the cx43.4 5’ and 3’ homology arms to 1 kb did not result in a significant difference in targeting effi-

ciency compared to vectors with short 24 bp or 48 bp homology arms, as assayed by fluorescence

(Figure 3). As expected, injection of the long homology arms vector without the universal sgRNA to

liberate the arms effectively eliminated reporter expression and targeted integration. We also found

there may be a significant disadvantage to long homology arms. Injection of the esama 2A-Gal4/

VP16 vector with 1 kb homology arms led to nearly 100% of embryos showing widespread RFP

expression, and 30–60% of embryos injected with circular plasmid alone were reporter positive (Fig-

ure 3—figure supplement 2). Together, these results suggest long homology arms of intronic or

intergenic sequences may contain repetitive elements that drive off-target integration across the

genome. Alternatively, intronic promoters or enhancers could be unmasked by integration at ectopic

sites, leading to high rates of false positives. Given the simple design, low cost, and ease of assem-

bly of short homology arms, this approach may be preferable for most precision targeted integration

experiments. However, further experiments are required at additional loci to determine whether the

advantages of using short homology in targeting vectors represents a universal rule.

Our results show short homology arms are effective at directing precision targeted integration at

CRISPR/Cas and TALEN sites in mammalian cells without selection by antibiotic resistance. Introduc-

ing a universal targeting vector with 48 bp homology arms into pig fibroblasts or human K562 cells

lead to a 10-fold increase in targeted integration in comparison to a circular template that would

integrate by homologous recombination. This is in contrast to previous studies in mammalian cells

that indicated the frequency of targeted integration was not significantly enhanced until the length

of homology arms was increased to 600 bp (Zhang et al., 2017). This discrepancy may reflect varia-

tion in experimental design or activity of DNA repair pathways in different cell types. Our results

showing robust precision targeted integration using short homology arms in zebrafish and two mam-

malian cells lines suggest this simple, straightforward approach will be broadly applicable across
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species and model systems. In support of this, a recent study has shown 100 bp short homology

arms and flanking CRISPR sgRNA sites efficiently directs targeted integration of DNA cassettes

inDrosophilaand S2 cells (Kanca et al., 2019).

In summary, we have shown short homology arm directed targeted integration is highly efficient

in zebrafish and mammalian cell lines. The simplicity of our strategy for building arms into the pGTag

vectors, a universal guide to liberate the targeting cassette, and the GeneSculpt Suite website

together will aid in streamlining targeted integration experimental design. Our vector suite provides

a platform that can expand the zebrafish functional genomics toolkit for efficient site-directed modi-

fications that create gene fusions, introduce cDNA variants, recombinases, or floxed gene-breaking

cassettes (Clark et al., 2011) for conditional gene inactivation. Targeted integration will allow

tagged or mutant genes to be expressed at endogenous levels and avoid ectopic or over-expression

that can result from random transgene integration. These tools will broaden the use of designer

nucleases for homology-based gene editing at CRISPR/Cas9 and TALEN cut sites in zebrafish and

mammalian cell lines. Our results open the door for more advanced genome edits in animal agricul-

ture and human cell lines.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Danio rerio)

anxa2a ensemble: ENSDAR
G00000003216

Gene
(Danio rerio)

aqp1a1 ensemble: ENSDAR
G00000023713

Gene
(Danio rerio)

aqp8a1 ensemble: ENSDAR
G00000045141

Gene
(Danio rerio)

cx43.4 ensemble: ENSDAR
G00000007099

Gene
(Danio rerio)

esama ensemble: ENSDAR
G00000077039

Gene
(Danio rerio)

flna ensemble: ENSDAR
G00000074201

Gene
(Danio rerio)

kdrl ensemble: ENSDAR
G00000105215

Gene
(Danio rerio)

mmp14a ensemble: ENSDAR
G00000002235

Gene
(Danio rerio)

msna ensemble: ENSDAR
G00000058128

Gene
(Danio rerio)

rb1 ensemble: ENSDAR
G00000006782

Gene
(Danio rerio)

s1pr1 ensemble: ENSDAR
G00000042690

Gene
(Danio rerio)

tyr ensemble: ENSDAR
G00000039077

Gene
(Danio rerio)

vegfaa ensemble: ENSDAR
G00000103542

Gene
(Homo
sapiens)

AAVS1 HGCN:22 Adeno-
Associated
Virus Integration
Site 1

(Kotin et al., 1992)

Gene
(Sus scrofa)

ROSA26 This paper Porcine homolog of mouse
ROSA26 safe harbor locus
for transgene integration

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Escherichia coli)

NEB Stable
Competent
E. coli

New England
Biolabs

C3040I Electrocompetent
Cells

Strain, strain
background
(Escherichia coli)

One Shot TOP10
Chemically
Competent
E. coli

Thermo
Fisher/Invitrogen

C404010 Electrocompetent
Cells

Genetic
reagent
(Danio rerio)

WIK Zebrafish
International
Resource Center

ZIRC:ZL84 Wildtype strain
of zebrafish

Genetic
reagent
(Danio rerio)

Tg(UAS:
mRFP)tpl2

Balciunas lab Tg(miniTol2 < 14XUAS:mRFP, gCry:
GFP>)tpl2

Maintained in the lab
of D. Balciunas
(Balciuniene et al., 2013)

Cell line
(Homo sapiens)

K562 ATCC ATCC:CCL-243 chronic myelogenous
leukemia cell line

Cell line
(Sus scrofa)

Porcine
fibroblast
cell line

This paper Recombinetics, Inc

Transfected
construct
(Homo sapiens)

pAAVS1-MND:
GFP

This paper B. Moriarity lab

Transfected
construct
(Sus scrofa)

pROSA26 UbC:
GFP UgRNA

This paper Recombinetics, Inc

Recombinant
DNA reagent

pT3TS-nCas9n Wenbiao Chen Addgene:46757 Plasmid for in vitro
synthesis of Cas9
mRNA

Recombinant
DNA reagent

p494-2a-TagRFP-
CAAX-SV40

This paper available from
J. Essner lab;
Deposited at Addgene

Recombinant
DNA reagent

pGTag-2A-TagRFP-
CAAX-SV40

This paper available from
J. Essner lab;
Deposited at Addgene

Recombinant
DNA reagent

pGTag-2A-Gal4/
VP16-bactin

This paper available from
J. Essner lab;
Deposited at Addgene

Recombinant
DNA reagent

pGTag-2A-eGFP-
SV40

This paper available from
J. Essner lab;
Deposited at
Addgene

Sequence-
based reagent

This paper PCR primers
and oligos

See Supplementary
file 1

Commercial
assay or kit

pCR4 TOPO TA
Cloning Kit

ThermoFisher/
Invitrogen

ThermoFisher:
K457502

Commercial
assay or kit

Zero Blunt TOPO
PCR Cloning Kit

ThermoFisher/
Invitrogen

ThermoFisher:
K2800J10

Commercial
assay or kit

NEBNext Ultra II
DNA Library Prep
Kit for Illumina

New England
Biolabs

NEB:E7645L For MiSeq multiplex
DNA sequencing

Software,
algorithm

CRISPRScan A. Giraldez lab http://www.
crisprscan.org/

(Moreno-Mateos
et al., 2015)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Software,
algorithm

pGTag This paper http://genesculpt.
org/gtaghd/ and
https://github.
com/Dobbs-
Lab/GTagHD
Wierson et al., 2019b
copy archived
at https://github.com/
elifesciences-publications/
GTagHD

short homology
arm design

Software,
algorithm

ICE Synthego Inference of CRISPR
Edits (ICE)
https://www.
synthego.com/
products/bioinformatics/
crispr-analysis

Indel analysis of
Sanger sequenced
DNA

Software,
algorithm

Cas-Analyzer RGEN CRISPR RGEN Tools
http://www.rgenome.
net/cas-analyzer/#!

Indel analysis of
NextGen sequenced
DNA

Contact for reagent and resource sharing
Further information and requests for resources and reagents should be directed to Jeffrey Essner

(jessner@iastate.edu).

Zebrafish strains and mammalian cell lines
Zebrafish were maintained on an Aquatic Habitats (Pentair) aquaculture system at 27˚C on a 14 hr

light/10 hr dark cycle. Wild-type WIK were obtained from the Zebrafish International Resource Cen-

ter (https://zebrafish.org/home/guide.php). The transgenic line Tg(miniTol2 <14XUAS:mRFP, gCry:

GFP>)tpl2, referred to as Tg(UAS:mRFP)tpl2, was previously described (Balciuniene et al., 2013). All

zebrafish experiments were carried out under approved protocols from Iowa State University Animal

Care and Use Committee Log#11-06-6252, in compliance with American Veterinary Medical Associa-

tion and NIH guidelines for the humane use of animals in research.

The human K-562 chronic myelogenous leukemia cell line (ATCC CCL-243) used in gene targeting

experiments was cultured at 37˚C in 5% CO2 in RPMI-1640 medium (Thermo Fisher Scientific) sup-

plemented with 10% fetal bovine serum (FBS) and Penicillin/Streptomycin. Electroporation was con-

ducted with 1.5 � 105 cells in a 10 ml tip using the Neon electroporation device (Thermo Fisher

Scientific) with the following conditions: 1450V, 10 ms, 3x pulse. Nucleic acid dosages were as fol-

lows: 1.5 mg Cas9 mRNA (Trilink Biotechnologies), 1 mg each chemically modified sgRNA (Synthego),

and 1 mg donor plasmid.

Porcine fibroblasts were cultured in DMEM (high glucose) supplemented to 10% vol/vol FBS, 20

mM L-glutamine and 1X Pen/Strep solution and transfected using the Neon system (Invitrogen).

Briefly, 1 � 106 fibroblasts were transfected with 1 ug of polyadenylated ROSA TALEN mRNA, 1 mg

of universal UgRNA, 1 mg of polyadenylated Cas9 mRNA and 1 mg of donor plasmid. Transfected

cells were cultured for 3 days at 30˚C before low density plating, extended culture (10 days) and col-

ony isolation. Individual colonies were aspirated under gentle trypsanization, replated into 96- well

plates and cultured for 3–4 days.

pGTag series vectors
To build the pGTag vector series, 2A-TagRFP, 2A-eGFP, and 2A-Gal4/VP16 cassettes were assem-

bled from a 2A-TagRFP-CAAX construct, p494. To clone the eGFP cassette, the plasmid p494 was

amplified with primers F-p494-XhoI and R-p494-SpeI to generate unique enzyme sites in the back-

bone. The eGFP coding sequence (Clontech Inc) was amplified with the primers F-eGFP-SpeI and

R-eGFP-XhoI to generate the corresponding enzyme sites on the eGFP coding sequence. Fragments
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were digested with SpeI-HF and XhoI (NEB) and following column purification with the Qiagen mini-

prep protocol, were ligated to the plasmid backbone with T4 ligase (Fisher).

The Gal4/VP16 coding sequence and zebrafish b-actin 3’ untranslated region was amplified from

vector pDB783 (Balciuniene et al., 2013) with primers F-2A-Gal4-BamHI and R-Gal4-NcoI to add a

2A peptide to the 5’ end of the Gav4Vp16 cDNA. The resulting PCR product was then cloned into

the intermediate Topo Zero Blunt vector (Invitrogen) and used for mutagenesis PCR with primers F

and R ‘-gal4-Ecofix’ to disrupt the internal EcoRI restriction site. The resulting Gal4/VP16 sequence

was cloned into the BamHI and NcoI sites in the p494 backbone.

The 5’ universal guide RNA UgRNA site and lacZ cassette were added to pC-2A-TagRFP-CAAX-

SV40, pC-2A-eGFP-SV40, and pC-2A-Gal4/VP16-b-actin with the following steps. The lacZ was first

amplified with primers F-lacZ and R-lacZ, which add the type IIS enzyme sites to either end of the

lacZ. The resulting PCR product was then cloned into an intermediate vector with the Zero Blunt

TOPO PCR Cloning Kit (Invitrogen). This intermediate was used as a template in a nested PCR to

add the Universal guide sequence GGGAGGCGTTCGGGCCACAGCGG to the end of the lacZ

sequence. The nested PCR used primers F-lacZ-universal-1 and R-lacZ-universal-BamHI to add the

first part of the universal guide to one end and a BamHI site to the other. This was used as template

for PCR with the primers F-lacZ-universal-EcoRI and R-lacZ-universal-BamHI to add the remainder of

the universal guide and an EcoRI site. The fragment was column purified as above, digested with

EcoRI-HF and BamHI-HF and cloned into the appropriate sites in the three vectors.

The 3’ universal guide RNA UgRNA site and type 2 restriction enzyme sites were cloned into each

vector in two steps. A segment from a Carp b-actin intron containing a 99 bp spacer flanked by two

BspQI sites was amplified using the primers F-3’-uni-1 and R-3’-uni-1 to add the universal site to one

side of the spacer. This product was column purified as above and used as template for the second

amplification with primers F-3’-uniNco1 and R-3’-uniEagI to add cloning sites. This product was col-

umn purified and cloned using the Topo zero blunt kit. This intermediate was digested with NcoI-HF

and EagI, and the BspQI fragment purified and cloned into the three vectors as above. Ligations

were grown at 30˚C to reduce the possibility of recombination between the two universal guide

sites.

Correct clones for pU-2A-TagRFP-CAAX-U, pU-2A-eGFP-U, and pU-2A-Gal4/VP16-U were

selected and used as template for mutagenesis PCR with KOD to remove extra BspQI sites from the

backbone with primers F/R-BBfix, digested with DpnI (NEB), and ligated with T4 ligase. A correct

pU-2A-TagRFP-CAAX-U clone was used as template for PCR with F/R-TagRFPfix to interrupt the

BspQI site in the TagRFP coding sequence as above. A correct clone of pU-2A-Gal4/VP16-U was

selected and used as template with primers F/R-Bactfix to remove the BspQI site in the b-actin ter-

minator, the product was re-cloned as above. All constructs were sequence verified.

sgRNA target site selection, homology arm design and pGTag donor
vector construction
CRISPR/Cas9 target sites in exons of zebrafish genes were identified using CRISPRScan (http://www.

crisprscan.org/; Moreno-Mateos et al., 2015). 5’ and 3’ homology arms of specified length directly

flanking a genomic targeted double strand break were generated by annealing two complementary

oligonucleotides. The double stranded 5’ and 3’ homology arms with appropriate overhangs were

cloned into the pGTag vector BfuAI and BspQI sites, respectively, flanking the cargo. A three-nucle-

otide buffer sequence lacking homology to the genomic target site was engineered between the

donor UgRNA PAM and the 5’ end of the homology arms. This was done in case the UgRNA PAM

sequence was complementary to the nucleotides located 5’ to the start of the homology arm, which

would increase the 24 or 48 bp homology arm length. Maps for the pGTag vectors and an open

source protocol for cloning the homology arms are available at http://genesculpt.org/gtaghd/. The

pGTag vectors are available through Addgene (https://www.addgene.org/kits/essner-geneweld/).

To generate 1 kb homology arms for zebrafish cx43.4 and esama, ~2 kb of genomic DNA sur-

rounding the CRISPR target site was PCR amplified from adult WIK finclips using the proofreading

enzyme KOD (EMD Millipore), and then sequenced to identify polymorphisms. Primers were

designed to sit 1032 bp up and down stream of the cut site according to the Ensemble.org refer-

ence genome V11. Primers also contain either BfuAI and BspQI recognition sequences to make the

appropriate overhangs for Golden Gate cloning into a pGTag vector or sequence for Gibson cloning

into a pGTag vector. PCR was performed with the proofreading polymerase KOD and using
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genomic DNA from animals homozygous for the most common polymorphisms was used as tem-

plate. The products were then Topo Blunt (Thermo Fisher Scientific) cloned for sequencing. The

homology arms were Golden Gate or Gibson cloned into a pGTag vector containing the same cas-

sette as the previous injections for the target locus. pGTag vectors with 1 kb homology arm vectors

were injected into embryos from adults with the matching genomic sequence. Supplementary file 1

Table S5 lists the sequences of all homology arms, sgRNA target sites, and spacers. For each locus

injections were done in triplicate, and for those targeting the locus with 1 kb homology arms the fol-

lowing controls were also performed; plasmid only, plasmid with universal gRNA and without geno-

mic gRNA, and plasmid linearized in vitro with genomic gRNA.

Zebrafish embryo injection
The pT3TS-nCas9n expression vector for in vitro synthesis of nls-Cas9-nls mRNA was a gift from

Wenbiao Chen (Addgene plasmid # 46757). XbaI linearized pT3TS-nCas9n was purified under

RNase-free conditions with the Promega PureYield Plasmid Miniprep System. Linear, purified pT3TS-

nCas9n was used as template for in vitro transcription of capped, polyadenylated mRNA with the

Ambion T3TS mMessage mMachine Kit. mRNA was purified using the Qiagen miRNeasy Kit. The

genomic and universal sgRNAs were generated using cloning free sgRNA synthesis as described in

Varshney et al. (2015) and purified using Qiagen miRNeasy Kit. Donor vector plasmid DNA was

purified with the Promega PureYield Plasmid Miniprep System.

sgRNA targeted mutagenesis efficiency was determined by measuring the frequency of indel

mutations at the target site. Individual embryos were injected with 150 pg Cas9 mRNA and 25 pg

sgRNA. PCR amplicons over the cut site were first examined for mutagenesis (or a smear) on a 2–3%

agarose gels in 1X TAE. For the flna exon 4 and msna exon 2 sgRNAs, a single 2 dpf embryo was

placed in 15 ul of 50 mM NaOH, heated at 95˚C for 30 min to extract genomic DNA, and neutralized

by addition of 1.5 ul of 1M Tris pH 8.0. 1 ul of DNA extract was used as template for PCR to gener-

ate amplicons for sequence analysis. The flna exon 4 and msna exon 2 amplicons were sequenced

directly by Sanger sequencing at the Iowa State University DNA Facility, and indel frequency deter-

mined using the Inference of CRISPR Edits (ICE) analysis tool at Synthego (https://www.synthego.

com/products/bioinformatics/crispr-analysis). For the noto exon 1, cx43.4 exon 2, esama exon 2,

msna exon 6, rb1 exon 2, exon 4 and exon 25, aqp1a1 exon 1 and aqp8a1 exon 1 sgRNAs, at 3 dpf

5 embryos were pooled in 50 ul of 50 mM NaOH, and 2 ul used as template for PCR. Barcoded

libraries were prepared using NEBNext Ultra II DNA Library Prep Kit for Illumina (NEB #E7645L) for

MiSeq 250 bp single read sequencing at the University of Kansas Genome Sequencing Core. Indel

analysis of MiSeq reads was performed using Cas-Analyzer at CRISPR RGEN Tools (http://www.rge-

nome.net/cas-analyzer/#!). MiSeq data can be found at: Essner, Jeffrey; McGrail et al., 2011, MiSeq

data for Cas9, Dryad, Dataset, https://doi.org/10.5061/dryad.m63xsj3zc.

Linear targeting cassettes for cx43.4 and esama were generated by restriction enzyme digestion

with enzymes that cut in or adjacent to the 1 kb homology arms, followed by gel isolation and re-

purification with the Promega PureYield Plasmid Miniprep System. The resulting linear fragments

were similar in size to the circular vectors containing short homology arms. The cx43.4 vector was

digested with NdeI, which truncates the 5’ homology arm to 900 bp, and EcoRI, which truncates the

3’ homology arm to 700 bp. In the esama vector the EcoRI site sits upstream and next to the 5’ uni-

versal guide RNA sequence, leaving 31 bp of non-homologous sequence on the 5’ end of the 1 kb

arm. The EagI site sits 16 bp downstream of the 3’ UgRNA target sequence, adding 43 bp of non-

homologous sequence at the 3’ end of the 3’ homology arm.

All genes were targeted by injection into the cytoplasm of the 1 cell stage embryo 2 nl of solution

containing 150 pg of nCas9n mRNA, 25 pg of genomic sgRNA, 25 pg of UgRNA, and 10 pg of

donor DNA diluted in RNAse free ddH2O with the exception of rb1. The rb1 targeting mixture con-

tained 300 pg nCas9n mRNA. Gal4/VP16 pGTag donors were injected into embryos from the UAS

mRFP reporter line Tg(miniTol2 <14XUAS:mRFP, gCry:GFP>)tpl2 (Balciuniene et al., 2013).

Zebrafish targeted integration junction fragment analysis and recovery
of germline alleles
Injected embryos were screened for fluorescence reporter expression at 24, 48 and 72 hr post fertili-

zation on a Zeiss Discovery dissection microscope. Genomic DNA for PCR was extracted by
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digestion of single embryos in 50 mM NaOH at 95˚C for 30 min and neutralized by addition of 1/

10th volume 1M Tris-HCl pH 8.0. Junction fragments were PCR-amplified with primers listed in

Supplementary file 1 Table S6 and the PCR products TOPO-TA cloned before sequencing. For live

imaging of reporter expression, embryos were mounted on slides in 1.2% low-melt agarose in 160

ug/ml tricaine methanesulfonate, and images were captured on a Zeiss LSM 700 laser scanning con-

focal microscope. RFP or GFP positive embryos were raised to adulthood and outcrossed to wild-

type WIK adults to test for germline transmission of fluorescence in F1 progeny. Adults that were

injected as embryos with Gal4/VP16 constructs targeting tyr, esama, rb1 and msna were crossed to

Tg(miniTol2 <14XUAS:mRFP, gCry:GFP>)tpl2 (Balciuniene et al., 2013).

Zebrafish genomic southern blot analysis
Genomic Southern blot and knock-in cassette copy number analysis of zebrafish F1 progeny carrying

targeted integration alleles was performed as described previously (McGrail et al., 2011). Adult

zebrafish were euthanized in ice cold water, flash frozen in liquid nitrogen, and tissues ground with a

mortar and pestle. Genomic DNA was extracted from ground tissue using the Qiagen Blood and

Cell Culture Maxi Kit (Qiagen). 10 ug of genomic DNA was digested with restriction enzymes, elec-

trophoresed, and blotted using a Whatman Turboblotter Rapid Downward Transfer System (ISC Bio-

Express). DIG labeled probes were synthesized with PCR-DIG Probe Synthesis Kit (Roche), and

hybridization and chemiluminescence detection were performed with DIG Easy Hyb Granules/Wash

and Block Buffer Set and CSPD (Roche). Images were captured and analyzed on a BioRad ChemiDoc

XRS system. PCR primers used for genomic and donor specific probes are listed in

Supplementary file 1 Table S6.

Targeted integration junction fragment analysis in pig fibroblasts
Individual colonies were scored for GFP expression and prepared for PCR by washing with 1X PBS

and resuspension in PCR-safe lysis buffer (10 mM Tris-Cl, pH 8.0; 2 mM EDTA; 2.5% (vol/vol) Tween-

20; 2.5% (vol/vol) Triton-X 100; 100 mg/mL Proteinase K followed by incubation at 50˚C for 60 min

and 95˚C for 15 min. PCR was performed using 1X Accustart Supermix (Quanta) with the primers: 5’

junction F-5’ TAGAGTCACCCAAGTCCCGT-3’, R-5’- ACTGATTGGCCGCTTCTCCT-3’; 3’ junction

F-5’- GGAGGTGTGGGAGGTTTTT-3’, R-5’- TGATTTCATGACTTGCTGGCT-3’. ROSA TALEN

sequences are: TAL FNG NI NI HD HD NG NN NI NG NG HD NG NG NN NN; TAL RHD NN NG NI

HD NI HD HD NG NN HD NG HD NI NI NG.

K-592 flow cytometry
K-562 cells were assessed for GFP expression every 7 days for 28 days following electroporation.

Flow cytometry was conducted on an LSRII instrument (Becton Dickinson) and data was analyzed

using FlowJo software v10 (Becton Dickinson). Dead cells were excluded from analysis by abnormal

scatter profile and exclusion based on Sytox Blue viability dye (Thermo Fisher Scientific).

Junction PCR to detect targeted integration was conducted using external genomic primers out-

side of the 48 bp homology region and internal primers complementary to the expression cassette.

PCR was conducted using Accuprime HIFI Taq (Thermo Fisher Scientific). PCR products from bulk

population were sequenced directly.

Quantification and statistical analysis
Statistical analyses were performed using GraphPad Prism software. Data plots represent mean +/-

s.e.m. of n independent experiments, indicated in the text. p values were calculated with two-tailed

unpaired t-test. Statistical parameters are included in the Figure legends.

Data and software availability
Our webtool GTagHD was developed to assist users in designing oligonucleotides for targeted inte-

gration using the pGTag vector suite (Mann et al., 2019). GTagHD guides users through entering:

1) the guide RNA for cutting their cargo-containing plasmid; 2) the guide RNA for cutting their

genomic DNA sequence; 3) the genomic DNA sequence, in the form of a GenBank accession num-

ber or copy/pasted DNA sequence; and 4) the length of microhomology to be used in integrating

the plasmid cargo. If the user is utilizing one of the pGTag series plasmids, GTagHD can also
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generate a GenBank/ApE formatted file for that plasmid, which includes the user’s incorporated oli-

gonucleotide sequences. GTagHD is freely available online at http://genesculpt.org/gtaghd/ and for

download at https://github.com/Dobbs-Lab/GTagHD.
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