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Abstract We read jubmled wrods effortlessly, but the neural correlates of this remarkable ability

remain poorly understood. We hypothesized that viewing a jumbled word activates a visual

representation that is compared to known words. To test this hypothesis, we devised a purely

visual model in which neurons tuned to letter shape respond to longer strings in a compositional

manner by linearly summing letter responses. We found that dissimilarities between letter strings in

this model can explain human performance on visual search, and responses to jumbled words in

word reading tasks. Brain imaging revealed that viewing a string activates this letter-based code in

the lateral occipital (LO) region and that subsequent comparisons to stored words are consistent

with activations of the visual word form area (VWFA). Thus, a compositional neural code potentially

contributes to efficient reading.

Introduction
Reading is a recent cultural invention, yet we are remarkably efficient at reading words and even

jmulbed wrods (Figure 1A). What makes a jumbled word easy or hard to read? This question has

captured the popular imagination through demonstrations such as the Cambridge University effect

(Rawlinson, 1976; Grainger and Whitney, 2004), depicted in Figure 1A. Reading a word or a jum-

bled word can be influenced by a variety of factors such as visual, phonological and linguistic proc-

essing (Norris, 2013; Grainger, 2018). At the visual level, word reading is easy when similar shapes

are substituted (Perea et al., 2008; Perea and Panadero, 2014), when the first and last letters are

preserved (Rayner et al., 2006), when there are fewer transpositions (Gomez et al., 2008), when

word shape is preserved (Norris, 2013; Grainger, 2018). At the linguistic level, it is easier to read

frequent words, words with frequent bigrams or trigrams as well as shuffled words that preserve

intermediate units such as consonant clusters or morphemes (Norris, 2013; Grainger, 2018).

Despite these insights, it is not clear how these factors combine, what their distinct contributions

are, and more generally, how word representations relate to letter representations.

Here, we hypothesized that, viewing a string of letters activates a visual representation that is

compared with the representation of stored words. To probe visual processing, we devised a visual

search task in which subjects had to find an oddball target string among distractor strings. This task

does not require any explicit reading and is driven by shape representations in visual cortex

(Sripati and Olson, 2010a; Zhivago and Arun, 2014). An example visual search array containing

two oddball targets is shown in Figure 1B. It can be seen that finding OFRGET is easy among FOR-

GET, whereas finding FOGRET is hard (Figure 1B), showing that FOGRET is more visually similar to

FORGET. This makes FOGRET easy to recognize as FORGET, whereas OFRGET is harder. Thus, the

visual similarity of the jumbled words FOGRET and OFRGET to the original word FORGET
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(Figure 1C) potentially explains why transposing the middle letters renders a word easier to read

than transposing its edge letters. This example suggests that orthographic processing can poten-

tially be explained by purely visual processing (as indexed by visual search) without invoking any lin-

guistic factors. However, one must be careful since subjects may have been reading during visual

search, thereby activating non-visual lexical or linguistic factors.

To overcome this confound, we asked whether visual search involving letter strings can be

explained using a neurally plausible model containing only visual factors. We drew upon two well-

established principles of object representations in high-level visual cortex. First, perceptually similar

images elicit similar activity in single neurons (Op de Beeck et al., 2001; Sripati and Olson, 2010a;

Zhivago and Arun, 2014). Accordingly, we used visual search for single letters to create artificial

neurons tuned for letters. Second, the neural response to multiple objects is an average of the indi-

vidual object responses (Zoccolan et al., 2005; Ghose and Maunsell, 2008; Zhivago and Arun,

2014). Accordingly, we created neural responses to letter strings as a linear sum of single letter

responses. We define such responses as compositional because the response to wholes is explained

by the parts. This stands in contrast to proposals for open bigram detectors (Grainger and Whitney,

2004) and for local combination detectors (Dehaene et al., 2005; Dehaene et al., 2010)

according to which reading is enabled by neurons tuned for higher order combinations of letters.

Our model only assumes neurons tuned for letter shape and retinal position, as observed in high-

level visual cortex (Lehky and Tanaka, 2016). It does not capture any information about bigram or

higher order detectors, or about other lexical or linguistic factors. We used this model to explain

human performance on visual search as well as word recognition tasks. Finally, using brain imaging,

we identified the neural substrates for both the letter code as well as subsequent lexical decisions.

AOCCDRNIG TO A RSEEARCH AT CMABRIGDE UINERVTISY, IT 

DEOSN'T MTTAER IN WAHT OREDR THE LTTEERS IN A WROD 

ARE, THE OLNY IPRMOETNT TIHNG IS TAHT THE FRIST AND 

LSAT LTTEER BE AT THE RGHIT PCLAE. THE RSET CAN BE A 

TOATL MSES AND YOU CAN SITLL RAED IT WOUTHIT A 

PORBELM. TIHS IS BCUSEAE THE HUAMN MNID DEOS NOT 

RAED ERVEY LTETER BY ISTLEF, BUT THE WROD AS A 

WLOHE.
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Figure 1. Reading jumbled words. (A) We are extremely good at reading jumbled words, as illustrated by the

popular Cambridge University effect. (B) Visual search array showing two oddball targets (OFRGET and FOGRET)

among many instances of FORGET. OFRGET is easy to find but not FOGRET. (C) Schematic representation of

these strings in visual search space, arranged such that similar items (corresponding to harder searches) are

nearby. Thus, FOGRET is visually more similar to FORGET compared to OFRGET (i.e. d1 > d2). This makes

FOGRET easy to recognize as FORGET compared to OFRGET.
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Results
We performed six key experiments and several supporting experiments (reported in the Appendix).

In Experiment 1, subjects performed visual search involving single letters, and we used this to con-

struct artificial neurons tuned for letter shape. In Experiments 2–4, we show that search for longer

strings can be predicted using these artificial neurons with a simple compositional rule. In Experi-

ment 5, we show that this model also explains human performance on a commonly studied word rec-

ognition task. Finally, in Experiment 6, we measured brain activations during word recognition to

elucidate the underlying neural representations.

Experiment 1: Single letter searches
In Experiment 1, subjects had to perform an oddball visual search task involving uppercase letters

(n = 26), lowercase letters (n = 26) and digits (n = 10). An example search with two oddball targets is

shown in Figure 2A, illustrating how finding W is harder compared to finding T in an array of Ns. In

the actual experiment, search arrays consisted of only one oddball target among 15 distractors, and

subjects had to indicate the side of the screen (let/right) containing the target (see

Materials and methods).

Subjects were highly consistent in their responses (split-half correlation between average search

times of odd- and even-numbered subjects: r = 0.87, p<0.00005). We calculated the reciprocal of

search times for each letter pair which is a measure of distance between them (Arun, 2012). These

letter dissimilarities were significantly correlated with previously reported subjective dissimilarity rat-

ings (Appendix 1).

Since shape dissimilarity in visual search matches closely with neural dissimilarity in visual cortex

(Sripati and Olson, 2010a; Zhivago and Arun, 2014), we asked whether these letter distances can

be used to reconstruct the underlying neural responses to single letters. To do so, we performed a

multidimensional scaling (MDS) analysis, which finds the n-dimensional coordinates of all letters such

that their distances match the observed visual search distances. In the resulting plot for two dimen-

sions for uppercase letters (Figure 2B), nearby letters correspond to small distances that is long

search times. The coordinates of letters along a particular dimension can then be taken as the puta-

tive response of a single neuron. For example, the first dimension represents the activity of a neuron

that responds strongest to the letter O and weakest to X (Figure 2C). Likewise the second dimen-

sion corresponds to a neuron that responds strongest to L and weakest to E (Figure 2C). We note
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Figure 2. Single letter discrimination (Experiment 1). (A) Visual search array showing two oddball targets (W and T) among many Ns. It can be seen that

finding W is harder compared to finding T. The actual experiment comprised search arrays with only one oddball target among 15 distractors. (B) Visual

search space for uppercase letters obtained by multidimensional scaling of observed dissimilarities. Nearby letters represent hard searches. Distances

in this 2D plot are highly correlated with the observed distances (r = 0.82, p<0.00005). Letter activations along the x-axis are taken as responses of

Neuron 1 (blue), and along the y-axis are taken as Neuron 2 (red), etc. The tick marks indicate the response of each letter along that neuron. (C)

Responses of Neuron 1 and Neuron 2 shown separately for each letter. Neuron 1 responds best to O, whereas Neuron 2 responds best to L. (D)

Correlation between observed distances and MDS embedding as a function of number of MDS dimensions. The black line represents the split-half

correlation with error bars representing s.d calculated across 100 random splits.
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that the same set of distances can be obtained from a different set of neural responses: a simple

coordinate axis rotation would result in another set of neural responses with an equivalent match to

the observed distances. Thus, the estimated activity from MDS represents one possible solution to

how neurons should respond to individual letters so as to collectively produce behavior.

As expected, increasing the number of MDS dimensions led to increased match to the observed

letter dissimilarities (Figure 2D). Taking 10 MDS dimensions, which explain nearly 95% of the vari-

ance, we obtained the single letter responses of 10 such artificial neurons. We used these single let-

ter responses to predict their response to longer letter strings in all the experiments. Varying this

choice yielded qualitatively similar results. Analogous results for all letters and numbers are shown in

Appendix 1.

Experiment 2: Bigram searches
Next, we proceeded to ask whether searches for longer strings can be explained using single letter

responses. In Experiment 2, we asked subjects to perform oddball searches involving bigrams. We

chose seven uppercase letters (A, D, H, I, M, N, T) and combined them in all possible ways to obtain

49 bigram stimuli. Subjects performed all possible pairs of 49C2 searches with one bigram as target

and another as distractor (see Materials and methods). An example search is depicted in Figure 3A.

It can be seen that, finding TA among AT is harder than finding UT among AT. Thus, letter transposi-

tions are more similar compared to letter substitutions, consistent with the classic results on reading

(Norris, 2013; Grainger, 2018). To characterize the effect of bigram frequency, we included both

frequent bigrams (e.g. IN, TH) and infrequent bigrams (e.g. MH, HH). As before, subjects were

highly consistent in their performance (split-half correlation between odd and even-numbered sub-

jects across all bigrams: r = 0.82, p<0.00005).

Next, we asked whether bigram search performance can be explained using neurons tuned to sin-

gle letters estimated from Experiment 1. The essential principle for constructing bigram responses is

depicted in Figure 3B. In monkey visual cortex, the response of single neurons to two simulta-

neously presented objects is an average of the single object responses (Zoccolan et al., 2005;

Zhivago and Arun, 2014; Pramod and Arun, 2018). This averaging can easily be biased through

changes in divisive normalization (Ghose and Maunsell, 2008). Therefore, we took the response of

each neuron to a bigram to be a weighted sum of its responses to the constituent letters

(Figure 3B). Specifically, the response of a neuron to the bigram AB is given by rAB = w1rA + w2rB,

where rAB is the response to AB, rA and rB are its responses to the constituent letters A and B, and

w1, w2 are the summation weights reflecting the importance of letters A and B in the summation.

Note that the model also does not incorporate any information specific to a particular bigram and is

purely based on combining single letters. Note also that if w1 = w2, the bigram response to AB and

BA will be identical. Thus, discriminating letter transpositions necessarily requires asymmetric sum-

mation in at least one of the neurons.

To summarize, the letter model for bigrams has two unknown spatial weighting parameters for

each of the 10 neurons, resulting in 2 � 10 = 20 free parameters. To calculate dissimilarities between

a pair of bigrams, we calculated the Euclidean distance between the 10-dimensional response vec-

tors corresponding to the two bigrams. The data collected in the experiment comprised dissimilar-

ities (1/RT) from 1176 (49C2) searches involving all possible pairs of 49 bigrams. To estimate the

model parameters, we optimized them to match the observed bigram dissimilarities using standard

nonlinear fitting algorithms (see Materials and methods).

This letter model yielded excellent fits to the observed data (r = 0.85, p<0.00005; Figure 3C). To

assess whether the model explains all the systematic variance in the data, we calculated an upper

bound estimated from the inter-subject consistency (see Materials and methods). This consistency

measure (rdata = 0.90) was close to the model fit, suggesting that the model captured nearly all the

systematic variance in the data. As predicted in the schematic figure (Figure 3B), the estimated spa-

tial summation weights were unequal (absolute difference between w1 and w2, mean ± sd:

0.07 ± 0.04). To assess whether this difference is statistically significant, we randomly shuffled the

observed dissimilarities and estimated these weights. The absolute difference between shuffled

weights was significantly smaller than for the original weights (average absolute difference:

0.03 ± 0.02; p<0.005, sign-rank test across 10 neurons).

According to an influential account of word reading, specialized detectors are formed for fre-

quently occurring combinations of letters (Dehaene et al., 2005). If this were the case, searches
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Figure 3. Discrimination of strings is explained using single letters (Expts 2–4). (A) Example search array with two

oddball targets (UT and TA) among the bigram AT. It can be seen that UT is easier to find than TA, showing that

letter substitution causes a bigger visual change compared to transposition. (B) Schematic diagram of how the

bigram response is obtained from letter responses. Consider two neurons selective to single letters A, T and U.

These letters can be represented in a 2D space in which the response to each neuron lies along one axis. For each

neuron, we take the response to a bigram to be a weighted sum of the single letter responses. Thus, the bigram

response lies along the line joining the two stimuli. Note that the bigrams AT and TA can be distinguished only if

there is unequal summation. In the schematic, the first position is taken to have higher magnitude, as a result of

which the response to AT is closer to A than to T. (C) Observed dissimilarities between bigram pairs plotted

against predictions of the letter model for word-word pairs (red diamonds), frequent bigram pairs (blue circles)

and all other bigram pairs (gray dots), for Experiment 2. Model correlation is shown at the top left, along with the

data consistency for comparison. Asterisks indicate the statistical significance of the correlations (**** is

p<0.00005). (D) Average observed search reaction time for upright (dark) and inverted (pale) bigram searches for

repeated letter pairs (AA-BB pairs) and transposed letter pairs (AB-BA pairs) in Experiment 3. Asterisks indicate

statistical significance of the main effect of orientation in an ANOVA (see text for details; **** is p<0.00005). (E)

Mean modulation index of the summation weights, calculated as |w1-w2|/|w1+w2|, where w1 and w2 are the

bigram summation weights, averaged across the 10 neurons in the letter model for upright (dark) and inverted

(pale) bigrams. The asterisk indicates statistical significance calculated on a sign-rank test comparing the

modulation index across 10 neurons (* is p<0.05). (F) Observed dissimilarities between six-letter strings in visual

search (Experiment 4) plotted against predicted dissimilarities from the single letter model for word-word pairs

(red dots) and all other pairs (gray dots). Model correlation is shown at the top left with data consistency for

comparison. Asterisks indicate statistical significance of the correlations (**** is p<0.00005). (G) Cross-validated

model correlation for the letter model (dark) and the Orthographic Levenshtein distance (OLD) model (light). For

each model, the cross-validated correlation is the correlation between model predictions trained on one half of

the data and the observed response times from the other half. The upper bound on model fits is the split-half

correlation (rsh) shown in black with shaded error bars representing standard deviation across 1000 random splits.

The asterisk indicates statistical significance of the comparison obtained by estimating the fraction of bootstrap

samples in which the observed difference was violated (** is p<0.005). (H) Cross-validated letter model correlation

for word-word pairs and nonword-nonword pairs.
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involving frequent bigrams (e.g. TH, ND) or two letter words (e.g. AN, AM) should produce larger

model errors compared to infrequent bigrams, since our model does not incorporate any bigram-

selective units. Alternatively, if bigram discrimination was driven entirely by single letters, we should

find no difference in errors. In keeping with this latter prediction, we observed no visually obvious

difference in model fits for frequent bigram pairs or word-word pairs compared to other bigram

pairs (Figure 3C). To quantify this observation, we compared the model error (absolute difference

between observed and predicted dissimilarity) for the 20 bigram pairs with the largest mean bigram

frequency with the model error of the 20 pairs with the lowest mean bigram frequency. This too

revealed no systematic difference (mean ± sd of residual error: 0.10 ± 0.08 for the 20 most frequent

bigrams and words; 0.11 ± 0.09 for 20 least frequent bigrams; p=0.80, rank-sum test). Thus, model

errors are not systematically different for frequent compared to infrequent bigram pairs. We con-

clude that bigram search can be explained entirely using single neurons tuned to single letters.

Experiment 3: Upright versus inverted bigrams
In the letter model described above, the response to bigrams is a weighted sum of the single letter

responses. As detailed earlier, a critical prediction of this model is that the response to transposed

bigrams such as AB and BA will be different only if the summation weights are unequal. By contrast,

repeated letter bigrams such as AA and BB will remain discriminable regardless of the nature of

summation, since their response will be proportional to the respective single letter responses. Since

reading expertise can modulate sensitivity to letter transpositions, we reasoned that familiarity might

modulate the summation to make it more asymmetric. We therefore predicted that this would make

transposed letter searches (with AB as target and BA as distractor, or vice-versa) easier to discrimi-

nate in a familiar upright orientation compared to the (unfamiliar) inverted orientation. By contrast,

searches involving repeated letter bigrams (with AA as target and BB as distractor), which also have

a change in two letters, will remain equally easy in both upright and inverted orientations.

We tested this prediction in Experiment 3 by asking subjects to perform searches involving

upright and inverted bigrams (see Materials and methods). The essential findings are summarized in

Figure 3D. As predicted, subjects discriminated repeated letter bigrams (AA-BB searches) equally

well at both upright and inverted orientations, but were substantially faster at discriminating trans-

posed letter pairs (AB-BA searches) in the upright orientation (Figure 3D; for detailed analyses see

Appendix 2). We obtained similar results on comparing upright and inverted trigrams as well

(Appendix 2). Correspondingly, we observed a larger difference in the model summation weights for

upright compared to inverted bigrams (Figure 3E).

We conclude that familiarity leads to asymmetric spatial summation. We note, however, that this

familiarity could be due to purely visual familiarity of the letters or due to linguistic factors, which we

cannot distinguish in our study.

Experiment 4: Generalization to longer strings
The above analyses show that the letter-based model explains dissimilarities in visual search between

bigrams, which rarely contain valid words. We therefore wondered whether these results would

extend to longer strings which form words. In Experiment 4, subjects performed visual search involv-

ing six-letter strings that were either valid compound words (e.g. FORGET, TEAPOT) or pseudo-

words (FORPOT, TEAGET). The single letter model yielded excellent fits to the data (Figure 3F).

These fits were superior to a widely used measure of string similarity, the Orthographic Levenshtein

Distance (OLD) model (Figure 3G). Importantly, the letter model fits were equivalent for both word-

word pairs and nonword-nonword pairs (Figure 3H). These and other analyses are described in

Appendix 3.

We performed several experiments to investigate this for other string lengths. Again, the letter

model yielded excellent fits across all string lengths (Appendix 4). We also tested lowercase and

mixed-case strings because word shape is thought to play a role when letters vary in size or have

upward and downward deflections (Pelli and Tillman, 2007). Even here, the letter model, without

any explicit representation of overall word shape, was able to accurately predict most of the search

performance. These results are detailed in Appendix 4.
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Estimating letter dissimilarities from string dissimilarities
The letter model described is neurally plausible and compositional, but is based on dissimilarities

between letters presented in isolation. It could be that the representation of a letter within a bigram,

although compositional, differs from its representation when seen in isolation. To explore these pos-

sibilities we developed an alternate model in which bigram dissimilarities can be predicted using a

sum of (unknown) part dissimilarities at different locations. The resulting model, which we denote as

the part sum model, yielded comparable fits to the data. It is completely equivalent to the letter

model under certain conditions. Unlike the letter model which is nonlinear and could suffer from mul-

tiple local minima, the part sum model is linear and its parameters can be estimated uniquely using

standard linear regression. Its complexity can be drastically reduced using simplifying assumptions

without affecting model fits. These results are detailed in Appendix 5.

Experiment 5: Lexical decision task
The above experiments show that discrimination of strings in visual search can be explained by neu-

rons tuned for single letter shape with letter responses that combine linearly. Could the same shape

representation drive reading behavior? We evaluated this possibility through two separate word rec-

ognition experiments.

In Experiment 5, we used a widely used paradigm for word recognition, a lexical decision task

(Norris, 2013; Grainger, 2018), in which subjects have to indicate whether a string of letters is a

word or not using a keypress. To develop a quantitative model of lexical decision times, we drew

from models of lexical decision in which responses are thought to be based on accumulation of evi-

dence toward or against word status (Ratcliff et al., 2004; Ratcliff and McKoon, 2008).

Consider what happens when we view the string ‘PENICL’, as opposed to the string ‘EPNCIL’

(Figure 4A). Since PENICL is visually more similar to the stored word ‘PENCIL’, it is more likely to be

confused with a real word and will take longer to be adjudged a nonword. By contrast, the string

‘EPNCIL’ will take much less time to respond, since it is far away from any stored word (Dufau et al.,

2012; Yap et al., 2015). Thus, we predict that the response time for a nonword will be inversely pro-

portional to its distance to the nearest word (Figure 4A). We also predict that this comparison will

be affected by the strength of the stored word representation, such that matches to frequent words

are easier. In other words, we predict that response times for nonwords will be inversely propor-

tional to word frequency. Finally, by the same account, when we view the string ‘PENCIL’, the match

to the stored word PENCIL takes no time (the distance being negligible) and the response is there-

fore dominated by word frequency. We tested these two predictions on the observed lexical deci-

sion times.

In this experiment, the words comprised four, five or six-letter words and the nonwords consisted

of random strings and jumbled versions of the words (see Materials and methods). Subjects were

highly accurate in responding to both words and nonwords (mean ± sd: 96 ± 2% for words, 95 ± 3%

for nonwords). Importantly, their response times across words and nonwords were consistent

between subjects as evidenced by a significant split-half correlation (correlation between odd- and

even-numbered subjects: r = 0.59 for words, r = 0.73 for nonwords, p<0.00005).

We started by characterizing response times for words. To depict the systematic variation in word

response times, we plotted them in descending order (Figure 4B). Subjects took longer to respond

to infrequent words like MALICE compared to frequent words like MUSIC. As predicted, response

times for words showed a negative correlation with log word frequency (r = �0.5, p<0.00005 across

450 words). We also estimated other lexical factors such as the logarithm of the letter frequency

(averaged across letters of the string), logarithm of the bigram frequency (averaged across all

bigrams in the string), and the number of orthographic neighbors (i.e. number of nearby words in

the lexicon), which are standard measures in linguistic corpora (see Materials and methods).

To avoid overfitting, we trained a model based on each factor on one half of the subjects and

tested it on the other half. This cross-validated performance is shown for all lexical factors in

Figure 4C. It can be seen that the word frequency is the best predictor of word response times

(Figure 4C). To assess whether all lexical factors together predict word response times any better,

we fit a combined model in which the word response times are modeled as a linear sum of the four

factors. The combined model performance was slightly better than the performance of the word fre-

quency model alone (Figure 4C). To assess the statistical significance of these results, we performed
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a bootstrap analysis. On each trial, we trained all models on the response times obtained from con-

sidering only one randomly chosen half of subjects. We calculated the correlation between each

model’s predictions on the other half of the data, and repeated this procedure 1000 times. Across

these samples, the word frequency model performance rarely fell below all other individual models

(p<0.005), but was slightly worse than the combined model (p<0.05). We conclude that word

response times are determined primarily by word frequency and to a lesser degree by letter fre-

quency. We note that the dependence of word response times on word frequency is non-composi-

tional, since it cannot be explained by letter frequency.

Next we characterized the nonword response times. The nonword responses are plotted in

descending order in Figure 4D. Subjects took longer to respond to jumbled words like PENICL

(original word: PENCIL) with fewer transpositions compared to VTAOCE (original word: OCTAVE)

with more transpositions. To test whether nonword to word dissimilarity can predict nonword

response times, we took the letter model with 10 neurons (with single letter tuning from visual seach)

and its spatial summation weights to match the reciprocal of the nonword responses for each word

length. We optimized the spatial summation weights based on our observation that summation
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Figure 4. Lexical decision task behavior (Experiment 5). (A) Schematic of visual word space, with one stored word (PENCIL) and two nonwords (PENICL

and EPNCIL). We hypothesize that subjects would take longer to categorize a nonword when it is similar to a word, that is RT for PENICL would be

larger than for EPNCIL. Thus, 1/RT would be proportional to this dissimilarity. Likewise we predicted that subjects would be faster to respond to

frequent words which have a stronger stored representation. (B) Response times for words in the lexical decision task, sorted in descending order. The

solid line represents the mean categorization time for words and the shaded bars represent s.e.m. Some example words are indicated using dotted

lines. The split-half correlation between subjects (rsh) is indicated on the top. (C) Cross-validated model correlation between observed and predicted

word response times across all words for various models: log word frequency (blue), number of orthographic neighbors (orange), log mean bigram

frequency (purple), log mean letter frequency (cyan) and a combined model containing all these factors (red). Shaded error bars indicate mean ± sd of

the correlation across 1000 random splits of the observed data. The asterisk indicates statistical significance of the comparison obtained by estimating

the fraction of bootstrap samples in which the observed difference was violated (* is p<0.05, ** is p<0.005). (D) Response times for nonwords in the

lexical decision task, sorted in descending order. Conventions as in (A). (E) Observed reciprocal response times for nonwords in the lexical decision task

plotted against letter model predictions fit to the full data (450 nonwords). Some example nonwords are depicted. (F) Percent change in response time

(nonword-RT – word-RT)/word-RT for middle and edge letter transpositions and for middle and edge substitutions for observed data (left) and for letter

model predictions (right). MS: middle substitution. In both cases, asterisks represent statistical significance comparing the means of the corresponding

groups using a rank-sum test (* is p<0.05, ** is p<0.005, etc.). (G) Observed reciprocal response times plotted against the Orthographic Levenshtein

Distance (OLD), a popular model for edit distance between strings. (H) Cross-validated model correlation between observed and predicted nonword

RTs for the letter model, OLD model, lexical model and the combined neural+lexical model. Conventions are as in (B).
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weights varied across visual search experiments, and that this could reflect differing attentional

resources across letter positions as required for each experiment. This model yielded excellent fits

to the data (r = 0.70, p<0.00005; Figure 4E) that were comparable to the data consistency

(rdata = 0.84).

Importantly, this model was able to explain many classic phenomena in orthographic processing.

Specifically, subjects took longer to respond to nonwords obtained by transposing a letter of a

word, compared to nonwords obtained through letter substitution – these trends were present in

the model predictions as well (Figure 4F). Likewise, subjects took longer when the middle letters

were transposed compared to when the edge letters were transposed – as did the model predic-

tions (Figure 4F). These effects replicate the classic orthographic processing effects reported across

many studies (Grainger et al., 2012; Norris, 2013; Ziegler et al., 2013; Grainger, 2018).

Next we asked whether a widely used measure of orthographic distance could explain the same

data. We selected the Orthographic Levenshtein Distance (OLD), in which the net distance between

two strings is calculated as the minimum number of letter additions, transpositions and deletions

required to transform one string into another. The OLD model yielded relatively poorer predictions

of the data (r = 0.36, p<0.00005; Figure 4G).

We compared the letter model with two alternate models: the OLD model and a model based on

lexical factors. The OLD model is as described above. In the lexical model, the nonword response

time is modeled as a linear sum of log word frequency, log mean bigram frequency of words, log

mean bigram frequency of nonwords, # orthographic neighbors, log letter frequency. Since all three

models have different numbers of free parameters, we compared their performance using cross-vali-

dation: we trained each model on one-half of the subjects and evaluated it on the other half of the

subjects. The resulting cross-validated model fits are shown in Figure 4H. The letter model outper-

formed both the OLD model and the lexical model (model correlations: r = 0.56 ± 0.02, 0.33 ± 0.01

and 0.35 ± 0.01 for the neural, OLD and lexical models; fraction of bootstrap samples with

neural <other models: p<0.005; Figure 4H). To be absolutely certain that the superior fit of the let-

ter model was not simply due to having more free parameters, we compared the lexical model with

a reduced version of the letter model with only five free parameters (SID model; Appendix 5). Even

this reduced model yielded fits were better than the lexical model (SID model correlation:

r = 0.48 ± . 02). To assess whether the model trained on visual search data would also be able to

predict nonword response times, we took the model trained on the visual search data in Experiment

4, and calculated the word-nonword distances using this model. This too yielded a significant posi-

tive correlation (r = 0.39, p<0.00005) that was better than the OLD and lexical models. Finally, a

combined model – in which the neural and lexical model predictions were linearly combined –

proved to explain more variance than either model (Figure 4H).

In sum, we conclude that word response times are explained primarily by word frequency and

nonword response times are explained primarily by the distance between the nonword and the near-

est word calculated using the compositional neural code.

As a further test of the ability of this compositional code to explain word reading, we performed

an additional experiment in which subjects had to recognize the identity of a jumbled word. Here

too, response times were explained best by the letter model compared to lexical and OLD models

(Appendix 6).

Experiments 6–7: Neural correlates of lexical decisions
The above results show that visual discrimination of strings can be explained using a letter-based

compositional neural code, and that dissimilarities calculated using this code can explain human per-

formance on nonwords during lexical decision tasks. Here, we sought to uncover the brain regions

that represent this code and guide eventual lexical decisions. In Experiment 6, we recorded BOLD

responses using fMRI while subjects performed a lexical decision task.

Since lexical decision times for nonwords can be predicted using perceptual dissimilarity, we per-

formed a separate experiment to directly estimate perceptual dissimilarities using visual search

(Experiment 7; see Materials and methods). Additionally, to compare semantic representations in

different ROIs, we estimated the semantic dissimilarity by calculating the cosine distance between

GloVe (Pennington et al., 2014) feature vectors between word pair (see Materials and methods).

Importantly, the perceptual and semantic dissimilarities were uncorrelated (r = 0.03, p=0.55),
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thereby allowing us to identify regions with distinct or overlapping perceptual/semantic representa-

tions. The perceptual and semantic representations are visualized in Appendix 7.

We identified several possible regions of interest (ROIs) using a combination of functional local-

izers and anatomical considerations (see Materials and methods). These included the early and mid-

level visual areas (V1-V3 and V4), the object-selective lateral occipital region (LO), and two language

areas: the visual word form area (VWFA) which selectively responds to words and a broad region in

the temporal gyrus reading network (TG). Except for VWFA, all other ROIs were bilateral. The

inflated brain map of a representative subject with these ROIs is shown in Figure 5A.

In the event-related runs, subjects had to make a response on each trial to indicate whether a

string displayed on the screen was a word or not. A total of 64 five-letter strings (32 words and 32

nonwords formed using 10 single letters) were shown. Subjects also viewed the 10 single letters, to

which they had to make no response. Subjects were highly accurate (mean ±std of accuracy: 94 ±
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Figure 5. Lexical task fMRI (Experiment 6). (A) ROIs for an example subject, showing V1–V3 (cyan), V4 (blue), LO

(yellow), VWFA (red) and TG (maroon). (B) Example difference between perceptual and semantic spaces. In

perceptual space, the representation of TRAIL is closer to its visual similar counterpart TRIAL, whereas in semantic

space, its representation is closer to its synonym PATH. (C) Correlation between neural dissimilarity in each ROI

with perceptual dissimilarity between strings measured using visual search (Experiment 7). Error bars indicate

standard deviation of the correlation between the group perceptual dissimilarity and ROI dissimilarities calculated

repeatedly by resampling of dissimilarity values with replacement across 1000 iterations. Asterisks along the length

of each bar indicate statistical significance of the correlation between group behavior and group ROI dissimilarity

(** is p<0.005 across 1000 bootstrap samples). Horizontal lines indicate the fraction of bootstrap samples in which

the observed difference was violated (* is p<0.05, ** is p<0.005, etc.). All significant comparisons are indicated. (D)

Correlation between neural dissimilarity in each ROI with semantic dissimilarity for words. Other details are same

as in (C). (E) Correlation between mean VWFA activity (averaged across subjects and voxels) with mean lexical

decision time for both words (purple circles) and nonwords (green squares). Each point corresponds to one string

and example word and nonword is highlighted. Asterisks indicate statistical significance (**** is p<0.00005). (F)

Correlation between lexical decision time and mean activity within each ROI separately for words and nonwords.

Error bars indicate standard deviation across 1000 bootstrap splits. Asterisks indicate statistical significance (** is

p<0.005).

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 10 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.54846


4%) and showed consistent response time variations (split-half correlation between odd and even

subjects: rsh = 0.54 and 0.79 for words and nonwords, p<0.00005). As before, the lexical decision

time for words was negatively correlated with word frequency (r = �0.42, p<0.05). Likewise, the lexi-

cal decision times for nonwords were strongly correlated with the word-nonword dissimilarity mea-

sured in visual search in Experiment 7 (r = �0.68, p<0.00005). These results reconfirm the findings of

the previous experiment performed outside the scanner.

We then compared the overall brain activation levels for words, nonwords and letters in each

ROI. While V4 showed greater activation for words compared to nonwords, VWFA and TG regions

showed greater activation to nonwords compared to words, presumably reflecting greater engage-

ment to discriminate nonwords that are highly similar to words (Appendix 7). Although the visual

regions did not show differential overall activations, there could still be differential activation at the

population level for words and nonwords. This revealed above-chance decoding in all ROIs, and bet-

ter separation between words and substituted compared to transposed nonwords, matching the

trend observed in behavior (Appendix 7).

Neural basis of perceptual space
Next, we sought to compare the neural representations in each ROI with perceptual and semantic

representations. The perceptual and semantic representations can be quite distinct, as depicted in

Figure 5B: in perceptual space, TRAIL and TRIAL can be quite similar since one is obtained from the

other by transposing letters, but the word PATH is distinct. By contrast, in semantic space, TRAIL

and PATH have similar meanings and usage whereas TRIAL is distinct. Indeed, perceptual and

semantic dissimilarities across words were uncorrelated for the words used in this experiment

(r = 0.03, p=0.55).

To investigate these issues, we calculated the neural dissimilarity for each ROI between a given

pair of stimuli as the cross-validated Mahalanobis distance between the voxel-wise activations

evoked by the two stimuli. We selected this distance metric because it prioritizes the more reliable

voxels. The cross-validation procedure calculates Euclidean distances by multiplying activations

across runs to avoid bias due to noise. We then averaged this dissimilarity across subjects to get an

average neural dissimilarity for that ROI. We then compared this neural dissimilarity in each ROI with

perceptual dissimilarities estimated from visual search. This match to perceptual dissimilarity is

shown in Figure 5C. Among the ROIs tested, only the LO dissimilarities showed a significant correla-

tion (correlation between 1024 pairwise dissimilarities involving 32C2 words, 32C2 nonwords, and 32

word-nonword pairs: r = 0.16, p<0.00005; Figure 5C). A searchlight analysis confirmed that the

match to perceptual dissimilarities was strongest in a region centred around the bilateral LO region

(Appendix 7). Thus, neural dissimilarity in the LO region match best with the perceptual dissimilar-

ities observed in visual search. We therefore conclude that LO is the likely neural substrate for the

compositional letter code.

To further investigate the link between the compositional letter code and the LO representation,

we performed several additional analyses. First, we asked whether the neural activation of each voxel

in LO could be explained using a linear sum of the single letter activations. Indeed, model fits were

comparable for words and nonwords (Appendix 7). This parallels our finding that dissimilarity in

visual search was predicted equally well for word-word and nonword-nonword pairs (Figure 3H).

Second, we confirmed that both the neural tuning for single letters, and the summation weights esti-

mated from the behavioral data in the letter model were qualitatively similar to their counterparts

estimated from voxel activations in LO (Appendix 7).

In sum, we conclude that the LO region is the likely neural substrate for the compositional letter

code predicted from behavior.

Neural basis of semantic space
Next we compared neural representations in each ROI to semantic space. The match to semantic

space was significant only in the LO and TG regions (correlation between 496 pairwise dissimilarities

between words: r = 0.18 ± 0.05 for LO, 0.22 ± 0.04 for TG; Figure 5D). A searchlight analysis con-

firmed that semantic dissimilarities were best correlated with the TG region with additional peaks in

prefrontal and motor regions (Appendix 7).

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 11 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.54846


The above analysis shows that neural activations in LO are correlated with both perceptual and

semantic dissimilarities, but these correlations cannot be directly compared since they are based on

different pairs of stimuli. To investigate whether the neural representation in LO matches better with

perceptual or semantic space, we compared the match for word-word pairs alone. This revealed no

significant difference between the two correlations (r = 0.16 ± . 04 for LO with visual search,

r = 0.16 ± 0.05 for LO with semantic dissimilarites; p=0.49 across 1000 bootstrap samples). To con-

firm that there is no shared variance between the perceptual and semantic space correlation, we cal-

culated the partial correlation between neural dissimilarities in LO for word-word pairs and the

perceptual dissimilarities after factoring out the dependence on semantic dissimilarities (or vice-

versa). As expected, both partial correlations were significant (partial correlations: r = 0.13, p<0.005

with perceptual space; r = 0.17, p<0.0005 with semantic space). We conclude that both LO and TG

regions represent semantic space.

Neural basis of lexical decisions
If the LO region represents each string (word or nonword) using a compositional code, then accord-

ing to the preceding experiments, lexical decisions for words and nonwords must involve some com-

parison with stored word representations. Recall that lexical decision times for words are correlated

with word frequency, and lexical decision times for nonwords are correlated with word-nonword dis-

similarity. We therefore asked whether these lexical decision times are correlated with the average

activity (across voxels and subjects) in a given ROI. The resulting correlations are shown in

Figure 5F. Across the ROIs, only the VWFA showed a consistently positive correlation with lexical

decision times for both words and nonwords (r = 0.52, p<0.005 for words; r = 0.47, p<0.05 for non-

words, Figure 5E). A searchlight analysis confirmed that there was indeed a peak in the correlation

with lexical decision times centred on the VWFA, with additional peaks in the parietal and frontal

regions (Appendix 7). Interestingly, VWFA activations were larger for nonwords compared to words

(mean ± std of VWFA activations across subjects: 1.46 ± 0.22 for words, 2.03 ± 0.28 for nonwords;

p<0.005, signed-rank test across 17 subject activations). However, activations were similar for trans-

posed nonwords compared to substituted words (mean ±std VWFA activations across subjects:

1.42 ± 0.33 for transposed nonwords, 1.38 ± 0.33 for substituted nonwords; p=0.62, signed-rank

test). We conclude that lexical decisions are driven by the VWFA.

Discussion
Here, we investigated whether jumbled word reading can be explained using a purely visual repre-

sentation. We have two major findings. First, we show that a compositional neural code explains

visual search for string and responses to nonwords during reading tasks including many orthographic

processing phenomena. Second, when subjects performed a lexical decision task, neural dissimilar-

ities in the LO region matched best with perceptual dissimilarities, and lexical decision times were

correlated with the activation of the visual word form area (VWFA). This suggests that viewing a

string of letters activates a compositional neural code in LO that is subsequently matched with

stored word representations in the VWFA. Below we discuss these findings in relation to the existing

literature.

Relation to models of reading
Our compositional letter code stands in stark contrast to existing models of reading. Existing models

of reading assume explicit encoding of letter position and do not account for letter shape

(Gomez et al., 2008; Davis, 2010; Norris and Kinoshita, 2012; Norris, 2013). By contrast, our

model encodes letter shape explicitly and position implicitly through asymmetric spatial summation.

The implicit coding of letter position avoids the complication of counting transpositions

(Yarkoni et al., 2008; Yap et al., 2015). Our model can thus easily be extended to any language by

simply estimating letter dissimilarities using visual search and then estimating the unknown summa-

tion weights from visual search for longer strings.

Unlike existing models of reading, our compositional letter code is neurally plausible and

grounded in well-known principles of object representations. The first principle is that images that

elicit similar activity across neurons in high-level visual cortex will appear perceptually similar (Op de

Beeck et al., 2001; Sripati and Olson, 2010a; Zhivago and Arun, 2014). This is non-trivial because
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it is not necessarily true in lower visual areas or in image pixels (Ratan Murty and Arun, 2015). We

have turned this principle around to construct artificial neurons whose shape tuning matches visual

search. The second principle is that the neural response to multiple objects is typically the average

of the individual object responses (Zoccolan et al., 2005; Sripati and Olson, 2010b) that can be

biased toward a weighted sum (Ghose and Maunsell, 2008; Bao and Tsao, 2018). Finally, we note

that our letter code assumes no explicit calculations of letter position in a word, since the neurons in

our model only need to be tuned for retinal position. We speculate that these neurons may be tuned

not only to retinal position but also to the relative size and position of letters, as observed in high-

level visual cortex (Sripati and Olson, 2010a; Vighneshvel and Arun, 2015).

Relation to theories of word recognition
We have found that lexical decisions for nonwords are driven by the dissimilarity between the

viewed string and the nearest word. This idea is consistent with the well-known Interactive Activation

model (McClelland and Rumelhart, 1981; Rumelhart and McClelland, 1982), where viewing a

string activates the nearest word representation. However, the Interactive Activation model does

not explain lexical decisions or scrambled word reading, and also does not integrate letter shape

and position into a unified code. Our findings are consistent with previous work showing that non-

word responses are influenced by the number of orthographic neighbors (Yap et al., 2015). Like-

wise, we found word frequency to be a major factor influencing lexical decisions, in keeping with

previous work (Ratcliff et al., 2004; Dufau et al., 2012; Yap et al., 2015). We note also that per-

sonal familiarity with words, as opposed to the word frequency estimated from text corpora, might

also influence lexical decisions (Colombo et al., 2006; Kuperman and Van Dyke, 2013). We have

gone further to demonstrate a unified letter-based code that integrates letter shape and position,

and localized the underlying neural substrates of the letter code to the LO region, and the compari-

son process to the VWFA. We propose that the compositional shape code provides a quick match

to unscramble a word, failing which subjects may initiate more detailed symbolic manipulation.

The success of our letter code challenges the widely held belief that efficient visual processing of

letter strings requires higher-order detectors for letter combinations (Grainger and Whitney, 2004;

Dehaene et al., 2005; Dehaene et al., 2015; Grainger, 2018). The presence of these specialized

detectors should have caused larger model errors for valid words and frequent n-grams, but we

observed no such trend (Figure 3). However, it is possible that there are combination detectors in

subsequent stages where multiple letters have to activate single syllables. So what happens to visual

letter representations upon expertise with reading? Our comparison of upright and inverted bigrams

suggests that reading should increase letter discrimination and increase the asymmetry of spatial

summation (Figure 3D,E). This is consistent with our recent finding that reading makes words more

predictable from letters (Agrawal et al., 2019). It is also consistent with differences in letter position

effects for symbols and letters (Chanceaux and Grainger, 2012; Scaltritti et al., 2018). We propose

that both processes may be driven by visual exposure: repeated viewing of letters makes them more

discriminable (Mruczek and Sheinberg, 2005), while viewing letter combinations induces asymmet-

ric spatial weighting or increased separability. Whether these effects require active discrimination

such as letter-sound association training or can be induced even by passive viewing will require com-

paring letter string discrimination under these paradigms.

Neural basis of word recognition
Our results elucidate the neural representations that guide lexical decision in several ways. First, we

found that perceptual dissimilarities between strings, regardless of word/nonword status, matched

best with neural representations in the LO region (Figure 5C). This is consistent with similar findings

using letters (Agrawal et al., 2019) and natural objects (Khaligh-Razavi and Kriegeskorte, 2014).

Second, we have found that semantic dissimilarities between words matched both with temporal

gyrus regions as well as with LO (Figure 5D). The former finding is consistent with temporal gyrus

regions participating in the reading network (Friederici and Gierhan, 2013), while the latter is con-

cordant with other semantic properties such as animacy encoded in LO (Bracci and Op de Beeck,

2016; Proklova et al., 2016; Thorat et al., 2019). Whether these semantic properties are encoded

directly by LO or are a consequence of feedback from language/semantic areas can be distinguished

using methods with higher temporal resolution such as MEG or intracranial recordings.
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Third, our results confirm and extend our understanding of the VWFA. We found a striking corre-

lation between lexical decision times for words as well as nonwords in the VWFA (Figure 5E), sug-

gesting that it is involved in comparing the viewed string with stored words. The finding that VWFA

activity is positively correlated with word response times (which reflect word frequency as shown in

Figure 4C) is consistent with previous studies showing that VWFA activity shows weak activity for

frequent words (Kronbichler et al., 2004; Vinckier et al., 2007). The finding that VWFA activity is

correlated with nonword response times (which reflect perceptual distance to the corresponding

word, as shown in Figure 5E), is consistent with observations that VWFA is modulated by ortho-

graphic similarity to words (Vinckier et al., 2007; Baeck et al., 2015). Finally, our finding that VWFA

activations were stronger for nonwords compared to words (Figure 5E), has also been observed

recently (Bouhali et al., 2019). While this might seem paradoxical considering its status as a word

form area, the higher activity for nonwords is likely due to many of them being perceptually similar

to words, making the lexical decision difficult. That VWFA is activated strongly for hard lexical deci-

sions is also concordant with its higher activation for inverted compared to upright words while mak-

ing lexical decisions (Carlos et al., 2019).

Fourth, our results point a way to resolve contradictory findings regarding VWFA in the literature.

Some studies have reported equal activity in VWFA for words and nonwords (Baker et al., 2007),

and others have reported higher activity for word-like stimuli (Vinckier et al., 2007; Glezer et al.,

2009) – but these observations have been made while subjects performed tasks orthogonal to read-

ing. There have been surprisingly few studies of VWFA activations during word processing tasks

(Baeck et al., 2015; Sussman et al., 2018; Bouhali et al., 2019; Carlos et al., 2019). By comparing

brain activations directly with behavioral responses during a lexical decision task, we found an inter-

esting functional dissociation whereby orthographic (perceptual) similarity between strings was

encoded not by VWFA but by LO (Figure 5C) and lexical decisions were encoded by VWFA and not

LO (Figure 5F). This finding implies that most orthographic processing phenomena are driven by

compositional neural representations in LO, rather than by the VWFA. These findings are consistent

with recent intracranial EEG recordings that report a progression from early to late, or letter-level to

word-level representations along the ventral occipitotemporal cortex regions (Thesen et al., 2012;

Hirshorn et al., 2016; Lochy et al., 2018). We suggest that fine-grained comparisons between brain

activations and behavior will elucidate the roles of the many cortical areas involved in reading.

Does the compositional letter code explain orthographic processing?
Our letter code explains many orthographic processing phenomena reported in the literature. Its

integrated representation of both letter shape and position explains both letter transposition and

substitution effects and their relative importance (Figure 4F). Its asymmetric spatial weighting favor-

ing the first letter (Appendix 3), explains the first-letter advantage observed previously

(Scaltritti et al., 2018). It also explains why increasing letter spacing can benefit reading in poor

readers, presumably because it increases asymmetry in spatial summation (Zorzi et al., 2012).

To elucidate how various jumbled versions of a word are represented according to this neural

code, we calculated responses of the letter model trained on data from Experiment 4, and visualized

the distances using multidimensional scaling (Figure 6A). It can be seen transposing the edge letters

(OFRGET) results in a bigger change than transposing the middle letters (FOGRET), thus explaining

many transposed letter effects (Norris, 2013). Likewise, it can be seen that substituting a dissimilar

letter (FORXET) leads to a large change compared to substituting a similar letter (FORCET). Replac-

ing G with C in FORGET leads to a smaller change than replacing with X, thus explaining how prim-

ing is stronger when similar letters are substituted (Marcet and Perea, 2017). Finally, the letter

subset FRGT is closer to FORGET than the same letters reversed (TGRF), thereby explaining subset

priming (Grainger and Whitney, 2004; Dehaene et al., 2005).

Finally, as a powerful demonstration of this code, we used it to arbitrarily manipulate reading dif-

ficulty along a sentence (Figure 6B), or across multiple transpositions and even number substitutions

(Figure 6C). We propose that this compositional neural code can serve as a powerful baseline for

the purely visual shape-based representation triggered by viewing words, thereby enabling the

study of higher order linguistic influences on reading processes.
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Relation between word recognition and reading sentences
Our results constitute an important first step in understanding how we read single words, but read-

ing sentences is much more complex, with potentially many words sampled with each eye movement

(Rayner, 1998). Our ability to sample multiple letters or words at a single glance is limited by two

factors. The first is our visual acuity, which reduces with eccentricity. The second is crowding, by

which letters become unrecognizable when flanked by other letters – this effect increases with

eccentricity (Pelli and Tillman, 2008).

The visual search experiments in our study involved searching for an oddball target (consisting of

multiple letters) among multiple distractors. This would most certainly have involved detecting and

making saccades to peripheral targets. By contrast, the word recognition tasks in our study involved

subjects looking at words presented at the fovea. Our finding that visual search dissimilarity explains

word recognition then implies that shape representations are qualitatively similar in the fovea and

periphery. Furthermore, the structure of the letter model suggests a possible mechanistic explana-

tion for crowding. Neural responses might show greater sensitivity to spatial location at the fovea

A Predicted visual word space

HUAMN  MIDN  DOSE  NOT  RDEA  YVERE  TRETLE  BY  FSLTEI

HUAMN  DNMI  DEOS  NOT  DAER  EVREY  ETTELR  BY  ITSLEF

ANMHU  DINM  SOED  NOT  RDEA  ERVEY  LTETER  BY  ITSLEFANMHU  DINM  SOED  NOT  RDEA  ERVEY  LTETER  BY  ITSLEF
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HUAMN  MIDN  DOSE  NOT  RDEA  YVERE  TRETLE  BY  FSLTEI

Predicted reading difficulty
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Figure 6. Predicting reading difficulty using the letter model. (A) Visual word space predicted by the letter model

for a word (FORGET) and its jumbled versions. Letter model predictions were based on training the model on

compound words (Experiment 4). The plot was obtained by performing multidimensional scaling on the pairwise

dissimilarities between strings predicted by the letter model. It can be seen that classic features of orthographic

processing are captured by the letter model, including priming effects such as FRGT (green) being more similar to

FORGET than TGRF (red). (B) The letter model can be used to sort jumbled words by their reading difficulty,

allowing us to create any desired reading difficulty profile along a sentence. Top row: Sentence with increasing

reading difficulty. Middle row: sentence with fluctuating reading difficulty. Bottom row: sentence with decreasing

reading difficulty. (C) The letter model yields a composite measure of reading difficulty that combines letter

substitution and transposition effects. Sentences with digit substitutions (second row) can thus be placed along a

continuum of reading difficulty relative to other sentences (first, third and fourth rows) with increasing degree of

scrambling.
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compared to the periphery, leading to more discriminable representations of multiple letters. Alter-

natively, neural responses to multiple letters might be more predictable from single letters at the

fovea but not in the periphery. Both possibilities would predict reduced recognition with closely

spaced flankers. Distinguishing these possibilities will require testing neural responses in higher

visual areas to single letters and multi-letter strings of both familiar and unfamiliar scripts. Ultimately

understanding reading fully will require not only asking how letters combine to form words but

also how words combine to form larger units of meaning (Pallier et al., 2011; Nelson et al., 2017).

Materials and methods
All subjects had normal or corrected-to-normal vision and gave informed consent to an experimental

protocol approved by the Institutional Human Ethics Committee of the Indian Institute of Science

(IHEC # 6–15092017). All subjects were fluent English-speaking students at the institute, where

English is the medium of instruction. All subjects were multi-lingual and knew at least one other

Indian language apart from English.

Experiment 1 – Single letter searches
Procedure
A total of 16 subjects (eight males, 24.4 ± 2.5 years) participated in this experiment. Subjects were

seated comfortably in front of a computer monitor placed ~60 cm away under the control of custom

programs written in Psychtoolbox (Brainard, 1997) and MATLAB. In all experiments, we selected

sample sizes based on our previous studies which yielded highly consistent data (Agrawal et al.,

2019).

Stimuli
Single letter images were created using the Arial font. There were 62 stimuli in all comprising 26

uppercase letters (A-Z), 26 lowercase letters (a-z), and 10 digits (0–9). Uppercase stimuli were scaled

to have a height of 1˚.

Task
Subjects were asked to perform an oddball search task without any constraints on eye movements.

Each trial began with a fixation cross shown for 0.5 s followed by a 4 � 4 search array (measuring 40˚

by 25˚). The search array always contained only one oddball target with 15 identical distractors. Sub-

ject were instructed to locate the oddball target as quickly and as accurately as possible, and

respond with a key press (‘Z’ for left, ‘M’ for right). A red line divided the screen in two halves. The

search display was turned off after the response or after 10 s, whichever was sooner. All stimuli were

presented in white against a black background. Incorrect or missed trials were repeated after a ran-

dom number of other trials. Subjects completed a total of 3782 correct trials (62C2 letter pairs x two

repetitions with either letter as target once). For each search pair, the oddball target appeared

equally often on the left and right sides so as to avoid creating any response bias. Only correct

responses were considered for further analysis. The main experiment was preceded by 20 practice

trials involving unrelated stimuli.

Data analysis
Subjects were highly accurate on this task (mean ±std: 98 ± 1%). Outliers in the reaction times were

removed using built-in routines in MATLAB (isoutlier function, MATLAB R2018a). This function

removes any value greater than three scaled absolute deviations away from the median, and was

applied to each search pair separately. This step removed 6.8% of the response time data, but we

obtained qualitatively similar results without this step.

Estimation of single letter tuning using multidimensional scaling
To estimate neural responses to single letters from the visual search data, we used a multidimen-

sional scaling (MDS) analysis. We first calculated the average search time for each letter pair by aver-

aging across subjects and trials. We then converted this search time (RT) into a distance measure by

taking its reciprocal (1/RT). This is a meaningful measure because it represents the underlying rate of
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evidence accumulation in visual search (Sunder and Arun, 2016), behaves like a mathematical dis-

tance metric (Arun, 2012) and combines linearly with a variety of factors (Pramod and Arun, 2014;

Pramod and Arun, 2016; Sunder and Arun, 2016). Next, we took all pairwise distances between

letters and performed MDS to embed letters into n dimensions, where we varied n from 1 to 15.

This yielded n-dimensional coordinates corresponding to each letter, whose distances matched best

with the observed distances. We then took the activation of each letter along a given dimension as

the response of a single neuron. Throughout we performed MDS embedding into 10 dimensions,

resulting in single letter responses of 10 neurons. We obtained qualitatively similar results on varying

this number of dimensions.

Estimation of data reliability
To obtain upper bounds on model performance, we reasoned that any model can predict the data

as well as the consistency of the data itself. Thus, a model trained on one half of the subjects can

only predict the other half as well as the split-half correlation rsh. This process was repeated 100

times to obtain the mean and standard deviation of the split-half correlation. However, when a

model is trained on all the data, the upper bound will be larger than the split-half correlation. We

obtained this upper bound, which represents the reliability of the entire data (rdata) by applying a

Spearman-Brown correction on the split-half correlation, as given by rdata = 2rsh/(rsh+1).

Experiment 2 – Bigram searches
A total of eight subjects (five male, aged 25.6 ± 2.9 years) took part in this experiment. We chose

seven uppercase letters (A, D, H, I, M, N, T) and combined them in all possible ways to obtain 49

bigram stimuli. These letters were chosen to maximize the number of two-letter words for example

HI, IT, IN, AN, AM, AT, AD, AH, and HA. Letters measured 3˚ along the longer dimension. Subjects

completed 2352 correct trials (49C2 search pairs x two repetitions). All other details were identical to

Experiment 1. Letter/Bigram frequencies were obtained from an online database (http://norvig.com/

mayzner.html).

Data analysis
Subjects were highly accurate on this task (mean ±std: 97.6 ± 1.8%). Outliers in the reaction times

were removed using built-in routines in MATLAB (isoutlier function, MATLAB R2018a). This step

removed 8% of the response time data, but we obtained qualitatively similar results without this

step.

Estimating letter model parameters from observed dissimilarities
The total dissimilarity between two bigrams in the letter model is calculated by calculating the aver-

age dissimilarity across all neurons. For each neuron, the dissimilarity between bigrams AB and CD

is given by:

d AB;CDð Þ ¼ rAB� rCDj j ¼ j w1rA þw2rBð Þ� w1rC þw2rDð Þj

where rA; rB; rC and rD are the responses of the neuron to individual letters A, B, C and D respec-

tively (derived from single letter dissimilarities), and w1; w2 are the spatial summation weights for the

first and second letters of the bigram. Note that w1; w2 are the only free parameters for each

neuron.

To estimate the spatial weights of each neuron, we adjusted them so as to minimize the squared

error between the observed and predicted dissimilarity. This adjustment was done using standard

gradient descent methods starting from randomly initialized weights (nlinfit function, MATLAB

R2018a). We followed a similar approach for experiments involving longer strings.

Experiment 3 – Upright and inverted bigrams
Methods
A total of eight subjects (six males, aged 24 ± 1.5 years) participated in this experiment. Six upper-

case letters: A, L, N, R, S, and T were combined in all pairs to form a total of 36 stimuli. These upper-

case letters were chosen because their images change when inverted (as opposed to letters like H

that are unaffected by inversion), and were chosen to maximize the occurrence of frequent bigrams.
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The same stimuli were inverted to create another set of 36 stimuli. Detailed analyses for this experi-

ment are presented in Appendix 2.

Experiment 4 – compound words
A total of eight subjects (four female, aged 25 ± 2.5 years) participated. Twelve three-letter words

were chosen: ANY, FOR, TAR, KEY, SUN, TEA, ONE, MAT, GET, PAD, DAY, POT. Each word was

jumbled to obtain 12 three-letter nonwords containing the same letters. The 12 words were com-

bined to form 36 compound words (shown in Appendix 3), such that they appeared equally on the

left and right half of the compound words. Detailed analyses for this experiment are included in

Appendix 3.

Calculation of Orthographic Levenshtein Distance (OLD)
For each pair of strings, we calculated the OLD metric using built-in MATLAB function ‘editdistance’.

This function estimates the number of insertions, deletions, or substitutions are required to convert

one string to other. We set the substitution cost to 2, but obtained qualitatively similar results on

varying this cost.

Experiment 5 – Lexical decision task
Procedure
A total of 16 subjects (nine male, aged 24.8 ± 2.1 years) participated in this task as well as the jum-

bled word task.

Stimuli
The stimuli comprised 450 words + 450 nonwords. Words were chosen to avoid multiple possible

anagrams (i.e. we avoid words like RATS that could be anagrammed as STAR, ARTS) and to maxi-

mize the range of word frequency. The nonwords were either random strings or modified versions of

the 450 words (Table 1). Strings were presented in uppercase and subtended 1˚ in visual angle.

Task
Each trial began a fixation cross shown for 0.75 s followed by a letter string for 0.2 s after which the

screen went blank. The trial ended either with the subject’s response or after at most 3 s. Subjects

were instructed to press ‘Z’ for words and ‘M’ for nonwords as quickly and accurately as possible. All

stimuli were presented at the centre of the screen and were white letters against a black back-

ground. Before starting the main task, subjects were given 20 practice trials using other words and

nonwords not included in the main experiment.

Data analysis
Some nonwords were removed from further analysis due to low accuracy (n = 8, average accu-

racy <20%). Subjects made accurate responses for both words and nonwords (mean ±std of

Table 1. Non-word stimuli in lexical decision task (Experiment 5).

Variations of word ABCDE four letter words five letter words six letter words Total

1) Edge transpositions: BACDE or ABCED 15 15 20 50

2) Middle transposition: ACBDE or ABDCE 15 15 20 50

3) Two-step edge transposition: CBADE or ABEDC 0 20 30 50

4) Two-step middle transposition: ADCBE 0 20 30 50

5) Random transposition: CDABE, ACDBE, etc. 25 35 40 100

6) Edge substitution: MZCDE or ABCMZ 15 15 20 50

7) Middle substitution: ABMZE 15 15 20 50

8) Random substitution and permutation:
MACZE, AMDEZ, etc.

15 15 20 50

Total 100 150 200 450
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accuracy: 96 ± 2% for words, 95 ± 3% for nonwords). Outliers in the reaction times were removed

using built-in routines in MATLAB (isoutlier function, MATLAB R2018a). This step removed 6.4% of

the data, but we obtained qualitatively similar results without this step.

Experiment 6 (Lexical Decision Task – fMRI)
A total of 17 subjects (10 males, 25 ± 4.2 years) participated in this experiment. All subjects were

screened for safety and comfort beforehand to avoid adverse outcomes in the scanner.

Stimuli
The functional localizer block included English words, objects, scrambled words, and scrambled

objects. In each run, 14 images were randomly selected from a pool of images. The English words

list comprised of 90 five-letter words. Each word was divided into grids of dimension 9 � 3. Scram-

bled words were generated by randomly shuffling the grids. The object pool comprised 80

naturalistic objects. To generate scrambled objects, the phase of the Fourier transformed images

was scrambled and then reconstructed back using inverse Fourier transform. The object images

were about 4.5˚ along the longer dimension and the height of the word stimuli subtended 2˚ of visual

angle.

The event block consisted of 10 single letters and 64 five-letter strings (32 words and 32 non-

words formed using these single letters). The stimulus set comprised of 64 five-letter words and non-

words. The words were chosen from a wide range of frequency of occurrence and the nonwords

were created by manipulating the chosen words that is They were: 1) 8-middle transposed version of

words, 2) 8-edge transposed version of words, 3) 8-middle substituted version of words, and 4) 8-

edge substituted version of words. The stimuli subtended 2˚ in height, which was the same as in the

localizer block. All stimuli were presented as white against a black background.

Procedure
In the localizer block, a total of 16 images were presented for 0.8 s with an inter stimulus interval of

0.2 s. There were 14 unique stimuli and 2 of them repeated at random time point, in which subjects

performed one-back task. Each block ended with a blank screen with fixation cross present for 4 s.

Thus, each block lasted 20 s. Each block was repeated thrice in each run.

In the event-related design block, an image was presented at the centre of the screen for 300 ms

followed by 3.7 s of blank screen with a fixation cross. In a run, all 74 stimuli were presented once

along with 16 trials of fixation cross to jitter inter stimulus interval. Hence there were a total of 92 tri-

als including 4 s fixation trials at the start and end of each run. Each run lasted 376 s. Subjects per-

formed lexical decision task only on strings and were instructed to not press any key for single

letters. Overall, subjects completed 2 runs of localizer block, 8 runs of event block and a structural

scan block.

Data acquisition
Subjects viewed images in a mirror-based projection system. Functional MRI data was acquired using

a 32-channel head coil on a 3T Siemens Skyra scanner at HealthCare Global Hospital, Bengaluru.

Functional scans were performed using a T2*-weighted gradient-echo-planar imaging sequence with

the following parameters: TR = 2 s, TE = 28 ms, flip angle = 79o, voxel size = 3�3 � 3 mm3, field of

view = 192�192 mm2, and 33 axial-oblique slices covering the whole brain. Anatomical scans were

performed using T1-weighted images with the following parameters: TR = 2.30 s, TE = 1.99 ms, flip

angle = 9˚, voxel size = 1�1 � 1 mm3, field of view = 256�256 � 176 mm3.

Data preprocessing
All raw fMRI data were processed using the SPM 12 toolbox (https://www.fil.ion.ucl.ac.uk/spm/soft-

ware/spm12/, RRID:SCR_007037). Raw images were realigned, slice-time corrected, co-registered

with the anatomical image, segmented, and finally normalized to the MNI305 anatomical template.

The results were qualitatively similar without normalization. Smoothing operation was performed

only on functional localizer blocks using a Gaussian kernel with FWHM of 5 mm. All SPM parameters

were set to default and the voxel size after normalization was set to 3 � 3�3 mm3. Prior to normali-

zation, the data was preprocessed using GLMdenoise v1.4 (Kay et al., 2013). This step improved

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 19 of 58

Research article Neuroscience

https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
https://scicrunch.org/resolver/SCR_007037
https://doi.org/10.7554/eLife.54846


the signal-to-noise ratio in the data by regressing out the noise pattern common across all the voxels

in the brain. The noise pattern is estimated from voxels unrelated to the task. The activity corre-

sponding to each condition was estimated by modeling the denoised data using a generalized linear

model (GLM) in SPM after removing the low frequency drift using a high-pass filter with a cutoff at

128 s. The event block data was modeled using 89 regressors (74 stimuli + one fixation + six motion

regressors + eight runs). The localizer block data was modeled using 13 regressors (four stimuli +

one fixation + six motion regressors + two runs).

ROI definitions
All the regions of interest (ROI) were defined using functional localizer while taking the anatomical

location into consideration. Early visual area was defined as the region that responds more to the

scrambled object than fixation cross. This functional region was further parsed into V1-V3 and V4

using an anatomical mask from SPM anatomy toolbox (Eickhoff et al., 2005). Lateral Occipital (LO)

region was defined as a group of voxels that responded more to objects than scrambled objects.

The voxels in the LO region was restricted to Inferior Temporal Gyrus, Inferior Occipital Gyrus, and

Middle Occipital Gyrus. These anatomical regions were obtained from Tissue Probability Map (TPM)

labels in SPM 12. Visual Word Form Area (VWFA) was defined as a region that responded more for

words than scrambled words within fusiform Gyrus. The activity for known words was also higher in

Superior and Middle Temporal regions. These groups of voxels were grouped under Temporal

Gyrus (TG) label. For each contrast, voxel-level threshold of p<0.001 (uncorrected) or cluster level

threshold p<0.05 (FWE correction) was used to obtain a contiguous region. For one subject, very

few VWFA voxels cross the pre-specified threshold. Hence, the threshold was lowered to p=0.1

(uncorrected). The VWFA voxels were restricted to top-40 voxels (based on T-value in the function

localizer contrast). All these regions were visualized on the inflated brain using the BSPMVIEW tool-

box (http://www.bobspunt.com/bspmview/).

Calculation of neural dissimilarity (fMRI)
For each ROI and subject, the pair-wise dissimilarity between any two image pairs was computed

using the cross-validated Mahalanobis distance (rsa.distanceLDC function, RSA toolbox) (Nili et al.,

2014). Briefly, it calculates the leave-one-run-out Mahalanobis distance, and the final dissimilarity

matrix is estimated by averaging across all the runs. Outliers in dissimilarity values across subjects

were removed using built-in routines in MATLAB (isoutlier function, MATLAB R2018a). This function

was applied to each dissimilarity pair separately, and removed 12.3% of the dissimilarity data. The

results were qualitatively similar without this step. The median dissimilarity across all the subjects

was considered for further analysis. We obtained qualitatively similar results for other distance

measures.

Calculation of semantic dissimilarity
The semantic distance between every pair of words was computed as the cosine distance between

the GloVe feature vectors (Pennington et al., 2014) activated by the two words (MATLAB function

word2vec). These features are based on the co-occurrence statistics of words in a large text corpus,

and therefore reflect semantic dissimilarity rather than purely visual dissimilarity.

Experiment 7 (Five-letter string searches)
A total of 11 subjects (six males, 26 ± 2.7 years) participated in this experiment, of which seven also

participated in Experiment 6. Stimuli were identical to Experiment 6, except that they were scaled

down to a height of 1˚ to allow placement in a visual search array. Subjects performed a total of

2048 correct trials (32C2 search pairs x two conditions (words and nonwords) + 32 word-nonword

pairs x two repetitions). All trials were interleaved, and incorrect/missed trials appeared randomly

later in the task but were not analyzed. All other details were identical to Experiment 1.

Data analysis
Subjects were highly accurate on this task (mean ±std: 98.6 ± 1%). Outliers in the reaction times

were removed using built-in routines in MATLAB (isoutlier function, MATLAB R2018a). This step
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removed 7% of the response time data, but we obtained qualitatively similar results without this

step.
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Appendix 1

Additional analysis for Experiment 1
The results in the main text were presented for uppercase English letters (Figure 2), but in

Experiment 1 we also collected visual search data for all English letters and digits (n = 62

characters in all, comprising 26 uppercase + 26 lowercase + 10). We did so in order to predict

the visual dissimilarity between letter strings containing both mixed case letters as well as

numbers.

To visualize the dissimilarity relations between the 62 characters used, we performed

multidimensional scaling. In the resulting plot (Appendix 1—figure 1A), nearby characters

represent hard searches. A number of interesting patterns can be seen: letters like C, G, Q, O

are nearby which is expected given their shared curvatures. Letter pairs such as (M,W) and

number pairs such as (6,9) are similar due to mirror confusion (Vighneshvel and Arun, 2013).
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Appendix 1—figure 1. Visual search space for letters and digits. (A) Visual search space for

letters (uppercase and lowercase) and digits obtained by multidimensional scaling of observed

dissimilarities. Nearby letters represent hard searches. Distances in this 2D plot are highly

correlated with the observed distances (r = 0.79, p<0.00005). (B) Correlation between

observed distances and MDS embedding as a function of number of MDS dimensions. The

horizontal line represents the split-half correlation with error bars representing s.d calculated

across 100 random splits.

Next, we investigated the degree to which the observed pairwise dissimilarities are

captured by the multidimensional embedding as a function of the number of dimensions. In

the resulting plot (Appendix 1—figure 1B), it can be seen that nearly 89% of the variance is

captured by 10 dimensions as before, which reaches roughly the reliability of the dissimilarity

data itself. For the analyses involving mixed case searches or fewer searches, we took a total

of six neurons for the letter model, which explain 87.7% of the variance in the pairwise

dissimilarities.

Can letter dissimilarity be predicted using low-level visual
features?
To investigate whether single letter dissimilarity can be predicted using low-level visual

features, we attempted to predict letter dissimilarities using two models. In the first model,

which we call the pixel model, we calculated the dissimilarity between letters to be the

absolute difference in pixel intensities between the images of the two letters. This pixel-based

model showed a significant correlation (r = 0.50, p<0.00005) but was far from the reliability of

the data itself (rsh = 0.90; Appendix 1—figure 1B). In the second model, we calculated the
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dissimilarity between two letters as the vector distance between the responses evoked by a

population of simulated V1 neurons (Ratan Murty and Arun, 2015). This V1 model also

showed a significant correlation (r = 0.44, p<0.00005) but again far from the reliability of the

data itself). We conclude that single letter dissimilarity can only be partially predicted by low-

level visual features.

Is visual search dissimilarity related to subjective
dissimilarity?
In this study, we have used visual search as a natural and objective measure for visual

dissimilarity. However, previous studies have measured letter dissimilarity either through

confusions in letter recognition, or through subjective dissimilarity ratings (Mueller and

Weidemann, 2012; Simpson et al., 2013). We have previously shown that subjective

dissimilarity for abstract silhouettes is strongly correlated with visual search dissimilarity

(Pramod and Arun, 2016). This may not hold for letters since subjects can activate letter

representations that are modified through extensive familiarity. To investigate how visual

search dissimilarity compares with subjective similarity ratings for letters, we compared search

dissimilarities for uppercase letters against two sets of previously reported similarity data.

First, we compared visual search dissimilarities with subjective dissimilarity ratings

(Simpson et al., 2013). This revealed a significant positive correlation (r = 0.69, p<0.0005).

Second, we compared visual search dissimilarities with letter confusion data (3). To convert

letter confusion response times, which are a measure of similarity, into dissimilarities, we took

their reciprocals, and then compared them with visual search dissimilarities. This revealed a

significant positive, albeit weaker correlation (r = 0.34, p<0.0005).
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Appendix 2

Upright and inverted bigrams and trigrams
It has been observed that readers are more sensitive to letter transpositions for letters of their

familiar script. Since discrimination of letter transpositions in the letter model is a direct

consequence of asymmetric spatial summation (main text, Figure 3), we predicted that

readers should show more asymmetric spatial summation for familiar letters compared to

unfamiliar letters. As a strong test of this prediction, we compared visual search performance

on upright letters (which are highly familiar) with inverted letters (which are unfamiliar) across

two experiments, one on bigrams and the other on trigrams.

The comparison of upright and inverted letter strings is also interesting for a second

reason. If reading or familiarity with upright letters led to the formation of specialized

detectors for longer strings, then we predict that the letter model (which assumes responses

to be driven by single letters only) should yield worse fits for upright compared to inverted

letters.

We tested the above two predictions in the following two experiments.

Experiment 3: Upright vs inverted bigrams

Methods
A total of eight subjects (six males, aged 24 ± 1.5 years) participated in this experiment. Six

uppercase letters: A, L, N, R, S, and T were combined in all pairs to form a total of 36 stimuli.

These uppercase letters were chosen because their images change when inverted (as opposed

to letters like H that are unaffected by inversion), and were chosen to maximize the occurrence

of frequent bigrams. The same stimuli were inverted to create another set of 36 stimuli. Stimuli

subtended ~4˚ along the longer dimension. Subjects performed all possible searches among

the upright letters (36C2 = 630 searches) with two repetitions and likewise for inverted letters.

All trials were interleaved. All other details were exactly as in Experiment 2.

Results
We observed interesting differences in search difficulty depending on the nature of the

bigrams. This pattern is illustrated in Appendix 2—figure 1A-B. When the target and

distractors consisted of repeated letters (e.g. TT among AA in Appendix 2—figure 1A),

search is equally easy when the array is upright or inverted. In contrast if the target and

distractors are transposed versions of each other (e.g. TA among AT in Appendix 2—figure

1B), search is easier in the upright array compared to when it is inverted.
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Appendix 2—figure 1. Letter model fits for upright and inverted bigrams. (A) Example oddball

search array for a repeated letter target (TT) among identical repeated-letter distractors

(AA). It can be seen that inverting this search array does not affect search difficulty. (B)

Example oddball search array for transposed letters (TA among AT). It can be seen by

inverting this search array makes the search substantially more difficult. (C) Average search

times in the oddball search task for repeated-letter searches (AA-BB) and transposed letter

(AB-BA) searches. Error bars represent s.e.m calculated across subjects. Asterisks represent

statistical significance (**** is p<0.00005), as obtained using an ANOVA on the response times

with subject, bigram and orientation as factors (see text). (D) Dissimilarity of inverted bigram

pairs plotted against the dissimilarity of upright bigram pairs. Correlation is shown at the top

left. Asterisks indicate statistical significance of the correlations (**** is p<0.00005). (E) Cross-

validated model correlation of the letter model for upright bigrams and inverted bigrams.

Shaded gray bars represent the upper bound achievable in each case given the consistency of

the data, calculated using the split-half correlation rsh. (F) Predicted RT from the letter model

for repeated letter pairs and transposed letter pairs. Asterisks denote statistical significance as

obtained using a sign-rank test on the predicted RTs between upright and inverted conditions.

(G) Spatial modulation index for each neuron in the letter model for upright and inverted

bigrams. (H) Average spatial modulation index for upright and inverted bigrams. Asterisks

represent statistical significance (* is p<0.05) obtained using a sign-rank test on the spatial

modulation index across the 10 neurons.

To confirm that this effect is present across all such pairs, we compared observed response

times for these two types of searches between upright and inverted conditions (Appendix 2—

figure 1C). Response times for the AA-BB searches were comparable for upright and inverted

conditions (mean ± sd of RT: 0.66 ± 0.09 s for upright, 0.67 ± 0.1 s for inverted). To assess the

statistical significance of this difference, we performed an ANOVA with subject (eight levels),

bigram (15 pairs) and orientation (upright vs inverted) as factors. We observed no significant

difference in the response times between upright and inverted conditions for AA-BB searches

(p=0.65 for main effect of orientation; p<0.00005 for subject and bigram factors, p>0.05 for

all interactions).

Next, we compared transposed letter (AB-BA) searches. Here, subjects were clearly faster

on the upright searches compared to inverted searches (mean ± sd of RT: 1.58 ± 0.25 s for

upright, 3.12 ± 0.76 s for inverted). This difference was statistically significant (p<0.00005 for

main effect of orientation; p<0.0005 for subject and p<0.05 for bigram factors, p<0.05 for

interactions between pairs and orientation. Other interaction effects were not significant).

To compare bigram dissimilarity between upright and inverted bigrams, we plotted one

against the other. This revealed a highly significant correlation (r = 0.80, p<0.00005;
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Appendix 2—figure 1D). Here too it can be seen that the transposed letter searches are

clearly faster when they are upright whereas the repeated letter searches show no such

difference.

Thus, inversion slows down transposed letter searches but not repeated letter searches.

Explaining upright and inverted bigram dissimilarity using
the letter model
We fit the letter model to both upright and inverted bigram searches using a total of 10

neurons with single letter responses derived from Experiment 1. The letter model yielded

excellent fits on both upright and inverted bigrams. In both cases, the model fits approached

the data consistency (Appendix 2—figure 1E), implying that the model explained nearly all

the explainable variance in the data.

To compare model fits for upright vs inverted bigrams, we performed a bootstrap analysis.

Each time, we selected subjects with replacement and fit the letter model to the average

dissimilarity computed for this random pool of subjects. Each time, we calculated a normalized

correlation measure that takes into account the difference in data reliability between upright

and inverted trigram searches. This normalized correlation is simply the model correlation

divided by the data consistency. To assess statistical significance, we calculated the fraction of

times the normalized correlation in the upright samples was larger than the inverted samples.

This analysis revealed significant difference in model performance between upright and

inverted searches, but in the opposite direction (average model correlation: r = 0.92 for

upright, 0.9 for inverted; fraction of upright <inverted normalized model correlation: p=0).

Thus, upright searches are more predictable than inverted searches using the letter model.

Next, we asked whether the letter model can explain the intriguing observation that

inversion affects transposed letter searches but not repeated letter searches. This is easy to

explain in the letter model: The response to repeated letter bigrams such as AA is unaltered

(Figure 3B), and therefore the dissimilarity between AA and TT is unaffected by the

asymmetry in spatial summation. By contrast, the dissimilarity between transposed letter pairs

like AT and TA is directly driven by the asymmetry in spatial summation. We also note that the

search TT among AA is much easier than the search for TA among AT. This is also explained

by the letter model by the fact that the response to repeated letters is the same as the

response to individual letters, leaving their discrimination unaltered. By contrast transposed

letters are much more similar since their neural responses are much closer (Figure 3B).

To be sure that letter model predictions show the same pattern, we plotted the average

response time predicted by the letter model for repeated letter (AA-BB) and transposed letter

(AB-BA) searches. To assess the statistical significance, we performed a sign-rank test on the

predicted RT. The letter model predictions were exactly as expected (Appendix 2—figure

1F).

Next, we analyzed the model parameters in the letter model to ascertain whether the

spatial summation in the neurons was indeed different for upright and inverted bigrams. To

quantify the degree of asymmetry, we calculated for each neuron a spatial modulation index

of the form MI = abs(w1-w2)/(w1+w2) where w1 and w2 are the estimated weights for each

letter in the bigram. To avoid unnaturally large modulation indices, w1 and w2 values smaller

than 0.01 were set to 0.01. The spatial modulation index for all 10 neurons for upright and

inverted bigrams is shown in Appendix 2—figure 1G. It can be seen that the modulation

index is larger in most cases for the upright bigrams. This difference was statistically

significant, as assessed using a sign-rank test on the spatial modulation indices (Appendix 2—

figure 1H).

Experiment S1: Upright and inverted trigrams
Here, we asked whether the above results would extend to trigrams. We tested two

predictions. First, we predicted greater spatial modulation for upright compared to inverted

trigrams, on the premise that better discrimination of trigram transpositions should be driven
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by asymmetric spatial summation. Second, if repeated viewing of a trigram or word led to the

formation of specialized trigram detectors, then the letter model (which is based only on

knowledge of single letters) should produce larger errors compared to other trigrams. We

tested this prediction by comparing model fits for searches involving frequent trigrams and

words compared to other searches.

Methods
A total of nine subjects (six females, aged 24.5 ± 2.3 years) participated in the experiment. Six

uppercase letters: A, G, N, R, T and Y were combined in all possible three-letter combination

to form a total of 216 stimuli. These letters were chosen to include as many three-letter words

as possible. In all, 15 three-letter words could be created using these letters (ANT, ANY, ART,

GAG, GAY, NAG, NAY, RAG, RAN, RAT, RAY, TAG, TAN, TAR, and TRY).

Since the total number of possible search pairs is large (216C2 = 23,220 pairs), we chose 500

search pairs such that the regression matrix of the part-sum model had full rank that is all the

model parameters can be estimated reliably using linear regression. These 500 searches

consisted of 368 random search pairs, 105 (15C2) word-word pairs, 15 (3!C2) transposed pairs

of nonword comprised of letters G,N, and R. Further, another set of 15 (3!C2) transposed pairs

were created using the word TAR. The search pairs formed using the words TAR, ART and

RAT were presented only once (although they were counted as both word-word pairs and

transposed pairs in the main analysis).

Subjects performed the same searches using upright and inverted trigrams. Stimuli

subtended ~5˚ along the longer dimension. All subjects completed 2000 correct trials (500

searches x 2 orientations x two repetitions). All other details were identical to Experiment 1.

Results
An example oddball array in the trigram experiment is shown in Appendix 2—figure 2A.

Note that it is no longer meaningful to compare repeated letter trigrams (AAA-BBB) with

transposed trigrams (ABC-BCA) because the repeated letter pairs contain two unique letters,

whereas the transposed trigrams contain three unique letters. Subjects were highly consistent

in both upright and inverted searches (split-half correlation between even and odd- subjects:

r = 0.76 and 0.80, p<0.00005). Upright and inverted dissimilarities were highly correlated

(r = 0.80, p<0.00005; Appendix 2—figure 2B), although upright searches had higher

dissimilarity compared to inverted searches.
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Appendix 2—figure 2. Letter model fits for upright and inverted trigrams. (A) Example trigram

search array containing letter transpositions, with oddball target (NAR) among distractors

(ARN). It can be seen that this search is substantially harder when inverted compared to

upright. (B) Dissimilarity for inverted trigram searches (1/RT) plotted against dissimilarity for

upright trigram searches for word-word pairs (red circles, n = 105), transposed letter pairs

(blue diamonds, n = 30), and other pairs (gray circles, n = 365). (C) Observed dissimilarity for

upright trigrams plotted against the predicted dissimilarity from the letter model with symbol

conventions as in (B). (D) Cross-validated letter model correlation for upright and inverted

trigrams. (E) Average spatial modulation index (across 10 neurons) for the first and second

letters in the trigram. (F) Same as (E) but for the first and third letters. (G) Same as (E) but for

the second and third letters.

Next, we asked whether the letter model can predict dissimilarities between upright

trigrams. As before, letter model predictions were highly correlated with the observed data

(r = 0.79, p<0.00005; Appendix 2—figure 2C) and this model fit approached the data

consistency itself (rdata = 0.88). Model fits errors were acctually lower for transposed pairs

compared to word-word pairs and other pairs (mean ± sd error: 0.1 ± 0.08 for word pairs;

0.07 ± 0.06 for transposed pairs; 0.11 ± 0.08 for other pairs; p=0.02, rank-sum test). The letter

model was also able to predict dissimilarities between various trigram transpositions (r = 0.69,

p<0.00005; Appendix 2—figure 2C). Thus, trigram dissimilarities can be predicted by the

letter model regardless of word status or trigram frequency.

We then compared model fits for upright and inverted trigrams. In both cases, the letter

model predictions (r = 0.78 and 0.73 for upright and inverted) were close to the consistency of

the data (rdata = 0.85 and 0.78; Appendix 2—figure 2D). To compare these model fits for

upright vs inverted statistically, we performed a bootstrap analysis as before (Experiment 3).

This analysis revealed no significant difference in model performance between upright and

inverted searches (fraction of upright <inverted normalized model correlation: p=0.07).

Finally we asked whether the spatial summation weights of the letter model were

systematically different between upright and inverted trigrams. Since there are three spatial

modulation weights for each neuron, we calculated the spatial modulation index for all

possible pairs of weights (Appendix 2—figure 2E,F,G). The spatial modulation ratio was

larger for upright compared to inverted trigrams in two of the three pairs, and this difference

attained statistical significance for the first and third letters in the trigram (Appendix 2—

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 31 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.54846


figure 2F). We conclude that the spatial modulation is stronger for upright compared to

inverted trigrams.

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 32 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.54846


Appendix 3

Additional analysis for Experiment 4 (compound words)
In Experiment 4, we created compound words by combining two valid words such as FORGET

from FOR and GET (Appendix 3—figure 2A). This resulted in some valid words (e.g.

FORGET, TEAPOT) and many invalid words (e.g. FORPOT and TEAGET). The full stimulus set

is shown in Appendix 3—figure 1.

ANY FOR TAR KEY SUN TEA

ONE ANYONE ONEFOR ONETAR KEYONE ONESUN TEAONE

MAT MATANY FORMAT MATTAR MATKEY SUNMAT TEAMAT

GET GETANY FORGET TARGET KEYGET GETSUN GETTEA

PAD PADANY FORPAD TARPAD KEYPAD PADSUN PADTEA

DAY ANYDAY DAYFOR TARDAY DAYKEY SUNDAY DAYTEA

POT ANYPOT POTFOR POTTAR POTKEY SUNPOT TEAPOT

Appendix 3—figure 1. Stimulus set used for Experiment 4 (Compound Words). The left and the

right three letters words were combined to form a six-letter string. The strings that formed

compound words are highlighted in red.
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Appendix 3—figure 2. Visual search for compound words (Experiment 4). (A) Three-letter

words (top) used to create compound words (bottom). (B) Illustration of letter and trigram

models. In the letter model, the response to a compound word is a weighted sum of

responses to the six single letters. In the trigram model, the response to a compound word is

a weighted sum of its two trigrams. (C) Observed dissimilarity for compound words plotted

against predicted dissimilarity from the letter model for word pairs (red) and other pairs (gray).

(D) Cross-validated model correlations for the letter model, trigram model and the

Orthographic Levenshtein distance (OLD) model. The upper bound on model fits is the split-

half correlation (rsh), shown in black with shaded error bars representing standard deviation

across 30 random splits. Horizontal lines above shaded error bar depicts significant difference
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across different models. (E) Cross-validated model fits of the letter model for word-words

pairs and nonword-nonword pairs. (F) Observed dissimilarities for three-letter words (black)

and nonwords (red) plotted against letter model predictions.

If valid words are driven by specialized detectors, responses to valid words should be less

predictable by the single letter model. We formulated two specific predictions. First, we

hypothesize that the dissimilarity between valid words (e.g. FORMAT vs TEAPOT) would yield

larger model errors compared to invalid word pairs (e.g. DAYFOR vs ANYMAT). Second, we

predicted that the dissimilarity between two invalid compound words (e.g. DAYFOR vs

ANYMAT) should be explained better by their constituent trigrams (DAY, FOR, ANY, MAT)

rather than by their constituent letters (Appendix 3—figure 2B).

Methods
A total of eight subjects (four female, aged 25 ± 2.5 years) participated in the experiment.

Twelve three-letter words were chosen: ANY, FOR, TAR, KEY, SUN, TEA, ONE, MAT, GET,

PAD, DAY, POT. Each word was scrambled to obtain 12 three-letter nonwords containing the

same letters. The 12 words were combined to form 36 compound words (Appendix 3—figure

1), such that they appeared equally on the left and right half of the compound words. It can

be seen that there are seven valid words, whereas the other compound words are

pseudowords that carry no meaning. The compound words measured 6˚ along the longer

dimension. Subjects completed 1260 correct trials (36C2 search pairs x two repetitions).

Additionally, subjects also performed visual search on three-letter words (n = 132, 12C2 � 2

repetitions) and their jumbled versions (n = 132). Trials timed out after 15 s. All other details

were identical to Experiment 1.

Subjects were highly accurate on this task (mean ±std: 98 ± 1%). Outliers in the reaction

times were removed using built-in routines in MATLAB (isoutlier function, MATLAB R2018a).

This step removed 6.4% of the response time data.

Results
We recruited eight subjects to perform oddball search involving pairs of trigrams as well as

six-letter strings. In all there were 12 three-letter words which resulted in 12C2 = 66 searches

and 36 compound six-letter strings which resulted in 36C2 = 630 searches. We also included 12

three-letter nonwords created by transposing each three-letter words, resulting in an

additional 12C2 = 66 searches. As before, subjects were highly consistent in their responses

(split-half correlation between odd and even subjects: r = 0.54, p<0.00005 for three-letter

words; r = 0.46, p<0.00005 for three-letter nonwords; r = 0.65, p<0.00005 for six-letter

words).

We started by using the single letter model as before to predict compound word

responses. We took single neuron responses as before from Experiment 1, and took the

response of each neuron to a compound word to be a weighted sum of its responses to the

individual letters. Using these compound word responses, we calculated the dissimilarity

between pairs of compound words, and used nonlinear fitting to obtain the best model

parameters. The single letter model yielded excellent fits to the data (r = 0.68, p<0.00005;

Appendix 3—figure 2C). This performance was comparable to the data consistency estimated

as before (rdata = 0.72).

Next, we asked whether discrimination between compound words can be explained better

as a combination of two valid three-letter words, or as a combination of all the constituent six

letters. To address this question we constructed a new compositional model based on

trigrams, and asked if its performance was better than the single letter model (Appendix 3—

figure 2D). The trigram-based letter model used trigram dissimilarity to construct neurons

with trigram tuning, and spatial summation over the two trigrams to predict the 6-gram

responses. To compare the performance of both models even though they have different

numbers of free parameters, we used cross-validation: we fit both models on half the subjects

and tested their performance on the other half. The letter model outperformed the trigram
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model (Appendix 3—figure 2D). Because both models were trained on half the subjects and

tested on the other half, the upper bound on their performance is simply the split-half

correlation between the two halves of the data (denoted by rsh). Indeed the letter model

performance was close to this upper bound (rsh = 0.56; Appendix 3—figure 2D), suggesting

that it explained nearly all the explainable variance in the data. Finally, the letter model

outperformed a widely used model for orthographic distance – the Orthographic Levenshtein

Distance (OLD) (Appendix 3—figure 2D). Thus, compound word discrimination can be

understood from single letters.

Finally, the letter model fits for word-word pairs and nonword-nonword pairs were not

significantly different (Appendix 3—figure 2E). This further validates the absence of local

combination detectors (Dehaene et al., 2005) in perception.

Three-letter word and nonword dissimilarities
To investigate whether the letter model can predict dissimilarities between three-letter words

and non-words, we fit a separate letter model with six neurons as before to the word and non-

word dissimilarities. If frequent viewing of words led to the formation of specialized word

detectors, the letter model would show worse model fits compared to nonwords. However,

we observed no such pattern: the letter model fits were equivalent for words (r = 0.69,

p<0.00005; Appendix 3—figure 2F) and nonwords (r = 0.57, p<0.00005; Appendix 3—figure

2F) – and these fits approached the respective data consistencies (rdata = 0.67 for words, 0.68

for nonwords). We conclude that three-letter string dissimilarities can be predicted by the

letter model regardless of word status.

Spatial summation weights
To investigate the spatial summation weights for each neuron, we plotted the estimated

spatial summation weights separately (Appendix 3—figure 3). It can be seen that spatial

summation is heterogeneous across neurons, but the spatial summation of the first neuron

follows the characteristic W-shaped curve for letter position observed in studies of reading.
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Appendix 3—figure 3. Spatial summation weights for each neuron. Estimated spatial

summation weights (mean ±std across many random starting points of the nonlinear model fit

algorithm) for each neuron in the letter model.
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Appendix 4

Experiments with longer strings
In the main text, we showed that bigram dissimilarity in visual search can be explained using a

simple letter model with single letter responses that match perception, and a compositional

spatial summation rule that predicts responses to bigrams. Here we asked whether this

approach would generalize to longer strings of letters.

To this end, we performed four additional experiments on longer strings. In Experiment S2,

we created trigrams with a fixed middle letter and all possible combinations of flanking letters,

to create multiple three-letter words. In Experiment S3, subjects performed searches involving

three-, four-, five- and six-letter searches with uppercase, lowercase and mixed case strings. In

Experiments S4 and S5, we attempted to optimize the search pairs used to estimate model

parameters.

Methods

Experiment S2: Trigrams with fixed middle letter
A total of eight subjects (five males, aged 23.9 ± 1.8 years) participated in this experiment.

Seven uppercase letters: A, E, I, P, S, T and Y were combined (around the stem R that is xRx)

in all pairs to form a total of 49 stimuli. These letters were chosen to maximize the occurrence

of three-letter words and psuedowords in the stimulus set. The longer dimension of the stimuli

was ~5˚. Each subject completed searches corresponding to all possible pairs of stimuli

(49C2 = 1176) with two trials for each search. All other details were identical to Experiment 2.

Experiment S3: Random string searches
A total of 12 subjects (nine female, aged 24.8 ± 1.64 years) participated in this experiment. All

26 uppercase and lowercase letters were used to create 1800 stimuli, which were organized

into 900 stimulus pairs with varying string length. These 900 pairs comprised 300 6-gram

uppercase pairs, 100 6-gram lowercase pairs, 100 6-gram mixed-case pairs, 100 5-gram

uppercase pairs, 50 4-gram uppercase pairs, 50 3-gram uppercase pairs and 200 pairs with

uppercase strings of differing lengths (50 pairs each of 6- vs 5-grams, 6- vs 4-grams, 5- vs 4-

grams, 5- vs 3-grams = 200 pairs total). For each string length, letters were randomly

combined to form strings with a constraint that all 26 letters should appear at least once at

each location. Each stimulus pair was shown in two searches (with either item as target, and

either on the left or right side). The trial timed out at 15 s for all searches.

Experiment S4 – Optimized four-letter searches
In all, eight subjects (five females, aged 23.5 ± 2.3 years) participated in this experiment. To

maximize the importance of each spatial location in a four-letter uppercase string, stimuli were

created such that there were at least 75 search pairs with the same letter at either of the

corresponding locations. Further, to reliably estimate the model parameters, the randomly

chosen letters were arranged to minimize the condition number of the linear regression matrix

X of the ISI model described below. In all there were 300 search pairs. The trial timed out after

15 s. All other details were similar to Experiment 2.

Experiment S5 – Optimized six-letter searches
A total of nine subjects (five males, aged 24.1 ± 2.2 years) participated in this experiment. We

chose 300 search pairs with six-letter strings, according to the same criteria as in Experiment

S4. All other details were the same as in Experiment S4.
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Results
Cross-validated model fits across all experiments are shown in Appendix 4—figure 1. It can

be seen that the letter model fit is close to the split-half consistency of the data. Thus, visual

discrimination of longer strings can be explained using a compositional neural code. Below we

discuss some experiment-specific findings of interest.
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Appendix 4—figure 1. Letter model performance for varying length strings. For each

experiment, we obtained a cross-validated measure of model performance using six neurons

as follows: each time we divided the subjects randomly into two halves, and trained the letter

model on one half of the subjects and tested it on the other half. This was repeated for 30

random splits. The correlation between the model predictions and the average dissimilarity

from the held-out half of the data was taken to be the model fit. The correlation between the

observed dissimilarity between the two random splits of subjects is then the upper bound on

model performance (mean ±std shown as gray shaded bars).

Lowercase and mixed-case strings
Word shape is thought to play a role in reading lowercase letters, because of the upward

deflection (e.g. l, d) and downward deflections (e.g. p, g) of letters which might confer a

specific overall shape to a word. To conclusively establish this would require factoring out the

contribution of individual letters to word discrimination, as with the letter model. We were

therefore particularly interested in whether the letter model would predict the dissimilarity

between lowercase and mixed-case strings where word shape might potentially play a role. As

can be seen in Appendix 4—figure 1, cross-validated model predictions for lowercase letters

were highly correlated with the observed data (r = 0.59, p<0.00005). This correlation

approached the upper bound given by the split-half reliability itself (rsh = 0.64). Likewise,

model predictions for mixed-case letters were also highly correlated with the observed data

(r = 0.59, p<0.00005; Appendix 4—figure 1). However, in this case model fits were well

below the split-half consistency (rsh = 0.72), suggesting that there is still some systematic

unexplained variance in mixed-case strings. This gap in model fit could be simply due to the

relatively few mixed-case searches used in this experiment (n = 100), or because of

unaccounted factors like word shape. Nonetheless, the letter model explains a substantial

fraction of variation in both lowercase and mixed case strings, suggesting that it can be used

as a powerful baseline to elucidate the contribution of word shape to reading.

Unequal length strings
The letter model can be used to calculate responses to any string length, provided the spatial

summation weights are known. Given the relatively few searches for unequal lengths in our

data, we fit the letter model to unequal length strings using six neurons. Doing so still raised a

fundamental issue: which subset of the six spatial summation weights for each neuron should

be used to calculate the response to a four-letter string? This requires aligning the four-letter

string to the six-letter string in some manner.
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To address this issue, we evaluated the letter model fit on four possible alignments

between longer and shorter strings, and asked whether model predictions were better for any

one alignment compared to others. We aligned the smaller length string to either the left,

right, centre or edge of the longer string. Model performance for these different variations is

shown in Appendix 4—table 1. It can be seen that the model fits are comparable across

different choices. However, edge alignment is slightly but not significantly better than other

choices. We therefore used edge alignment for all subsequent model predictions.

Appendix 4—table 1. Model fits for various choices of string alignment.

Alignment

Letter model correlation

six vs
five letter strings

six vs four-
letter strings

five vs three-
letter strings

four vs three-
letter strings

Left: ABCDEF vs
EFGHxx

0.54 0.66 0.58 0.57

Right: ABCDEF vs
xxEFGH

0.51 0.66 0.57 0.58

Centre: ABCDEF vs
xEFGHx

- 0.68 0.58 -

Edge: ABCDEF vs
EFxxGH

0.55 0.63 0.60 0.59

In each case, we fit the letter model with unknown weights corresponding to the longer

length. The alignment is indicated by the position of ‘x”s in the string. For instance, ‘Left’

alignment means that a 6-letter string ABCDEF is matched to a four-letter string EFGH by

assuming that the response to EFGH is created using the first four weights of spatial

summation. Likewise, right alignment means that EFGH is aligned to the right, and therefore

its response is created using the last four weights in the six-letter letter model. The best

alignment is highlighted for each column in bold. None of the correlation coefficient

differences were statistically significant (p>0.05, Fisher’s z-test).
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Appendix 5

Estimating letter dissimilarity from bigrams

Part-sum model
The letter model described in the text has many desirable features but requires as input the

responses to single letters, which were obtained from searches involving single isolated

letters. However, it could be that bigram representations can be understood in terms of

component letter responses that are different from the responses of letters seen in isolation. It

could also be that letter responses are different at each location.

To address these issues, we developed an alternate model in which bigram dissimilarities

can be written in terms of unknown single letter dissimilarities. These single letter

dissimilarities can be estimated in the model. In this model, which we call the part-sum model,

the dissimilarity between two bigrams AB and CD is written as the sum of all pairs of part

dissimilarities in the two bigrams (Appendix 5—figure 1A). Specifically:

dðAB;CDÞ ¼CLACþCRBD þXAD þXBCþWAB þWCDþ constant

where CLAC is the dissimilarity between letters at Corresponding Left (CL) locations (A and C),

CRBD is the dissimilarity between letters at the Corresponding Right (CR) locations (B and D),

XAD and XBC are the dissimilarities between letters across locations in the two bigrams (A and

D, B and C), and WAB and WCD are the dissimilarities of letters within each bigram.
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Appendix 5—figure 1. Predicting bigram dissimilarity using part-sum model. (A) Schematic of

the part sum model. According to this model, the dissimilarity (1/RT) between bigrams ‘AB’

and ‘CD’ is written as a linear sum of dissimilarities of its corresponding part terms (AC and

BD, shown in red), across part terms (AD and BC, shown in yellow), and within part terms (AB

and CD, shown in blue). (B) Correlation between the observed and predicted dissimilarities (1/

seconds). Each point represents one search pair (n = 49C2=1176). Word-word pairs are

highlighted using red diamonds, and frequent bigram pairs are highlighted using blue circles.

Dotted lines represent unity slope line. (C) Correlation between the estimated weights at

corresponding location left with estimated weights at 1) corresponding location right (red), 2)
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across location (yellow), and 3) within location (blue). Each point represents one letter pair (n =
7C2=21). Dotted lines represent positive and negative unity slope line. (D) Perceptual space of

the single letter dissimilarities, that are the model coefficients of part terms at left

corresponding location (E) Schematic of the Independent Spatial Interaction model. In this

model, we use the observed letter-pair dissimilarities and only estimate the weights of these

letter-pair dissimilarities across different locations. (F) Comparing part-sum and ISI model fits.

Bar plots represents mean correlation coefficient between the observed and predicted

dissimilarities. Error bars represent one standard deviation across 30 splits. Black horizontal

line represents mean split-half correlation (rsh) and the shaded error bar represents one

standard deviation around the mean. (****, p<0.00005, **, p<0.005).

The part-sum model works because a given letter dissimilarity CLAC will occur in the

dissimilarity of many bigram pairs (e.g. in the pair AB-CD and in AE-CF) thereby allowing us to

estimate its unique contribution. Since there are seven parts, there are 7C2 = 21 possible part-

pairs of each type (i.e. for CL, CR, X and W terms), resulting in 21 � 4 = 84 unknown part

dissimilarities. Since a given bigram experiment contains all possible 49C2 = 1176 bigram

searches, there are many more observations than unknowns. The combined set of bigram

dissimilarities can be written in the form of a matrix equation y = Xb where y is a 1176 � 1

vector of observed bigram dissimilarities, X is a 1176 � 85 matrix containing the number of

times (0, 1 or 2) a given letter-pair of each type (CL, CR, X and W) contributes to the overall

dissimilarity, and b is a 85 � 1 vector of unknown letter dissimilarities of each type (21 each of

CL, CR, X and W and one constant term). The unknown letter dissimilarities of each type was

estimated using standard linear regression (regress function, MATLAB).

The part sum model has several advantages over the letter model: (1) It is linear which

means that its parameters can be uniquely estimated; (2) it is compositional in that the net

dissimilarity between two bigrams is explained using the constituent parts without invoking

more complex interactions; (3) it can account for potentially different part relations at each

location in the two bigrams. We have previously shown that the part-sum model can explain

the dissimilarities between a variety of objects (Pramod and Arun, 2016).

The part sum model yielded excellent fits to the data (r = 0.88, p<0.00005; Appendix 5—

figure 1B) that were close to the reliability of the data (rdata = 0.90). As before, we observed

no systematic deviations between model fits for frequent bigrams compared to infrequent

bigrams (Appendix 5—figure 1B; average absolute residual error for the top 20 bigram pairs

with highest mean bigram frequency: 0.09 ± 0.1 s�1; for the bottom-20 bigram pairs:

0.11 ± 0.08 s�1; p=0.42, rank-sum test). To assess whether the part dissimilarities of each type

(CL, CR, X and W) were related to each other, we plotted each of CR, X and W terms against

the CL terms (Appendix 5—figure 1C). The CR and X terms were highly positively correlated

(Appendix 5—figure 1C), whereas the W terms were negative in sign and negatively

correlated (Appendix 5—figure 1C). The negative values of the W terms means that bigrams

with dissimilar letters become less dissimilar, an effect akin to distractor heterogeneity in visual

search (Duncan and Humphreys, 1989; Vighneshvel and Arun, 2013). We conclude that the

CL, CR, X and W terms in the part-sum model are driven by a common part representation.

To visualize this underlying letter representation, we performed multidimensional scaling on

the estimated part dissimilarities of the CL terms. In the resulting plot, nearby letters represent

similar letters (Appendix 5—figure 1D). It can be seen that I and T, M and N are similar as in

the single-letter representation (Appendix 1—figure 1A). These single letter dissimilarities

estimated from bigrams using the part-sum model were highly correlated with the single-letter

dissimilarities directly observed from visual search with isolated letters (Appendix 5—figure

1D).

We conclude that bigram dissimilarities can be predicted from a common underlying letter

representation that is identical to that of single isolated letters.

Equivalence between part-sum and letter model
Given that the part-sum model and letter model both give equivalent fits to the data, we

investigated how they are related. Consider a single neuron whose response to a bigram AB is

given by: rAB ¼ arA þ rB, where rA and rB are its responses to A & B, and a is the spatial weight
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of A relative to B. Similarly its response to the bigram CD can be written as rCD=arC + rD. Then

the dissimilarity between AB and CD can be written as

d AB;CDð Þ2

¼ rAB � rCDð Þ2¼ arAþ rB�arC � rDð Þ2

¼ a2 rA � rCð Þ2þ rB� rDð Þ2þ2a rA� rCð Þ rB � rDð Þ

¼ a2 rA� rCð Þ2þ rB� rDð Þ2þ2a rArB þ rCrD� rArD� rBrCð Þ

¼ a2 rA� rCð Þ2þ rB � rDð Þ2þa rA� rDð Þ2þ rB� rCð Þ2� rA� rBð Þ2� rC � rDð Þ2
h i

¼ a2d2AC þ d2BD þa d2AD þ d2BC
� �

� a d2ABþ d2CD
� �

Thus, the squared dissimilarity between AB and CD can be written as a weighted sum of

squared dissimilarities between parts at corresponding locations (A-C and B-D), parts at

opposite locations (A-D and B-C) and between parts within each bigram (A-B and C-D), which

is essentially the same as the part-sum model. The same argument extends to multiple

neurons because the total bigram dissimilarity will be the sum of bigram dissimilarities across

all neurons.

There are however two important differences. First, the part sum model is written in terms

of a weighted sum of part dissimilarities, whereas the above equation refers to a weighted

sum of squared dissimilarities. However, the squared sum of distances and a weighted sum of

distances are highly correlated, so the essential relation will still hold. Second, the letter model

predicts that the across-bigram terms (XAD, XBC) should be similar in magnitude but opposite

in sign to the within-bigram terms (WAB, WCD). These weights are similar in magnitude but not

exactly equal, as can be seen in Fig S8C. The part-sum model thus allows for greater flexibility

in part interactions compared to the letter model.

Reducing part-sum model complexity (ISI model)
The observation that a common set of letter dissimilarities drive the part-sum model suggests

that the part-sum model can be simplified. We therefore devised a reduced version of the

part-sum model – called the Independent Spatial Interaction (ISI) model – in which the CL, CR,

X and W terms are scaled versions of the single letter dissimilarities (Appendix 5—figure 1E).

Specifically, the dissimilarity between bigrams AB and CD is:

d AB;CDð Þ ¼ a10dAC þa20dBD þa11 dAD þ dBCð Þþb11 dABþ dCDð Þ þ c

where dAC is the observed dissimilarity between the left letters A & C from visual search and

a10 is an unknown scaling term, dBD is the observed dissimilarity between the right letters B &

D, and a20 is an unknown scaling term. Likewise, a11is an unknown scaling term for the net

dissimilarity dAD þ dBCð Þ between letters across locations, b11 is the unknown scaling term for

the net dissimilarity dABþ dCDð Þ between letters within the two bigrams and c is a constant.

Thus, the ISI model has only 5 free parameters: a10;a20;a11;b11 and c. These parameters can be

estimated by solving the matrix equation y = Xb where y is a 1176x1 vector of observed

bigram dissimilarities, X is a 1176 x 5 matrix containing the net single dissimilarity of each type

(CL, CR, X & W) that contributes to the total dissimilarity, and b is a 5 x 1 vector of unknown

weights corresponding to the contribution of each type of dissimilarity (plus a constant).

The performance of the ISI model is summarized in Appendix 5—figure 1F. It can be seen

that, despite having only five free parameters compared to 85 parameters of the part-sum

model, the ISI model yields comparable fits to the data (Appendix 5—figure 1F).
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ISI model performance across all experiments
Next we asked whether the ISI model can be generalized to explain dissimilarities between

longer strings. Consider two n-letter strings u1u2u3u4 . . . un and v1v2v3v4 . . . vn. The net

dissimilarity between the two strings can be written as:

d u1u2 . . .un;v1v2 . . .vnð Þ ¼
X

n

i¼0

X

n�i

k¼0

aik d ui;viþkð Þþ d vi;uiþkð Þð Þ�
X

n

i¼0

X

n�i

k¼1

bik d ui;uiþkð Þþ d vi;viþkð Þð Þþ c

In this manner, we fit the ISI model to all experiments. The resulting cross-validated model

fits are shown together with the letter model in Appendix 5—figure 2. It can be seen that the

ISI model performance is comparable to that of the letter model across all experiments.
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Appendix 5—figure 2. ISI and letter model performance across all experiments. For each

experiment, we obtained a cross-validated measure of both neural and ISI model performance

as follows: each time we divided the subjects randomly into two halves, and trained the letter

model on one half of the subjects and tested it on the other half. This was repeated for 30

random splits. The correlation between the model predictions and the average dissimilarity

from the held-out half of the data was taken to be the model fit. The correlation between the

observed dissimilarity between the two random splits of subjects is then the upper bound on

model performance (mean ±std shown as gray shaded bars).

Reducing the complexity of the ISI model
According to the ISI model, the net dissimilarity between two n-grams can be written as a

weighted sum of dissimilarities between letter pairs that are varying distances apart. We

wondered if the ISI model can be simplified further if there is a systematic pattern whereby

these weight corresponding to a given letter pair varies systematically with letter position and

distance between the letters.

To assess this possibility, we plotted model coefficients of the ISI model estimated from

Experiment S3 along two dimensions. First, we asked if the contribution of letter pairs at

corresponding locations in the two n-grams varies with letter position. For varying string

lengths (three-, four-, five- and six-letter strings), we observed a characteristic U-shaped

function whereby the edge letters contribute more to the net dissimilarity compared to the

middle letters (Appendix 5—figure 3A). Second, we asked if model weights decrease

systematically with inter-letter distance. This was indeed the case regardless of the starting

letter in the pair (Appendix 5—figure 3B). Finally, we note that across and within part terms

are roughly equal in magnitude but opposite in sign (Appendix 5—figure 1C).
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Appendix 5—figure 3. Reducing the ISI model. (A) ISI model coefficients ai0 as a function of

starting letter position i, for Experiment S3, for varying string lengths. (B) ISI model

coefficients a1k as a function of inter-letter distance k for Experiment S3, for varying string

lengths. (C) ISI model coefficients (both aik and bik) plotted against the predicted ISI model

coefficients from the SID model. Both models are fitted to data from Experiment 4 (compound

words). (D) Observed dissimilarity in Experiment four plotted against predicted dissimilarity

from the SID model. (E) Cross-validated model correlation for ISI and SID models.

The above pattern of weights in the ISI model suggest that we can make two simplifying

assumptions. First, the weight of the starting letter is a U-shaped function when the inter-letter

distance is zero ai0ð Þ. Second, weights decrease exponentially thereafter with increasing inter-

letter distance. Specifically:

ai0 ¼ ai2þ biþ c for i ¼ 1;2; :::n

aik ¼ ai0e
�k=t for k � 1

bik ¼�aik for k � 1

where a, b, c and t are the free parameters in this model. This simplified model, which we call

the Spatial Interaction Decay (SID) model has only five parameters and can be used to predict

the dissimilarities between strings of arbitrary length. The model parameters are obtained

using nonlinear gradient descent methods (nlinfit function, MATLAB).

To illustrate the performance of the SID model in comparison to the ISI model, we fit the

model to 6-letter compound words (Experiment 4). To compare the two models, we plotted

the ISI model terms directly estimated from the search data against the ISI model terms

predicted from the SID model. This yielded a strong positive correlation (Appendix 5—figure

3C). The SID model also yielded excellent fits to the data (Appendix 5—figure 3D), and both

models yielded comparable fits (Appendix 5—figure 3E).

To evaluate this pattern across all experiments, we fit both SID and ISI models to all

experiments. Here too we obtained qualitatively similar fits for the two models (Appendix 5—

figure 4). To confirm whether the SID model trained on one experiment can capture the
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variations in another, we trained the SID model on data from Experiment S5 and evaluated it

on all other experiments. This too yielded largely similar but smaller predictions

(Appendix 5—figure 4). This decrease in model fit suggests that model parameters are

somewhat dependent on the search pairs chosen.
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Appendix 5—figure 4. ISI and SID model fits across all experiments. Cross-validated model fits

for the ISI and SID models across all experiments. In each case the SID and ISI models were fit

on a randomly chosen half of the subjects and tested on the other half. The SID (ES5) bars

refer to the SID model trained on Experiment S5 and tested on data from a randomly chosen

half of subjects in each experiment.

We conclude that dissimilarities between arbitrary letter strings can be predicted using

highly simplified models that operate on single letter dissimilarities and simple compositional

rules.

Comparing upright and inverted bigrams using part-sum
model
The results in Appendix 2 were based on fitting the letter model to upright and inverted

bigrams but assuming a fixed set of single letter responses derived from uppercase letters.

The fact that the letter model yielded excellent fits to both upright and inverted bigrams

validates this assumption. Nonetheless, we wondered whether differences between upright

and inverted bigram searches can be explained solely by different letter representations or by

differences in letter interactions.

To investigate this possibility, we fit the part-sum model to upright and inverted bigram

searches (Appendix 5—figure 5A). The part-sum model also yielded equivalent fits to both

upright and inverted searches (Appendix 5—figure 5B). If model predictions were similar, we

reasoned that the difference between upright and inverted searches must be explained by

differences in model parameters. To this end, we compared the estimated letter dissimilarities

of each type (CL, CR, X and W) in the upright and inverted searches (Appendix 5—figure 5C).

Model terms were comparable in magnitude for the CL terms, but were systematically weaker

for both CR, X and W terms for inverted compared to upright searches (Appendix 5—figure

5C). However in all cases, the recovered letter dissimilarities were correlated between upright

and inverted conditions (correlation between upright and inverted model terms: r = 0.93, 0.91,

0.97 and 0.87 for CL, CR, X and W terms; all correlations p<0.00005).
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Appendix 5—figure 5. Part-sum model fits for upright and inverted bigrams. (A) Schematic of

the part-sum model, in which the net dissimilarity between two bigrams is given as a linear

sum of letter dissimilarities at corresponding locations (CL and CR), across-bigrams (X) and

within-bigrams (W). (B) Cross-validated model correlation of the part sum model for upright

and inverted bigrams. (C) Average model coefficients (mean ±sem) of each type for upright

and inverted bigrams. Asterisks denote statistical significance (**** is p<0.00005) obtained on

a sign-rank test comparing 15 letter dissimilarities between upright and inverted conditions).

Comparing upright and inverted trigrams using part-sum
model
The part sum model applied to trigrams is depicted in Appendix 5—figure 6A. In this model,

the net dissimilarity between two trigrams can be written as a sum of single letter

dissimilarities at every possible pair of locations. These locations are grouped as

corresponding letters at left (C1), middle (C2) and right (C3) locations, letters across trigrams

that are one letter apart starting from the left letter (XN1) or the middle letter (XN2), letters

across trigrams that are two letters apart (XF), letters within each trigram that are one letter

apart starting from the left letter (WN1) or middle letter (WN2), and letters within each trigram

that are two letters apart (WF). Thus the full part-sum model has 9 groups of letter

dissimilarities (C1, C2, C3, XN1, XN2, XF, WN1, WN2, WF) each having 6C2 = 15 unknown

single letter dissimilarities. Together with a constant term, this part-sum model has 9 � 15 +

1 = 136 free parameters. Since we have 500 searches each for upright and inverted trigrams,

the part-sum model can be fit to this data to estimate these free parameters using standard

linear regression.
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Appendix 5—figure 6. Part-sum model fits for upright and inverted trigrams. (A) Schematic of

part-sum model for trigrams. (B) Cross-validated model correlation of part-sum model for

upright and inverted trigrams. (C) Average model coefficient (averaged across 6C2 = 15 terms)

of each type for upright and inverted trigrams. Asterisks indicate statistical significance (* is

p<0.05, ** is p<0.005, etc) calculated using a sign-rank test comparing the upright and

inverted model terms. (D).

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 45 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.54846


Cross-validated model fits for the part-sum model are shown in Appendix 5—figure 6B. It

can be seen that the part-sum model explains nearly all the explainable variance in the data

for both upright and inverted trigrams (Appendix 5—figure 6B). This in turn means that

differences between upright and inverted trigrams can be explained using differences in

model parameters. This was indeed the case: on plotting the strength of model terms of each

type it was clear that seven of the nine types of model terms (C1, C2, C3, XN2, XF, WN2, WF)

were systematically larger for upright trigrams compared to inverted trigrams (Appendix 5—

figure 6C). Finally, we confirmed that model terms for upright and inverted trigrams were

highly correlated (correlation between upright and inverted model terms, averaged across

nine model term types: r = 0.65 ± 0.1, p<0.05 in all cases).

We conclude that upright and inverted trigram searches can be explained using the part-

sum model driven by a common single letter representation.
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Appendix 6

Jumbled word reading (Experiment S6)
Here, in Experiment S6, we tested subjects on a jumbled word reading task, where they had

to view a jumbled word and recognize the original word.

Methods

Procedure
A total of 16 subjects (nine male, aged 24.8 ± 2.1 years) participated in the task. Other details

were similar to Experiment 5.

Stimuli
We chose 300 words such that no two words were anagrams of each other. These comprised

75 four-letter words, 150 five-letter words and 75 six-letter words. Jumbled words were

created by shuffling two, three, or four letters of each word. There were an equal proportion

of two-, three-, and four-letter transpositions. All stimuli were presented in uppercase against

a black background.

Task
Each trial began with a fixation cross shown for 0.5 s followed by a jumbled word that

appeared for 5 s (for the first six subjects) and 7 s (for the rest), or until the subject made a

response by pressing the space bar on the keyboard. Subjects were asked to press a key as

soon as they could recognize the unjumbled word. To ensure that subjects correctly

recognized the unjumbled word, they were asked to type the unjumbled word within 10 s of

pressing the space bar. The response time was taken as the time at which the subject pressed

the space bar. To avoid any memory effects, the same set of jumbled words were shown to all

subjects exactly once. We analysed response times only on trials in which the subject

subsequently entered the correct word.

Data analysis
Subjects were reasonably accurate on this task (average accuracy: 59.5 ± 8% across 300

words). Response times for wrongly typed words were discarded. Words correctly solved by

more than six subjects (n = 238) were included for further analysis. Since trials were self-paced,

we did not remove any outliers in the reaction times. Lexical properties were obtained from

the English Lexicon Project (Balota et al., 2007).

Results
Of a total of 300 jumbled words tested, we selected for further analysis 238 words that were

correctly unjumbled by more than two-thirds of the subjects. Subjects responded quickly and

accurately to these words (mean ±std of accuracy: 71 ± 9%; response time: 2.13 ± 0.33 s

across 238 words). Subjects took longer to respond to some jumbled words (e.g. REHID)

compared to others (e.g. DBTOU), as seen in the sorted response times (Appendix 6—figure

1A). These patterns were consistent across subjects, as evidenced by a significant split-half

correlation (r = 0.55, p<0.00005 between odd- and even-numbered subjects).
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Appendix 6—figure 1. Jumbled word task (Experiment S7). (A) Response times in the jumbled

word task sorted in descending order. Shaded error bars represent s.e.m. Some example

words are indicated using dotted lines. The split-half correlation between subjects (rsh) is

indicated on the top left. (B) Schematic of visual word space, with one stored word (DRINK)

and two jumbled versions (DRNIK and NIRDK). We predicted that the time taken by subjects

to unscramble a jumbled word would be proportional to its dissimilarity to the stored word.

Thus, subjects would take longer to unscramble NIRDK compared to DRINK. (C) Observed

response times in the jumbled word task plotted against predictions from the letter model

based on single letters with spatial summation. Each point represents one word. Asterisks

indicate statistical significance (**** is p<0.00005). (D) Observed response times in the

jumbled word task plotted against Orthographic Levenshtein (OL) distance. Each point

represents one word. Asterisks indicate statistical significance (**** is p<0.00005). (E) Cross-

validated model correlations for the letter model, OLD model, lexical model and the neural

+lexical model. Model correlations were obtained by training each model on one half of

subjects, and evaluating the correlation on the other half (error bars represent standard

deviation across 1000 random splits). The upper bound on model fits is the split-half

correlation (rsh), shown in black with shaded error bars representing standard deviation across

the same random splits. All correlations were individually statistically significant (p<0.00005).

Horizontal lines above shaded error bar depicts significant difference across different models

that is the fraction of splits in which the observed difference was violated. All significant

comparisons are indicated.

Can these patterns in unscrambling time be explained using the letter model? To do so, we

reasoned that jumbled words with large dissimilarity to the original word will take longer to

elicit a response (Appendix 6—figure 1B). Accordingly, we took the average response times

to each jumbled word and asked whether it can be predicted using the single letter model

described previously. For each word length, we optimized the weights of the single letter

model to find the best fit to this data, and then combined the predictions across all word

lengths to obtain a composite measure of performance. The single letter model yielded

excellent fits to the data (r = 0.76, p<0.00005; Appendix 6—figure 1C). This model fit was

comparable to the data consistency (rdata = 0.70). An alternate distance model - Orthographic
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Levenshtein (OL) distance (Levenshtein, 1966) – calculates the number of edits required to

transform one string to other. This model neither accounts for letter similarity nor the position

of edit. Hence, it fails to account for all the variance in the data (r = 0.44, p<0.00005;

Appendix 6—figure 1D).

The above finding shows that human performance on unscrambling words is driven

primarily by the visual dissimilarity between the jumbled and original word. However, it does

not rule out the presence of lexical factors. To assess this possibility, we formulated a model

to predict the unscrambling time as a linear sum of many lexical factors. We used five lexical

properties: log word frequency, log mean letter frequency, log mean bigram frequency of the

jumbled word, log mean bigram frequency of the unjumbled that is original word, and the

number of orthographic neighbors (see Materials and methods). To avoid overfitting by either

model, we trained both models on one-half of the subjects and tested it on the other half. This

lexical model yielded relatively poor fits (r = 0.30, p<0.00005, Appendix 6—figure 1E)

compared to visual dissimilarity from both single letter model and OL distance model. The

difference in model fits was statistically significant (p<0.05, Fisher’s z-test). Among the lexical

factors, word frequency and letter frequency contributed the most compared to the others

(partial correlation of each lexical factor after accounting for all others: r = �0.23, p<0.0005

for log word frequency, r = 0.18, p<0.05 for log mean letter frequency; r = 0.05, p=0.49 for

log mean bigram frequency of jumbled word; r = �0.02, p=0.77 for log mean bigram

frequency in original word; r = 0.04, p=0.58 for number of orthographic neighbors).

To assess the extent of shared variance in the two models, we calculated the partial

correlation between the observed data and the lexical model predictions after factoring out

the contribution from visual dissimilarity. This revealed a small partial correlation (r = 0.31,

p<0.00005). Conversely, the partial correlation for the single letter model after factoring out

the lexical model was much higher (r = 0.75, p<0.00005). Thus, visual dissimilarity from the

single letter model dominates jumbled word reading.

Finally, we asked whether both visual dissimilarity and lexical factors contribute to the

jumbled word task. We created a combined model in which the jumbled word response times

were a linear combination of the predictions of both models. This combined model yielded

better predictions than either model by itself (r = 0.78, p<0.00005, Appendix 6—figure 1E).

To assess the statistical significance of these results, we performed a bootstrap analysis. On

each trial, we trained three models on the dissimilarity obtained from considering only one

randomly chosen half of subjects: the visual dissimilarity model, the lexical model and the

combined model. We calculated the correlation between all three model predictions on the

other half of the data, and repeated this procedure 1000 times. The OL distance model does

not have any free parameters, hence the distances were directly correlated with the other half

of the data. Across these samples, the lexical model fits never exceeded the visual dissimilarity

model, suggesting that the visual dissimilarity model was significantly better (p<0.05).

Likewise, the combined model was only marginally better than the visual letter model (fraction

of combined <visual: p=0.07) but was significantly better than the lexical model (fraction of

combined <lexical: p=0).

We conclude that performance on the jumbled word task relies primarily on visual

dissimilarity. We propose that this initial visual representation of a word allows the subject to

make a quick guess at the correct word without explicit symbolic manipulation.
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Appendix 7

Additional analyses for Experiments 6 and 7

Stimulus set
32 words were chosen of varying frequency of occurrence and the nonwords were created by

either transposition or substitution of middle or edge letters. 10 single letters: E, S, A, R, O, L,

I, T, N, and D were used to form words. The full set of strings used Experiments 6 and 7 is

shown below.

Appendix 7—table 1. List of 32 words and 32 nonwords used in Experiment 6 & 7. All words

and nonwords were created from 10 single letters whose activations were also measured in the

experiment.

Middle Letter

Transposition

Edge Letter

Transposition

Middle Letter

Substitution

Edge Letter

Substitution

Words Nonwords Words Nonwords Words Nonwords Words Nonwords

AORTA AROTA STOLE TSOLE NOISE NANSE ONION ESION

DRAIN DARIN OASIS AOSIS ERROR EDLOR RADIO EEDIO

TREND TERND SOLID OSLID DRILL DTELL ASSET EESET

ATLAS ALTAS TRAIN RTAIN ARISE AOESE TEASE RDASE

DRONE DRNOE ORDER ORDRE LITRE LINOE ENTER ENTRO

LEARN LERAN INDIA INDAI SLIDE SLONE IDEAL IDEDI

SANTA SATNA RINSE RINES NASAL NATDL ADORE ADODI

INSET INEST SNAIL SNALI ALIEN ALOTN LASER LASRO

ROI definitions

Appendix 7—table 2. Variability in ROI definitions across subjects. For each ROI we report

the mean and standard deviation across subjects of the number of voxels, and the XYZ location

of the voxel with peak T-value in the normalized brain.

ROI Definition
#voxels
(mean ± sd) ROI peak location

V1-V3 Voxels activated for
scrambled > fixation overlaid
with anatomical mask of V1-V3

398 � 131 X: 8 � 17
Y: -96 � 5
Z: 6 � 9

V4 Voxels activated for
scrambled > fixation overlaid
with anatomical mask of V4

185 � 63 X: 5 � 26
Y: -88 � 3
Z: 27 � 11

LO Voxels activated for
object > scrambled and
not in other ROIs

371 � 115 X: -17 � 43
Y: -66 � 15
Z: -19 � 5

VWFA Voxels with known
words > scrambled word
in a contiguous region in
fusiform gyrus

52 � 15 X: -44 � 4
Y: -50 � 5
Z: -17 � 5

TG Voxels with native
words > scrambled word
in a contiguous region
in temporal gyrus

289 � 182 X: -44 � 39
Y: -43 � 18
Z: 3 � 9

Visualization of perceptual and semantic space
To visualize words and nonwords in perceptual space, we performed a multidimensional

scaling (MDS) analysis of the visual search data (Experiment 7). Briefly, MDS finds the best-
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fitting 2D coordinates that best match with the observed distances. In the resulting plot,

nearby stimuli correspond to hard searches. The perceptual space for words and nonwords is

shown in Appendix 7—figure 1 A-B. It can be seen that stimuli with common first letters are

grouped together. MDS coordinates for nonwords was rotated without altering their overall

configuration so as to best match the MDS coordinates for words.
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Appendix 7—figure 1. Multi-dimensional representation of words and nonwords. (A)

Perceptual space for words. we used multidimensional scaling to find the 2D coordinates of

all words that best match the observed distances. In the resulting plot, nearby words indicate

hard searches. The correlation coefficient between dissimilarities in 2D plane and the

observed data is shown. Asterisks indicate significant correlation (**** is p<0.00005). (B)

Same as (A) but for nonwords. (C) Same as (A) but for semantic space of words.

The semantic dissimilarities were estimated using the GloVe features (Pennington et al.,

2014), and visualized using MDS analysis (Appendix 7—figure 1C). In the resulting plot,

semantically related words/frequently cooccurring words are closer to each other.

Neural activity corresponding to words, nonwords, and
letters
For each category of stimuli that is words, nonwords, and letters, we averaged the activity

values across voxels and subjects within each ROI. The mean activity values are shown in

Appendix 7—figure 2A-E. Since the activation levels can also be influenced by the reaction

time (RT) in the lexical decision task, we regressed out the contributions of observed RT for

each subject. Specifically, we estimated the contribution of RT by solving the linear equation

y = Xb. Here y is 64 � 1 vector of mean beta values, X is 64 � 2 matrix containing the RTs in

the first column and ones in the second column, and b is a 2 � 1 vector of unknown model

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 51 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.54846


coefficients. We estimated the vector b (estimated using the MATLAB function regress).

Next, we subtracted the contribution of RT from the mean beta values and replotted the

average activity values for words and nonwords (Appendix 7—figure 2F).
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Appendix 7—figure 2. Neural activity. (A) Average activation levels for words, nonwords, and

letters. Error bar indicate ±1 s.e.m. across subjects. Asterisks indicate statistical significance

(* is p<0.05, ** is p<0.005, etc. in a sign-rank test comparing subject-wise average

activations). (B)-(E). Same as in A but for V4, Lateral Occipital areas, Visual Word Form Area,

and Temporal Gyri respectively. (F) Mean activation level after regressing out the reaction

time in the lexical decision task. Error bars indicate ±1 s.e.m. across subjects. (G) Cross-

validated classification accuracy for transposed word-nonword pairs (dark) and substituted

word-nonword pairs (light). Error bars indicate s.e.m. across subjects. Asterisks indicate

statistical significance (* is p<0.05, ** is p<0.005, etc. in a sign-rank test comparing subject-

wise accuracy w.r.t. chance level). (H) Schematic of the voxel model. The response of each

voxel across strings is modeled as a linear combination of the constituent letter responses.
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Bottom: Hypothetical model fits based on the presence (right) or absence (left) of local

combination detectors. Predicted responses for words will deviate from the observed

responses under the influence of LCD. (I) Average model correlation (normalized using split-

half correlation) for each ROI for words (dark) and nonwords (light). Error bar indicates s.e.m.

across subject.

Word vs nonword classification
For each ROI and subject, we built linear classifier to discriminate between words and

nonwords (using the built-in MATLAB routine fitcdiscr). We built separate classifiers to

distinguish the activity pattern of transposed and substituted nonwords from their

corresponding word activity patterns. The resulting decoding accuracy is shown in

Appendix 7—figure 2G. It can be seen that decoding accuracy for substituted nonwords is

significantly better than for transposed nonwords (Appendix 7—figure 2G).

Correspondingly, in behavior, subjects were faster at responding to substituted nonwords

compared to transposed nonwords (response times, mean ± sd: 1.03 ± 0.08 s for 16

substituted nonwords, 1.20 ± 0.15 s for 16 transposed nonwords, p<0.005, rank-sum test

comparing average response times).

Can string responses be predicted from single letters?
We modeled the response of each voxel across the 64 strings (32 words, 32 nonwords) as a

linear combination of the single letter activations (Appendix 7—figure 2H). We evaluated

model fits by comparing model correlations separately for words and nonwords. If string

responses were driven by specialized detectors for letter combinations (such as those

present in words), then we reasoned that model correlations would be worse for words

compared to nonwords. By contrast, if there are no specialized detectors of this kind, model

fits would be equivalent for words and nonwords.

We calculated cross-validated model fits by training the model on half the trials and

testing it on the other half of the trials. Since voxels could vary widely in their reliability of

responses to the stimuli, we normalized the model fit of each voxel by its split-half reliability.

The average noise-corrected model fit (averaged across voxels and subjects) is shown in

Appendix 7—figure 2I. This revealed no systematic difference in model performance for

words and nonwords in any of the ROIs (Appendix 7—figure 2I). We obtained qualitatively

similar results using a searchlight, where there were no clear regions in which model fits

differed for words and nonwords (Appendix 7—figure 4D).

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 53 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.54846


Semantic space Perceptual space

0.5

1

0.2

1.2

V1-V3

-2

0

10

10
-5

V4

-2

0

8

LOC

-2

0

16

VWFA

-4

0

14

TG

0

16

10
-5 10

-5

10
-5

10
-5

C D

E GF

A B

1

32

64

w
o

rd
s

n
o

n
w

o
rd

s

1 32 64words nonwords

1

32

64

w
o

rd
s

n
o

n
w

o
rd

s

1 32 64words nonwords

Appendix 7—figure 3. Representation dissimilarity matrix. (A) Average pair-wise dissimilarity

values for all possible pairs of words (1-32) and nonwords (33-64). Colour bar represents

dissimilarity values that were estimated using a cross-validated, normalized variation of

Mahalanobis distance. (B) - (E) Same as in A but for V4, Lateral Occipital areas, Visual Word

Form Area, and Temporal Gyri respectively. (F) Pair-wise dissimilarity values in the semantic

space across all possible pairs of words. Color bar represents dissimilarity values that is 1 – r

(correlation between feature vectors for a given word pair) (G) Average pair-wise perceptual

dissimilarities (1/search reaction time) for all possible pairs of words, nonwords, and

corresponding word-nonword pairs.
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Appendix 7—figure 4. Searchlight analysis. (A) Searchlight map of correlation between neural

activity and lexical decision time for each voxel. (B) Searchlight map of correlation between

neural dissimilarity and search dissimilarities in behavior. (C) Searchlight map of correlation

between neural dissimilarity and semantic dissimilarities. (D) Searchlight map depicting the

difference in model fit for words versus nonwords for each voxel, averaged across subjects.

To further validate the letter model, we compared the single letter tuning along each

MDS dimension with the observed single letter tuning in each ROI (Appendix 7—figure 5A).

For each ROI, we grouped voxels with similar response profile and matched it to the MDS

dimension (Appendix 7—figure 5A). We obtained similar single letter tuning and weight

profiles for voxels across different ROIs. However, this analysis is inconclusive because there

is no systematic way to compare a small set of neurons inferred from behavior with the much

larger, possibly overcomplete set of voxel activations observed in brain imaging. Likewise,

we grouped voxels with similar summation weights to compare the weight profiles in

behavior and brain imaging. However this analysis is also inconclusive because different

MDS-derived neurons might contribute differently towards behavior, so the summation

weights cannot be directly averaged to make overall comparisons between ROI activations

and behavior. Despite these caveats, there is a general match between tuning profiles and

summation weights observed in behavior with those observed in different brain regions.
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Appendix 7—figure 5. Comparison of letter tuning and summation weights. (A) (Left)

Response of 6 MDS neurons for all the 10 letters. (Right) Single letters response across all the

voxels (concatenated across subjects) within a given ROI. Each voxels is sorted into one of six

groups depending on which MDS neuron it matches best. The height of each ROI plot is

logarithmically scaled to match the number of voxels across all subjects. Black dashed lines

are used to separate the clusters corresponding to each MDS neuron. (B) Same as (A) but

showing the summation weights corresponding to each MDS neuron or ROI voxel.

Neural dissimilarity values across words and nonwords
Within a given ROI, we calculated the pair-wise dissimilarity values using a noise-normalized

variation of cross-validated Mahalanobis distance (Nili et al., 2014). The median dissimilarity

matrix across all subjects is shown in Appendix 7—figure 3A-E. The semantic distance

between every pair of words was computed as the cosine distance between the GloVe

(Pennington et al., 2014) feature vectors activated by the two words (Appendix 7—figure

3F). The perceptual distance (1/search reaction time) averaged across all subjects for word-

word pairs, nonword-nonword pairs, and word-nonword pair is shown in Appendix 7—

figure 3G

Searchlight analyses
To identify other brain regions that might show the effects observed in the individual ROIs,

we performed a whole-brain searchlight analysis. Specifically, for each voxel in a given

subjects’ brain, we considered a local neighborhood of 27 voxels (3 � 3�3 voxels) and

performed the following analyses of interest. We obtained similar results for larger

searchlight volumes. The resulting maps were smoothed using a Gaussian filter with FWHM

of 3 mm.

Agrawal et al. eLife 2020;9:e54846. DOI: https://doi.org/10.7554/eLife.54846 56 of 58

Research article Neuroscience

https://doi.org/10.7554/eLife.54846


Searchlight for regions that match lexical decision time
For each voxel, its activity across strings is correlated with mean lexical decision time. The

resulting whole brain correlation map is averaged across subjects. Overall, activity in VWFA,

Superior Parietal Lobe (SPL), Pre-Frontal and motor cortex was correlated with lexical

decision time. This correlation map was visualized on the brain surface (Appendix 7—figure

4A).

Searchlight for regions that match perceptual space
For the neighborhood of each voxel, we calculated the pairwise neural dissimilarity for all

word-word, nonword-nonword, and word-nonword pairs for a given subject, and averaged

this across subjects. We then calculated the correlation between this local neural dissimilarity

and the corresponding string dissimilarities estimated using experiment 7. This correlation

map was visualized on the brain surface (Appendix 7—figure 4B).

Searchlight for regions that match semantic space
For the neighborhood of each voxel, we calculated the pairwise neural dissimilarity for all

word-word pairs for a given subject and averaged this across subjects. We then calculated

the correlation between this local neural dissimilarity and the corresponding semantic

dissimilarities. This correlation map was visualized on the brain surface (Appendix 7—figure

4C).

Searchlight for comparing linear model fits between
words and nonwords
For each subject and voxel, we modeled the response to strings as a linear combination of its

single letter responses. The model fits (correlation between observed and predicted string

responses) was evaluated separately for words and nonwords. The difference in the mean

model fits between words and nonword is visualized on the brain surface (Appendix 7—

figure 4D).

Match between letter model and fMRI data
The letter model described throughout the study is derived from dissimilarities measured in

behavior in two steps. First, the dissimilarities between single letters were used to construct

single neurons tuned to letter shape, whose activity predicts these dissimilarities. Second,

the summation weights of each neuron were adjusted so that they match the dissimilarities

between longer strings.

Given that we recorded responses to single letters as well as strings in fMRI, we

wondered whether these can be matched in some manner to the letter tuning and

summation weights derived from behavior in the letter model. Any direct comparison is

fraught with the difficulty that many single letter tuning functions could produce the same

behavior. For instance, simply rotating the MDS-derived tuning functions could yield another

set of neurons that match the observed letter dissimilarities. This is further compounded by

the fact that the MDS-derived neurons contribute unequally to behavior, and by the fact that

this mapping could change completely with increasing numbers of neurons. Thus, it is

unreasonable to expect voxel tuning for single letters or the summation weights to match

exactly with the behaviorally derived tuning.

Nonetheless, we attempted to find a broad link between the single letter tuning and

summation weights observed in behavior with those observed in each ROI. The results are

summarized in Appendix 7—figure 5A. Since there are only 10 single letters, 6 MDS

neurons were sufficient to explain >95% of the variance of the pair-wise single letter

dissimilarities observed in Experiment 1. For each MDS neuron, we identified the voxels

whose activity for single letters had the least residual error compared to other MDS neurons.
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In this manner, we sorted the voxels into six groups corresponding to each MDS neuron. The

resulting plots are shown in Appendix 7—figure 5A. It can be see that all ROIs show single

letter tuning profiles similar to the behaviorally derived single letter tuning profiles. The

corresponding summation weights for these voxels are shown in Appendix 7—figure 5B.

Once again, it can be seen that many ROIs show similar summation weights as those

observed in behavior.
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