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Abstract Breakthroughs in anti-tumor immunity have led to unprecedented advances in

immunotherapy, yet it is now clear that the tumor microenvironment (TME) restrains immunity. T

cells must substantially increase nutrient uptake to mount a proper immune response and failure to

obtain sufficient nutrients or engage the appropriate metabolic pathways can alter or prevent

effector T cell differentiation and function. The TME, however, can be metabolically hostile due to

insufficient vascular exchange and cancer cell metabolism that leads to hypoxia, depletion of

nutrients, and accumulation of waste products. Further, inhibitory receptors present in the TME can

inhibit T cell metabolism and alter T cell signaling both directly and through release of extracellular

vesicles such as exosomes. This review will discuss the metabolic changes that drive T cells into

different stages of their development and how the TME imposes barriers to the metabolism and

activity of tumor infiltrating lymphocytes.

Introduction
Hanahan and Weinberg’s seminal paper ‘The Hallmarks of Cancer’ was revised in 2011 to include

deregulating cellular energetics and evasion of immune destruction (Hanahan and Weinberg,

2011). Tumors fuel their rapid growth and proliferation with aerobic glycolysis, a process initially

described by Otto Warburg in which cells undergo glycolysis even in the presence of oxygen

(Lebelo et al., 2019). Although less energetically efficient than oxidation that occurs in most mature

tissues, aerobic glycolysis shuttles intermediates into biosynthetic pathways to make amino acids,

nucleotides, fatty acids and other macromolecules to support rapid anabolic growth (Pavlova and

Thompson, 2016). As a consequence, glucose and amino acids can be rapidly consumed while

waste products accumulate. Activated T cells also undergo a metabolic switch from oxidative metab-

olism to aerobic glycolysis to proliferate and develop effector function (Menk et al., 2018;

Bantug et al., 2018a). Rapid proliferation and acquisition of effector function are demanding pro-

cesses that require precise metabolic re-wiring. Failure of activated T cells to undergo metabolic re-

wiring impairs effector function (Kouidhi et al., 2017). As T cell metabolism dictates effector func-

tion, it is now apparent that the effect of cancer cell metabolism on the tumor microenvironment

(TME) may impair anti-tumor immunity, and these new hallmarks of cancer are therefore inextricably

linked.

Expanded understanding of the basic biology of T cell activation has enabled immunotherapy to

combat cancer, and T cell metabolism now offers the opportunity to optimize and improve these

therapeutic strategies. Two of the primary immunotherapies are immune checkpoint blockade (ICB)
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and adoptive cell transfer (ACT). ICB is based on the use of antibodies to neutralize inhibitory

immune receptors such as CTLA-4 or PD-1 to reinvigorate T cells (Baumeister et al., 2016). In con-

trast, ACT expands a patient’s own T cells ex vivo to direct anti-tumor immunity when transfused

back into the patient. These treatment modalities have shown great promise in many types of cancer

and even produce long-lasting responses in some patients (Gong et al., 2018). However, many

patients fail to respond to these therapies, and metabolic barriers imposed on T cells by the TME

may contribute. This review will discuss the metabolic adaptations necessary for T cells to meet

changing biochemical needs throughout different stages of differentiation. We will then examine

how tumor cells create a toxic milieu for T cells that enter the TME. Finally, we will provide an over-

view of how utilizing an understanding of T cell metabolism may inform strategies to alter the TME

or enhance T cell metabolism to strengthen the immunotherapy arsenal.

Metabolic reprogramming of T cells
There is a growing appreciation that distinct metabolic programs drive different developmental

stages of a T cell throughout its lifespan [Figure 1]. After leaving the thymus, naı̈ve T cells utilize a

catabolic metabolism in which small amounts of glucose are used to generate ATP mainly through

oxidative phosphorylation to support immune surveillance (Geltink et al., 2018; Chapman et al.,

2020). To proliferate and gain effector function, stimulated T cells must undergo rapid metabolic

reprogramming and switch to aerobic glycolysis to support anabolic metabolism and exit quiescence

(Geltink et al., 2018; Chapman et al., 2020). Although fewer ATP molecules are generated per glu-

cose molecule, aerobic glycolysis allows T cells to build substrates needed for growth and prolifera-

tion and is essential for effector differentiation (Menk et al., 2018). Metabolic reprogramming from

catabolism to anabolism is initiated upon T Cell Receptor (TCR) recognition of cognate antigen pre-

sented on major histocompatibility complex (MHC) and with the help of CD28-mediated co-stimula-

tion. TCRs cluster and signal to the phosphatidtyl-inositide-3 kinase (PI3K)/AKT/mTORC1 pathway to

upregulate nutrient uptake, glycolysis and, to a lesser extent, oxidative phosphorylation (Sena et al.,

2013; Frauwirth et al., 2002). T cell metabolism is further re-wired by transcription factors such as

c-Myc and hypoxia inducible factors (HIFs), which transcribe genes essential for T cell activation and

regulate glycolysis and glutaminolysis (Wang et al., 2011; Palazon et al., 2017). Importantly, limit-

ing glucose availability or inhibiting glycolytic enzymes impairs effector T cell proliferation and cyto-

kine production (Macintyre et al., 2014; Chang et al., 2013; Angiari et al., 2019). Increased amino

acid uptake is also essential, and deficiency of glutamine, neutral amino, or essential amino acid

transporters can impair effector T cell development (Sinclair et al., 2019; Sinclair et al., 2013;

Najjar et al., 2019; Johnson et al., 2018). While glutamine uptake itself is required for T cell activa-

tion, glutamine metabolism appears to play a complex role, as glutaminolysis can suppress effector

T cell differentiation and function (Johnson et al., 2018; Leone et al., 2019). In addition to these

pathways, mitochondria undergo physical and functional changes required for efficient T cell activa-

tion. T cell activation with CD28 co-stimulation leads to mitochondrial fragmentation that can reduce

oxidative efficiency in effector T cells (Buck et al., 2016), although CD28 co-stimulation increased

respiration under glucose limiting conditions (Frauwirth et al., 2002). This distinction may be due to

findings that CD28 co-stimulation can increase T cells spare respiratory capacity and remodel cristae,

allowing memory T cells to manage metabolic stress and quickly to future stimuli (Klein Geltink

et al., 2017). The mitochondria of T lymphocytes also undergo significant proteomic changes that

favor one-carbon metabolism critical for nucleotide synthesis, methylation, and redox balance in T

cell activation (Ron-Harel et al., 2016). Meanwhile, mitochondrial reactive oxygen species (ROS)

production promotes nuclear factor of activated T cells (NFAT) activation and IL-2 production

(Sena et al., 2013).

Although most of our understanding of T cell metabolism comes from in vitro or ex vivo studies,

the question of whether this translates in vivo has been understudied. A recent study by Ma et al.

compared CD8+ T cell metabolism in vivo versus in vitro by tracing glucose metabolism with 13C-glu-

cose IV infusions in a listeria monocytogenes infection mouse model (Ma et al., 2019a). Their results

showed that CD8+ T cells in situ had reduced lactate production and higher rates of oxidative

metabolism and serine metabolism compared to in vitro CD8+ T cells that adopted a metabolic
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Figure 1. T Cells Undergo Metabolic Rewiring in Different Stages of Their Life. (A) Naı̈ve T cells uptake sufficient amounts of glucose to fuel oxidative

phosphorylation and survive as they survey antigens. (B) Upon encountering cognate antigen, activated T cells rapidly uptake glucose and glutamine to

fuel their bioenergetic needs. Activated T cells perform aerobic glycolysis, which shunts products of glycolysis to biosynthetic processes necessary for

proliferation and effector function and generates lactate as a byproduct. (C) Once the antigen is cleared, T cells can form long-lived memory cells in

which AMPK signaling stimulates fatty acid oxidation. Memory T cells also increase their mitochondrial mass and spare respiratory capacity to prepare

for future encounter with cognate antigen. (D) T cells can become exhausted if they fail to clear antigens such as during chronic infections or cancer. T

lymphocytes isolated from tumors display elevated levels of PD-1, which decreases PI3K/Akt/mTOR signaling and glycolysis. Exhausted TILs rely on

fatty acid oxidation, though they often have dysfunctional mitochondria and decreased mitochondrial mass as well.
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phenotype consistent with the Warburg effect (Ma et al., 2019a). The environment may contribute

to these metabolic differences, since in vitro conditions often supply high amounts of glucose.

Indeed, when the in vivo effector T cells were cultured in the same in vitro media conditions, the

cells secreted more lactate (Ma et al., 2019a). These data suggest that T cells in vivo utilize glucose

primarily as an anabolic source with alternate fuels such as glutamine supporting ATP, whereas glu-

cose may play a broader anabolic and energetic role in vitro that would necessitate higher glucose

flux and subsequent lactate production to maintain redox balance. Re-assessing the nutrients in vitro

cultures of T cells to better reflect in vivo conditions is necessary to more precisely study T cell

metabolism under a variety of contexts such as cancer.

Long-lived memory T cells that form after the induction of an immune response also have distinct

metabolic features. Unlike activated T lymphocytes, memory T cells have low mTOR signaling and

high AMPK signaling, promoting fatty acid oxidation (Araki et al., 2009; Pearce et al., 2009). To

support this state, memory T cells increase their uptake of glycerol, which is used to synthesize fatty

acids that subsequently fuel fatty acid oxidation (Cui et al., 2015). In contrast to naı̈ve or activated T

cells, memory T cells have more mitochondrial mass and mitochondrial spare respiratory capacity

(van der Windt et al., 2012) and are poised to rapidly induce aerobic glycolysis (Gubser et al.,

2013; Bantug et al., 2018b). This unique metabolic program allows memory T cells to quickly

respond upon encountering the cognate antigen (Fraser et al., 2013). However, when effector T

cells cannot effectively clear antigens such as during chronic infection or cancer, they may not form

memory T cells and instead may become exhausted (McLane et al., 2019). Exhausted T cells are a

distinct class of T lymphocytes characterized by lower proliferative capacity, survival, and cytokine

production. They also express different transcription factors and high amounts of inhibitory recep-

tors such as PD-1, leading to metabolic re-wiring (Khan et al., 2019). In particular, PD-1 signaling

promotes the switch from glycolysis to fatty acid oxidation by suppressing AKT and mTOR activity

(Saeidi et al., 2018). These functionally impaired T cells also have impaired mitochondria

(Schurich et al., 2016), and improving mitochondrial function with anti-oxidants restored T cell activ-

ity (Fisicaro et al., 2017). In addition, overexpression of peroxisome proliferator-activated receptor-

g coactivator (PGC-1a) increased glucose uptake and decreased mitochondrial mass and polariza-

tion, and it enhances the function of exhausted T cells in both a lymphocytic choriomeningitis virus

(LCMV) infection (Bengsch et al., 2016) and in a B16 melanoma model (Scharping et al., 2016).

Overall, T cells must adapt their metabolism to fuel a program that meets their changing needs at

different activation, functional, and microenvironmental stages.

T cells encounter a hostile metabolic environment in tumors
T cells isolated from tumors often show signs of exhaustion and have distinct metabolic signatures

(Scharping et al., 2016; Siska et al., 2017). For example, tumor-infiltrating lymphocytes (TILs) iso-

lated from clear cell renal cell carcinoma patients show decreased glucose uptake as well as small,

fragmented mitochondria with elevated ROS (Siska et al., 2017). Bypassing these metabolic defects

by supplementing with pyruvate or adding ROS scavengers partially restored TIL activation

(Siska et al., 2017). TILs in a murine melanoma model have also been shown to have dysfunctional

enolase (Gemta et al., 2019) and reduced mitochondria biogenesis (Scharping et al., 2016), and

tumor-associated lactate and cholesterol suppress TIL function (Brand et al., 2016; Ma et al.,

2019b). In addition, TILs can infiltrate sarcoma tumors but do not produce cytokines until after

checkpoint blockade (Gubin et al., 2014). These studies suggest that antigen recognition and infil-

tration into tumors alone are insufficient for an antitumor response, and that the tumor metabolic

microenvironment can directly suppress T cells.

Hypoxia
T cells are primed in nutrient-rich lymphoid tissues but enter tumors where cancer cell metabolism

and poor vascular exchange may lead to a fierce competition for resources. One hostile aspect of

the TME that infiltrating T cells encounter is hypoxia, created by the high metabolic rate of tumor

cells in conjunction with inadequate vasculature. Cancer cells can adapt to thrive under low oxygen

conditions, and several studies have shown the association of hypoxia with angiogenesis, metastasis,

and chemoresistance (Harris, 2002; Wilson and Hay, 2011). Under low oxygen states, the transcrip-

tion factor hypoxia-inducible factor (HIF) is free from its negative regulator von Hippel-Lindau (VHL)
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to upregulate its target genes (Marx, 2004). Studies have begun to show how hypoxia can lead to

metabolic dysfunction in T cells, though it still remains a complex subject. There are studies that sug-

gest hypoxia can have an immunostimulatory effect on T cells in the TME. For example, lack of oxy-

gen stabilizes HIF-1a, which increases pyruvate dehydrogenase kinase and lactate dehydrogenase A

expression and thus decreases oxidative phosphorylation (Papandreou et al., 2006; Kim et al.,

2006). Hypoxic CD8+ T cells increase granzyme B packaging into granules and reject B16 tumors in

mice more efficiently than normoxic T cells (Gropper et al., 2017), and loss of HIF-1a, but not HIF-

2a, inhibited the activity and migration of OT-I T cells and enhanced tumorigenesis (Palazon et al.,

2017). In contrast, other studies indicate an immunosuppressive role for hypoxia. For example, HIF-

1a is known to upregulate PD-L1 on myeloid-derived suppressor cells (MDSCs), which leads to T cell

exhaustion, and can promote the generation of regulatory T cells (Shen et al., 2019; Noman et al.,

2014; Ben-Shoshan et al., 2008). Highly oxidative cancer cells can lead to areas of hypoxia, and this

has been associated with decreased T cell response to ICB (Najjar et al., 2019). Indeed, T cells have

been shown to avoid areas of hypoxia in the TME, but mice breathing 60% oxygen displayed

enhanced CD8 T cell infiltration into the TME and increased tumor regression and survival in multiple

tumor models (Hatfield et al., 2015). These studies underscore that there is likely a fine balance

with HIF-1a expression in TILs that can later their function in the TME. Further investigation is war-

ranted to tease out the effects of hypoxia in the TME.

Nutrient competition and metabolic byproducts
Consistent with both cancer cells and effector T cells utilizing aerobic glycolysis in tumor microenvir-

onments that can have poor vascular exchange, evidence supports competition for available

nutrients that can impair TILs [Table 1]. Indeed, intratumor glucose levels have been measured and

can be significantly reduced in some settings (Scharping et al., 2016; Ho et al., 2015), although glu-

cose levels can remain unchanged in others (Siska et al., 2017). Cancer cells may contribute to

reduced glucose availability as rapid glucose consumption by mouse sarcoma cells was found to

restrict the effector function of TILs and thus permitted tumor progression (Chang et al., 2015).

Tumor regression and TIL function were inversely associated with the capacity of sarcoma cells to

Table 1. Hostile Conditions in The Tumor Microenvironment Impair T Cell Metabolism and Anti-Tumor Immunity.

Cancer cell metabolism, improper blood vessel formation, and extracellular vesicles all contribute to a toxic milieu deficient in key

nutrients, such as glucose and oxygen, and high in waste products, such as lactate. Consequently, TILs entering the TME are deprived

of key nutrients, disturbing metabolic processes critical for their anti-tumor functions.

Component of the TME Impact on T Cell Metabolism Effect on Anti-Tumor Immunity

Hypoxia . Stabilizes HIF-1a
. Increases pyruvate dehydrogenase
kinase, blocking the conversion of
pyruvate to acetyl-CoA and thus
mitochondrial respiration and
ROS production
. Increases lactate dehydrogenase
A expression and inactivates
pyruvate dehydrogenase, shunting
pyruvate to lactate

. Increases granzyme B packaging
into granules, leading to rejection
of B16 tumors in mice
. Upregulates PD-L1
expression on MDSCs
. Decreases T cell infiltration

Depletion of Glucose . Reduces aerobic glycolysis
. Decreases levels of
phosphoenolpyruvate, which
regulates calcium and NFAT signaling

. Suppresses TIL effector function

. Reduces EZH2 expression,
decreasing T cell polyfunctionality

Accumulation of Lactate . Impedes lactic acid export from
CD8+ T cells, which slows down
glycolysis and reduces ATP levels
. Decreases NFAT levels and
translocation to the nucleus

. Inhibits T cell proliferation,
activation, and function
. Induces T and NK cell apoptosis

Tumor-derived
Extracellular Vesicles (EVs)

. Modulates the metabolism of tumor
associated macrophages
and other cell types.
. Effects of EVs on T cell metabolism
are currently unknown

. Suppresses TIL anti-tumor function.

. However, blocking EV biogenesis
induces T cell activation, proliferation,
and effector function.
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perform aerobic glycolysis. Another study found that culturing T lymphocytes in conditioned media

from ovarian cancer cells decreased expression of the methyltransferase EZH2 in T cells and their

polyfunctionality, and these effects were abrogated upon glucose supplementation (Zhao et al.,

2016). In addition, treating human ovarian cancer-specific T cells with an EZH2 inhibitor prior to

adoptive transfer led to increased tumor growth in a humanized ovarian cancer mouse model

(Zhao et al., 2016). These data suggest that glucose metabolism can regulate T cell polyfunctional-

ity by modulating EZH2 expression, although whether one should induce EZH2 expression in cancer

patients is complicated since some cancers acquire gain-of-function mutations in this methyltransfer-

ase (Kim and Roberts, 2016). It would be interesting to test whether inducing EZH2 expression in

adoptively transferred T cells could overcome the effects of glucose deprivation in the TME. Insuffi-

cient glucose in tumors may also impair T cell signaling to restrain anti-tumor immunity through a

phosphoenolpyruvate-dependent regulation of calcium signaling (Ho et al., 2015). Collectively,

these studies highlight the importance of glucose in the TME for T cell function.

In addition to potential limitations to available glucose, other nutrients may also become limiting

in context specific manners. A mass spectrometry-based analyses of institutional fluid from a pancre-

atic ductal carcinoma mouse model showed depletion of some essential and branch chain amino

acids, while others were enriched in the tumor microenvironment (Sullivan et al., 2019). Importantly,

the tumor location, diet, and cancer type could shift the metabolic composition of the tumor intersti-

tial fluid, indicating that the overall tumor context may exert a strong influence over the TME. Strate-

gies to increase alternative programs, such as lipid metabolism driven by PGC1a (Scharping et al.,

2016) or PPARa (Zhang et al., 2017), may rewire metabolism and overcome these metabolic defi-

ciencies, although the metabolic implications of these adaptations for T cell proliferation and effec-

tor function remain poorly understood.

Tumor cells also produce byproducts detrimental to T cells. Indoleamine 2,3-dioxygenase (IDO) in

cancer cells catalyzes oxidative catabolism of tryptophan, thus dampening antitumor immune

responses by depleting this essential amino acid and producing kyneurenine, which generates immu-

nosuppressive regulatory T cells (Tregs) (Munn and Mellor, 2013; Mezrich et al., 2010). These

Tregs in turn can promote IDO expression on dendritic cells, further increasing kynurenine and

depleting tryptophan in the TME (Fallarino et al., 2003). Another toxic byproduct produced by can-

cer cells is lactate (Siska and Rathmell, 2015). High lactate concentrations produced by tumor cells

impeded lactic acid export in CD8+ T cells and thus suppressed their effector function

(Fischer et al., 2007). Tumor-associated expression of lactate dehydrogenase A is associated with

lower survival and impaired T cell activity in melanoma patients (Brand et al., 2016). In contrast, a

recent proteomic analysis of melanoma showed that tumors with higher oxidative phosphorylation

and lipid metabolism had increased antigen presentation and were associated with response to anti-

PD-1 or TIL-based immunotherapy (Harel et al., 2019). One possible explanation could be that

these tumors are undergoing less glycolysis, creating an excess supply of glucose for infiltrating T

cells (Harel et al., 2019). In addition, these tumors would also secrete less lactate, creating a more

favorable environment for T cell-mediated killing (Harel et al., 2019). Overall, T cells face fierce

competition for nutrients and are exposed to a multitude of toxic byproducts that can impair their

function in the TME.

Extracellular vesicles
In addition to the concentration of metabolites, gradients in molecular elements like O2, and

changes in physical characteristics of the TME such as pH, there are other discrete transferable fac-

tors that may also influence immune cell metabolism and function. Extracellular vesicles (EVs) encom-

pass a diverse set of membrane vesicles secreted by most, if not all, cell types (Tkach et al., 2018).

Tumors have been shown to secrete an abundance of EVs that can subsequently have biological

effects on many different cell types, including immune cells (Chen et al., 2018; Ricklefs et al., 2018;

Poggio et al., 2019). Under hypoxic conditions, pancreatic cancer cells secrete microRNAs into EVs

that activate the PI3K signaling pathway to induce M2 macrophage polarization, which subsequently

promotes cancer progression and predicts poor prognosis (Wang et al., 2018). Recent studies have

begun to investigate metabolic effects of secreted EVs. In particular, both hepatic stellate cells and

mutant KRAS colonic cells have been found to release EVs containing Glut1, which induces glycolysis

in other cells in the TME (Wan et al., 2019; Zhang et al., 2018). In addition, proteomic and
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lipidomic analysis of EVs released from tumor associated macrophages were shown to contain a

Th1/M1 signature and enzymes involved in lipid metabolism, which strongly correlated with an anti-

tumor immune phenotype (Cianciaruso et al., 2019). The full range of effects of EVs on immune cell

metabolism and function in anti-tumor immunity remains uncertain but has the potential to impact

immunotherapy.

Directly manipulating T cell metabolism to improve immunotherapy
There is considerable excitement surrounding ICB to treat cancer, which may derive its efficacy in

part by altering T cell metabolism. Although both PD-1 and CTLA-4 impair utilization of glucose and

glutamine by decreasing their uptake, these immune checkpoint proteins change lymphocyte metab-

olism through distinct molecular mechanisms (Parry et al., 2005; Patsoukis et al., 2015). In particu-

lar, PD-1 signaling blocks activation of PI3K and Akt in T lymphocytes, flipping a metabolic switch

from glycolysis to lipolysis and fatty acid oxidation and thus impairing effector function

(Patsoukis et al., 2015). A similar metabolic shift and decrease in cytokine production was observed

upon PD-1 ligation activating STAT3 in CD8+ T cells, facilitating obesity-associated breast cancer

progression (Zhang et al., 2020). These findings suggest that PD-1 blockade may function synergis-

tically at two levels by re-invigorating T cell glycolysis while simultaneously inhibiting tumor cell gly-

colysis. On the other hand, binding of CD80 and CD86 to CTLA-4, a negative regulator of CD28 co-

stimulation, inhibits glycolysis without affecting fatty acid oxidation, maintaining the metabolic pro-

gram of quiescent cells and blocking this interaction can enhance CD28-mediated T cell metabolic

reprogramming (Patsoukis et al., 2015). Like PD-1, ligand engagement of CTLA-4 also blocks Akt

activation, but CTLA-4 performs this function in a PI3K-independent fashion (Parry et al., 2005).

Thus, the suppressive effects of CTLA-4 on T cell activation may stem from its preservation of a bio-

energetic profile similar to non-stimulated cells, while PD-L1 binding to PD-1 induces a distinct T cell

metabolic state.

Modulating the metabolism of T cells presents an exciting avenue to improve current immuno-

therapies, in particular adoptive cell transfer, in which T cells are taken from a patient, primed, and

expanded ex vivo before transfusing them back into the patient. This process requires careful manip-

ulation of the T cells and presents an opportunity for discrete access to the cells for metabolic inter-

ventions. Several studies have shown that modulating the metabolism of adoptively transferred T

cells with pharmacologic agents is a promising path to improve this form of immunotherapy

(Chang and Pearce, 2016). Treating T cells in vitro during the priming and expansion phases with 2-

deoxyglucose (2-DG), an inhibitor of glycolysis, increased memory T cell formation and subsequently

enhanced antitumor function in vivo (Sukumar et al., 2013). Adoptive transfer of antigen-specific T

cells treated ex vivo with an inhibitor of oxygen-sensing prolyl-hydroxylase domain proteins

increased glycolytic activity and reduced lung metastasis in a B16-melanoma model (Clever et al.,

2016). Similarly, treating T cells in vitro with Mdivi, an inhibitor of mitochondrial fission, also

increases in vivo anti-tumor activity (Buck et al., 2016). Moreover, in vitro Akt pharmacologic inhibi-

tion increased the persistence of memory T cells after adoptive transfer and led to increased antitu-

mor function in vivo (Crompton et al., 2015). Finally, adding bicarbonate to neutralize acidic

environments improved response rates to checkpoint inhibition and adoptive cell therapy in mice

models of melanoma (Pilon-Thomas et al., 2016). Taken together, these studies indicate that fine-

tuning T cell metabolism in vitro prior to transfusion back into patients is key to their success in vivo.

Conclusion
Disruption of T cell activation due to altered tumor cell metabolism and other metabolic features in

the TME indicates that this is an important mechanism for immunosuppression. As tumors grow and

proliferate, they rapidly consume nutrients such as oxygen and glucose and secrete lactate, creating

regions of hypoxia and high acidity. Cancer cells and cells in the tumor microenvironment also shed

EVs which may convey metabolic signals that can further hinder immune cell function. Upon entering

the TME, TILs must overcome these metabolic challenges in order to mount a successful immune

response. Although significant progress has been made in strengthening immunotherapy regimens,

there remains significant knowledge gaps about how they work and why a majority of patients do

not respond to treatment.
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There are a number of challenges and opportunities to exploit the TME and immunometabolism

in immunotherapy. One key challenge is to identify metabolic pathways that are cancer-specific or

targets that can negatively influence cancers while improving the TME for immune function and not

overly impairing immune cells. Targeting some pathways, such as glucose metabolism, may be chal-

lenging because both cancer and effector T cells and macrophages use and require these pathways.

However, it was recently shown that other metabolic pathways, such as glutamine-dependent

metabolism, may be more critical for cancer cells than inflammatory effector T cells or macrophages

(Johnson et al., 2018; Leone et al., 2019; Liu et al., 2017), indicating that it may be possible to

both target cancer metabolism and enhance immunity. The influence of tumor type, location, and

diet on metabolites in the TME (Sullivan et al., 2019) though could necessitate context-specific

interventions. Nevertheless, dietary modifications that affect nutrient availability in the TME and

have shown promise in clinical trials to slow tumor growth, though context specific aspects may

require distinct guidelines for different cancers (Kanarek et al., 2020).

Another instance where immunometabolism may be exploited to enhance immunotherapy is

through adoptive cell therapy. Indeed, the potential to enhance the metabolic capacity of Chimeric

Antigen Receptor (CAR)-T cells or other cells through in vitro manipulation prior to cell transfer may

overcome barriers of unintended direct effects on the tumor cells. The potential side effects of meta-

bolic modulatory drugs have also not been fully explored and must be considered as normal tissues

may be affected. Nevertheless, metabolic inhibitors have had fewer toxicities than expected, possi-

bly due to the lower metabolic activity and high degree of metabolic flexibility of most tissues. Key

remaining questions include: Can we translate findings from experimental models to humans? How

do we keep T cells alive long enough to form memory cells to reject future cancer cells? How do we

balance activating anti-tumor T cells with autoimmune side effects or inadvertently enhancing cancer

cell growth? Understanding the T cell metabolic program and how it underlies function and dysfunc-

tion represents a promising venue that can be exploited to improve immunotherapy efficacy.
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