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Abstract In the neocortex, functionally distinct areas process specific types of information. Area 
identity is established by morphogens and transcriptional master regulators, but downstream mech-
anisms driving area-specific neuronal specification remain unclear. Here, we reveal a role for RNA-
binding proteins in defining area-specific cytoarchitecture. Mice lacking Pum2 or overexpressing 
human TDP-43 show apparent ‘motorization’ of layers IV and V of primary somatosensory cortex 
(S1), characterized by dramatic expansion of cells co-expressing Sox5 and Bcl11b/Ctip2, a hallmark 
of subcerebral projection neurons, at the expense of cells expressing the layer IV neuronal marker 
Rorβ. Moreover, retrograde labeling experiments with cholera toxin B in Pum2; Emx1-Cre and 
TDP43A315T mice revealed a corresponding increase in subcerebral connectivity of these neurons in 
S1. Intriguingly, other key features of somatosensory area identity are largely preserved, suggesting 
that Pum2 and TDP-43 may function in a downstream program, rather than controlling area identity 
per se. Transfection of primary neurons and in utero electroporation (IUE) suggest cell-autonomous 
and post-mitotic modulation of Sox5, Bcl11b/Ctip2, and Rorβ levels. Mechanistically, we find that 
Pum2 and TDP-43 directly interact with and affect the translation of mRNAs encoding Sox5, Bcl11b/
Ctip2, and Rorβ. In contrast, effects on the levels of these mRNAs were not detectable in qRT-PCR 
or single-molecule fluorescent in situ hybridization assays, and we also did not detect effects on their 
splicing or polyadenylation patterns. Our results support the notion that post-transcriptional regu-
latory programs involving translational regulation and mediated by Pum2 and TDP-43 contribute to 
elaboration of area-specific neuronal identity and connectivity in the neocortex.
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that it presents experiments and data that will motivate further study in the field. You have convinc-
ingly demonstrated translational modulation of Sox5, Bcl11b, and Rorb by the RNA-binding proteins 
(RBPs) Pum2 and TDP-43, with thoughtful experiments supporting cell-autonomous effects of the 
RBPs on the translational regulation of Bcl11b, Sox5, and Rorb. Your in vivo gain and loss-of-function 
data in a range of genetically manipulated mouse lines, coupled with in vitro neuronal culture exper-
iments, provide strong evidence for the control that Pum2 and TDP43 exert on these key regulators 
of neuronal diversification during corticogenesis. Thank you for completing such a deeply informa-
tive body of work and for discussing the complexities involved so thoughtfully within your paper.

Introduction
The neocortex is the largest and the most complex structure in the mammalian brain and plays a 
crucial role in processing sensory information, controlling movement and higher-level cognition. Two 
prominent architectural features of the neocortex are its ‘tangential areal’ and ‘radial laminar’ organi-
zation. Neocortical areas, defined by Brodmann as the ‘organs of the brain,’ form the basis for sensory 
perception and mediate our behavior (Rakic, 1988; Zilles and Amunts, 2010). The basic plan of the 
neocortex comprises four primary areas, spatially organized into six horizontal layers, each containing 
a heterogeneous population of neurons, distinguished by their morphology, connectivity, molecular 
code, and function (O’Leary and Nakagawa, 2002; Rash and Grove, 2006; Sur and Rubenstein, 
2005). Within each area, the relative number of neuronal subtypes appears to be tuned to correspond 
with area function. For instance, the primary motor area (M1) has a thick layer V with numerous subce-
rebral output neurons, but a very thin layer IV for receiving thalamic input. In contrast, the primary 
somatosensory area (S1) has exactly the opposite organization and is therefore adapted to receive 
input (Dehay and Kennedy, 2007; Glickfeld et al., 2013; Yamawaki et al., 2014).

Neocortical area patterning is controlled by a regulatory hierarchy: Morphogens establish differen-
tially graded expression of transcription factors, which then determine the area identity of the neurons 
forming the cortical plate (Alfano and Studer, 2013; O’Leary et al., 2007; O’Leary and Sahara, 
2008). This areal commitment of newly born projection neurons is followed by laminar fate determina-
tion. Opposing molecular programs direct their differentiation into one of the major neuronal subtype 
identities (Greig et al., 2013; Jabaudon, 2017; Molyneaux et al., 2007). Most work to date has 
addressed these two major regulatory schemes separately. Thus, how they interact and how neurons 
integrate area and subtype identities remains mysterious. Area-specific differences in layer-neuron 
identity imply exquisite molecular control over cell fate within specific areas. Nevertheless, down-
stream molecular mechanisms that define area-specific patterns of neuronal identity and connectivity 
remain poorly understood.

Historically, most analyses of how regulation of gene expression contributes to corticogenesis 
focused on transcriptional control by nuclear transcription factors, which clearly is a major driving 
force in control of neuronal fate (Greig et al., 2013; O’Leary and Sahara, 2008). In contrast, the 
role of post-transcriptional regulation in cortical development is still emerging. RNA-binding proteins 
(RBPs) are major mediators of post-transcriptional control and can influence different steps of mRNA 
metabolism, including splicing, stability, translation, and localization (Pilaz and Silver, 2015). Recent 
studies have revealed roles for RBPs in many aspects of cortical development that affect cortical 
cytoarchitecture and suggest potential connections between these effects and both neurodevelop-
mental and neurodegenerative diseases (Jung and Lee, 2021; Kanemitsu et al., 2017; Kiebler et al., 
2013; Kraushar et al., 2014; La Fata et al., 2014; Lee et al., 2019; Pilaz and Silver, 2015; Sena 
et al., 2021; Vessey et al., 2012; Zahr et al., 2018). However, whether RBPs regulate cytoarchitec-
ture area-specifically remains unknown.

Here, we examine the potential contribution of post-transcriptional regulation to area-specific 
neuronal identity and connectivity by focusing on two RBPs: Pumilio-2 (Pum2) and Tar-DNA binding 
protein 43 (TDP-43). We chose to focus on these specific proteins based on their known and distinct 
roles in post-transcriptional regulation in the nervous system and because of TDP-43’s importance 
in neurodegenerative diseases that affect cortical neurons (Buratti and Baralle, 2014; Goldstrohm 
et al., 2018; Lagier-Tourenne et al., 2010; Martínez et al., 2019; Vessey et al., 2012; Zahr et al., 
2018; Zhang et al., 2017). Pum2, a quintessential RBP enriched in the nervous system, is found exclu-
sively in the cytoplasm and dendrites, where it controls post-transcriptional steps of gene expression 
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that take place in these subcellular compartments (Goldstrohm et al., 2018; Vessey et al., 2012; 
Vessey et al., 2010). As such, we consider it a particularly interesting neuronal RBP to investigate in 
control of area-specific cytoarchitecture. Previous work has implicated the combined action of Pum2 
and its ortholog Pum1 in many aspects of brain development (Zhang et al., 2017), and Pum2 has 
recently been implicated in control of cortical axonogenesis (Martínez et al., 2019). However, area-
specific phenotypes resulting from selective knockout of Pum2 in developing neocortical neurons 
have not previously been described.

Unlike Pum2, TDP-43 is a ‘shuttling’ RBP that moves back and forth between the nucleus and cyto-
plasm to regulate gene expression primarily at the post-transcriptional level in both compartments 
(reviewed in Lee et al., 2011). Strong overexpression of TDP-43 in developing neuronal progenitors 
leads to apoptosis with concomitant pleiotropic effects on cortical development (Vogt et al., 2018). 
However, the impact of lower-level, post-mitotic overexpression of TDP-43 on area-specific cytoarchi-
tecture has not previously been examined. TDP-43 is heavily implicated as a key causal factor in the 
neurodegenerative diseases (amyotrophic lateral sclerosis [ALS]) and frontotemporal dementia (FTD), 
both of which show some degree of area-selective pathology in the neocortex of both patients and 
animal models (Taylor et al., 2016). While diseases are typically classified into either neurodevelop-
mental or neurodegenerative, there is long-standing interest in the idea that altered neuronal speci-
fication and wiring during development might ultimately contribute to degenerative disease later in 
life (Greig et al., 2013). Thus, one goal of our study was to see whether we could find evidence for 
area-specific effects on layer neuron identity in an established mouse model of ALS driven by a patient 
mutation in TDP-43.

By combining genetics with molecular imaging and in vivo biochemical approaches, we uncovered 
evidence for a role for RBPs in shaping the specialized layering pattern of S1. Our work highlights 
an apparent contribution of post-transcriptional repression of Sox5 and Bcl11b (Ctip2) mRNAs and 
activation of Rorβ mRNA as a downstream mechanism in area-specific control of neuronal identity and 
connectivity. Moreover, our data provide evidence that Pum2 and TDP-43 regulate neuronal identity 
post-mitotically in S1, and may do so at least partly through competing effects on translation of key 
regulators of neuronal identity.

Results
Contribution of RBPs Pum2 and TDP-43 to area-specific neuronal 
cytoarchitecture in the neocortex
We used a reverse-genetic approach to investigate whether RBPs might contribute to the establish-
ment of neuronal identity in an area-specific manner. Specifically, we compared the expression of 
proteins that determine layer-specific neuronal subtypes in different cortical areas of mutant mice 
for the two RBPs, Pum2 and TDP-43. To this end, we generated Pum2 mice with loxP sites flanking 
exons 6 and 7. Crossing these mice to a line expressing Cre recombinase under the control of the 
Emx1 promoter (Iwasato et al., 2000) enabled selective inactivation of Pum2 expression in the fore-
brain (Gorski et al., 2002; Figure 1—figure supplement 1). To examine a potential contribution of 
TDP-43 and a possible link to human disease, we used a previously described transgenic mouse line 
containing a mutant allele that causes the neurodegenerative disease, ALS, in human patients Prnp-
TARDBP A315T (TDP43A315T) (Wegorzewska et al., 2009).

We analyzed the overall brain architecture in Emx1Cre; Pum2fl/fl (Pum2 cKO) and TDP43A315T 
(TDP43A315T) mice compared to their littermate controls (Figure 1—figure supplements 2 and 3). 
At postnatal day 0 (P0), brain size and cortical thickness were similar to littermate controls in both 
mutants (Figure  1—figure supplement 2a and b). Our Nissl staining showed no strong cortical 
morphological differences in coronal (P0) and sagittal (P7) sections of both mutants compared to their 
littermate controls (Figure 1—figure supplement 3). On a cellular level, nuclear size in S1 layer II–VI 
neurons was slightly larger in Pum2 cKO compared to controls, while it was not significantly affected 
in TDP43A315T mutants (Figure 1—figure supplement 2c). Moreover, we did not observe any signifi-
cant changes in the total number of DAPI cells in both mutants compared to their littermate controls 
(Figures 1 and 2, Figure 1—figure supplement 5). To check whether the neurogenesis to gliogen-
esis ratio might be affected in our mutants at P0, we performed staining for NeuN as a neuronal 
marker and GFAP as a glial marker (Figure 1—figure supplement 2d). Our staining showed that most 
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Figure 1. Neocortical neuronal identity of somatosensory cortex is altered in Pum2 cKO and TDP43A315T mice. (a) Coronal sections from neonatal 
(P0) brains of controls (Ctrl), Pum2 cKO, or Prnp-TARDBPA315T (TDP43A315T) mice were stained with antibodies recognizing Sox5, Bcl11b, or Rorβ or with 
DAPI to mark nuclei in the prospective somatosensory cortex (pS). (b) Quantification of results from n = 3 mice of each genotype is shown to the right of 
the relevant marker. Distribution of cells across six equal-sized bins is shown. For Bcl11b, only high-expressing neurons were counted. Data are shown as 
means ± standard error of the mean (SEM), n = 3 for each genotype. *p≤0.05, **p≤0.01, ***p≤0.001, two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre; II–IV, 
V, VI: layers II–IV, V, and VI. Scale bar: 100 μm.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Generation of Pum2 cKO mice.

Figure supplement 2. General cortical developmental features are unaltered in Pum2 and TDP-43 mutants.

Figure supplement 3. Cortical morphology of Pum2 and TDP-43 mutants is not affected.

Figure supplement 4. Specialized neocortical architecture of S1 and M1 is altered in Pum2 cKO and TDP43A315T mutant mice.

Figure 1 continued on next page

https://doi.org/10.7554/eLife.55199
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cortical neurons co-expressed NeuN and DAPI, but GFAP was essentially absent from cortices of both 
mutants and controls. This is consistent with gliogenesis starting at E18.5-P0 in WT animals (Miller and 
Gauthier, 2007; Sarnat, 1992) and shows that this is not affected in either mutant. The same experi-
ment showed significant hippocampal staining with both NeuN and GFAP, in accordance with earlier 
gliogenesis in the hippocampus (Figure 1—figure supplement 2d). Overall, these findings support 
use of DAPI as a normalization factor in our following analysis.

Figure supplement 5. Quantitative analysis of neocortical layer neuron identity in prospective somatosensory cortex (pS) vs. frontal/motor area (F/M) at 
P0.

Figure supplement 6. Normal layer VI and upper layers in Pum2 cKO and TDP43A315T mice.

Figure supplement 7. Prospective somatosensory cortex (pS) layer IV/V phenotypes are also observed in Pum2 KO, but not Pum2fl/+; Emx1Cre transgenic 
mouse line.

Figure supplement 8. Expression patterns and relative levels of TDP-43 and transgenic hTDP-43 proteins in developing mouse neocortex.

Figure supplement 9. Neuronal identity of layers IV and V is affected by TDP-43 gain of function.

Figure 1 continued

Figure 2. Neocortical neuronal identity remains unaffected in the motor cortex of Pum2 and TDP-43 mutants. (a) Coronal sections from neonatal 
(P0) brains of controls (Ctrl), Pum2 cKO, or Prnp-TARDBPA315T (TDP43A315T) mice were stained with antibodies recognizing Sox5, Bcl11b, or with DAPI to 
mark nuclei in the frontal/motor area (F/M). (b) Quantification of results from n = 3 mice of each genotype is shown to the right of the relevant marker. 
Distribution of cells across six equal-sized bins is shown. For Bcl11b, only high-expressing neurons were counted. Data are shown as means ± standard 
error of the mean (SEM), n = 3 for each genotype, two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre; II–IV, V, VI: layers II–IV, V, and VI. Scale bar: 100 μm.

https://doi.org/10.7554/eLife.55199
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We focused our analysis on the frontal/motor (F/M) and somatosensory cortices, which show 
characteristic differences in neuronal subtype ratios related to their specialized functions. The 
frontal motor area F/M is characterized by a thick layer V (Dehay and Kennedy, 2007; Polleux 
et al., 2001), in which many cells co-express the molecular determinants of subcerebral projection 
neurons (SCPNs): Sox5 and Bcl11b (Chen et  al., 2008; Kwan et  al., 2008; Lai et  al., 2008). In 
contrast, the primary somatosensory area (S1) has a thick layer IV, in which most cells express Rorβ,a 
bona fide marker of layer IV stellate cells (Jabaudon et al., 2012; Nakagawa and O’Leary, 2003 
Figure 1—figure supplement 4a and b). In P0 WT coronal sections, we observed dramatic differ-
ences in the prospective somatosensory area (pS) compared to the frontal motor area (F/M) when 
we analyzed key molecular identity determinants that define specific neuronal subtypes (Figure 1—
figure supplement 4b; Arlotta et al., 2005; Bedogni et al., 2010; Chen et al., 2008; Jabaudon 
et  al., 2012; Kwan et  al., 2008; Lai et  al., 2008; McKenna et  al., 2011). In both mutants, the 
number of Sox5+ and Bcl11b+ neurons in the upper region of layer V was significantly increased and 
radially expanded in pS, accompanied by a corresponding decrease in the number of Rorβ+ neurons 
in layer IV (Figure 1, Figure 1—figure supplements 4a and 5a). DAPI staining revealed no signifi-
cant differences (Figure 1, Figure 1—figure supplement 5a), consistent with a potential switch in 
neuronal identity specification, rather than effects on cell number or migration. Similar effects were 
not observed in F/M cortex, where neither the number nor the radial distribution of Sox5+, Bcl11b+, 
or Tbr1+ neurons in the mutant lines differed from controls and Rorβ was not expressed, as expected 
(Figure 2, Figure 1—figure supplements 5b and 6b). Unlike the dramatic effects on layer IV/V in pS, 
we detected no significant changes in the layer VI neuronal marker Tbr1 or the upper layer marker 
Cux1 (Nieto et al., 2004), implying normal neuronal specification in these layers (Figure 1—figure 
supplement 6a).

Importantly, we observed similar phenotypes in pS with a constitutive Pum2 KO line, but not in 
Emx1Cre; Pum2fl/+ heterozygotes, confirming that the phenotype is due to loss of Pum2 function, rather 
than the Cre line used or Cre expression per se (Figure 1—figure supplement 7a and b). Taken 
together, our results suggest that Pum2 functions within the forebrain to influence layer IV/V specifi-
cation in the pS.

We next wanted to resolve the nature of regulation of layer neuron fate markers in pS by TDP43A315T. 
In particular, we wanted to determine whether regulation was due to a specific property of the mutant 
protein or reflected a gain of function due to overexpression. To this aim, we examined a transgenic 
line reported to overexpress human Prnp-TARDBP (TDP43) at relatively low levels in the brain, which 
does not develop symptoms (Arnold et  al., 2013). We first compared expression of the respec-
tive transgenic proteins in the two lines. Both hTDP-43 and hTDP-43A315T were broadly expressed 
in neocortical areas and layers, including layers IV and V of the pS, in a pattern qualitatively like 
endogenous TDP-43 (Figure 1—figure supplement 8a). Although the distribution of cells expressing 
transgenic hTDP-43 or hTDP-43A315T was qualitatively similar across layers in both F/M and pS, the 
intensity of the expression of the protein variants was different in developing neocortex. Interestingly, 
layer V neurons expressed higher levels of hTDP-43A315T, which was confirmed using hTDP-43 and 
Flag antibodies (Figure 1—figure supplement 8a and b). In addition, using quantitative immuno-
blotting, we confirmed overexpression of TDP-43 in the cytoplasmic fraction of neocortical lysates of 
the TDP43 line and in both nuclear and cytoplasmic fractions of the TDP43A315T line (Figure 1—figure 
supplement 8c). Consistent with higher intensity for mutant hTDP-43 in immunostaining, quantitative 
immunoblotting indicated that hTDP-43A315T protein levels were significantly higher than the hTDP-43 
protein levels in cytoplasmic-enriched fractions of neocortex (Figure 1—figure supplement 8c).

Analyzing effects on neuronal identity due to WT TDP43 overexpression in this line revealed 
clear effects like those seen with the TDP43A315T line, with significant increases in the number of 
cells expressing Sox5 and Bcl11b protein and fewer cells expressing Rorβ protein (Figure 1—figure 
supplement 9a and b). Although the magnitude of these phenotypic effects with TDP43 was not as 
strong as those observed with hTDP-43A315T, finding them with the TDP43 line demonstrates that they 
are not line- or mutation-specific. Moreover, since this line does not develop ALS-like symptoms, our 
observations further suggest that the underlying effect on altered neuronal fate marker expression in 
the pS is likely due to gain of WT TDP-43 function and that altered cortical architecture in S1 during 
development per se is not sufficient to result in ALS-like symptoms (see ‘Discussion’). To simplify 
the experimental workflow and analysis for TDP-43, we focused in our following analyses on the 

https://doi.org/10.7554/eLife.55199
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TDP43A315T line since it showed qualitatively identical, but quantitatively stronger, phenotypes relative 
to WT TDP43 in multiple assays.

In sum, our phenotypic analyses in the pS and F/M areas support a role for the RBPs Pum2 and 
TDP-43 in area-specific regulation of neuronal identity marker expression in layers IV and V of the 
developing somatosensory cortex. Moreover, they suggest that Pum2 promotes the normal pattern 
of S1 neuronal identity marker expression, whereas gain of TDP-43 function can act in an apparently 
opposite manner to repress it.

Increased subcerebral connectivity for S1 neurons in Pum2 cKO and 
TDP43A315T mice
Co-expression of Bcl11b and Sox5 is a hallmark of SCPNs (Chen et al., 2008; Kwan et al., 2008; Lai 
et al., 2008), and ectopic Bcl11b overexpression in upper-layer progenitors is sufficient to redirect 
their axons from corticocortical projections into projections to subcerebral targets (Chen et al., 2008). 
We therefore wondered whether the increase and radial expansion of neurons expressing molecular 
determinants of SCPNs (Bcl11b and Sox5) would be accompanied by increased SCPN connectivity 
(Arlotta et al., 2005; Chen et al., 2008; Kwan et al., 2008; Lai et al., 2008). To examine this directly 
in Pum2 cKO and TDP43A315T mice, we injected fluorophore-labeled cholera toxin B (CTB) into the 
pons for retrograde labeling of SCPNs (Conte et al., 2009; Figure 3a). This revealed significantly 
increased labeling in layer V and a striking radial expansion in both Pum2 cKO and TDP43A315T vs. their 
respective littermate controls (Figure 3b and c).

To understand whether the increase in Sox5 corresponds with the increase in Bcl11b, we co-immu-
nostained Sox5 and Bcl11b in coronal sections of Pum2 cKO and TDP43A315T and their control litter-
mates. Our analysis showed an increase in the number of Sox5+/Bcl11b+ neurons in both mutants, 
suggesting that ectopic expression of Sox5 corresponds with that of Bcl11b (Figure 4a). We next 
combined retrograde labeling of SCPN with staining for either Sox5 or Bcl11b 2 to test whether the 
increased number of SCPN in S1 directly corresponds with the increased number of Sox5+/Bcl11b+ 
neurons. Our co-immunostaining showed that all retrogradely labeled neurons in controls and mutants 
co-expressed both Sox5 and Bcl11b (Figure 4b and c). Thus, the typical area-specific neuronal connec-
tivity of S1 is dramatically altered in both Pum2 cKO and TDP43A315T, with more SCPNs in layer V and 
ectopic SCPNs in the position normally occupied by layer IV in S1. This pattern is reminiscent of motor 
cortex (Armentano et al., 2007; Harb et al., 2016; Tomassy et al., 2010), and thus, reflects apparent 
“motorization” of layer IV/V in S1.

Most aspects of somatosensory area identity appear to be properly 
determined in Pum2 cKO and TDP43A315T mice, despite layers IV and V 
being ‘motorized’
Previously described mutants with a motorized layer IV/V in S1 affect multiple aspects of pS area 
identity (Armentano et  al., 2007; Harb et  al., 2016; Tomassy et  al., 2010). Thus, we envisaged 
two hypotheses to explain apparent motorization of layer IV/V in Pum2 cKO and TDP43A315T mutant 
mice. On the one hand, Pum2 and TDP-43 might control area identity, like previously described tran-
scriptional regulators mentioned above. Alternatively, they could control layer IV/V specification and 
connectivity without affecting area identity per se. To test these hypotheses, we examined two hall-
marks of area identity in S1 of Pum2 cKO and TDP43A315T mice. We first checked the expression 
pattern of two standard molecular markers of neocortical area identity: Lmo4 (motor) (Huang et al., 
2009) and Bhlhb5 (sensory) (Joshi et al., 2008). Both Pum2 cKO and TDP43A315T mice showed overall 
a wild-type pattern of Lmo4 and Bhlhb5 expression (Figure 5a). Quantitative analysis of the total 
number of Lmo4 and Bhlhb5 cells normalized to DAPI showed major differences between motor and 
somatosensory cortex in all genotypes, as expected, suggesting that the pS maintains its areal iden-
tity and does not show an F/M identity. On a laminar level, comparison of Lmo4 and Bhlhb5 analysis 
between controls and mutants (source data related to Figure 5a) showed no significant changes in 
Lmo4 and Bhlhb5 in the pS of Pum2 cKO compared to controls, but a significant increase in Lmo4 in 
bin1 and decrease in Bhlhb5 in bins 3 and 4 in TDP43A315T. In the case of the motor cortex, an increase 
in Bhlhb5 was observed in bin 6 of TDP43A315T while Lmo4 was unaltered in all bins. Pum2 cKO did not 
show any change for Bhlhb5, but Lmo4 expression was decreased in bins 1 and 4. These differences 
are not surprising since both Lmo4 and Bhlhb5 regulate area-specific laminar identity (Cederquist 

https://doi.org/10.7554/eLife.55199
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Figure 3. Increased subcerebral connectivity in somatosensory cortex of Pum2 cKO and TDP43A315T mice. (a) 
Schematic representation of cholera toxin subunit B (CTB) injections at the midbrain/hindbrain junction (pons) 
for retrograde labeling of subcerebral projection neurons (SCPNs), including corticospinal PNs (CSMN) and 
corticopontine PNs (CPoPN). (b) Coronal sections from primary somatosensory cortex (S1) of controls, Pum2 cKO, 
and TDP43A315T mice at P7 traced for SCPNs without (top) or with DAPI (bottom) staining. S1 columns merged with 
DAPI are divided into eight equal bins. White rectangles indicate bins 3 and 4. (c) Quantification of retrogradely 

Figure 3 continued on next page
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et al., 2013; Greig et al., 2013; Harb et al., 2016; Joshi et al., 2008) and do not affect our conclu-
sion regarding the unchanged areal identity of pS or F/M. Next, we examined another major hallmark 
of area identity in S1: the specialized ‘barrels’ in layer IV. These clusters of glutamatergic interneurons 
receive somatosensory input from the whiskers via the thalamus and can be visualized by serotonin 
(5HT) staining of the thalamic presynaptic terminals. In contrast to previously described mutants with 
motorized somatosensory areas (Armentano et al., 2007; Tomassy et al., 2010), barrels formed effi-
ciently at the same tangential position and their numbers are not significantly different from controls 
in S1 of either Pum2 cKO and TDP43A315T mice (Figure 5b), supporting a lack of major changes to 
thalamocortical axonal targeting and patterning in S1. Taken together, these experiments suggest 
that Pum2 and TDP-43 contribute to elaboration of area-specific cytoarchitecture of layers IV and V 
without strongly affecting area identity per se.

Cell-autonomous and post-mitotic effects of TDP-43 gain of function 
and Pum2 loss of function on regulation of Sox5, Bcl11b, and Rorβ in 
pS neurons
We next asked whether ectopic expression of hTDP-43 or the patient mutant hTDP-43A315T would be 
sufficient cell-autonomously to drive a switch in expression of Sox5, Bcl11b, and Rorβ. For these exper-
iments, we prepared primary neuronal cultures from pS-enriched neocortices at E18.5 and transfected 
them with plasmids containing either WT TDP43, TDP43A315T, or EGFP as a control via electroporation 
before plating. After 2 days in culture, we fixed and stained the cells for both the transfected protein 
and for endogenous Sox5, Bcl11b, or Rorβ protein. We identified transfected cells by immunostaining 
for one of the epitope tags on hTDP-43 or EGFP for control transfections (Figure 6a–c). Subsequently, 
we quantified the number of transfected neurons that were also positive for Sox5, Bcl11b, or Rorβ 
protein in the three different transfections. This revealed that expression of either WT hTDP-43 or the 
hTDP-43A315T mutant in transfected cortical neurons could strongly induce Sox5 and Bcl11b proteins to 
a similar extent (Figure 6a and b). Expression of either protein also significantly reduced Rorβ protein 
expression (Figure 6c). These results are consistent with our observations with transgenic lines and 
suggest that increased levels of TDP-43, rather than a mutant-specific activity, contribute to altered 
layer neuron identity determinant expression through a gain-of-function mechanism. In addition, they 
further imply that TDP-43 overexpression can act cell-autonomously to control layer IV/V identity 
determinant expression in developing cortical neurons in the pS.

To determine whether similar effects could be observed with TDP-43 in vivo and would extend to 
Pum2 loss of function, we performed IUEs. All electroporated plasmids used the pNeuroD promoter, 
which drives expression post-mitotically in newly born neurons and is not expressed in progenitors 
(Guerrier et  al., 2009). We confirmed the efficiency of Pum2 deletion and hTDP-43 overexpres-
sion by double staining for GFP to label electroporated neurons and either for Pum2 or hTDP-43 
(Figure 7—figure supplement 1). As shown in Figure 7, electroporating plasmids at E13.5, encoding 
either pNeuroD-Cre in Pum2fl/fl mice or WT TDP43 or the ALS-derived mutant TDP43A315T in WT mice, 
respectively, was sufficient to cell-autonomously drive a switch in expression of Sox5, Bcl11b, and Rorβ 
in pS. Post-mitotic deletion of Pum2 (Figure 7a) and expression of either WT hTDP-43 or the hTDP-
43A315T mutant (Figure 7b) in newly born deep-layer cortical neurons led to robust induction of Sox5 
and Bcl11b proteins and reduction of Rorβ protein expression; accordingly, mutant TDP-43 showed a 
slightly stronger effect than WT TDP-43. These in vivo results obtained after IUE are strikingly reminis-
cent of those seen in Pum2 cKO or TDP43A315T mice (Figure 1, Figure 1—figure supplement 5a) or 
after transfection of pS-enriched primary neurons (Figure 6) and provide another line of experimental 
evidence that loss of Pum2 and gain of TDP-43 function, respectively, yield these phenotypes.

Electroporation of the same plasmids at E14.5 to target upper layer neurons revealed that the 
fate of these neurons could not be altered by either loss of Pum2 function or gain of TDP-43 func-
tion (Figure 7—figure supplement 2), consistent with our earlier data with mutant and transgenic 

labeled SCPNs in equal-sized bins for the three genotypes. Analysis of bins 3 and 4 is shown separately in the left 
panel and combined in the right panel. Data are shown as means ± standard error of the mean (SEM), n = 3 for 
each genotype. **p≤0.01, ***p≤0.001, two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre; II–IV, V, VI: layers II–IV, V and 
VI, respectively. Scale bars: 100 μm.

Figure 3 continued
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Figure 4. Subcerebral projection neurons’ (SCPNs’) increase colocalizes with Sox5 and Bcl11b in Pum2 and 
TDP-43 mutants. (a) Coronal sections from neonatal (P0) brains of controls (Ctrl), Pum2 cKO, or Prnp-TARDBPA315T 
(TDP43A315T) mice were stained with antibodies recognizing Sox5 and Bcl11b in the prospective somatosensory 
area (pS). Quantification of Sox5 and Bcl11b colocalization from n = 3 mice of each genotype is shown to the right 

Figure 4 continued on next page
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lines. Electroporated upper-layer neurons with either pNeuroD-Cre in Pum2fl/fl mice or WT TDP43 or 
TDP43A315T in WT mice did not show ectopic Sox5 or Bcl11b expression, exactly like neurons elec-
troporated with the control pNeuroD-IRES GFP. Collectively, our results with transfection of primary 
neurons from the pS and IUE of developing pS in vivo support the idea that TDP-43 gain of function 
and Pum2 loss of function can cell-autonomously and post-mitotically change the relative expression 
of known molecular determinants of layer IV/V neuronal identity in the pS of developing neocortex.

Evidence that Pum2 and TDP-43 probably use post-transcriptional 
mechanisms to regulate layer IV/V neuronal identity determinants
We next investigated the molecular mechanisms used by Pum2 and TDP-43 to control area-specific 
neuronal identity and connectivity in S1. For these studies, we again focused for simplicity on the 
TDP43A315T line since it showed quantitatively stronger phenotypes relative to WT TDP43. Because 
both RBPs are known to post-transcriptionally regulate their target mRNAs, we first analyzed mRNA 
levels for the previously characterized layer IV/V molecular determinants Sox5, Bcl11b, and Rorb, 
which we showed in Figure 1 and Figure 1—figure supplement 9 to have an increased or decreased 
number of cells positive for these proteins in the neocortex of Pum2 cKO mice and in mice over-
expressing either hTDP-43A315T or WT hTDP-43 protein transgenically. In parallel, we also analyzed 
mRNA levels for Fezf2, a master regulator of subcerebral identity, which functions upstream of Bcl11b 
to specify the fate of layer V subcerebral neurons (Chen et al., 2005; Chen et al., 2008; McKenna 
et al., 2011; Molyneaux et al., 2005; Rouaux and Arlotta, 2013). qRT-PCR with RNA obtained from 
dissected pS-enriched neocortex at P0 indicated no significant differences in steady-state mRNA levels 
of any of these mRNAs in either Pum2 cKO or TDP43A315T relative to littermate controls (Figure 8a and 
b; Table 1). This suggests that altered mRNA levels are not likely to be the basis for altered levels of 
Sox5, Bcl11b, and Rorβ proteins in S1, although effects within specific cell types might potentially be 
missed in a pS-wide assay.

Next, we sought to confirm the results from our qRT-PCR assays using an independent method with 
higher spatial resolution. To this end, we performed RNA-specific single-molecule fluorescenct in situ 
hybridization (smFISH) to enable quantification of mRNA levels within newly born neurons in specific 
layers of the pS. To enable direct comparison, these experiments were also performed at P0, the time 
when protein levels and cell fate were strongly altered in the Pum2 cKO and TDP43 transgenic lines. 
In order to determine whether a change in mRNA levels within specific layer neurons might explain 
the protein level changes observed by antibody staining in Figure 1, we hybridized specific antisense 
probes to Sox5, Bcl11b, Rorb, and Fezf2 mRNAs and analyzed mRNA levels in pS using the same 
binning approach, but now for the mRNAs (Figure 8c). Specifically, we counted the number of smFISH 
dots, which correspond to single mRNAs, in specific regions of the pS for confocal images obtained 
from each genotype. As shown in Figure 8d, this revealed no significant differences in the levels of 
Sox5, Bcl11b, or Fezf2 mRNA levels in either mutant relative to controls. In contrast, we observed a 
paradoxical increase in Rorb mRNA in both genotypes (Figure 8d), even though Rorβ protein levels 
were decreased (Figure 1). Taken together, our qRT-PCR and smFISH data do not reveal evidence 
for transcriptional or stability effects on mRNA levels. Accordingly, such changes may therefore not 
be the reason for altered Sox5, Bcl11b or Rorβ protein levels in the pS of Pum2 cKO or TDP43A315T 
mutants. .

It is important to note that we cannot exclude potential effects on transcription and/or mRNA 
stability in neuronal subpopulations that might be missed in our bulk assays. Moreover, smFISH may 
not be sufficiently quantitative to detect these effects in situ. Potential caveats notwithstanding, these 
orthogonal assays provide reasonable evidence that the protein-level phenotypes may result from 
post-transcriptional effects impinging on mRNA translation and/or protein stability.

across six equal-sized bins. (b, c) Coronal sections from primary somatosensory cortex (S1) of controls, Pum2 cKO, 
and TDP43A315T mice at P7 traced for SCPNs combined with Sox5 (b) or Bcl11b (c) staining. White arrows in (a–
c) indicate colocalization. Data are shown as means ± standard error of the mean (SEM), n = 3 for each genotype. 
*p≤0.05, **p≤0.01, two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre; V, VI: layers V and VI. Scale bars: 100 μm.

Figure 4 continued
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Figure 5. Somatosensory area identity is properly determined in Pum2 cKO and TDP43A315T mutants despite layers IV and V being ‘motorized.’. (a) 
Coronal sections of one brain hemisphere from controls (Ctrl), Pum2 cKO, and TDP43A315T brains at P0 co-immunostained for Lmo4 and Bhlhb5. Selected 
regions are marked by white rectangles in the upper panel, and high-magnification views of frontal motor (F/M) and prospective somatosensory (pS) 
areas are shown below. Scale bars: 400 μm and 100 μm, respectively. Quantification of results is shown to the right. (b) Sagittal sections from controls, 

Figure 5 continued on next page
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No detectable tissue-wide effects of Pum2 or TDP-43 on splicing 
or polyadenylation site usage of Sox5, Bcl11b, or Rorb mRNAs in 
developing neocortex
Our qRT-PCR and smFISH data did not provide evidence for mRNA-level changes as the basis for the 
observed protein-level changes in layer IV/V of pS. We therefore considered whether other RNA regu-
latory mechanisms might underlie changes in Sox5, Bcl11b, and Rorβ protein levels. Thus, we next 
examined the potential effects on alternative pre-mRNA splicing and alternative 3′ end formation/
polyadenylation (APA), two post-transcriptional regulatory mechanisms that can indirectly affect trans-
lation and/or protein stability and are implicated in the control of brain development (Furlanis and 
Scheiffele, 2018; Hermey et al., 2017; Nguyen et al., 2016; Zheng and Black, 2013). Consistent 
with its cytoplasmic localization, Pum2 has not been implicated in either of these nuclear pre-mRNA 
processing events. However, numerous studies have demonstrated alternative splicing regulation by 
TDP-43, including an analysis of the transgenic TDP43 line that we examined here (Arnold et al., 
2013; Lagier-Tourenne et al., 2012; Polymenidou et al., 2011; Tollervey et al., 2011). Moreover, 
TDP-43 knockdown in cultured cell lines has also been shown to affect APA site usage (Rot et al., 
2017), suggesting that this might also potentially occur with hTDP-43 overexpression in the intact 
developing brain. We therefore examined the potential effects on splicing and APA in pS-enriched 
neocortex of the Pum2 cKO and TDP43A315T lines.

Focusing initially on pre-mRNA splicing, we designed primers to specific splice variants of Sox5, 
Bcl11b, and Rorb (Table 2) annotated in the Ensembl release 98 database for mouse (GRCm38.p6) 
(Zerbino et al., 2018). As shown in Figure 9—figure supplement 1a and b, we detected expres-
sion of these mRNA variants at different levels in pS at P0 using this approach, consistent with 
alternative splicing occurring in this tissue. However, we did not observe any significant changes 
in their levels relative to littermate controls in tissue from either Pum2 cKO or TDP43A315T mice. 
To further probe the potential effects on alternative splicing of Sox5 mRNA with an independent 
approach, we used previously described RT-PCR primer sets (Table 3) that produce different ampl-
icon sizes resolvable by agarose gel electrophoresis depending on alternative splicing (Edwards 
et al., 2014). Consistent with qRT-PCR, this approach revealed that mRNA variants previously char-
acterized in non-neuronal tissues are also generated by alternative splicing in developing neocortical 
pS. However, these splicing patterns were not altered significantly in either Pum2 cKO or TDP43A315T 
mice (Figure 9—figure supplement 1c). These data suggest that there are no significant tissue-wide 
effects on splicing of Sox5, Bcl11b, or Rorb mRNAs in the neocortical pS of either Pum2 cKO or 
TDP43A315T mice.

After not finding any significant tissue-wide effects on alternative splicing of key determinants of 
layer IV/V neuronal identity, we next examined the potential effects on mRNA 3′ end formation via 
APA. Transcript isoforms with different 3′ ends were annotated in the Ensembl release 98 database for 
mouse (GRCm38.p6) (Zerbino et al., 2018) for Sox5, Bcl11b, and Rorb (Table 4), and we confirmed 
expression of these isoforms in the pS at P0 by qRT-PCR using specific primer sets (Figure 9—figure 
supplement 2a). This revealed clear differences in the relative expression of the isoforms in the devel-
oping pS at baseline, but no significant changes in the relative levels of the mRNA isoforms in the 
mutant lines relative to their respective littermate controls (Figure 9—figure supplement 2b). We 
conclude that APA of Sox5, Bcl11b, and Rorb mRNAs is not generally affected in the pS area of devel-
oping neocortex in either Pum2 cKO or TDP43A315T mice.

While we cannot rule out subtle effects in neuronal subpopulations that might be missed in our 
tissue-wide assay, these results with pS-enriched RNA and isoform-specific primers do not support 
either alternative splicing or APA of Sox5, Bcl11b, and Rorb mRNAs as a likely basis for effects on the 
corresponding proteins observed in Pum2 cKO or hTPD-43 transgenic mice.

Pum2 cKO (top), and TDP43A315T (bottom) at P7 immunolabeled for serotonin (5HT). Quantification of the number of barrels per section is shown to the 
right. Scale bar: 100 μm. Data are shown as means ± standard error of the mean (SEM), n = 3 for each genotype. *p≤0.05, **p≤0.01, ***p≤0.001, two-
tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre; Ctx: cortex; Hip: hippocampus; Str: striatum; S1BF: barrel field region of S1. Scale bar: 100 μm.

Figure 5 continued
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Figure 6. TDP-43 gain of function cell-autonomously regulates layer IV and V molecular determinants in vitro. (a–c) Primary neurons harvested from 
WT cortical lysates enriched for somatosensory cortex at E18.5 were transfected before plating with plasmids encoding either control GFP, TDP43, or 
TDP43A315T. After 48 hr in culture, neurons were fixed and stained with antibodies recognizing GFP to label control transfected neurons or recognizing 
either the Flag (a, b) or V5 (c) epitope tag to label neurons transfected with either TDP43 or TDP43A315T. All transfected neurons were co-immunolabeled 
with antibodies recognizing Sox5 (a), Bcl11b (b), or Rorβ (c) and with DAPI. Quantification of the fraction of Sox5+, Bcl11b+, or Rorβ+ neurons among all 
transfected neurons is shown to the right of the representative images. At least 50 cells were counted for each replicate of every transfection. Data are 
shown as means ± standard error of the mean (SEM), n = 3 for each transfection. *p≤0.05, **p≤0.01, ***p≤0.001, two-tailed t-test. Scale bar: 100 μm.

https://doi.org/10.7554/eLife.55199
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Evidence for both translational activation and repression of Sox5, 
Bcl11b, and Rorb mRNAs by Pum2 and TDP-43 in developing 
neocortex
We next considered whether there might be specific effects on the translation of Sox5, Bcl11b, and 
Rorb mRNAs. To examine the potential effects of Pum2 and hTDP-43A315T on translation in devel-
oping neocortex, we used sucrose density gradient fractionation-based polysome profiling of neocor-
tical lysates from mutants and littermate controls. This classic biochemical fractionation method can 
reveal changes in the relative number of ribosomes engaged with cellular mRNAs on a global and 
mRNA-specific level (Figure 9a and b). Importantly, because the percentage of total RNA signal in 
the different fractions is plotted, changes in an mRNA’s translational status in this assay are unrelated 
to the mRNA levels themselves.

Unlike mice lacking the RBP HuR, which show strong defects in brain development that correlated 
with effects on both general and mRNA-specific translation (Kraushar et al., 2014), we observed no 

Figure 7. RNA-binding proteins Pum2 and TDP-43 regulate layer IV and V molecular determinants post-mitotically and cell-autonomously in vivo. (a, 
b) Coronal sections from Pum2fl/fl (a) or WT (b) brains at P0 electroporated at E13,5 with pNeuroD-IRES-GFP as control, or with p-NeuroD-IRES-Cre-GFP 
to ablate Pum2 expression (a) or p-NeuroD-TDP43-IRES-GFP or p-NeuroD-TDP43A315T-IRES-GFP to overexpress hTDP-43 alleles only in post-mitotic 
neurons. Sections are co-stained with antibodies recognizing GFP to label electroporated neurons and antibodies recognizing Sox5, Bcl11b, or Rorβ. 
High-magnification views are shown to the right. White arrowheads indicate examples of electroporated neurons expressing Sox5-, Bcl11b-, and 
Rorβ-positive neurons while empty arrowheads indicate electroporated neurons not expressing these proteins. Quantification of the fraction of Sox5+, 
Bcl11b+, or Rorβ+ neurons among all electroporated cells is shown to the right of the representative images. Data are shown as means ± standard error 
of the mean (SEM), n = 3 for each electroporation. Both p-NeuroD-IRES-Cre-GFP and hTDP-43 alleles were co-electroporated with T-dimer (red) to 
distinguish them from littermate control brains electroporated only with pNeuroD-IRES-GFP. For both hTDP-43 alleles, the respective control littermates 
for each variant were combined to a total of n = 6 for pNeuroD-IRES-GFP electroporations. **p≤0.01, ***p≤0.001, two-tailed t-test. UL, V, VI: upper 
layers, layers V and VI. Scale bar: 100 μm.

The online version of this article includes the following figure supplement(s) for figure 7:

Figure supplement 1. Validation of electroporation efficiency.

Figure supplement 2. Upper-layer neuronal identity is not affected in Pum2 and TDP-43 mutants.

https://doi.org/10.7554/eLife.55199
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Figure 8. mRNA levels of layer IV/V neuronal identity determinants remain unchanged in Pum2 cKO or TDP43A315T 
mutants. qRT-PCR of RNA derived from P0 somatosensory area-enriched cortical lysates for Pum2 cKO (a) or 
TDP43A315T (b). The fold change for Sox5, Bcl11b, Rorb, and Fezf2 mRNAs normalized to GAPDH mRNA is shown 
for mutants relative to respective control samples (Ctrl). Data are displayed as means ± standard error of the 

Figure 8 continued on next page
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differences in the overall polysome profiles in Pum2 cKO or TDP43A315T neocortices (Figure 9—figure 
supplement 3a), suggesting that general translation is not strongly affected in this tissue in these 
lines. We next used qRT-PCR from the polysome fractions to investigate mRNA-specific translational 
regulation, normalizing to an in vitro transcribed Renilla luciferase (RLuc) ‘spike-in’ standard that we 
added to the fractions prior to RNA purification (Figure 9c and d). As noted above, multiple 3′UTR 
isoforms of Sox5, Bcl11b, and Rorb mRNAs with different numbers of predicted binding sites for 
Pum2 and/or TDP-43 are annotated in the Ensembl release 98 database for mouse (GRCm38.p6) 
(Zerbino et al., 2018), and we found that a mixed population of transcripts appears to be expressed 
in developing neocortex (Figure 9—figure supplement 2a and b). In our sucrose density gradient 
polysome profile analyses, we focused on primer sets (Tables 1 and 4) recognizing mRNA isoforms 
with predicted binding sites for Pum2 and/or TDP-43 (Figure 9—figure supplement 2a) wherever 
possible because material was limited and we reasoned that this would improve sensitivity in this bulk 
tissue assay.

Results for polysome profiling for TDP43A315T from whole neocortices at E14.5, the peak time of 
birth for layer IV neurons, are shown in Figure 9c. For the specific Sox5 and Bcl11b mRNA isoforms 
examined, we observed a significant shift in the percentage distribution to heavier polysome frac-
tions, consistent with an increased number of ribosomes translating these mRNAs in the mutant trans-
genic line. Strikingly, Rorb mRNA was regulated in exactly the opposite manner, showing a significant 
shift to a lighter gradient fraction corresponding to approximately one ribosome/mRNA (i.e., mono-
somes) in TDP43A315T compared to the percentage of mRNA signal present in a heavier fraction (corre-
sponding to greater than approximately seven ribosomes/mRNA). This pattern is consistent with a 
reduced number of ribosomes engaged with this mRNA in mutant neocortex. In contrast, no signifi-
cant differences were found with Fezf2 mRNA, highlighting apparent specificity of the effects on the 
other layer IV/V identity determinants.

mean (SEM) for at least n = 4 of each genotype. (c) Single-molecule fluorescent in situ hybridization (smFISH) 
for Sox5, Bcl11b, Rorb, and Fezf2 mRNAs on coronal sections from the prospective somatosensory area (pS) of 
controls (Ctrl), Pum2 cKO, and TDP43A315T mice at P0. Distribution of cells across six equal-sized bins is shown. 
(d) Quantification from (c). The number of RNA dots in the bins where they are mostly expressed is normalized 
to the total number of cell nuclei (DAPI) within that bin. Data are shown as means ± SEM, at least n = 3 for each 
genotype. *p≤0.05 by two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre; IV, V, VI: layers IV, V and VI, respectively. Scale 
bar: 100 μm.

Figure 8 continued

Table 1. qRT-PCR primers.

mRNA Forward primer (5′–3′) Reverse primer (5′–3′)

Sox5 CCAGGACTTGTCTTTCCAG CCCTGAAGCAGAGGAAGATG

Bcl11b AAGCCATGTGTGTTCTGTGC AAAGGCATCTGTCCAAGCAG

Rorb ATGCCAGCTGATGGAGTTCT TAGCTCCCGGGATAACAATG

Fezf2 GTGGCTCCCACCTTTGTACATTCA TCACGGTGACAGGCTGGGATTAAA

Cux1 CCTGCAGAGTGAGCTGGAC GCTTGCTGAAGGAGGAGAAC

Gapdh TTGATGGCAACAATCTCCAC CGTCCCGTAGACAAAATGGT

Pum2 CCCCGAGATTCTAATGCAAG CTGGAAGAAGCACGGTGAAT

Pum2 exons 6&7 ATTGGGCCCTCTTCCTAATC CCAACTTGGTCCATTGCAT

Tardbp CGTGTCTCAGTGTATGAGAGGAGTC CTGCAGAGGAAGCATCTGTCTCATCC

Emx1 ACCATAGAGTCCTTGGTGGC TGGGGTGAGGATAGTTGAGC

Sox6 GCATAAGTGACCGTTTTGGCAGG GGCATCTTTGCTCCAGGTGACA

Unc5C ACTCAATGGCGGCTTTCAGCCT GGTCCAGAATTGGAGAGTTGGTC

18s rRNA CTTAGAGGGACAAGTGGCG ACGCTGAGCCAGTCAGTGTA

Rluc TGGTAACGCGGCCTCTTCT GCCTGATTTGCCCATACCAA

https://doi.org/10.7554/eLife.55199
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Unlike with TDP43A315T, for Pum2 cKO neocortices, we did not observe significant effects on mRNA 
translational status in the polysome assay at E14.5 (Figure 9—figure supplement 3b). Therefore, we 
performed additional polysome analyses at other stages to gain insight into when during develop-
ment translational control by Pum2 might be detectable using this assay. At P0, when neurogenesis 
is complete (Buratti and Baralle, 2014; Chen et al., 2008) and it is technically possible to enrich 
for the pS by dissection (Figure 9b), we found evidence for increased ribosome engagement with 
Sox5 and Bcl11b mRNAs and reduced ribosome density on Rorb mRNA (Figure  9d). Conversely, 
we did not observe an effect on Sox5, Bcl11b, or Rorb mRNA translation at E13.5, the peak birth 
time for layer V neurons (Greig et al., 2013; Molyneaux et al., 2007), or at E18.5 (Figure 9—figure 
supplement 3b). Taken together, these data support the idea that translational regulation of the 
mRNAs encoding Sox5, Bcl11b, and Rorβ proteins by Pum2 may begin after birth and is therefore 
more likely to occur in post-mitotic neurons, rather than in neuronal progenitors. Consistent with this 
idea, when we directly examined nascent neurons of Pum2 cKO mice at E13.5, we did not observe 
increased protein expression of regulators of layer VI and V neuronal identity Sox5, Bcl11b, or Tbr1 
(Figure 9—figure supplement 3c), providing further evidence that regulation might be post-mitotic, 
rather than at progenitor level. Because our polysome gradient assay detects changes in translational 
status independently of mRNA levels and because we did not find any evidence of corresponding 
effects on mRNA levels, splicing, or polyadenylation of these mRNAs, we conclude that increased 
translation of Sox5 and Bcl11b mRNAs, together with decreased translation of Rorb mRNA, is likely 
to be at least one molecular mechanism contributing to the corresponding changes detected at the 
protein level in developing pS of the Pum2 cKO and TDP43A315T lines. Taken together, our genetic and 

Table 2. qRT-PCR splicing isoforms primers.

mRNA Forward primer (5′–3′) Reverse primer (5′–3′)

Sox5 204 CGTACATGATACGTCCTCCC CCAGCCCCACTGTTTATTC

Sox5 206 CTTGAGGTTTGTTCTCCTCTG GCCATAGTGGTTGGGATCAG

Sox5 211 GTACATGATACGTCCTCCCC TCTTGTCTGTGTGAATGCTG

Sox5 diff ATGCTTACTGACCCTGATTTAC TCTCACTCTCCTCCTCTTCC

Bcl11b 201 CAGTGTGAGTTGTCAGGTAAAG GCTCCAGGTAGATTCGGAAG

Bcl11b 202 TCCCAGAGGGAACTCATCAC GCTCCAGGTAGATTCGGAAG

Bcl11b 203 CCTACTGTCACCCACGAAAG GCTCCAGGTAGATTCGGAAG

Rorb 201 CTGCACAAATTGAAGTGATACC AAACAGTTTCTCTGCCTTGG

Rorb 202 AAGCATAGCACGCAGCACTC ATCCCGGAGGATTTATCGCCAC

Rorb 203 AGCGGAATTTTTGGGTTCTC ACGTGATGACTCCGTAGTG

Table 3. Sox5 isoforms PCR primers.
Each forward primer has its reverse primer below. F: forward; R: reverse.

Allele Primer (5′–3′)
Predicted size 
(bp)

mSox5-346F CCT TTC ACC TTC CCT TAC ATG 833

mSox5-1178R AGC AGC TGC CAT AGT GGT TG

mSox5-512F CAA CTC ATC TAC CTC ACC TCA G 457

mSox5-968R CAG AAG CTG CTG CTG TTG

mSox5-899F ACA GCG TCA GCA GAT GGA G 637

mSox5-1535R GCT AAC TCT TGC AGA AGG AC

mSox5-1426F CTG CAT CAC CCA CCT CTC 535

mSox5-1960R CTG ATG TTG GAA TTG TGC ATG

https://doi.org/10.7554/eLife.55199
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biochemical data establish a correlation between effects on the translational status of Sox5, Bcl11b, 
and Rorb mRNAs and area-specific effects on levels of the encoded proteins in S1.

Cytoplasmic Pum2 and TDP-43 localize with and directly bind to 
mRNAs encoding key regulators of layer IV/V neuronal identity in 
developing neocortex
We next asked whether apparent effects on translation by Pum2 and TDP-43 in developing neocortex 
could potentially be mediated by direct interaction of these proteins with the regulated mRNAs. 
Endogenous mouse TDP-43 is present in cytoplasmic lysates from neocortex at P0 (Figure  1—
figure supplement 8), implying that it could conceivably function in the cytoplasm to regulate post-
transcriptional processes such as translation at this stage. Moreover, immunostaining revealed that 
both Pum2 and endogenous mouse TDP-43 were detectable in the cytoplasm of both progenitors 
and post-mitotic neurons in the pS during early neurogenesis and postnatally (Figure  10—figure 
supplement 1). We also performed high-resolution imaging of post-mitotic neurons in layer IV/V of 
the developing pS using combined immunostaining/smFISH. Bcl11b and Rorb mRNAs were observed 
as discrete foci primarily in the cytoplasm, whereas Sox5 mRNA foci were detected in both the nucleus 
and cytoplasm (Figure 10a and b). Cytoplasmic mRNA foci overlapped with the diffuse staining seen 
throughout the cytoplasm for both Pum2 and TDP-43 (Figure 10a and b). These data demonstrate 
that both these mRNAs and the RBPs that regulate them are present in the cytoplasm of post-mitotic 
neurons in developing pS, suggesting that they could potentially interact there in neuronal messenger 
ribonucleoprotein (mRNP) complexes. In addition, our immunoblot analyses in Figure  1—figure 
supplement 8 demonstrated increased levels of both hTDP-43 and hTDP-43A315T proteins in the cyto-
plasm at P0. This observation is consistent with a possible gain-of-function effect of hTDP-43 in this 
cellular compartment.

To assess whether Pum2 and TDP-43 might directly interact with Sox5, Bcl11b, or Rorb mRNAs, 
we examined several published genome-wide binding studies for Pum2 (Hafner et al., 2010; Stern-
burg et al., 2018; Uyhazi et al., 2020) and TDP-43 (Colombrita et al., 2012; Herzog et al., 2020; 
Kapeli et al., 2016; Narayanan et al., 2012; Polymenidou et al., 2011; Tollervey et al., 2011). 
However, as far as we could tell, these mRNAs were not detected in these studies. Presumably, this 
is because they show a relatively specific temporal and spatial expression pattern in the developing 
neocortex, whereas most published studies examined cultured cell lines or whole brain/adult material 
from patients or mice. Interestingly, Bcl11b was detected in a RIP study of TDP-43 targets on E18.5 
rat cortical neurons after 14 days in culture (Sephton et al., 2011). Moreover, iCLIP of Pum2 from 
neonatal mouse brain revealed interaction of Pum2 with Sox5 mRNA and the same study found that 
Bcl11b mRNA was deregulated in brains of Pum1/Pum2 double knockouts (Zhang et  al., 2017). 
Encouraged by these positive observations, but recognizant of the inherent potential for false posi-
tives and negatives in genome-wide studies (Williams et al., 2017), we decided to assess potential 
interactions ourselves in developing neocortex using a directed approach. To this end, we adapted a 
directed UV-cross-link immunoprecipitation (UV-CLIP) protocol for neocortex that we used previously 
with cultured motor neuron-like cells (Neelagandan et al., 2019).

Table 4. qRT-PCR 3′UTR isoforms primers.

mRNA Forward primer (5′–3′) Reverse primer (5′–3′)

Sox5 S1 GCCGTTCTCAGGTGAAAAGA GCCTGACATTATTCCCCAAT

Sox5 S2 CAGACAACTGCAGCCACTTC TTGGCAACATGAGAGGACTG

Sox5 S3 TAGGTCACTTGGGGGAAAGC GCAAGGGCATTGTGTTGTTA

Sox5 S4 TGCAAACTACCATCTCACTTG AA TGGCATGAATGATAACATAAAA CC

Bcl11b B1 GGACGGGAAAATGCCATAAG AAGTCACCTCCACTCCATATC

Bcl11b B2 TACCCTGCCCTTTTGACACC TTGACAGAGACACACAAGTCC

Rorb R1 GGAAAACAGGGTAATGGAAGG GGGAACATCAAGTAGACACAG

Rorb R2 AAATATGTACTCGCTCCCTTTC AGCCCTGTCCCTTTCTTAG

https://doi.org/10.7554/eLife.55199


 Research article﻿﻿﻿﻿﻿﻿ Developmental Biology | Neuroscience

Harb et al. eLife 2022;11:e55199. DOI: https://doi.org/10.7554/eLife.55199 � 20 of 43

Figure 9. Translational control of layer IV/V neuronal identity determinants by Pum2 and TDP-43 in developing 
neocortex. (a) Schematic overview of polysome profiling for developing neocortices. Lysates from dissected E14.5 
cortices were separated on polysome gradients, and RNA was prepared from fractions (F1–6) corresponding to 
the indicated ribosomal densities. (b) A schematic representation showing dissection of an enriched prospective 

Figure 9 continued on next page
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To determine whether Pum2 and endogenous mouse TDP-43 can bind directly to Sox5, Bcl11b, 
and Rorb mRNAs in developing neocortex, we performed UV-CLIP assays with cytoplasmic lysates 
from wild-type C57Bl/6J mouse neocortex followed by qRT-PCR. After first verifying enrichment rela-
tive to rabbit IgG control immunoprecipitations (IPs), we next measured the percent of input RNA 
in the IPs, comparing this to 18S rRNA to assess biologically relevant interactions (Figure 10c). As 
a control for cross-linking dependence of detected interactions, we also included an IP from non-
UV-treated lysates. Enrichment in the IP that is UV-dependent implies that direct physical interaction 
between the protein and the RNA tested was occurring in vivo in the neocortex prior to lysis. As 
expected, we found strong UV-dependent interaction of each RBP with its own mRNA, consistent 
with previous reports (Ayala et al., 2011; Galgano et al., 2008; Hafner et al., 2010; Polymenidou 
et al., 2011; Tollervey et al., 2011). In contrast, Pum2 interacted with TDP-43 mRNA to a much lesser 
extent, and we did not detect significant interaction of endogenous mouse TDP-43 with Pum2 mRNA, 
suggesting minimal cross-regulation. Both Pum2 and mouse TDP-43 showed significant interaction 
with Sox5 and Rorb mRNAs in UV-CLIPs. Pum2 also showed significant cross-linking to Bcl11b mRNA, 
whereas for TDP-43 this was just above conventional thresholds for statistical significance. We did not 
see significant interaction of Fezf2 mRNA with Pum2 or Cux1 mRNA with either protein relative to 
18S rRNA, consistent with our finding that neither these mRNAs nor the encoded proteins showed 
altered regulation in developing neocortex in the Pum2 cKO or TDP43A315T lines. Together with our 
imaging assays, these directed UV-CLIP experiments support the idea that both Pum2 and TDP-43 
can directly interact with specific mRNAs encoding layer IV/V neuronal identity determinants in vivo 
in the cytoplasm of cells in the developing neocortex. This suggests that direct interaction of Pum2 
and TDP-43 with these mRNAs could potentially mediate the post-transcriptional regulatory effects 
described above (Figure 9).

Discussion
In the neocortex, functionally related neuronal ensembles are grouped into areas specialized for 
processing certain types of information. Within areas, neuronal subtypes with similar projection patterns 
and connectivity are grouped into characteristic layers (Rakic, 1988; Rash and Grove, 2006; Zilles 
and Amunts, 2010). Although all neocortical areas have a similar six-layer architecture, layer identity 
and connectivity are sculpted in an area-specific manner to serve its specialized functions (Dehay and 
Kennedy, 2007). Genetic approaches in the mouse have identified many proteins that determine 
neocortical area identity and other proteins that control neuronal sub-specification across the cortex 
to give rise to the layers (Greig et al., 2013; Jabaudon, 2017; Molyneaux et al., 2007; O’Leary 
et al., 2007; O’Leary and Nakagawa, 2002; O’Leary and Sahara, 2008). However, a fundamental, 
unresolved issue is the nature of the downstream molecular mechanisms that control neuronal subtype 
specification in an area-specific manner. Previous work addressing this issue has highlighted roles for 
transcriptional regulators, such as Bcl11a/Ctip1 and Lmo4, in sculpting area-specific cytoarchitecture 

somatosensory region from P0 brains using millimeter paper to eliminate 1 mm from the rostral end and 1 mm 
from the caudal end of cortices. Lysates for polysome profiling were made from the remaining part. F/M: frontal/
motor area; pS: prospective somatosensory cortex; A1: primary auditory cortex; V1: primary visual cortex. (c, d) 
Histograms depict the distribution of the Sox5, Bcl11b, Rorb, and Fezf2 mRNAs across the gradient fractions for 
TDP43A315T (c) and Pum2 cKO (d), relative to corresponding controls (Ctrl). Samples in heavier gradient fractions 
were virtually pooled at analysis to simplify visualization in (d) and in the case of the Bcl11b B1 primer in (c). Levels 
of specific mRNAs in each fraction were analyzed by qRT-PCR with normalization to an RLuc mRNA spike-in 
control, which was added in an equal amount to the fractions prior to RNA preparation. Data are shown as means 
± standard error of the mean (SEM), n = 3 for each genotype. *p≤0.05, **p≤0.01, one-tailed t-test. Pum2 cKO: 
Pum2fl/fl; Emx1Cre.

The online version of this article includes the following figure supplement(s) for figure 9:

Figure supplement 1. Sox5, Bcl11b, and Rorb splicing is unaffected in Pum2 and TDP-43 mutant neocortices.

Figure supplement 2. 3′UTR isoforms with predicted binding sites for Pum2 and TDP-43 are expressed in 
developing neocortex, and alternative polyadenylation remains unaltered in Pum2 and TDP-43 mutants.

Figure supplement 3. Pum2 represses Sox5 and Bcl11b mRNA translation in post-mitotic neurons.

Figure 9 continued
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Figure 10. Pum2 and TDP-43 interact directly with mRNAs encoding key regulators of layer IV/V neuronal identity in developing neocortex. (a, b) 
Single-molecule fluorescent in situ hybridization (smFISH) for Sox5, Bcl11b, and Rorb mRNAs coupled with immunofluorescence for Pum2 (a) or TDP-43 
(b) on coronal sections from the prospective somatosensory area (pS) of WT mice. High-magnification views taken in layer V for Sox5 and Bcl11b or 
layer IV for Rorb are shown to the right. White arrows indicate examples of Sox5, Bcl11b, and Rorb mRNAs that overlap with Pum2 or TDP-43 protein 

Figure 10 continued on next page
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in sensory/visual or rostral motor cortex, respectively (Cederquist et al., 2013; Glickfeld et al., 2013; 
Greig et al., 2016; Woodworth et al., 2016). Here, we combined genetic approaches with molecular 
imaging and in vivo biochemical assays and generated evidence supporting a new role for post-
transcriptional regulation by RBPs in elaboration of area-specific cytoarchitecture. Specifically our 
results reveal cell-autonomous and post-mitotic roles for the RBPs Pum2 and TDP-43 in shaping the 
specialized neuronal cytoarchitecture of layer IV/V that is a hallmark of the sensory cortical area, S1. 
Moreover, our biochemical analyses support the possibility that these RBPs achieve this regulation, at 
least in part, through effects on the translational status of mRNAs encoding key molecular determi-
nants of layer IV/V neuronal identity.

The similar neurodevelopmental phenotypes in S1 and common effects on downstream molecular 
targets (Sox5, Bcl11b, and Rorβ) that we observed upon Pum2 loss of function or hTDP-43/hTDP-
43A315T overexpression suggest mechanistic overlap. Collectively, our data support the notion that 
these two RBPs directly interact with mRNAs encoding key regulators of layer IV/V neuronal fate to 
regulate them post-transcriptionally, at least in part through effects on translation.

To gain insight into the molecular mechanisms through which Pum2 and TDP-43 affect the expres-
sion of layer IV/V molecular determinants, we examined many different steps of gene expression, 
including transcription/mRNA stability, isoform diversity generated by splicing and alternative 3′ end 
processing, as well as translation. However, we only detected significant effects on the distribution of 
Sox5, Bcl11b, and Rorb mRNAs in sucrose density gradients from pS (Figure 9), providing evidence 
that translation is affected. How strong is the case for translational regulation based on our sucrose 
density gradient polysome profiling assays? Two big advantages of this assay vs. tagged-ribosome 
alternatives (Heiman et al., 2008; Sanz et al., 2009) are that it is independent of mRNA levels and can 
reveal shifts of an mRNA between gradient fractions. The latter reflects translational regulation driven 
by changes in ribosome number/mRNA, rather than just ribosome access. For example, in the case 
of Rorb, there is a shift of almost half the mRNA from a fraction with approximately seven ribosomes 
per mRNA to the fraction with approximately one ribosome/mRNA. In our view, this is a fairly strong 
effect on ribosome density that would be predicted to lead to a significant reduction in protein output 
from this mRNA, in perfect agreement with and offering a reasonable explanation for the protein-
level phenotypes in the pS. The effects on Sox5 and Bcl11b mRNAs are arguably more subtle, but 
this might be expected in a bulk tissue assay. Importantly, although our sucrose gradient assays lack 
cellular resolution, we see no reason why this should lead to false-positive effects. One caveat is that 
the shifts we observe may not reflect altered ribosome association since we do not purify ribosomes 
directly or demonstrate that the complexes are disrupted by puromycin treatment of neocortices prior 
to cell lysis. However, we think the clear congruence between the effects on mRNAs in the gradients 
and at the protein level favors the simple interpretation of effects on ribosome density on the mRNAs. 
On balance, we think our positive results in the gradient polysome profiling assays indicate that trans-
lational regulation of these mRNAs by Pum2 and TDP-43 is occurring and could therefore contribute 
to layer IV/V cytoarchitecture in S1. Future experimental approaches with higher cellular resolution will 
help to determine whether important contributions from transcriptional or other post-transcriptional 
mechanisms might have escaped detection in the assays that we performed here.

It is important to understand that even though the Pum2 cKO and TDP43 overexpression pheno-
types are highly similar, both at the neurodevelopmental and post-transcriptional/translational levels, 

immunofluorescence signal. Individual channels for a representative cell (delineated with dashed lines) are shown to the very right of each respective 
image. Scale bars: 25 μm. (c) UV Cross-linking immunoprecipitation (UV-CLIP) results from E18.5 cortices are shown. Dissociated cells were either cross-
linked with UV light or left untreated as a control. Lysates were used for immunoprecipitations with antibodies against TDP-43 (top), Pum2 (bottom), 
or control nonspecific IgG (not shown). RNA in the input and immunoprecipitated (IP) eluate were analyzed by qRT-PCR for the indicated mRNAs. 
After verifying enrichment relative to IgG controls for UV-treated samples, histograms were generated that represent the fraction of input mRNA 
co-immunoprecipitated with either Pum2 or TDP-43 in the presence or absence of UV cross-linking. Statistically significant enrichment was evaluated 
relative to 18S rRNA, which is not known to interact significantly with either protein. Reduced signal in the absence of UV cross-linking implies an 
interaction is cross-linking-dependent, that is, direct. Data are represented as means ± standard error of the mean (SEM) from n = 3–6 samples. *p≤0.05, 
**p≤0.01 Mann–Whitney U test.

The online version of this article includes the following figure supplement(s) for figure 10:

Figure supplement 1. Pum2 and TDP-43 are expressed in progenitors and post-mitotic neurons in developing neocortex.

Figure 10 continued
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our genetic strategy implies opposite modes of action for these RBPs. Pum2 loss-of-function pheno-
types indicate that Pum2 promotes normal layer IV/V cytoarchitecture in S1, whereas phenocopy 
by TDP-43 gain of function suggests that TDP-43 can oppose this process. While we cannot yet say 
the relative contribution of translational control to the overall process, this competing regulation is 
reflected in our polysome gradient data in Figure 9, which imply that Pum2 normally represses trans-
lation of the mRNAs for layer V fate determinants, Sox5 and Bcl11b, whereas TDP-43 activates them. 
Conversely, Pum2 activates translation of a molecular determinant that can drive layer IV fate: Rorβ, 
whereas TDP-43 appears to repress Rorb mRNA translation. Importantly, the predicted binding sites 
for each RBP in the 3′ UTRs of these mRNAs do not overlap for the most part, suggesting that simul-
taneous binding and competition on the same mRNA molecule would be possible. An interesting line 
of future experimentation would be to delineate the exact binding sites on the regulated mRNAs for 
both proteins and dissect the relative contribution they make to regulation in the context of newly 
born layer IV/V neurons in the pS.

Many other RBPs presumably bind to the mRNAs affected here and may also thereby contribute to 
post-transcriptional regulation as co-factors, competitors, or independent regulators. Bearing this in 
mind, it would also be interesting to focus on specific cis-elements in the 3′ UTRs of Sox5, Bcl11b, and 
Rorb mRNAs and their relative contributions to regulation. This would be conceptually similar to work 
pioneered in Caenorhabditis elegans to dissect the regulatory logic underlying terminal differentiation 
of specific neuronal classes (Hobert, 2008; Hobert and Kratsios, 2019), but at a post-transcriptional 
level. Similar approaches in other systems have provided major insights into the molecular regula-
tory logic underlying post-transcriptional regulation during oocyte development (Piqué et al., 2008). 
Given that all of these mRNAs show diversity in their 3′ UTRs which is likely to impact on stability and 
translation, it will also be important to examine the relative amounts of specific isoforms in developing 
layer IV/V neurons and incorporate this information into models of post-transcriptional regulation of 
layer IV/V neuronal specification in S1. Autoregulation and cross-regulation should also be examined, 
and interplay with transcriptional regulation will clearly be a key aspect to understand.

Our data also provide further support for the idea that RBPs can function in a ‘dual’ translational 
regulatory mode, acting either as activators or repressors depending on mRNA context. Most previous 
studies examining mRNA-specific translational regulation by Pum2 and TDP-43 have characterized 
them exclusively as repressors (Cao et al., 2010; Coyne et al., 2014; Majumder et al., 2012; Vessey 
et  al., 2010; Wickens et  al., 2002; Zahr et  al., 2018). However, a recent study from our group 
revealed a translational enhancer function for both hTDP-43 and hTDP-43A315T in cultured neuronal 
cells (Neelagandan et  al., 2019). Pumilio was reported to function as a translational repressor in 
the context where it was originally identified (Lehmann and Nüsslein-Volhard, 1991; Murata and 
Wharton, 1995), and this function is clearly conserved among Pumilio family (Puf) proteins (Wickens 
et al., 2002). Nevertheless, there is also precedent for translation activation of specific mRNAs by Puf 
proteins in both Xenopus oocytes (Piqué et al., 2008) and C. elegans (Kaye et al., 2009). Recent 
work with shRNA knockdowns in cultured cortical neurons also reported a translational enhancer func-
tion for Pum2, although this appeared to be more general (Schieweck et al., 2021). Other studies 
have focused on other post-transcriptional effects. For example, simultaneous knockdown of Pum1 
and Pum2 in cultured non-neuronal cells affected stability of hundreds of mRNAs (Bohn et al., 2018), 
although potential effects on translation were not analyzed in this study. Our results with sucrose 
density gradient polysome profiling provide in vivo evidence for mRNA-specific translational acti-
vator roles for both Pum2 and TDP-43 in the context of mammalian brain development. Moreover, 
they suggest the possibility of dynamic switching between repressor and activator capabilities during 
development via mechanisms that remain to be defined.

A critical issue raised by our studies is the enigma of area-specific regulation by Pum2 and TDP-
43, given that both are ubiquitously expressed RBPs. One possibility is that area-specific signaling 
mechanisms might converge on post-translational modifications of Pum2 and TDP-43. In addition, 
RBPs often work together in co-factor complexes (e.g., Vessey et al., 2012; Zahr et al., 2018) and 
an unidentified RBP co-factor for area-specific post-transcriptional regulation might be expressed 
in an area-specific manner. There is also evidence that thalamic innervation can affect the molecular 
composition of the ribosome itself and that this differentially impacts translation of specific mRNAs in 
a spatial and temporal manner (Kraushar et al., 2015). Thus, one can also imagine that area-specific 
effects on ribosome composition and function might also play a role in RBP regulatory capacity within 
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specific cortical areas. Clearly, future work will be needed to resolve the important issue of how spatial 
control arises through ubiquitously expressed proteins.

Our results raise the possibility that post-transcriptional regulation by Pum2 and TDP-43 might 
reflect a ‘downstream module’ for area-specific neuronal subtype specification. An unusual feature of 
the S1 layer IV/V ‘motorization’ phenotype, which we show in Figures 1 and 3, is its selective effect on 
this aspect of area identity. As shown in Figure 5, other molecular and cytoarchitectural aspects of S1 
area identity, such as expression of specific molecular markers and formation of characteristic barrels, 
appear largely preserved in both Pum2 cKO and TDP43A315T mutants. In contrast, other mutants, iden-
tified to date that lead to a motorized S1, appear to affect all of these aspects of area identity (Alfano 
and Studer, 2013; Armentano et al., 2007; O’Leary and Nakagawa, 2002; O’Leary and Sahara, 
2008; Tomassy et al., 2010). We interpret the selectivity in Pum2 cKO and TDP43A315T mutants as 
evidence that they might function as components of a downstream regulatory module for elaboration 
of specific aspects of area identity, rather than controlling identity per se. Future work will be neces-
sary to resolve whether Pum2 and TDP-43 function directly downstream of previously described area 
identity determinants or comprise a parallel pathway. Regardless, our results raise the intriguing possi-
bility that neocortical arealization involves at least two genetically separable components: initial ‘area 
definition’ and subsequent ‘area elaboration.’ This observation suggests a general genetic strategy 
for identifying downstream elaboration modules of area-specific architectural elements: identifying 
mutants that selectively affect specific elements of area identity while leaving others intact. System-
atic screening for such ‘area elaboration mutants’ might be one fruitful strategy to elucidate the 
downstream molecular programs that elaborate area-specific subtype specification and connectivity. 
While transcriptional regulation will certainly play a crucial role here, our results also support casting a 
broader ‘genetic net’ to include potential contributions of post-transcriptional regulation.

The findings we report here also shed light on a fundamental issue in molecular control of cortical 
development: Which regulatory mechanisms are established in neuronal precursors, and which 
take place in post-mitotic neurons? A previous study with Pum2-targeting shRNAs delivered by IUE 
observed translational de-repression of a lower-layer marker, TLE4, in neuronal progenitors (Zahr 
et al., 2018). However, several lines of evidence imply that the regulation we observe here with Pum2 
cKO mice occurs in post-mitotic neurons. First, regulation is observed at P0, when cortical neuro-
genesis is complete (Figure 9d) and binding to these mRNAs is also strong at E18.5 (Figure 10c). 
Second, we did not observe any effect on Sox5 or Bcl11b mRNA translation at E13.5, E14.5, or E18.5 
(Figure 9—figure supplement 3b), the peak birth time for layer V and IV neurons and even prena-
tally, but at P0 when neurogenesis is completed, and neurons are already post-mitotic (Figure 9d). 
Third, our examination of nascent neurons of Pum2 cKO mice at E13.5 did not show increased protein 
expression of Sox5, Bcl11b, or Tbr1 (Figure 9—figure supplement 3c). Fourth, we saw apparent 
neuronal fate changes in pS1 when we performed IUE with either Cre or TDP43 in the pNeuroD 
context, which is believed to be exclusively expressed in post-mitotic neurons (Guerrier et al., 2009). 
It will be important to verify that conclusions based on Pum2 loss-of-function phenotypes can be 
rescued by restoring Pum2 protein levels. Nevertheless, our results support the notion that regulation 
of Sox5, Bcl11b, and Rorβ protein levels can occur post-mitotically.

One developmental mechanism that seems to be implied by our data is that some newly born S1 
neurons that are normally fated to become layer IV neurons might conceivably be re-specified if the 
levels or activity of Pum2 or TDP-43 would be sufficiently reduced or increased, respectively. Assuming 
this model is correct, two issues are raised. (1) What might be the underlying molecular basis for this 
hypothetical and apparently highly selective re-specification capacity? (2) What might be its biolog-
ical value as a regulatory mechanism? With respect to the first point, we can speculate that these S1 
neurons in layer IV, and no other layers, might be inherently predisposed to re-specification by virtue of 
having related genetic programs to the recently derived layer V neurons. Shared molecular expression 
patterns in these populations have been described at both the transcriptomic and proteomic levels 
(Ayoub et al., 2011; Poulopoulos et al., 2019; Sadegh et al., 2021). Interestingly, shared molecular 
expression signatures extend to the noncoding genome and include microRNAs (miRNAs) miR-128, 
miR-9, and let-7, which are functionally distinct, yet commonly involved in specifying neurons of layers 
VI and V and layers IV, III, and II, respectively: they can transiently alter their relative levels of expres-
sion to change from stem-cell competence towards a neurogenic stage-specific pattern. Furthermore, 
these shared miRNAs are able to shift neuron production between earlier-born and later-born fates 
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to generate laminar identity (Shu et al., 2019; Zolboot et al., 2021). Future work could validate the 
predictions of this intriguing model and explore potential interplay between transcriptional and post/
transcriptional regulation in this context.

Regarding our data, the most obvious molecular determinants to be relevant here would be Sox5 
and Bcl11b, which are expressed in at least a subset of newly born layer IV neurons at a low level. In 
this model, regulation by Pum2 and TDP-43 can tune production of these transcription factors, with 
Pum2 normally putting a brake on their synthesis, and TDP-43 having the capacity to amplify the 
output from lower mRNA levels in these newly born neurons. However, we also see reciprocal effects 
on Rorb mRNA in the polysome gradients. This could be a consequence or epiphenomenon, but 
this observation does suggest that it might also contribute to effects on expression. Under normal 
conditions, Pum2 might activate translation of this mRNA, amplifying the switch to a layer IV fate, 
whereas increased TDP-43 levels appear able to downregulate Rorb mRNA’s translation. In the most 
extreme version of this model, translational regulation is the key element, with Pum2 and TDP-43 
governing a ‘translational switch’ controlling neuronal fate. A more likely scenario is that other yet-
to-be-defined post-transcriptional mechanisms (e.g., regulated protein turnover) may play equally or 
even more important roles. Determining whether this model is correct and defining the relative contri-
bution of translational control vs. other regulatory mechanisms will require new approaches with much 
higher spatial and temporal resolution to correlate the fate of these specific neuronal populations with 
specific molecular changes within them, including assays specifically measuring translational effects. 
From this perspective, we find it extremely encouraging that regulation seems strikingly similar in our 
IUE assays in vivo and in our pS-enriched primary neuron transfection assays in vitro (compare results 
in Figures 6 and 7). To us, this suggests strong potential to recapitulate the core regulatory effects on 
expression of proteins affecting cell fate and gene expression in an ex vivo system (e.g., slice cultures) 
that would be amenable to live imaging and enable more rapid experimental manipulations with a 
wider variety of readouts.

Considering the second point regarding biological value, our work raises the intriguing – albeit 
currently speculative – possibility that altering the relative activity of Pum2 and TDP-43 within the 
cytoplasm of developing pS neurons might potentially provide a mechanism to dynamically tune 
the fate of layer IV/V neurons in response to environmental inputs. According to this view, neuronal 
identity in S1 is not fully hardwired, but somewhat plastic. We can further speculate that optimal 
setting of network-level parameters in the developing brain might require fine-tuning of neuronal 
identity between SCPNs in response to evolving input from the hypothalamus and presumably intra-
cortical signaling as well. In other words, neuronal fate for these populations might not yet be locked 
in, but rather remain plastic until particular later critical periods in cortical development have been 
completed. In this regard, we find it interesting that the effects we observe are manifested post-
mitotically and that altered translational regulation is observed at least as late as P0 in the Pum2 
cKO, a time when neurogenesis per se is complete, and activity-dependent, wiring-driven effects 
will play an increasingly important role. One can hypothesize that there is still capacity to tune layer-
neuron cytoarchitecture in S1 at this stage in response to network activity and that competing regu-
lation by Pum2 and TDP-43 might play a role in re-specification. Experiments to directly examine 
this possibility can be envisaged. Specifically, we think it would be interesting to integrate electro-
physiological approaches with detailed cellular-level analyses of post-transcriptional regulation by 
Pum2 and TDP-43 and its interplay with transcriptional regulation in this specific developmental 
context.

What might be the broader impact on brain function and implications for human health of altered 
S1 cytoarchitecture resulting from loss of Pum2 or increased levels of TDP-43? Reduced Pum2 func-
tion has been implicated in epilepsy in both rodents and humans (Follwaczny et al., 2017; Siemen 
et al., 2011; Wu et al., 2015), and altered cortical wiring in S1 during development might conceivably 
contribute to seizures due to perturbations of excitation/inhibition balance that propagate through 
the network (Guerrini and Dobyns, 2014). However, the contribution of altered sensory system func-
tion to epilepsy remains unclear and seizures reported by others in Pum2 KO mice might very well 
have a completely different origin. Other behavioral phenotypes associated with loss of Pum protein 
function in the brain have also been described (Siemen et al., 2011; Zhang et al., 2017). Although 
technically challenging, it would clearly be of great interest to examine whether altered wiring of S1 
contributes to these behavioral effects and, if so, the underlying physiological basis.

https://doi.org/10.7554/eLife.55199
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In contrast to Pum2, TDP-43 deregulation is mainly implicated in neurodegenerative diseases, 
particularly ALS and FTD, both of which strike layer V neurons in multiple cortical areas late in life 
(Geser et al., 2010; Taylor et al., 2016). We found that modest overexpression of a patient-derived 
mutant allele of TDP-43 during cortical development significantly increases the number of layer V 
neurons and dramatically alters connectivity of S1, significantly enhancing the number of subcere-
bral projections (Figures 1 and 3). Whether these alterations contribute causally to disease remains 
to be determined; however, they are not sufficient for disease since Pum2 cKO mice show a similar 
phenotype, but do not develop ALS-like symptoms. Effects on laminar identity in a wild-type TDP43 
transgenic line that does not develop ALS symptoms (Figure 1—figure supplement 9) also seem to 
favor the idea that altered specification in S1 is unrelated to ALS/FTD. However, the effects in this 
asymptomatic line were weaker than those observed in the patient-derived mutant line that develops 
symptoms (compare Figure 1—figure supplement 9 to Figure 1). The weaker effect on S1 specifi-
cation in this line might conceivably be below a threshold needed to contribute to disease, and this 
might also explain the absence of ALS-like phenotypes in mice lacking Pum2. Future work should 
therefore examine whether altered connectivity is a general phenomenon of loss of Pum2 or gain of 
TDP-43 function and whether there might be a correlation between the level of TDP-43 expression 
and altered wiring. Assuming this proves true, it would then be of great interest to examine how 
developmental alterations in area-specific connectivity seen in these mice affect signaling in cortical 
networks and whether this ultimately contributes to degeneration of layer V cortical neurons and their 
subcerebral targets in spinal cord.

Materials and methods
Animal welfare and approvals
All animal care and experimental procedures were performed according to the institutional guide-
lines of the UKE or University of Geneva and relevant national law. In Hamburg, guidelines were 
those of the UKE Animal Research Facility (FTH) and conformed to the requirements of the German 
Animal Welfare Act. Ethical approvals were obtained from the State Authority of Hamburg, Germany 
(G10/107_Pumilio, G14/003_Zucht Neuro, N086/2020_Pum2/TDP43 IUEs, ORG_520 and ORG_765).

Generation and use of Pum2 cKO mice
ES cell lines targeting cassette for exons 6 and 7 of Pum2 were obtained from KOMP (link: CSD45770; 
parental ES cell line: JM8A1.N3) and expanded for injection according to their protocol. Cells were 
injected into morulae derived from BALB/C mice using the PiezoXpert (Eppendorf).

Germline transmission was verified by the long PCR procedure recommended by KOMP, as well as 
by Southern blotting. Founder lines were mated to a line expressing Flp recombinase in the germline 
(Rodríguez et al., 2000) to excise the targeting cassette and generate the ‘floxed’ conditional allele. 
The constitutive Pum2 KO line was generated by mating this line with mice expressing Cre recombi-
nase in the germline (Schwenk et al., 1995). As the original KOMP ES cell lines were on a C57Bl/6N 
background, the floxed Pum2 and Pum2 KO lines were backcrossed more than 10 times to C57Bl/6J 
prior to use and were also maintained by routine backcrossing to C57Bl/6J.

Table 5. Genotyping primers.

Allele Forward primer (5′–3′) Reverse primer (5′–3′)

Pum2 KO GCTGCTACTCCCTTTCTTGC GAGCACATGTGGAGGTCAGA

Pum2 WT and floxed GCTGCTACTCCCTTTCTTGC CCAAGGCGCTCAACTACTTC

Cre TAACATTCTCCCACCGCTAGTACG AAACGTTGATGCCGGTGAACGTGC

Actin CAATAGTGATGACCTGGCCGT AGAGGGAAATCGTGCGTGAC

TDP43A315T GGATGAGCTGCGGGAGTTCT TGCCCATCATACCCCAACTG

TDP43 GGATGAGCTGCGGGAGTTCT TGCCCATCATACCCCAACTG

Control for TDP43 CAAATGTTGCTTGTCTGGTG GTCAGTCGAGTGCACAGTTT

https://doi.org/10.7554/eLife.55199
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Mouse housing and genetics
Mice were housed in a barrier facility and maintained under standard housing conditions with a 12 hr 
light/dark cycle and ad libitum access to water and chow.

Pum2fl/fl mice were crossed to Emx1Cre to inactivate Pum2 in forebrain principal neurons and glia 
(Iwasato et al., 2000). Pum2fl/fl littermates were taken as controls. For experiments characterizing 
conditional heterozygotes, Emx1Cre; Pum2+/fl mice were mated to Pum2+/fl.

Mice expressing either hTARDBP (Arnold et  al., 2013) or hTARDBPA315T (Wegorzewska et  al., 
2009) were obtained from the Jackson Laboratory (Bar Harbor, Maine, USA; stocks 017907 and 
010700, respectively) on a congenic C57Bl/6J background. Non-transgenic littermates were taken as 
controls. At least three independent litters were used for each analysis. All mouse lines used for exper-
iments were congenic on C57Bl/6J and maintained by backcrossing to this wild-type background. 
Mouse lines were genotyped using primers in Table 5. Early morning of the day of the vaginal plug 
was considered as embryonic day 0.5 (E0.5).

Postmortem tissue collection
Embryonic and postnatal brain samples were fixed either for 2 hr (for immunohistochemistry [IHC]) 
or overnight (for fluorescent in situ hybridization) at 4°C in PFA 4%. Samples were then embedded 
in optimal cutting temperature (OCT) medium (JUNG) after being equilibrated progressively in 10, 
20, and 30% sucrose, and cut on a Leica cryostat. No samples were excluded in this work. For each 
experiment, a minimum of three animals from different litters were used.

Nissl staining
20 μm coronal and sagittal sections were rinsed for 2 min in distilled water and incubated for 30 min in 
cresyl violet and washed twice in distilled water. Additional sequential incubation for 2 min in 20, 50, 
and 75% ethanol, 96% ethanol/acetic acid, and 100% ethanol followed. Sections were then incubated 
twice for 5 min in 100% ethanol first and then with xylol. After drying, sections were finally mounted 
with Eukitt and stored at room temperature (RT).

Immunofluorescent staining and imaging
Immunofluorescent imaging was performed on cryosections. Briefly, slides were boiled in an unmasking 
buffer (sodium citrate 0.1 M, pH 6). After three PBS washes, cryosections were blocked with 10% goat 
serum and 0.3% Triton X-100 for 1 hr at RT. Primary antibody incubations were carried out overnight at 
4°C. Secondary antibodies were added for 2 hr at RT. The following primary antibodies were used: rat 
anti-Ctip2/Bcl11b (dil 1:300, Abcam ab18465), rabbit anti-Sox5 (1:300, Abcam ab94396), mouse anti-
Rorβ (1:200, Perseus Proteomics PP-N7927-00), rabbit anti-Cux1 (1:100, Millipore ABE217), rabbit 
anti-Tbr1 (1/300, Abcam ab31940), rat anti-Lmo4 (1:500, gift from J. Valsvader), guinea pig anti-
Bhlhb5 (1:500, gift from B. Novitch), rabbit anti 5-HT (1/10000, Immunostar 20080), rabbit anti-Pum2 
(1:100, Bethyl A300-202A), rabbit anti-Tdp43 (1:300, Abcam AB41881), guinea pig anti-NeuN (1: 300, 
Synaptic Systems 266004), and mouse anti-GFAP (1:300 Synaptic Systems 173211). The following 
Alexa-conjugated secondary antibodies from Life Technologies were used: goat anti-rabbit FC (488, 
594), goat anti-rat FC (488, 594), goat anti-mouse FC (488, 594, 633), and goat anti-guinea pig FC 
(488) (dil 1:300). Slides were incubated for 10  min in PBS with DAPI (1:1000, Thermo Fisher) and 
mounted with ROTI Mount FluorCare (Roth).

Retrograde labeling with cholera toxin B
For retrograde labeling, anesthetized P0 pups were injected with Alexa Fluor 555-conjugated CTB 
(1 mg/ml; Invitrogen, volume injected: 300 µl) under ultrasound guidance using a Vevo 770 ultra-
sound backscatter microscopy system (Visual Sonics). Subcerebral injections were performed at the 
midbrain–hindbrain junction using a nanojector (Nanoject II Auto-Nanoliter Injector, Drummond 
Scientific Company 3-000-204) to label all SCPNs, including corticopontine projection neurons and 
corticospinal motor neurons. Injected pups were perfused at P7, and brains were collected and 
40-µm-thick sections were cut at the cryostat and either directly incubated for 10 min with DAPI and 
mounted with ROTI Mount FluorCare (Roth) or treated for immunostaining. In the last case, slides 
were incubated with the blocking solution (10% goat serum and 0.3% Triton X-100) for 1 hr at RT and 
were then incubated with primary antibodies overnight at 4°C. The primary antibodies used were 
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rat anti-Ctip2 (Bcl11b) (dil 1:300, Abcam ab18465), and rabbit anti-Sox5 (1:200, Abcam ab94396). 
Subsequent to three washes with PBS, the slides were incubated with corresponding Alexa Fluor 488 
secondary antibody (1:300; Life Technologies) for 2 hr at RT. Sections were washed with PBS three 
times and incubated for 10 min in PBS with DAPI (1:1000) (Thermo Fisher) and mounted with ROTI 
Mount FluorCare (Roth).

smFISH and combined IHC/smFISH
Collected brains were fixed for 24 hr in PFA 4% at 4°C. Samples were then embedded in OCT medium 
(JUNG) after being equilibrated progressively in 10, 20, and 30% sucrose, and cut on a Leica cryostat 
(thickness: 16 μm). Cryosections were left 1 hr to dry at –20°C and then stored at –80°C. RNAscope in 
situ hybridization assays were performed according to the manufacturer’s instructions (Advanced Cell 
Diagnostics [ACD]). Briefly, cryosections were gradually dehydrated in 50%, 70%, and twice in 100% 
ethanol for 5 min each at RT. Slides were left to dry for 30 min at RT. In between all pretreatment 
steps, tissue sections were briefly washed into a Tissue-Tek Slide Rack submerged in a Tissue-Tek 
Staining dish with distilled water. Incubations were performed on the HybEz II hybridization system 
(ACD). The pretreat solution 1 (hydrogen peroxide reagent) was applied for 10 min at RT, and then 
the tissue sections were boiled in pretreat solution 2 (target retrieval reagent) for 5 min. Slides were 
treated with pretreat solution 3 (protease III reagent) for 30 min at 40°C for FISH while with pretreat 
solution 4 (protease IV reagent) for 20 min for FISH combined with IHC. Custom mouse Sox5 (413291), 
Bcl11b (413271-C2), Fezf2 (313301-C3), Cux1 (442931), and Rorb (444271-C3) RNAscope probes 
were designed and purchased from ACD. In addition, the negative (Cat# 310043, ACD) and positive 
(Cat# 313911, ACD) control probes were applied and allowed to hybridize for 2 hr at 40°C. The ampli-
fication steps were performed according to the manufacturer’s instructions. In between every ampli-
fication step, sections were washed with 1× wash buffer. Detection was performed using TSA Plus 
fluorophore (fluorescein, cyanine 3, or cyanine 5) (1:1500-1:3000) from PerkinElmer for 30 min at 40°. 
Slides were rinsed twice in 1× wash buffer, incubated for 10 min in distilled water with DAPI (ACD), 
and then mounted with ROTI Mount FluorCare (Roth). For combined IHC/smFISH, following the 
amplification step, sections were processed for IHC. Briefly, slides were incubated with the blocking 
solution (10% goat serum and 0.3% Triton X-100) for 1 hr at RT and were then incubated with primary 
antibodies ON at 4°C. The primary antibodies used were rabbit anti-Pum2 (1:100, Millipore 03-241) 
and rabbit anti-Tdp43 (1:300, Abcam AB41881). Subsequent to three washes with PBS, the slides 
were incubated with corresponding Alexa Fluor 555 secondary antibody (1:300; Life Technologies) for 
2 hr at RT. Brain sections were rinsed with PBS three times and incubated for 10 min in PBS with DAPI 
(ACD) and mounted with ROTI Mount FluorCare (Roth).

Polysome profiling and total RNA preparation
Animals were collected at either E13.5, E14.5, E18.5, or P0, and cortices were dissected in a dissection 
buffer containing 2.5 mM HEPES-KOH (pH 7.4), 35 mM glucose, 4 mM NaHCO3, and 100 μg/ml cyclo-
heximide and flash frozen in liquid nitrogen and stored at –80°C. For P0 cortices, a somatosensory 
area-enriched region has been dissected by using a millimeter paper and taking out with a blade 1 mm 
from the rostral and 1 mm from the caudal regions of the cortex (Figure 9b). After genotyping, three 
replicates for controls and either Pum2 or TDP-43 mutants were processed. Each replicate consists of 
one, two, three, or four pooled cortices for P0, E18.5, E14.5, and E13.5, respectively.

Cortices were homogenized using a glass dounce in 400 μl of lysis buffer containing 20 mM HEPES 
KOH (pH 7.4), 150 mM KCl, 5 mM MgCl2, 0.5 mM DTT, 100 μg/ml cycloheximide (Sigma-Aldrich), 1X 
cOmplete mini EDTA-free Protease Cocktail (Roche), 40 units/ml RNaseIn (Promega), and 20 units/
ml SUPERaseIn (Thermo Fisher Scientific). Cortical lysates were centrifuged for 10 min at 2000 × g 
at 4°C, and supernatants were supplemented with 1% NP-40 and 1% Triton X-100 and incubated on 
ice for 5 min. After centrifugation for 10 min at 20,000 × g at 4°C, the debris-free supernatants were 
collected. 20 μl of the input lysates were saved as a reference for qRT-PCR. The OD260 of each lysate 
was measured on a NanoDrop spectrophotometer, and volumes were adjusted to ensure equal OD 
unit loading. 400 μl of each sample was loaded onto 14 × 95 mm Polyclear centrifuge tubes (Seton 
Scientific) containing 17.5–50% sucrose gradients (in Gradient Buffer containing 20 mM Tris-HCl, pH 
7.4, 5 mM MgCl2, 150 mM NaCl, 1 mM DTT, 100 μg/ml cycloheximide); the sucrose gradients were 
generated using the Gradient Master 108 programmable gradient pourer (BioComp). The sucrose 
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gradients containing the cortical lysates were then centrifuged for 2 hr and 15 min at 35,000 rpm in a 
SW40Ti rotor in a Beckman L7 ultracentrifuge (Beckman Coulter). After centrifugation, gradients were 
fractionated and measured for RNA content using a Piston Gradient Fractionator (BioComp) attached 
to a UV monitor (Bio-Rad).

For puromycin treatment, both control lysates and the puromycin-treated lysates (2 mM in lysate) 
were incubated on ice for 15 min followed by another 15 min at 37°C prior to loading on the 17.5–50% 
sucrose gradient.

For polysome to monosome (P/M) ratio analysis, areas under the curves representing the mono-
some and polysome peaks in gradient profiles were quantified using ImageJ (Schneider et al., 2012), 
and the P/M ratio was calculated by dividing the area under the curve of polysome peaks by area 
under the curve of the monosome peak.

qPCR and PCR with polysome gradient fractions and total RNA
Prior to RNA purification, individual gradient fractions were aligned with corresponding profiles and 
pooled according to the scheme presented in Figure 9. Pool 1 contains the non-ribosome-bound 
portion of the gradient, pool 2 contains 80S monosomes, pool 3 contains disomes and trisomes, 
pool 4 contains mRNAs with ~4–6 ribosomes bound, and fractions from the deeper fractions corre-
sponding to roughly seven or more ribosomes per mRNA were divided into two equal pools, 5 and 6, 
respectively. 1 ng of an in vitro-transcribed RLuc spike-in mRNA was added to each of the six pools as 
a recovery control and for normalization of the samples.

Total RNA was prepared from the six gradient fraction pools and the corresponding input lysate 
samples using Trizol in a ratio of 3:1 and the PureLink RNA mini kit (Thermo Fisher Scientific) according 
to the manufacturer’s specifications. The purified RNA was concentrated by ammonium acetate 
precipitation using GlycoBlue carrier (Thermo Fisher Scientific). Pellets were washed with 70% ethanol, 
air-dried, and resuspended in nuclease-free water. RNA concentrations were determined using a 
NanoDrop spectrophotometer, and 250  ng of RNA was reverse transcribed with random primers 
using the SuperScript II cDNA Synthesis Kit (Thermo Fisher Scientific) according to the manufacturer’s 
instructions. qPCR was performed using FastStart Universal SYBR Green Master (ROX) (Roche). All 
reagents and kits were used according to the manufacturer’s instructions. The ΔCt method was used 
for relative quantification of qPCR data. For polysome fractions, levels of spike-in RLuc RNA were 
measured first and their relative distribution across the fraction pools was calculated and normalized 
to the non-ribosome-bound pool. The same procedure was used for all other RNAs analyzed, and 
their distribution was additionally normalized to the one obtained for RLuc RNA and expressed as 
a percentage of cumulative signal. For input lysate RNA samples, values for specific mRNAs were 
normalized to GAPDH and represented as fold change of mutants to controls. Primers used for all 
qPCR analyses are described in Table 1; Table 4; Table 2.Similar cDNA from input lysate RNA of 
P0 somatosensory area-enriched cortical lysates was also used for RT-PCR to detect Sox5 splicing 
isoforms (Table 3) as in Edwards et al., 2014.

UV-CLIP with qRT-PCR as readout
Embryos were collected at E18.5 and cortices from 10 embryos were dissected and harvested in 5 ml 
ice-cold 1× PBS, in which they were resuspended by pipetting using P1000 then P10 tips. Dissociated 
cortices that were enough for 10 immunoprecipitations were then divided equally into two 10 cm 
dishes on ice. One half was UV irradiated (4 * 100 mJ/cm2) using a Stratalinker. The other half was 
used as control non-UV-treated sample. Cross-linked cells and non-cross-linked cells were divided 
into 500 µl samples and were centrifuged at top speed for 10 s at 4°C. Pellets were lysed in 1 ml of 
lysis buffer (50 mM Tris–HCl, pH 7.4, 100 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% Na-deoxycholate, 1× 
cOmplete Protease Inhibitor Cocktail [Roche]). A fraction of the lysate corresponding to 5% of the 
input material (50 μl) was retained to use as a reference for calculating the fraction of input material 
in the IP pellet. The remaining lysate was added to Protein G Dynabeads pre-bound with either 4 μg 
rabbit polyclonal TDP-43 antibody (Abcam ab41881) or 5 μg of Pum2 antibody (Millipore #03-241) 
or 5 μg rabbit IgG (Millipore #03-241) as a control and rotated at 4°C overnight. Beads were subse-
quently washed twice for 2 min in high salt buffer (50 mM Tris–HCl, pH 7.4, 1 M NaCl, 1 mM EDTA, 
pH 8.0, 1% NP-40, 0.1% SDS, 0.5% Na-deoxycholate), followed by washing twice for 2 min in wash 
buffer (20 mM Tris–HCl, pH 7.4, 10 mM NaCl, 0.2% Tween-20) and a final washing step for 2 min in 
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NT2 buffer (50 mM Tris–HCl, pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% NP-40). RNA was eluted by 
incubation with 30 μg Proteinase K (Carl Roth) in NT2 buffer for 30 min at 55°C. RNA extraction was 
carried out from the eluate and input sample using Trizol reagent in a ratio of 3:1 followed by the 
addition of chloroform and subsequent purification by PureLink kit (Ambion). All RNA obtained from 
each sample (input or IP) were used to generate cDNA libraries using random hexamers (Thermo 
Scientific) and the RevertAid RT reverse transcription kit (Thermo Scientific), following the manufac-
turer’s protocol.

We first verified that we had lower Cts for a given mRNA in the specific IPs relative to IgG control 
in the UV-cross-linked samples, implying specific signal over background. To calculate target mRNA 
enrichments, we first calculated the ΔCt for TDP-43 or Pum2 IP versus input and converted this to a 
linear ‘fold change’ value. These were then corrected for the reduced amount of input analyzed (i.e., 
divided by 20), and then multiplied by 100 to obtain ‘% of input mRNA in IP.’ Statistical comparisons 
were performed relative to 18S rRNA as neither protein has been shown to functionally regulate this 
RNA.

Immunoblotting
Cerebral cortices from P0 controls, TDP43, and TDP43A315T pups were dissected after genotyping, and 
nuclear and cytoplasmic proteins were separated using the NE-PER kit from Pierce (Thermo Scientific) 
according to the manufacturer’s instructions. Samples were loaded on a 10% SDS polyacrylamide gel 
and subjected to standard SDS-PAGE electrophoresis on Mini-Protean tetra cell (Bio-Rad).

Immunoblotting to nitrocellulose or PVDF was performed using an iBlot rapid transfer device 
(Life Technologies) according to the manufacturer’s guidelines. Blots were blocked in 5% milk/TBS-T 
solution and probed with antibodies diluted as indicated. Signals were visualized using fluorescent 
secondary antibodies and imaged on a LI-COR Odyssey CLx (LI-COR). Antibodies used in this study 
were mouse anti-human monoclonal TDP-43 (Novus Biologicals, H000023435-M01) (1:500), rabbit 
polyclonal TDP-43 (G400) (CST-3448) (1:1000), rabbit anti-Emx1 (Abcam, ab136102) (1:500). goat 
anti-rabbit IRDye 680LT (1:15000, LI-COR), goat anti-mouse IRDye 680LT (1:15000, LI-COR), goat 
anti-rabbit IRDye 800CW (1:15000, LI-COR), and goat anti-mouse IRDye 800CW (1:15000, LI-COR).

Primary neuron transfections
Primary neuronal cultures were prepared from somatosensory area-enriched cortices (Figure 9b) of 
E18.5 C57BL/6J mice. After Hanks' Balanced Salt Solution (HBSS) washes, neurons were incubated 
for 10 min at 37°C with Papain and DNase I (Worthington). Tissue was then triturated with a Pasteur 
pipette, and supernatant was separated from cell debris into a new tube. Cells were resuspended in 
Dulbecco's Modified Eagle Medium (DMEM)/fetal calf serum (FCS) after centrifugation for 10 min at 
1000 × g and were immediately transfected. Transfections were performed using the Amaxa nucle-
oporation system using Mouse Neuron Nucleofector Kit (VPG-1001) following the manufacturer’s 
manual. 5 * 106 cells were used for each transfection. Briefly, neurons were resuspended in 100 µl of 
nucleofector solution containing 3 µg of DNA and transferred into the special electroporation cuvette. 
The transfection program used was O-005. Cells were collected after electroporation in DMEM/FCS 
and left for 1 hr at 37°C in the incubator. 0.5 * 106 cells were grown on glass coverslips (12 mm diam-
eter, Carl Roth) coated with poly-l-lysine in 12-well plates (Sarstedt) in Primary Neuro Basal Medium 
(Lonza) supplemented with NSF-1, penicillin/streptomycin antibiotics to 1% (v/v) and l-glutamine to 
0.5 μM. Neurons were cultured for 2 days at 37°C in a 5% CO2 environment prior to immunofluores-
cent staining. Neurons were fixed for 2 min with 4% PFA and 3 min with ice-cold methanol and then 
washed three times in PBS for 10 min each. Neurons were incubated with the blocking solution (10% 
goat serum and 0.3% Triton X-100) for 1 hr at RT, and were then incubated with primary antibodies 
overnight at 4°C. The primary antibodies used were rabbit anti-Flag (dil 1:200, Sigma-Aldrich F7425), 
mouse anti-V5 (dil 1:300, Invitrogen P/N 46-1157), chicken anti-GFP (dil 1:400, Abcam 13970) rat 
anti-Ctip2 (Bcl11b) (dil 1:300, Abcam ab18465), rabbit anti-Sox5 (1:200, Abcam ab94396), and mouse 
anti-Rorβ (1:100, Perseus Proteomics PP-N7927-00). After three washes with PBS, the slides were 
incubated with corresponding Alexa Fluor (488, 594, 633) secondary antibodies (1:300; Life Technol-
ogies) for 2 hr at RT. Neurons were rinsed with PBS three times and incubated for 10 min in PBS with 
DAPI (1:1000) (Thermo Fisher) and mounted with ROTI Mount FluorCare (Roth).
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Plasmids used for transfection of cortical neurons
The human TDP-43 plasmids (WT TDP43 and A315T mutant) and the control plasmid pEGFP-C1 
have been previously described (Neelagandan et  al., 2019). Briefly, the human TDP43 plasmids 
were generated in a pCMV Sport6 vector backbone with an N-terminal FLAG tag and C-terminal 
V5 tag. pKM29 contains the WT TDP43 coding sequence (CDS) in this context and pKM36 has the 
A315T mutant. The full-length ORF of human TDP43 was amplified from human TDP43 (TDP43) clone 
ID30389805 (Open Biosystems) without a stop codon (to allow the addition of 3′ tags to the protein 
product) and cloned using SalI and NotI into pCMV Sport 6.1. A FLAG-tag-encoding sequence for the 
5′ end and a V5-tag-encoding sequence for the 3′ end were made by oligo annealing and cloned using 
KpnI/SalI (FLAG) and XbaI/HindIII (V5) into the human TDP-43-containing plasmid. The A315T muta-
tion was introduced into the human TDP-43-containing plasmid using the QuikChange Site-Directed 
Mutagenesis Kit (Agilent Technologies, Cat# 200519).

Plasmids used for in utero electroporation
The pNeuroD-IRES-GFP (Guerrier et al., 2009) plasmid was obtained from Addgene (plasmid number 
61403). The pNeuroD-Cre-IRES-GFP (Vitali et al., 2018) was obtained from Dr. Denis Jabaudon Labo-
ratory (Geneva, Switzerland).

For human TDP-43 and TDP-43A315T mutant plasmids, the full-length ORF were generated as 
described above for primary neurons transfection. Briefly TDP43 V5 and TDP43A315T V5 were excised 
from Flag-pCMV Sport 6.1- TDP43 -V5 and Flag-pCMV Sport 6.1- TDP43A315T-V5 using SalI/HindIII and 
cloned into the p-NeuroD-IRES-GFP plasmid obtained from Addgene using XhoI/PstI.

In utero electroporation
The Institutional Animal Care and Use Committee of the City of Hamburg, Germany, approved all 
experiments (approval n0. 86/2020 acc. to the Animal Care Act, §8 from May 18, 2006). Time-pregnant 
C57BL/6J or floxed Pum2 mice were given a preoperative dose of buprenorphine (0.01 mg/kg body 
weight) by subcutaneous injections at least 30 min before surgery. Animals were then anesthetized 
using 2.5% isoflurane/O2 inhalation. Oxygen was delivered with a flow rate of 0.65 l/min and together 
with isoflurane were applied via a vaporizer (Föhr Medical Instruments, Seeheim-Oberbeerbach, 
Germany). The uterine horns were exposed, and respective plasmids mixed with Fast Green (Sigma) 
were microinjected into the lateral ventricles of the embryos. Five current pulses (50 ms pulse, 950 ms 
interval; 32 mV or 35 mV, respectively, for E12/13 or E14 embryos) were delivered across the heads 
of the embryos. Post surgery, 2–3 drops of meloxicam (0.5 mg/kg body weight) were given orally 
through soft food for 96 hr. Brains were collected at P0, and 40-µm-thick sections were cut at the 
cryostat and treated for immunostaining. Sections were incubated with the blocking solution (10% 
goat serum and 0.3% Triton X-100) for 1 hr at RT, and were then incubated with primary antibodies 
overnight at 4°C. The primary antibodies used were chicken anti-GFP (dil 1:800, Abcam 13970), rat 
anti-Ctip2 (Bcl11b) (dil 1:300, Abcam ab18465), rabbit anti-Sox5 (1:200, Abcam ab94396), mouse anti-
Rorβ (1:200, Perseus Proteomics PP-N7927-00), mouse anti-human monoclonal TDP-43 (1:100, Novus 
Biologicals, H000023435-M01), and rabbit anti-Pum2 (1:100, Bethyl A300-202A). Subsequent to three 
washes with PBS, the slides were incubated with donkey anti-chicken Alexa Fluor 488 secondary 
antibodies (1:300, Jackson by Dianova #703-545-155) and corresponding secondary antibody goat 
anti-rat, rabbit, or mouse Alexa Fluor 633 (1:300; Life Technologies) for 2 hr at RT. Sections were 
washed with PBS three times and incubated for 10 min in PBS with DAPI (1:1000) (Thermo Fisher) and 
mounted with ROTI Mount FluorCare (Roth).

Imaging, counting, and statistical analysis
Images were acquired using an Olympus FluoView 1000 microscope, and similar acquisition settings 
for laser power, offset, and detector gain across conditions were used. Bright-field brain and low-
magnification Nissl staining images were acquired using a Zeiss Stemi 2000-C binocular. Higher-
magnification images of Nissl staining were acquired using a Zeiss Axiophot microscope.

For counting, images of P0 neocortices from coronal sections of the pS and F/M regions were 
divided into six equal bins. At P7, the radial surface of analyzed neocortices was divided into eight 
equal bins. Counting of single-labeled cells was normalized to the total number of DAPI cells in each 
bin. For DAPI cells and cholera toxin-labeled neurons, the counting was performed on cortical images 
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with a constant width of 600 μm. In general, cells were counted using ImageJ Fiji. The trainable Weka 
Segmentation plugin was used to distinguish signal from background, and the resulted images were 
counted for each bin using Analyze Particles option for ImageJ Fiji. For Bcl11b, only high-expressing 
neurons mainly located in layer V were counted by setting low Bcl11b expression as background. For 
Sox5 and Bcl11b colocalization analysis, single staining for Sox5 and Bcl11b was submitted to train-
able Weka Segmentation using ImageJ Fiji, and the generated images were analyzed for colocaliza-
tion using JaCoP plugin in individual bins. For IUE, GFP and marker-specific channels were submitted 
to trainable Weka Segmentation using ImageJ Fiji, and the generated images were analyzed for colo-
calization of GFP-labeled electroporated neurons with Sox5, Bcl11b, or Rorβ using JaCoP plugin. 
FISH, transfected primary neurons, and CTB-labeled images were manually counted using Photoshop. 
Cortical thickness, hemisphere length, and width were measured using the measure option of ImageJ 
Fiji after setting scale using scale bar. Hemisphere area was measured by selecting hemisphere and 
the measure option of ImageJ Fiji. Nuclei size was analyzed using the average nuclei size for DAPI 
signal ×60 magnification images after particle analysis for DAPI channel.

Data were statistically analyzed in GraphPad Prism or Microsoft Office Excel and graphically repre-
sented using GraphPad Prism. Error bars represent the standard error of the mean (SEM). In general, 
a two-tailed Student’s t-test was used for the analysis of statistical significance (*p≤0.05, **p≤0.01, 
***p≤0.001) between different groups. One-tailed t-tests were used for the analysis of statistical signif-
icance of polysome profiling experiments because we have a specific prediction about the direction 
of the difference. The Mann–Whitney U test was used for analysis of statistical significance of CLIP-
qRT-PCR experiments.
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Additional files
Supplementary files
•  Source data 1. Quantification of layer II–VI molecular determinants in Pum2 cKO mutants. 
Quantification of results from n = 3 mice of controls and Pum2 mutants in the prospective 
somatosensory cortex (pS) for Sox5, Bcl11b, Rorβ, and DAPI in single bins (Figure 1a) and total 
(Figure 1—figure supplement 5a) and Tbr1, Cux1 in single bins (Figure 1—figure supplement 6a). 
All markers are normalized to DAPI cells. Distribution of cells across six equal-sized bins is shown. 
For Bcl11b, only high-expressing neurons were counted. Data are shown as means ± standard error 
of the mean (SEM), n = 3 for each genotype. *p≤0.05, **p≤0.01, ***p≤0.001, two-tailed t-test. Pum2 
cKO: Pum2fl/fl; Emx1Cre; II–IV, V, VI: layers II–IV, V, and VI.

•  Source data 2. Quantification of layer II–VI molecular determinants in TDP43A315T mutants. 
Quantification of results from n = 3 mice of controls and TDP43A315T in the prospective 
somatosensory cortex (pS) for Sox5, Bcl11b, Rorβ, and DAPI in single bins (Figure 1b) and total (or 
layer V for Bcl11b) (Figure 1—figure supplement 5b) and Tbr1, Cux1 in single bins (Figure 1—
figure supplement 6b). All markers are normalized to DAPI cells. Distribution of cells across 
six equal-sized bins is shown. For Bcl11b, only high-expressing neurons were counted. Data are 
shown as means ± standard error of the mean (SEM), n = 3 for each genotype. *p≤0.05, **p≤0.01, 
***p≤0.001, two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre; II–IV, V, VI: layers II–IV, V, and VI.

•  Source data 3. Quantification of layer V and VI molecular determinants in the frontal/motor 
(F/M) cortex of Pum2 and TDP-43 mutants. Quantification of results from n = 3 mice of Pum2 and 
TDP-43 mutants and their control littermates in the F/M for Sox5, Bcl11b, and DAPI in single bins 
(Figure 2b) and total (Figure 1—figure supplement 5b) and Tbr1 in single bins (Figure 1—figure 
supplement 6b). All markers are normalized to DAPI cells. Distribution of cells across six equal-sized 
bins is shown. For Bcl11b, only high-expressing neurons were counted. Data are shown as means ± 
standard error of the mean (SEM), n = 3 for each genotype. *p≤0.05, **p≤0.01, ***p≤0.001, two-
tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre; II–IV, V, VI: layers II–IV, V, and VI.

•  Source data 4. Validation of Pum2 cKO mutants by qRT-PCR. qRT-PCR of E14.5 cortical RNA from 
controls (Ctrl) vs. Pum2 cKO using primers to the floxed exons. The fold change in expression levels 
of Pum2 mRNA normalized to GAPDH mRNA in the Pum2 cKO is shown relative to the Cre- control 
(Ctrl) in Figure 1—figure supplement 1c. Data are shown as means ± standard error of the mean 
(SEM), n = 3 for each genotype. * p≤0.05, two-tailed t-test.

•  Source data 5. Quantification of general cortical developmental features in Pum2 and TDP-
43 mutants. Quantification of the brain anatomy including hemisphere length, width, and area 
(Figure 1—figure supplement 2a), cortical thickness (Figure 1—figure supplement 2b), and nuclei 
size (Figure 1—figure supplement 2c) in Pum2 and TDP-43 mutants. n = 3–6 samples of each 
genotype. *p≤0.05, two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre.

•  Source data 6. Quantification of Sox5 expression in the prospective somatosensory cortex (pS) 
of Pum2 KO mice. Quantification of results from n = 3 mice of controls and Pum2 KO mice in the 
pS for Sox5 normalized to DAPI in single bins and total (Figure 1—figure supplement 7). Data are 
represented as means ± standard error of the mean (SEM). *p≤0.05, **p≤0.01 by two-tailed t-test. 
Ctrl: controls; Pum2 KO: Pum2 constitutive knockout.

•  Source data 7. Quantification of TDP-43 overexpression. Quantification of fold changes in protein 
levels of human TDP-43 (hTDP-43) or both mouse and human (m+h) TDP-43 normalized to total 
protein in nuclear or cytoplasmic fractions from three mice (n1–3) of each genotype (Ctrl, TDP43, 
or TDP43A315T) (Figure 1—figure supplement 8c). Data are shown as means ± SEM, n = 3 for each 
genotype. *p≤0.05, **p≤0.01, ***p≤0.001 by one-tailed t-test.

•  Source data 8. Quantification of layer IV/V molecular determinants in hTDP-43 mice. Quantification 
of results from n = 3 animals of controls mice (Ctrl) or mice from a transgenic line expressing Prnp-
TARDBP (TDP43) shown in six equal-sized bins and the total number of Sox5- or Rorβ- or Bcl11b or 
DAPI-positive cells (Figure 1—figure supplement 9b). Only high-expressing Bcl11b+ neurons were 
counted. Data are shown as means ± SEM, n = 3 for each genotype. *p≤0.05, **p≤0.01, ***p≤0.001 
by two-tailed t-test. IV, V, VI: layers IV, V, and VI.

•  Source data 9. Quantification of subcerebral projection neuron (SCPN) in Pum2 and TDP-43 
mutants. Quantification of retrogradely labeled SCPNs in equal-sized bins for the three genotypes. 
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Analysis of bins 3 and 4 is shown separately and combined (Figure 3c). Data are shown as means ± 
standard error of the mean (SEM), n = 3 for each genotype. **p≤0.01, ***p≤0.001, two-tailed t-test. 
Pum2 cKO: Pum2fl/fl; Emx1Cre.

•  Source data 10. Quantification of Sox5/Bcl11b colocalization in Pum2 and TDP-43 mutants. 
Quantification of results from n = 3 brains of controls (Ctrl), Pum2 cKO, or hTARDBPA315T (TDP43A315T) 
in the prospective somatosensory area (pS) for Sox5 and Bcl11b colocalization across six equal-
sized bins (Figure 4a). Data are shown as means ± standard error of the mean (SEM), n = 3 for each 
genotype. *p≤0.05, **p≤0.01, two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre.

•  Source data 11. Analysis of frontal motor (F/M) and prospective somatosensory (pS) areas 
identities. Quantification of results from n = 3 animals from controls (Ctrl), Pum2 cKO, and 
TDP43A315T for Lmo4 and Bhlhb5 in F/M and pS areas in single bins and total. Results of F/M and 
pS for both markers are compared between mutants and their controls and between F/M and pS 
of each genotype. A summary of total cells only is shown independently comparing F/M and pS in 
each genotype (Figure 5a). Quantification of the number of barrels per section (Figure 5b) from 
n = 3 brains of controls (Ctrl), Pum2 cKO, or hTARDBPA315T (TDP43A315T). Data are shown as means 
± standard error of the mean (SEM). *p≤0.05, **p≤0.01, ***p≤0.001, two-tailed t-test. Pum2 cKO: 
Pum2fl/fl; Emx1Cre.

•  Source data 12. Analysis of TDP-43 gain-of-function effect in vitro on layer IV/V molecular 
determinants. Quantification of the fraction of Sox5+, Bcl11b+, or Rorβ+ neurons among all 
transfected neurons with plasmids encoding either control GFP, TDP43, or TDP43A315T. At least 50 
cells were counted for each replicate of every transfection. Data are shown as means ± standard 
error of the mean (SEM), n = 3 for each transfection. *p≤0.05, **p≤0.01, ***p≤0.001, two-tailed t-
test.

•  Source data 13. Analysis of post-mitotic effect of Pum2 loss-of-function and TDP-43 gain-of-
function in vivo on layer IV/V molecular determinants. Quantification of results from Pum2fl/flor WT 
brains at P0 electroporated at E13,5 with pNeuroD-IRES-GFP as control, or with p-NeuroD-IRES-Cre-
GFP to ablate Pum2 expression (Figure 7a) or p-NeuroD-TDP43-IRES-GFP or p-NeuroD-TDP43A315T-
IRES-GFP to overexpress hTDP-43 alleles (Figure 7b) only in post-mitotic neurons. The fraction of 
Sox5+, Bcl11b+, or Rorβ+ neurons among all electroporated cells was quantified. Data are shown as 
means ± standard error of the mean (SEM), n = 3 for each electroporation. Both p-NeuroD-IRES-
Cre-GFP and hTDP-43 alleles were co-electroporated with T-dimer (red) to distinguish them from 
littermate control brains electroporated only with pNeuroD-IRES-GFP. For both hTDP-43 alleles, the 
respective control littermates for each variant were combined to a total of n = 6 for pNeuroD-IRES-
GFP electroporations. **p≤0.01, ***p≤0.001, two-tailed t-test.

•  Source data 14. Quantification of mRNA levels of layer IV/V neuronal identity determinants in 
Pum2 cKO or TDP43A315T mutants. qRT-PCR of RNA derived from P0 somatosensory area-enriched 
cortical lysates for Pum2 cKO (Figure 8a) or TDP43A315T (Figure 8b). The fold change for Sox5, 
Bcl11b, Rorb, and Fezf2 mRNAs normalized to GAPDH mRNA is shown for mutants relative to 
respective control samples (Ctrl). Data are displayed as means ± standard error of the mean (SEM) 
for at least n = 4 of each genotype.

•  Source data 15. Quantification of mRNA levels of layer IV/V neuronal identity determinants in 
Pum2 cKO or TDP43A315T mutants. Quantification of results from single-molecule fluorescent in 
situ hybridization (smFISH) for Sox5, Bcl11b, Rorb, and Fezf2 mRNAs on coronal sections from 
the prospective somatosensory area (pS) of controls (Ctrl), Pum2 cKO, and TDP43A315T mice at P0. 
Distribution of cells across six equal-sized bins (Figure 8d). The number of RNA dots in the bins 
where they are mostly expressed is normalized to the total number of cell nuclei (DAPI) within that 
bin. Data are shown as means ± standard error of the mean (SEM), at least n = 3 for each genotype. 
*p≤0.05 by two-tailed t-test. Pum2 cKO: Pum2fl/fl; Emx1Cre.

•  Source data 16. Translational control of layer IV/V neuronal identity determinants by TDP-43 in 
developing neocortex. Quantification of results from n = 3 experiments of polysome profiling on 
TDP43A315T cortices at E14.5 (Figure 8c). Histograms depict the distribution of the Sox5, Bcl11b, 
Rorb, and Fezf2 mRNAs across the gradient fractions for TDP43A315T relative to corresponding 
controls (Ctrl). Samples in heavier gradient fractions were virtually pooled at analysis to simplify 
visualization in the case of the Bcl11b B1 primer. Levels of specific mRNAs in each fraction were 
analyzed by qRT-PCR with normalization to an RLuc mRNA spike-in control, which was added in an 
equal amount to the fractions prior to RNA preparation. Data are shown as means ± standard error 
of the mean (SEM), n = 3 for each genotype. *p≤0.05, **p≤0.01, one-tailed t-test.

•  Source data 17. Translational control of layer IV/V neuronal identity determinants by Pum2 in 
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developing neocortex. Quantification of results from n = 3 experiments of polysome profiling on 
Pum2 cKO prospective somatosensory area (pS)-enriched cortices at P0 (Figure 8d). Histograms 
depict the distribution of the Sox5, Bcl11b, Rorb, and Fezf2 mRNAs across the gradient fractions 
for Pum2 cKO relative to corresponding controls (Ctrl). Samples in heavier gradient fractions were 
virtually pooled at analysis to simplify visualization. Levels of specific mRNAs in each fraction were 
analyzed by qRT-PCR with normalization to an RLuc mRNA spike-in control, which was added in an 
equal amount to the fractions prior to RNA preparation. Data are shown as means ± standard error 
of the mean (SEM), n = 3 for each genotype. *p≤0.05, **p≤0.01, one-tailed t-test. Pum2 cKO: Pum2fl/

fl; Emx1Cre.

•  Source data 18. Expression of Sox5 splicing isoforms in Pum2 and TDP-43 mutant neocortices. 
Quantification of expression of Sox5 splicing mRNA isoforms normalized to GAPDH mRNA in P0 
somatosensory area-enriched cortical lysates of Pum2 cKO (Figure 9—figure supplement 1a) and 
TDP43A315T (Figure 9—figure supplement 1b) mutants and their respective control samples (Ctrl). 
For Sox5, 7 protein-coding isoforms were annotated. We designed primers recognizing three of 
them, and it was not possible to design specific qPCR primers to distinguish the other four isoforms 
for which we used a primer called Sox5 diff to detect the four of them simultaneously. Data are 
shown as means ± standard error of the mean (SEM) for at least n = 4 of each genotype. Pum2 cKO: 
Pum2fl/fl; Emx1Cre. Two-tailed t-test.

•  Source data 19. Expression of Bcl11b and Rorb splicing isoforms in Pum2 and TDP-43 mutant 
neocortices. Quantification of expression of Bcl11b and Rorb splicing mRNA isoforms normalized 
to GAPDH mRNA is shown in P0 somatosensory area enriched cortical lysates of Pum2 cKO 
(Figure 9—figure supplement 1a) and TDP43 A315T (Figure 9—figure supplement 1b) mutants and 
their respective control samples (Ctrl). Data are shown as means ± standard error of the mean (SEM) 
for at least n = 4 of each genotype. Pum2 cKO: Pum2fl/fl; Emx1Cre. Two-tailed t-test.

•  Source data 20. Expression of Sox5 3′UTR isoforms in Pum2 and TDP-43 mutant neocortices. 
Quantification of expression of Sox5 3′UTR mRNA isoforms normalized to GAPDH mRNA in P0 
somatosensory area-enriched cortical lysates of Pum2 cKO (Figure 9—figure supplement 2a) and 
TDP43 A315T (Figure 9—figure supplement 2b) mutants and their respective control samples (Ctrl). 
Data are shown as means ± standard error of the mean (SEM) for at least n = 4 of each genotype. 
Pum2 cKO: Pum2fl/fl; Emx1Cre. Two-tailed t-test.

•  Source data 21. Expression of Bcl11b and Rorb 3′UTR isoforms in Pum2 and TDP-43 mutant 
neocortices. Quantification of expression of Bcl11b and Rorb 3′UTR mRNA isoforms normalized 
to GAPDH mRNA is shown in P0 somatosensory area-enriched cortical lysates of Pum2 cKO 
(Figure 9—figure supplement 2a) and TDP43A315T (Figure 9—figure supplement 2b) mutants and 
their respective control samples (Ctrl). Data are shown as means ± standard error of the mean (SEM) 
for at least n = 4 of each genotype. Pum2 cKO: Pum2fl/fl; Emx1Cre. Two-tailed t-test.

•  Source data 22. Analysis of general translation in Pum2 and TDP-43 mutant cortices. 
Quantification of polysome/monosome (P/M) ratio from polysome profiles of E14.5 neocortices for 
controls (Ctrl), Pum2 cKO, and TDP43A315T for n = 3 of each genotype (Figure 9—figure supplement 
3a). Two-tailed t-test.

•  Source data 23. Translational control of layer V neuronal identity determinants by Pum2 in 
developing E13.5 neocortex. Quantification of polysome profiling from E13.5 neocortices of Pum2 
cKO (Figure 9—figure supplement 3b). Histograms showing the distribution of the Sox5 and 
Bcl11b mRNAs at E13.5 across polysome gradient fractions for Pum2 cKO relative to controls. E13.5 
is the peak time of birth for layer V neurons when no layer IV Rorβ+ neurons are born yet. Values 
were normalized to an RLuc mRNA spike-in control, which was added in an equal amount to the 
fractions prior to RNA preparation. Data are represented as means ± standard error of the mean 
(SEM). *p≤0.05 by two-tailed t-test.

•  Source data 24. Translational control of layer V neuronal identity determinants by Pum2 in 
developing E14.5 neocortex. Quantification of polysome profiling from E14.5 neocortices of Pum2 
cKO (Figure 9—figure supplement 3b). Histograms showing the distribution of the Sox5, Bcl11b, 
and Rorb mRNAs at E14.5 across polysome gradient fractions for Pum2 cKO relative to controls. 
Values were normalized to an RLuc mRNA spike-in control, which was added in an equal amount to 
the fractions prior to RNA preparation. Data are represented as means ± standard error of the mean 
(SEM). **p≤0.01 by two-tailed t-test.

•  Source data 25. Translational control of layer V neuronal identity determinants by Pum2 in 
developing E18.5 neocortex. Quantification of polysome profiling from E18.5 neocortices of Pum2 
cKO (Figure 9—figure supplement 3b). Histograms showing the distribution of the Sox5, Bcl11b, 

https://doi.org/10.7554/eLife.55199
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and Rorb mRNAs at E18.5 across polysome gradient fractions for Pum2 cKO relative to controls. 
Values were normalized to an RLuc mRNA spike-in control, which was added in an equal amount to 
the fractions prior to RNA preparation. Data are represented as means ± standard error of the mean 
(SEM). Two-tailed t-test.

•  Source data 26. Analysis of Pum2 and TDP-43 interaction with mRNAs encoding key regulators of 
layer IV/V neuronal identity in developing neocortex. Quantification of results from UV cross-linking 
immunoprecipitation (UV-CLIP) from E18.5 cortices (Figure 10c). Dissociated cells were either cross-
linked with UV light or left untreated as a control. Lysates were used for immunoprecipitations with 
antibodies against TDP-43, Pum2, or control nonspecific IgG. RNA in the input and IP eluate were 
analyzed by qRT-PCR for Sox5, Bcl11b, Rorb, Fezf2, Cux1, Pum2, Tdp43, and 18S mRNAs. After 
verifying enrichment relative to IgG controls for UV-treated samples, histograms were generated 
that represent the fraction of input mRNA co-immunoprecipitated with either Pum2 or TDP-43 in the 
presence or absence of UV cross-linking. Statistically significant enrichment was evaluated relative 
to 18S rRNA, which is not known to interact significantly with either protein. Reduced signal in the 
absence of UV-cross-linking implies an interaction is cross-linking-dependent, that is, direct. Data 
are represented as means ± standard error of the mean (SEM) from n = 3–6 samples. Raw values 
and data normalized to 18S of each replicate are shown independently in different sheets, and a 
summary of consolidated results from six replicates is in the last Excel sheet. *p≤0.05, ** p≤0.01, 
Mann–Whitney U test.

•  Source data 27. mRNA expression pattern of Emx1, Sox6, and Unc5C. Quantification of the 
fold change for Emx1 mRNA normalized to GAPDH mRNA is shown for P0 somatosensory area-
enriched cortical lysates of Pum2 cKO relative to respective control samples (reviewers Figure 1a). 
Quantification of the fold change for Sox6 and Unc5C mRNA normalized to GAPDH mRNA is 
shown for P0 somatosensory area-enriched cortical lysates of Pum2 cKO and TDP43A315T (reviewers 
Figure 2a and b) relative to respective control samples (Ctrl). Data are shown as means ± standard 
error of the mean (SEM) for n = 4-6 animals of each genotype. *p≤0.05 by two-tailed t-test.

•  Source data 28. Emx1 protein expression in Pum2 mutants. Analysis of results of Western blot 
performed on nuclear fractions from three mice (N1–3) of Ctrl and Pum2 cKO for Emx1 protein. 
Quantification of corresponding fold changes in Emx1 protein levels normalized to total protein 
is shown below. Data are shown as means ± standard error of the mean (SEM), n = 3 of each 
genotype. two-tailed t-test.

•  Source data 29. Analysis of Sox5, Bcl11b, and Rorb mRNAs across polysome gradient 
fractions after puromycin treatment. Quantification of results of polysome profiling from P0 WT 
somatosensory area-enriched cortices neocortices for controls (Ctrl) and puromycin-treated samples 
(reviewers Figure 3). Histograms showing the distribution of the Sox5, Bcl11b, Rorb, Fezf2, GAPDH, 
and 18S mRNAs across polysome gradient fractions for puromycin-treated samples relative to 
controls. Values were normalized to an RLuc mRNA spike-in control, which was added in an equal 
amount to the fractions prior to RNA preparation. Data are represented as means ± standard error 
of the mean (SEM). *p≤0.05 by two-tailed t-test.

•  Source data 30. Source data for Western blots. A zipped folder containing original and labeled 
bands photos for Western blots of Pum2 and tubulin as control (Figure 1—figure supplement 1e), 
human and mouse TDP-43 and total protein stain as control (Figure 1—figure supplement 8c), and 
Emx1 and total protein stain as control (reviewers Figure 1b).

•  Transparent reporting form 

Data availability
All data generated or analysed during this study are included in the manuscript and supporting files.
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