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Abstract Ecological conditions are known to change the expression of mutualisms though the

causal agents driving such changes remain poorly understood. Here we show that temperature

stress modulates the harm threatened by a common enemy, and thereby induces a phoretic mite

to become a protective mutualist. Our experiments focus on the interactions between the burying

beetle Nicrophorus vespilloides, an associated mite species Poecilochirus carabi and their common

enemy, blowflies, when all three species reproduce on the same small vertebrate carrion. We show

that mites compete with beetle larvae for food in the absence of blowflies, and reduce beetle

reproductive success. However, when blowflies breed on the carrion too, mites enhance beetle

reproductive success by eating blowfly eggs. High densities of mites are especially effective at

promoting beetle reproductive success at higher and lower natural ranges in temperature, when

blowfly larvae are more potent rivals for the limited resources on the carcass.

Introduction
Protective mutualisms among macro-organisms are both widespread and well-known (Clay, 2014;

Palmer et al., 2015; Hopkins et al., 2017). They involve one species defending another species

from attack by a third party species, in exchange for some form of reward (Clay, 2014;

Palmer et al., 2015; Hopkins et al., 2017). Theoretical analyses predict that mutualisms like this can

evolve when a commensal or mildly parasitic species, that lives in or upon its host, is induced to

become a protective mutualist upon exposure to an environmental stressor (Fellous and Salvaudon,

2009; Lively et al., 2005; Hopkins et al., 2017; Rafaluk-Mohr et al., 2018). The stressor can be

biotic (Ashby and King, 2017; Clay, 2014; Ewald, 1987; Lively et al., 2005; Schwarz and Müller,

1992) or abiotic (Corbin et al., 2017; Engl et al., 2018; Hoang et al., 2019).

Although the adaptive evolution of mutualisms has been studied in detail, the contextual factors

that drive equivalent variation in the expression of mutualisms on an ecological timescale are rela-

tively less well understood (Chamberlain et al., 2014; Jaenike et al., 2010; Hoeksema and Bruna,

2015), especially for protective mutualisms (Hopkins et al., 2017; Palmer et al., 2015). In particular,

it is unclear how different biotic and abiotic factors combine to influence the expression of a mutual-

ism, especially when conditions vary locally. Nor is it well understood whether the extent of mutual-

ism is density-dependent (Hoeksema and Bruna, 2015; Palmer et al., 2015). Here we investigate

how biotic and abiotic stressors combine to induce the context-dependent expression of a protec-

tive mutualism. Specifically, we determine how temperature and partner density interact with the

presence of a third party enemy species to influence the likelihood that a phoretic organism can be

induced within a single generation to become a protective mutualist.

Our experiments focus on burying beetles (Nicrophorus vespilloides), which use the dead body of

a small vertebrate to breed upon (Scott, 1998). A pair of beetles works together to convert the
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carcass into an edible carrion nest for their larvae by removing any fur or feathers, and rolling the

meat into a ball. The beetles also reduce competition with rival species for the resources on the

dead body by smearing the flesh in antimicrobial exudates, consuming eggs laid by rival insects and

concealing the body below ground (Chen et al., 2020; Duarte et al., 2018; Scott, 1998). During

carcass preparation, beetle eggs are laid in the surrounding soil and then hatch within 3–4 days. The

larvae crawl to the carcass and feed themselves on the edible nest, where they are also fed and

defended by both parents. Within a week of hatching, the larvae disperse away from the scant

remains of the carcass to pupate, while adults fly off – often to breed again.

Adult burying beetles carry up to 14 species of mites, which also breed on carrion and which use

the burying beetle as a means of transport between breeding opportunities. The Poecilochirus car-

abi species complex is the most salient and common of these mite species (e.g. Wilson, 1983;

Schwarz et al., 1998), and it is the focus of this study. P. carabi travels as sexually immature deuto-

nymphs on the burying beetle, and derives no nourishment directly from its host while it is on board

(Wilson and Knollenberg, 1987). Upon arrival at a carcass, the deutonymphs alight and moult into

adults, which then reproduce. The next generation of mite deutonymphs is ready to disperse by the

time the adult burying beetles cease caring for larvae and leave the breeding event. Roughly 90% of

deutonymphs disperse on the departing adults rather than on the burying beetle’s larvae

(Schwarz and Müller, 1992).

P. carabi is often described as a phoretic mite because it uses burying beetles (Nicrophorus spp.)

to travel between breeding opportunities on carrion, and seemingly imposes few costs on its hosts

during transportation. Phoretic interactions are thought to pave the way for further interactions

between host and phoront that have more positive or negative effects on host fitness. This is espe-

cially likely when interactions between host and phoront endure beyond the transport phase

(White et al., 2017). For example, female Trichogramma parasitoid wasps hitch a relatively cost-free

ride to their butterfly hosts’ egg-laying site, but upon arrival are easily able to locate butterfly eggs

to parasitise (Fatouros and Huigens, 2012). Likewise, the phoretic mite Ensliniella parasitica travels

on female mason wasps Allodynerus delphinalis. Female wasps lay a single egg in a brood cell within

a dead plant, and provision the cell with paralysed caterpillars and a few phoretic mites. The mites

are mildly parasitic because they feed on the developing wasp’s haemolymph (Okabe and Shun’ichi,

2008). However, if the wasp pupae are threatened by parasitoid wasps, the mite protects them from

attack, thus switching from parasite to mutualist (Okabe and Shun’ichi, 2008). Nevertheless phoretic

interactions are generally under-studied and their capacity to extend into further interactions that

influence host fitness remains poorly understood (White et al., 2017).

For burying beetles, their phoretic relationship with P. carabi mites changes once the beetle has

located the dead body. This study focuses entirely on the interactions that take place from that point

onwards, during reproduction. The intimate association between beetles and mites continues

through frequent contact as the two species breed alongside each other on the small dead body,

and this enables each party to influence the other’s fitness. We characterize the changing relation-

ship between the mite and the beetle by measuring the fitness outcome for each of them (Figure 1—

figure supplement 1).

The beetle has a net positive effect on mite fitness. Without the beetle, the mite would not be

able to breed at all. Furthermore, mites have greater reproductive success on beetle-prepared car-

rion than on other dead meat (Sun and Kilner, 2019). However, in some contexts, the mite reduces

burying beetle fitness. Mite offspring compete with burying beetle larvae for resources on the car-

cass, and can directly predate upon beetle eggs and newly-hatched larvae (Wilson, 1983;

Beninger, 1993; De Gasperin and Kilner, 2015). Thus, in some contexts the mites are harmful for

the burying beetle.

In other contexts, though, the mite can potentially become a protective mutualist by defending

burying beetle reproductive success when it is threatened by an enemy species (Wilson, 1983).

Blowflies (Calliphoridae) are a particular competitive threat for burying beetles (Scott, 1994;

Sun et al., 2014) because they can locate the newly dead more rapidly than burying beetles (within

a few hours: Shelomi et al., 2012); personal observations) and start to lay eggs within minutes of

arriving on the dead body (Bornemissza, 1957; Matuszewski et al., 2010; Payne, 1965). Mites can

potentially prevent burying beetles from losing fitness to rival blowflies by eating blowfly eggs

(Springett, 1968). As an indirect effect of the mites’ predatory actions, the net fitness outcome of
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the mite-beetle interaction becomes positive-positive. Since the mite is only able to feed upon blow-

flies because it was transported to the carrion by the burying beetle, the mite becomes a mutualist.

Two other factors additionally seem likely to determine whether mites have negative or positive

effects on the fitness of their burying beetle hosts: temperature and mite density per host. Previous

work has shown that at higher temperatures blowflies pose a greater threat to burying beetle and

mite fitness. Blowflies are more abundant on carrion at higher temperatures, develop more rapidly

and have higher reproductive success (Sun et al., 2014; Wall et al., 1992). High densities of mites

might be more effective at protecting from blowflies under these conditions (Okabe and Shun’ichi,

2008). Yet high densities of phoretic mites and phoretic nematodes are also known to reduce the

number and quality of burying beetle larvae produced, potentially making mites more harmful

(De Gasperin and Kilner, 2016; Wang and Rozen, 2019). Therefore it is unclear how these three

factors (temperature, mite density, and the presence of blowflies) interact to determine whether

interactions between mites and their burying beetles are harmful to beetles or more mutualistic.

We used field and laboratory experiments on burying beetles and their P. carabi mites to deter-

mine how the effects of blowflies, temperature and mite density combine to influence the expression

of a protective mutualism. Our experiments were designed specifically to investigate whether: 1) the

presence of blowflies causes mites to switch from being harmful to becoming protective mutualists;

2) whether any transition to and from mutualism is modulated by temperature; and 3) whether any

transition is additionally mediated by the density of mites on the carrion.

Results

Complementary patterns of reproductive success in burying beetles
and blowflies, in the field
We found that the reproductive success of burying beetles and blowflies varied with temperature,

though in a complementary pattern (Figure 1A and B). Whereas burying beetle reproductive suc-

cess peaked at intermediate temperatures, and dipped at lower and higher temperatures

(Figure 1A and Supplementary file 1a), blowflies had greatest reproductive success at lower and

higher temperatures and much less success at intermediate temperatures (Figure 1B and

Supplementary file 1a).

Mites enhance burying beetle fitness in the field when there are
blowflies present, but the effect depends on temperature and mite
density
Adding mites to the breeding event changed these relationships, for both beetles and blowflies,

though in different ways at different mite densities. When we added 10 mites, there was little effect

on the overall reproductive success of beetles (Figure 1C; Supplementary file 1a), though mites sig-

nificantly reduced the reproductive success of the blowflies at lower and higher temperature ranges

(Figure 1D; Supplementary file 1a). When we added 20 mites, however, mites were especially

effective at promoting beetle reproductive success at these same lower and higher temperatures

(Figure 1E; Supplementary file 1a). Once again, they caused a corresponding decline in the success

of blowflies breeding at lower and higher temperatures (Figure 1F; Supplementary file 1a).

Turning to the mites’ perspective, we found that variation in their reproductive success could not

be explained by temperature (Supplementary file 1a). From these initial results, we conclude that

mites act as protective mutualists for burying beetles against blowflies in natural breeding condi-

tions, matching results obtained previously for a different burying beetle species (Wilson, 1983),

and that their effects are contingent on mite density per breeding event. Our results extend the find-

ings of previous work by showing that mites promote burying beetle reproductive success specifi-

cally at lower and higher temperatures.

Complementary patterns of reproductive success in burying beetles
and blowflies are induced by each other in the lab
Next, we analysed data from Laboratory Experiment 1, focusing first on the effects of blowflies on

burying beetle reproductive success, when there were no mites present (Figure 2A v. 2D). We found

that blowflies reduced burying beetle reproductive success at lower and higher temperatures
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Figure 1. Reproductive success of burying beetles and blowflies under field conditions in relation to ambient air temperature, across the three different

mite treatments. Shaded regions represent 95% confidence intervals, and solid and dashed lines represent statistically significant and non-significant

regression lines from GLMM, respectively. Each datapoint represents one breeding event.

Figure 1 continued on next page
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(interaction blowfly treatment x temperature treatment, c
2 = 25.85, d.f. = 2, p<0.001), and that

blowflies caused greater reduction at higher temperatures than at lower temperatures (post-hoc

comparison high v. low, z = �2.47, p=0.036).

To determine whether beetles likewise influenced blowfly reproductive success, we compared the

number of blowfly larvae produced in Laboratory Experiment 1 with the number of blowfly larvae

produced in Laboratory Experiment 2, when there were no beetles present. We found that burying

beetles substantially reduced blowfly reproductive success but that the effect was temperature-

dependent (interaction beetle x temperature treatments: c
2 = 38.32, d.f. = 2, p<0.001). Blowfly

reproductive success was most strongly reduced by beetles at intermediate temperatures (z = 10.59,

p<0.001), with a less pronounced decrease at lower temperatures (z = 9.40, p<0.001), and the least

change of all at higher temperatures (z = 7.04, p<0.001).

Blowflies are enemies to mites
Further analyses of Laboratory Experiment 1 revealed that blowflies reduced mite reproductive suc-

cess (Figure 2—figure supplement 2; Supplementary file 1b) and that the extent of mite fitness

loss was modulated by temperature (Supplementary file 1b). We found that blowflies reduced mite

reproductive success at mid and higher temperatures (mid temperatures: post-hoc comparison with-

out blowflies v. with blowflies, z = 2.24, p=0.025; higher temperatures: post-hoc comparison without

blowflies v. with blowflies, z = 3.29, p=0.001). However, blowflies had no effect on mite reproductive

success at lower temperatures (post-hoc comparison without blowflies v. with blowflies, z = 0.30,

p=0.766). Temperature thus modulates the negative effects of the blowfly on both burying beetle

and mite fitness (Supplementary file 1b).

In the lab, mites reduce burying beetle fitness at high densities when
blowflies are absent
Adding mites generally reduced burying beetle reproductive success, though to different degrees at

different mite densities (Figure 2A-C; Supplementary file 1b). Across all temperatures, mites had

no effect on beetle reproductive success in groups of 10 (post-hoc comparison 0 v. 10 mites,

z = 1.49, p=0.298). However, adding 20 mites significantly reduced beetle reproductive success

(post-hoc comparison 0 v. 20 mites, z = 3.20, p=0.004). Therefore, mites have mildly negative effects

on burying beetle fitness, as has been reported before in previous work on N. vespilloides

(Beninger, 1993; De Gasperin and Kilner, 2015; Nehring et al., 2017; Sun et al., 2019) and other

Nicrophorus species (Wilson and Knollenberg, 1987).

Nevertheless, the loss in beetle reproductive success caused by mites at high temperatures was

much less than that induced by blowflies (post-hoc comparison 0 mites, with blowflies v. 10 mites,

without blowflies, z = �3.61, p=0.002; post-hoc comparison 0 mites, with blowflies v. 20 mites, with-

out blowflies, z = �2.85, p=0.023).

Mites switch from being harmful to mutualistic at lower and higher
temperatures
We found that the presence of blowflies caused mites to switch to becoming more mutualistic. Fur-

thermore, the extent of mutualism was dependent both on temperature and mite density, matching

our findings in the field. At lower temperatures, neither density of mites affected beetle reproductive

success when blowflies were present (post-hoc comparison 0 v. 10 mites, z = �0.77, p=0.720;

Figure 2E; post-hoc comparison 0 v. 20 mites, z = �0.60, p=0.822; Figure 2F). At higher tempera-

tures, 10 mites had no effect on burying beetle reproductive success either (post-hoc comparison 0

v. 10 mites, z = �1.03, p=0.560; Figure 2E). However, when 20 mites were added to the breeding

Figure 1 continued

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Spatial distribution of breeding sites (yellow dots) used in the field experiment at the study in Madingley Wood, Cambridge, UK

(Latitude: 52.22730˚; Longitude: 0.04442˚).

Figure supplement 2. Schematic side-view representation of the experimental setup used for each breeding event in the field (dimensions are in cm).
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Figure 2. Burying beetle reproductive success under lab conditions in relation to ambient air temperature in the incubator, without and with blowflies,

and across three different mite treatments. Sample sizes are shown above each boxplot. Boxplots show median (solid line), first quartile (bottom of

box), third quartile (top of box), values that fall within 1.5 times of the interquartile range (dotted lines), and outliers (open circles). Each datapoint

represents one breeding event.

Figure 2 continued on next page
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event, they increased beetle reproductive success but only at higher temperatures (post-hoc com-

parison 0 v. 20 mites, z = �3.04, p=0.007; Figure 2F).

The increase in beetle reproductive success was matched by a corresponding mite-induced

decline in blowfly reproductive success (Figure 3), with the pattern of decline again matching the

results of our field experiment (Figure 1B). When there were no mites present, blowflies breeding

alongside burying beetles had much greater reproductive success at higher temperatures and lower

temperatures than at intermediate temperatures (post-hoc comparison high v. mid temperature,

z = 5.61, p<0.001; post-hoc comparison low v. mid temperature, z = 3.21, p=0.004; Figure 3A).

In summary, the field and lab experimental results each suggest that burying beetles can manage

singlehandedly to defend their reproductive success against blowflies at intermediate temperatures,

but that they struggle to produce as many larvae at higher and lower temperatures (Figure 1B,

Figure 2D). These are the temperatures at which blowflies have highest reproductive success when

there are no mites present. Although adding 10 mites did not cause a significant reduction in the

number of blowfly larvae produced (lower temperatures: post-hoc comparison 0 v. 10 mites,

z = 1.76, p=0.183; higher temperatures: post-hoc comparison 0 v. 10 mites, z = �0.65, p=0.792;

Figure 3B), adding 20 mites to the breeding event caused blowflies to perform badly at all tempera-

tures (Figure 3C).

How are burying beetles (at intermediate temperatures) and mites (at lower and higher tempera-

tures) able to cause such a reduction in blowfly reproductive success? Both species wander all over

the carrion nest, especially during carcass preparation before the burying beetle larvae hatch

(Smiseth et al., 2003). They graze on the surface of the carrion as they go, and have been observed

to consume blowflies when they are eggs or newly hatched 1st instar blowfly larvae (Wilson, 1983;

Wilson and Knollenberg, 1987). The likelihood that blowfly eggs will be eaten therefore depends

partly on the duration of these vulnerable early life stages during blowfly development, and partly

on the extent to which beetles and mites prey upon blowflies. We tested whether each is tempera-

ture dependent.

At higher temperatures, blowflies evade attack through more rapid
development
We found that temperature could not explain any variation in either blowfly reproductive success

(Figure 4—figure supplement 1; Supplementary file 1c), or the extent to which blowfly larvae con-

sumed the carcass (Figure 4—figure supplement 1; Supplementary file 1c). However, blowfly

development was greatly accelerated at higher temperatures (Figure 4A; Supplementary file 1c),

with blowflies spending significantly less time as eggs and 1st instar larvae at higher temperatures

than at lower temperatures (eggs: t = �3.76, p<0.001; 1st: t = �4.89, p<0.001).

At lower temperatures, beetle defences against blowflies are weaker
When we compared the number of blowfly larvae produced in Laboratory Experiment 2, when bee-

tles were able to prepare a carcass, and Laboratory Experiment 3, when beetles were absent, we

found that carcass preparation by beetles reduced the number of blowfly larvae produced and but

that its effectiveness was sensitive to temperature (interaction carcass preparation x temperature

treatments: c2 = 19.67, d.f. = 2, p<0.001). Blowflies showed the greatest loss in fitness at intermedi-

ate temperatures (z = 9.84, p<0.001) with a less marked reduction in fitness at lower (z = 5.16,

p<0.001) and higher temperatures (z = 6.25, p<0.001).

We found that the effectiveness of carcass preparation by beetles varied with temperature

(Figure 4B; Supplementary file 1d). Specifically, beetles converted a dead body into a rounder nest

for their larvae at both higher and mid temperatures than at lower temperatures (post-hoc compari-

son high v. low, z = 4.68, p<0.001; post-hoc comparison low v. mid, z = �4.83, p<0.001). The

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. The daily mean, maximum, and minimum ambient air temperature in Madingley Woods during the field experiments conducted

in 2016 and 2017.

Figure supplement 2. Reproductive success of mites in relation to temperature, without and with blowflies and across the temperature treatments.
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rounder the prepared carcass was, the fewer the

blowfly larvae that survived (c2 = 13.78, d.f. = 1,

p<0.001; Figure 4C).

The combined effects of temperature on both

carcass preparation by beetles and blowfly devel-

opment, explain why blowflies are able to pro-

duce more larvae at higher and lower

temperatures than at mid temperatures - and

therefore why they pose more of a threat to bury-

ing beetle and mite fitness at these tempera-

tures. Burying beetles can singlehandedly defend

themselves against blowflies at intermediate tem-

peratures through their activities during carcass

preparation. At higher temperatures, blowflies

develop sufficiently rapidly that they can evade

these beetle defences. At lower temperatures,

burying beetles are less able to defend them-

selves against blowflies during carcass

preparation.

Discussion
The aim of this study was to determine how biotic

and abiotic factors combine to influence the con-

text-dependent expression of a protective mutu-

alism, using the changeable interactions between

burying beetles and their mites as a model sys-

tem. Our experiments reveal a web of direct and

indirect ecological interactions between burying

beetles, P. carabi mites and blowflies as they

breed alongside each other on small carrion (see

Figure 5). The web is partly constructed by the

burying beetles themselves, because they alone

transport mites to the carrion. However, the

interaction between burying beetles and their P.

carabi mites depends on whether blowflies are

present too - because predation by mites on

blowfly eggs then indirectly enhances burying

beetle reproductive success. The extent of mutu-

alism also varies with increasing temperature

stress, and with increasing mite density. All three

factors cause a corresponding change in the net

fitness outcome for burying beetles and this

determines whether the mite harms burying bee-

tle fitness or is more mutualistic (Figure 5).

(1) Do blowflies cause mites to
switch from being harmful to
becoming protective mutualists?
Consistent with previous work on other burying

beetle species (Wilson, 1983), we found that

mites were antagonistic to beetles at all tempera-

tures in the absence of blowflies (Figure 2). A

similar decrease in the extent of mutualism has

been detected in other protective mutualisms

when the third-party enemy species is absent or
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Figure 3. Blowfly reproductive success in relation to

temperature in the presence of (A) 0 mites, (B) 10 mites

and (C) 20 mites. Sample sizes are as indicated above

each bar. Boxplots show median (solid line), first

quartile (bottom of box), third quartile (top of box),

values that fall within 1.5 times of the interquartile

Figure 3 continued on next page

Sun and Kilner. eLife 2020;9:e55649. DOI: https://doi.org/10.7554/eLife.55649 8 of 18

Research article Ecology Evolutionary Biology

https://doi.org/10.7554/eLife.55649


removed (Hopkins et al., 2017). Then, it is com-

mon for the host to reduce the rewards it offers

its protective mutualist (Palmer et al., 2015;

Palmer et al., 2008). It is unclear whether this

happens in burying beetles too. However, the

main service that beetles offer to mites is trans-

port to carrion. This means that the beetles’ payment to the mites would have to be modulated

either in advance of their protection service, when mites are transported to carrion, or retrospec-

tively, when the adult beetles fly off carrying the mites’ offspring with them at the end of reproduc-

tion. Either way, since the prevalence of blowflies is likely to vary locally from one breeding attempt

to the next, it is hard to see how beetles could accurately modulate the transport service they offer

to mites in relation to the prevalence of blowflies. An alternative possibility is that some of the other

mite species carried by burying beetles in nature (which we excluded from our experiments), or the

Figure 3 continued
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Figure 4. Effect of temperature on blowfly and burying beetle performance during carcass preparation. (A) The effect of temperature on blowfly

development rate (n = 13 mouse carcasses for each temperature treatment) and (B–D) the relationship between number of blowfly larvae and

roundness of the carcass for the low, mid, and high temperature treatment (n = 23, 23, and, 22 mouse carcasses, respectively). Boxplots show median

(solid line), first quartile (bottom of box), third quartile (top of box), values that fall within 1.5 times of the interquartile range (dotted lines), and outliers

(open circles). The shaded region represents 95% confidence interval, and the line represents statistically significant regression line from GLM.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Effect of temperature on blowfly reproductive performance.
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phoretic nematodes that are also present upon the beetle (Wang and Rozen, 2019) modulate the

harm inflicted by P. carabi on its burying beetle host. Whether this actually happens, however,

remains to be determined in future work.

(2) Is the expression of the protective mutualism modulated by
temperature?
Previous studies have emphasised the significance of the abiotic environment in shifting the outcome

of species interactions (Chamberlain et al., 2014; Gorter et al., 2016; Hoeksema and Bruna, 2015;

Hopkins et al., 2017). Protective mutualisms sometimes break down at higher temperatures

because the protecting partner is more vulnerable to heat stress when temperatures rise

(Barton and Ives, 2014; Doremus and Oliver, 2017; Fitzpatrick et al., 2014). However, we found

no evidence that mites were more vulnerable to higher temperatures, whether in field or laboratory

conditions. Instead, the main driver of change in the protective mutualism came from the response

of enemy blowflies, and the behaviour of the burying beetles themselves, to variation in temperature

(Figure 4). We suggest that similar effects might be found in other protective mutualisms where

enemy species are more likely to thrive at high temperatures, providing that both partners can toler-

ate some thermal stress. Predicting how populations might respond to more variable temperatures

thus involves understanding its interactions within the natural ecological community as well as some

knowledge of the intrinsic variation in the thermal tolerance of the mutualistic partner (Early and

Keith, 2019).

(3) Is the expression of the protective mutualism modulated by the
density of mites?
The mites’ capacity to defend burying beetles against competition from blowflies was both tempera-

ture-dependent and density-dependent. In the field and in the lab, blowflies posed a greater threat

to burying beetle fitness at higher temperatures and then it took a high density of mites to neutralize

this danger. Increased mite density has been found to influence the effectiveness of defences against
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Figure 5. A summary of the experimental results, showing how the interactions between burying beetles, mites, and blowflies change in response to an

increase in temperature stress (caused by temperatures that are higher or lower than average). Direct interactions between species are shown with solid

lines while indirect interactions are shown with dashed lines. The arrow points to the species whose fitness is affected by the focal species. The signs

(+/-) indicate positive or negative effects on fitness. Our overall conclusion is that a temperature-enhanced threat from blowflies causes mites to

become protective mutualists of their burying beetle hosts.
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enemy species in other protective mutualisms as well (e.g. Okabe and Shun’ichi, 2008). Our experi-

ments captured the likely variation in mite density at natural breeding events. However, we have no

evidence to suggest that beetles can regulate the density of mites they carry in anticipation of the

threats they face to their reproductive success (Sun et al., 2019).

In conclusion, we have shown how the expression of a protective mutualism between burying

beetles and their P. carabi mites is context-dependent and depends on a complex interplay of biotic

and abiotic factors. In common with other facultatively expressed mutualisms (Afkhami et al., 2014;

Johnson, 2015; Peay, 2016), short-term variation in the expression of this protective mutualism may

influence the capacity of its host burying beetle to persist in adverse environments.

Materials and methods

Burying beetles and phoretic mites in Madingley Wood
Fieldwork was carried out at Madingley Woods in Cambridgeshire UK, an ancient woodland

(Goldberg et al., 2007) of mixed deciduous trees near the Sub-Department of Animal Behaviour,

University of Cambridge, (Latitude: 52.22730˚; Longitude: 0.04442˚). We trapped N. vespilloides car-

rying the mite P. carabi by setting Japanese beetle traps, baited with ~30 g fresh mice, from June to

October, 2016–2017. Ambient air temperature was recorded locally at 1 hr intervals using an iButton

temperature data logger (n = 8; DS1922L-F5#, Maxim Integrated Products, Inc), which was sus-

pended alongside each trap at 1 m above the ground, and shielded from direct exposure to sun-

light. Traps were checked daily to determine when the beetles first located the dead body within.

The mean ± S.E.M. time to discovery was 3.42 ± 0.77 days. Each trap was emptied every two weeks,

and re-baited with a fresh mouse carcass. At this point, we took the contents back to the lab and

counted the total number of N. vespilloides caught in the trap and the number of P. carabi carried

by each individual beetle. Beetles were temporarily anaesthetized using CO2 and mites were then

detached with a fine brush and tweezers. Field-caught burying beetles naturally carried a mean ± S.

E.M. of 10.82 ± 0.45 mites (see Figure 2—figure supplement 1 from Sun et al., 2019 for frequency

distribution of mite density), while 70% of them carried 1–20 mites (n = 1369 beetles). Field-caught

beetles, mites, and blowfly larvae collected from the traps were used to establish laboratory colonies

(see below).

Field experiment: how does burying beetle reproductive success covary
with blowflies, mite density and ambient air temperature?
Experimental breeding events were staged in Madingley Woods. Breeding events were established

at 20 different sites (see Figure 1—figure supplement 1), separated from each other by approx. 30

m. Each site was used more than once during the course of the burying beetle’s breeding season.

We recorded ambient temperature during each experiment by using iButton temperature data log-

gers placed at 1 m above ground at 1 hr intervals throughout. The set-up for each breeding event is

shown in Figure 1—figure supplement 2. A 8–16 g (12.40 ± 0.15 g) mouse carcass was placed on

the compost and left for three days, to simulate the average time taken by beetles to locate a car-

cass in the field (see above). Blowflies that were naturally present in the woodland were able to lay

their eggs opportunistically on the mouse corpse too, while it remained above ground. We then

added a pair of burying beetles from the laboratory colony. We also added mites from the lab col-

ony at one of three different densities: 0 (n = 66), 10 (n = 68), or 20 mite (n = 61) deutonymphs. We

staged 195 breeding events in all. Each experiment was terminated either when the beetle larvae

dispersed or when the dead body was completely consumed by blowfly larvae. At this point we

measured components of beetle fitness (number of beetle larvae; see below), blowfly fitness (num-

ber of blowfly larvae), and mite fitness (number of dispersing mite deutonymphs on adult beetles).

Maintenance of laboratory colonies of beetles, mites, blowflies
Burying beetles
We bred burying beetles by introducing pairs of unrelated males and females to a mouse carcass (7–

15 g) in a plastic container (17 � 12 � 6 cm filled with 2 cm of moist soil). All larvae were counted

and collected at dispersal, and transferred to eclosion boxes (10 � 10 � 2 cm, 25 compartments)

filled with damp soil. Once they had developed into adults, beetles were kept individually in plastic
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containers (12 � 8 � 2 cm) filled with moist soil, and were fed twice a week with small pieces of

minced beef.

Mites
We maintained mite colonies in plastic containers (17 � 12 � 6 cm filled with 2 cm of moist soil).

Each container was provided with an adult beetle and fed with pieces of minced beef twice a week.

We bred mites once a month by introducing 15 mite deutonymphs to a pair of beetles and a mouse

carcass in plastic containers (17 � 12 � 6 cm filled with 2 cm of moist soil; n = 10). When the burying

beetle larvae had completed their development, we collected mite deutonymphs that were dispers-

ing on adult beetles. Newly-emerged mites were reintroduced to the containers holding the mite

colony.

Blowflies
Colonies of blowflies Calliphora vomitoria (n = 5 colonies) were reared in screened cages (32.5 �

32.5 � 32.5 cm). They were continuously supplied with a mixture of powdered milk and dry granu-

lated sugar, and ad lib. water. We fed newly emerged blowflies with pig liver to induce maturation

of the flies’ ovaries. After a week, these blowflies were then given mouse carcasses to breed upon.

All beetle, mite, and blowfly colonies were kept at 21 ± 2˚C with a photoperiod of 16:8 light:dark.

Laboratory Experiment 1: manipulations of blowflies, mites and
temperature
To understand how temperature and mite density together mediate blowfly competition with bury-

ing beetles, we repeated the field experiment in a lab setting so that we could manipulate tempera-

ture and the presence of blowflies as well as mite density.

Manipulating the presence/absence of blowflies
We placed 30 mg (30.22 ± 0.07 mg) newly-laid blowfly eggs onto a 7–16 g (11.13 ± 0.15 g) mouse

carcass before giving it to beetles to breed upon, to mimic the rapid oviposition by blowflies in

nature on a freshly dead vertebrate (Wilson, 1983). As a control, dead mice of similar size

(10.64 ± 0.15 g) were kept free of blowflies. In both blowfly treatments, the dead mouse was placed

on the soil in a breeding box in a temperature-regulated breeding chamber for 3 days before adding

the beetles, simulating the later arrival time of the beetle at the carcass that is seen in nature (see

above). During this time, the fly eggs were able to hatch and the blowfly larvae started to consume

the carcass.

Manipulations of mite density
We used the same treatment as in the field experiment: 0, 10, or 20 mites. Mite deutonymphs were

introduced to the dead mouse at the same time as the burying beetles.

Manipulations of temperature
The six treatments described above were each staged in temperature-regulated breeding chambers

(Panasonic MLR-352-PE). Each temperature treatment mimicked the 8˚C diurnal temperature fluctua-

tion that is typical for Madingley Woods, during the burying beetle’s breeding season (Figure 2—

figure supplement 1). The mean temperature for each manipulation was 11, 15, and 19˚C, which

matches the mean seasonal low, intermediate, and high temperatures, respectively, in Madingley

Woods (Figure 2—figure supplement 1). Each of the six treatments was carried at these three tem-

peratures, generating a fully factorial experiment with 18 treatments in all (three mite treatments (0,

10 or 20 mites) x two blowfly treatments (blowfly or no blowfly) x three temperature treatments (11,

15, and 19˚C). At the end of each breeding bout, indicated by either the beetle larvae starting to dis-

perse away or carcass consumption by blowfly larvae, whichever came sooner, we measured the fit-

ness components of beetles, mites, and blowflies using the methods described above in the field

experiments. For logistical reasons, replicates of all 18 treatments were evenly spread over four

blocks, carried out in succession.
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Laboratory Experiment 2: effect of temperature on blowfly
development
To examine how blowflies respond to temperature, in the absence of the mites and the burying bee-

tles, we counted the number of dispersing blowfly larvae, and the rate of carcass consumption, at

the three different temperatures used in laboratory experiment 1 (11, 15, and 19˚C; n = 13 carcasses

for each temperature treatment). Once again, we placed blowfly eggs (30.22 ± 0.09 mg) on a mouse

carcass (10.74 ± 0.30 g) that sat on soil in a plastic breeding box, and put the box in a temperature-

controlled breeding chamber. (No burying beetles or mites were added this time). Every 12 hr we

checked the boxes and determined the stage of blowfly larval development attained, namely 1st,

2nd, 3rd instars and post-feeding. In addition, we recorded when the carcass entered the bloating

stage (indicated by swelling and putrefaction). When the larvae entered the post-feeding stage, we

counted them, and recorded their total mass. From these data, we determined the proportion of

carcass consumed, calculated as total mass of larvae divided by initial carcass mass.

Laboratory Experiment 3: effect of temperature on beetle defences
against blowflies during carcass preparation
To understand the effect of temperature on the effectiveness of carcass preparation by burying bee-

tles in defending against infestation by blowflies, we placed blowfly eggs (30.05 ± 0.09 mg) on a

mouse carcass (13.25 ± 0.24 g) prior to introducing pairs of beetles at three different temperatures

(11, 15, and 19˚C; n = 23, 23, 22 carcasses for each temperature treatment, respectively). This time,

each carcass was transferred to a new plastic breeding box once the beetles had completed carcass

preparation but before their eggs had hatched. Once the carcass had been moved, it was kept at

the same intermediate temperature regardless of the temperature treatment previously experienced

during carcass preparation. This allowed us to isolate the effects of temperature on beetle carcass

preparation, and its relation to subsequent blowfly fitness.

We quantified the extent of carcass preparation by measuring the sphericity of each prepared

carcass, using previously established methods (De Gasperin et al., 2016), calculating roundness

from a two-dimensional proxy. Each carcass was photographed against a white background from

the top and the side using two identical digital cameras (Fuji lm av200), each kept at a constant dis-

tance of 30 cm to the carcass. We processed the images with white circle to remove legs, tails, and

large pieces of soil in GIMP (version 2.6.11), prior to roundness analysis. We estimated the round-

ness from each image using a boundary tracing routine, bwboundaries, in Matlab (The Mathworks,

USA). Each image was separated from the white background with a filter of 5 pixels to remove the

smallest details, such as hairs and soils smaller than 1 mm (the photographs taken from the top and

side were 6.4 and 6.36 pixels per mm, respectively). The roundness was then determined by calculat-

ing a metric, 4p*area/perimeter2, in which a score of 1 denotes a perfect circle. An overall round-

ness score was derived by averaging roundness of the top and the side images of each carcass.

Statistical analyses
Generalised linear mixed model (GLMM) analyses were carried out in the statistical programme R

3.4.3 using the package lme4 (Bates et al., 2015). Model formulae are given in the tables of results

(see Supplementary file 1). Non-significant interaction terms were dropped from the analyses

before deriving the final model. As is common statistical practice (e.g. Gelman and Hill, 2007), if we

found a significant interaction term, we split the dataset accordingly to determine how the interac-

tion arose. Power analyses were performed based on 1000 Monte Carlo simulations, with the func-

tion powerSim in the package SIMR (Green and MacLeod, 2016).

Field experiment
We sought correlates of beetle brood size, the number of blowfly larvae, and the number of mite

offspring number at the end of each trial, using separate GLMMs each with negative binomial distri-

butions. For the models with beetle brood size and the number of blowfly larvae as independent var-

iables, we included the variables carcass mass, mite treatment (0, 10, 20 mites), temperature, and

the interaction between mite treatment and temperature. Mite treatment was a categorical factor,

whereas carcass mass and temperature were continuous variables. Temperature was calculated as

the average daily mean temperature, from carcass presentation to larval dispersal (or carcass
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consumption by blowfly larvae). We also included a squared measure of temperature in the model

because we found that the non-linear effects of temperature explained more variation than any lin-

ear effects. (We compared the performance of different models using the Akaike Information Crite-

rion (AIC), using the function model.sel in the package MuMIn, and obtained the following results.

Models of burying beetle reproductive success: with temperature as a non-linear variable:

AICc = 802.2, Akaike weight = 0.93 v. with temperature as a linear variable: AICc = 807.4, Akaike

weight = 0.07. Models of blowfly reproductive success: with temperature as a non-linear variable:

AICc = 1541, Akaike weight = 0.99 v. with temperature as a linear variable: AICc = 1550.2, Akaike

weight = 0.01).

The model analysing mite reproductive success included data from the treatments with 10 and 20

mites and included carcass mass and temperature as covariates. In all three models, experimental

site and year were included as random factors.

Laboratory experiments
We analysed the reproductive success of beetles, blowflies, and mites using GLMMs with a negative

binomial distribution to account for data overdispersion. We also included block as a random factor.

Post-hoc pairwise comparisons were performed using the package lsmeans (Lenth, 2016) if an inter-

action was detected; p value for post-hoc comparisons were adjusted using Tukey’s honestly signifi-

cant difference (HSD) method. The data from the field experiment revealed a non-linear relationship

between temperature and measures of reproductive success (see Figure 1). Therefore, we conserva-

tively analysed the effect of the three different temperature (11, 15, 19˚C) by treating temperature

as a categorical factor in all these models.

Analyses of beetle reproductive success
We tested for the interacting effects of blowfly (yes/no), mite (0, 10, 20), and temperature (11, 15,

19˚C) treatments on the reproductive success of beetles by including all three treatments as categor-

ical factors. Separate GLMMs were used to make further comparisons between blowfly and mite

treatments to determine how any significant interactions arose.

Analyses of blowfly reproductive success
We tested for the interacting effects of mites (0, 10, 20) and temperature (11, 15, 19˚C) treatments

on the reproductive success of blowflies, and again by including them as categorical factors.

Analyses of mite reproductive success
We tested for the interacting effects of blowfly (yes/no), mite (0, 10, 20) and temperature (11, 15,

19˚C) treatments on the reproductive success of beetles. All three were included as categorical

factors.

Effect of temperature on blowfly larval development
We analysed the number of blowfly larvae in a negative binomial regression model with the function

glm.nb in the MASS package to account for overdispersion. We analysed carcass consumption rate

in a beta regression model in the betareg package. In both analyses, we included temperature treat-

ment (11, 15, 19˚C) as a categorical factor and blowfly egg mass and carcass mass as continuous var-

iables. To analyse the effect of temperature on the developmental rate of blowfly larvae, we used a

GLMM with Gaussian error structure and included the interaction between temperature treatment

and developmental stage (both as categorical factors), blowfly egg mass, and carcass mass as con-

tinuous variables. In this analysis, we also included the ID of each carcass as a random factor, since

carcasses were sampled repeatedly across different developmental stages.

Effect of temperature on beetle’s carcass preparation
We analysed the roundness of carcasses in a GLM and the number of blowfly larvae in a negative

binomial regression model. In both analyses, temperature treatment (11, 15, 19˚C) was included as a

categorical factor, whereas blowfly egg mass and carcass mass were included as continuous varia-

bles. To further investigate the effects of carcass roundness on the number of blowfly larvae that
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developed, we analysed the number of blowfly in a separate negative binomial regression model by

additionally including roundness as a continuous variable.
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stage+Carcass mass+Blowfly egg mass+(1|carcass ID)). Models analyzing number of blowfly larvae

and carcass consumption rate were both not sufficient to reject the null hypotheses, with 12.9% and

22.8% power, respectively, whereas the model analyzing development rate of blowfly larvae was

highly sufficient, with a power of 100%. (d) Results from the final models for beetle’s carcass prepa-

ration in the Laboratory Experiment 3. For number of blowfly larvae, the final model used was: glm.

nb(Number of larvae ~ Temperature treatment+Carcass mass+Blowfly egg mass); and for carcass
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sufficient to reject the null hypotheses, with 96.4% and 99.5% power, respectively.
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beetle hosts by eliminating rival
blowflies

https://doi.org/10.5061/
dryad.sj3tx961z

Dryad Digital
Repository, 10.5061/
dryad.sj3tx961z
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