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Analysis of experimental data
We studied time series of different microbial communities. References for all of the time series can

be found in Table 1.

Table 1. References for all time series and compositions of microbial communities.
Label Label in Figure 1 Source

of the main article

Stool A Microbiome stool Subject A gut of David et al. (2014)
Stool B Subject B gut of David et al. (2014)
Plankton bacteria Bacteria relative abundance ofMartin-Platero et al. (2018)
Plankton eukarya Plankton eukarya Eukaryota relative abundance ofMartin-Platero et al. (2018)
Female feces Feces microbiome of subject F4 at the genus level (L6) Caporaso et al. (2011)
Male feces Feces microbiome of subject M3 at the genus level (L6) Caporaso et al. (2011)
Female left palm Microbiome palm Left palm microbiome of subject F4 at the genus level (L6) Caporaso et al. (2011)
Male left palm Left palm microbiome of subject M3 at the genus level (L6) Caporaso et al. (2011)
Female right palm Right palm microbiome of subject F4 at the genus level (L6) Caporaso et al. (2011)
Male right palm Right palm microbiome of subject M3 at the genus level (L6) Caporaso et al. (2011)
Female tongue Microbiome tongue Tongue microbiome of subject F4 at the genus level ((L6) Caporaso et al. (2011)
Male tongue Tongue microbiome of subject M3 at the genus level (L6) Caporaso et al. (2011)
Sanger Feces composition of DA-AD-1 of

MetaHIT Consortium (additional members) et al. (2011)
Illumina Feces composition of MH0001 of

MetaHIT Consortium (additional members) et al. (2011)
(original dataMetaHIT Consortium et al. (2010))

Pyroseq Feces composition of TS1_V2_turnbaugh of

MetaHIT Consortium (additional members) et al. (2011)
(original data Turnbaugh et al. (2009))

Rank abundance
Rank abundances of all studied time series can be found in Figure 1. In nature, the abundance
distributions are often power law, lognormal, or logarithmic series distributions. The abundance

distribution of the microbial communities we study fits best a lognormal distribution (Figure 2).

Distribution of the differences between abundances at successive time points
We study the differences between abundances at successive time points of the time series in two

ways. First, we look at the mean absolute value of the difference between abundances at successive

time points ⟨∣ x(t + �t) − x(t) ∣⟩ and second we fit the distribution of the ratios of abundances at
successive time points x(t + �t)∕x(t) with a lognormal. More details about the latter can be found in
Examples of width distribution of ratios of abundances at successive time points . The slope of the

mean absolute difference ⟨∣ x(t+�t)−x(t) ∣⟩ as a function of the mean abundance in the log-log scale
ranges between 0.84 and 0.99 (Figure 3). The order of magnitude of the width of the distribution of
the ratios of abundances at successive time points x(t + �t)∕x(t) is one and there is no correlation
between the mean abundance and the width of this distribution (Figure 4). The goodness of the fit
is characterized by the p-value of the Kolmogorov-Smirnov test. A higher p-value corresponds to a

better fit of the distribution to a lognormal function (see Examples of width distribution of ratios of

abundances at successive time points ). The p-value is represented by the color of the points.

2 of 21



Manuscript submitted to eLife

100 101 102 103

Rank

10 6

10 4

10 2

100

Re
la

tiv
e 

ab
un

da
nc

e Sanger
Illumina
Pyroseq
Plankton bacteria
Plankton eukarya

Stool A
Stool B
Female feces
Female palm
Female tongue

Figure 1. The rank abundance curve of the heavy-tailed abundance distribution of experimental measurements
of microbial communities, from human microbiomes to plankton.
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Figure 2. The abundance distribution of experimental data is heavy-tailed. It fits the lognormal distribution
better than the power law.
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Figure 3. For experimental time series, the slope of the mean absolute difference between abundances at
successive time points as a function of the mean abundance in the log-log scale ranges between 0.84 and 0.99.
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Figure 4. For experimental time series, the width of the distribution of the ratios of abundances at successive
time points x(t + �t)∕x(t) is in the order of 1, which means that the fluctuations are large.
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Figure 5. The values of the Kullback-Leibler divergence (KL) and the p-value of the neutral covariance test (NCT)
are represented for the different microbial communities. The value can be read from the colorbars at the

bottom. The neutral regime is given by a dark blue color. The niche regime is represented by a light colors for

the KL and red for the NCT. For the NCT scale, a p-value of 0.05 is represented by white. Both neutrality tests

show that most of the experimental time series are in the niche regime.

Neutrality test
Both neutrality tests, the Kullback-Leibler divergence and the p-value of the neutral covariance test,

show that most of the experimental time series are in the niche regime (Figure 5).

Noise color
The noise color is predominantly in the pink to white region. It is also independent of the mean

abundance (Figure 6).

Supporting results
Validity of the neutrality measures
One way of generating a neutral time series is by considering a lattice of N individuals, in which,
every time step, one individual is replaced by another. Each individual of the lattice has an equal

probability of being replaced (the probability is N−1). The disappearance of the first species can

be interpreted as the result of either death or emigration. The replacing individual is either the

result of immigration or growth. The probability of immigration depends on the immigration rate �
(0 ≤ � ≤ 1). In case of an immigration event, all species of the external species pool S have an equal
probability of immigrating. The probability of a growth event is given by the remaining 1 − �. In
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Figure 6. For experimental time series, the noise color is predominantly in the pink to white region. It is also
independent of the mean abundance.

case of growth, every individual has an equal probability of growing. Time series generated in this

way depend on three variables: the length of the simulation time T , the immigration probability �,
and the number of individuals N . We study the effect of these three variables on both neutrality
measures (Figure 7).
As discussed in Wennekes et al. (2012), the neutral-niche debate is a scale problem. Looking

at a process from close-by and describing all the details, results in the niche regime. Dynamics of

large systems where the details are not modeled appear to be dominated by random processes.

The questions are: at which scale is one studying the process and which of the deterministic

or stochastic processes is dominating? We can see this in the upper row of Figure 7A. Larger
immigration gives rise to a neutral regime. However, for short time series and large communities,

one will only see the "details" because the time series is not yet in steady-state. Consequently, this

results in niche values. In the absence of immigration, the "winner-take-all" principle holds. During

a transient period, all species but one go extinct in a stochastic manner. In the end, the steady-state

consists of only one species surviving. The duration of the transient depends on the size of the

community. This is why the time series are in the niche regime with respect to grouping in the

absence of immigration when the time series is long enough (Figure 7B). For small immigration and
small communities, the "winner" cannot take over due to the immigration of other species, but the

most fit species dominate the community one by one in a random order. For short time series,

there are only a few changes of dominating species and this apparent structure in the time series

gives rise to a niche regime (Figure 7B). For longer time series however, there are many random
changes of the dominating species, which results in a neutral character (Figure 7B).

Examples of width distribution of ratios of abundances at successive time points
To study the jumps that the species abundances make over time, we consider the distribution of

the ratios of abundances at successive time points x(t + �t)∕x(t). This distribution can be fitted to a
lognormal function:

f (x) = 1
√

2�sx
exp

(

−
ln2(x)
2s2

)

. (1)

We impose the constraint that the median of this distribution is one because we assume that

the time series fluctuates around steady-state and that there will be as many steps for which the

abundance is increasing as there are steps for which the abundance is decreasing. We define

the shape parameter s as the width of the step distribution. Some examples of fits are shown in
Figure 8. The goodness of the fit is obtained through the Kolmogorov-Smirnov test, of which we
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Figure 7. Neutrality tests, (A) Kullback-Leibler divergence and (B) the p-value of the neutral covariance test. We
expect to see the neutral regime for all time series because they are generated by random birth, death and

immigration events. For short time series and a large size of the community, only the details are seen and the

result is niche. For small immigration, there is a "winner-take-all" effect, for which the neutrality covariance test,

which tests for invariance with respect to grouping, gives a niche result.

represent the p-value. A higher p-value corresponds to a better fit of the distribution to a lognormal

function. The p-value is represented by the color of the fitted line.

Discretizations of stochastic models with linear noise
The implementation of the linear multiplicative noise is as follows,

dxi = �idt + gixidt +
∑

j
!ijxixjdt + xi�idW , (2)

with dW an infinitesimal element of a Brownian motion which is defined by a variance of dt
(dW ∼

√

dt (0, 1)).
Because of its nonlinear nature, generalized Lotka-Volterra equations cannot be solved analyti-

cally. It is therefore necessary to perform simulations of the stochastic differential equations.

When we consider a linear multiplicative noise, we must first choose a discretization of the

deterministic differential equations. Two possibilities can be found in the literature. The first one is

the Ricker implementation and the second one we here call the Langevin implementation.

Langevin discretization

To solve the stochastic equations numerically, we can use the Euler-Maruyama method. Here the

discretization becomes

xi(t + �t) = xi(t) + gixi(t)�t + !ijxi(t)xj(t)�t + ��W xi(t). (3)

Due to the choice of discretization x can become zero or negative. Because this is the most
straightforward discretization of the Langevin equation, we call it the Langevin discretization.

Ricker discretization

For this implementation, we assume there is no migration (�i = 0). First, we rewrite Equation 2 as
the derivative of the species abundance divided by the species abundance itself, such that we can

replace the latter by a derivative of the logarithm of the species abundance:
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Figure 8. A lognormal function is fitted to the ratios of abundances at successive time points x(t + �t)∕x(t) for
different species. The species number denotes its rank. We interpret the shape parameter s as a measure for
the width of the steps. Here we see that this width s is of the order of 1 for all species. The goodness of the fit
(p-value of the Kolmogorov-Smirnov test) is represented by the color of the fitted line. For most species the fit is

good (high p-values).

ẋi
xi

= gi +
∑

j
!ijxj + �

dW
dt

, (4)

̇ln xi = gi +
∑

j
!ijxj + �

dW
dt

. (5)

When dividing by the species abundance, we assumed that xi can never become zero (or negative
for the solution is continuous). This would be true in the theoretically continuous framework and

in the absence of noise, but this is not what is observed in experimental time series where the

abundances are discrete numbers and can become zero in the event of extinction.

Using the assumption �t ≪ 1, we obtain

ln xt+�t − ln xt = �t(!x + g) + ��W , (6)

xt+�t = xt exp �t(!x + g) exp ��W (7)

The �W are normally distributed random elements (�W ∼
√

�t (0, 1)).
Due to the choice of discretization, xi can never become zero or negative, which is fundamentally

different from the previous implementation.

Arato discretization

Using Ito calculus (see Box 1 for a short introduction) a third discretization can be obtained:

xi(t) = xi(0) exp

(

git −
�2
i t
2

−
n
∑

j=1
!ij ∫

t

0
xj(s)ds + �Wi(t)

)

(8)

as calculated in Arató (2003).
In the limit of small noise or small timesteps, the Langevin, Ricker, and Arato discretizations

are equal (Figure 9A). For large noise, a clear difference can be seen for both implementations
(Figure 9B).
The parameters of the implementation, such as the discretization, length of the simulation, and

integration time step dt are not influencing the results of the noise color (Figure 9C-E).
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Figure 9. Distributions of xt+dt for xt = 1 for three different discretizations: Langevin xt+dt = xt + xt�dW , Ricker
xt+dt = xt exp (�dW ) and Arato xt+dt = xt exp

(

−�2
2 dt + �dW

)

with dW ∼  (0, 1) and dt = �2 for small noise
� = 0.05 (A) and large noise � = 0.5 (B). For both these figures the sampling time step �t is equal to the
integration time step dt. For small noise, all implementations result in the same abundance distribution. For
large noise, the distributions are different. The Langevin implementation allows abundances to become zero

and negative (which will be equalled to zero). The abundances of the Ricker and Arato implementation never

become zero. The noise color does not depend on the particular implementation: it is independent of the

discretization (C), length of the time series (D) and integration time step dt (E).

Box 1. Basics of Ito calculus12

A Brownian motion or Wiener process is described by a probability distribution over the set of

continuous functions B ∶ ℝ≥0 → ℝ which is defined by three characteristics:
3

4

1. P (B(0) = 0) = 1, the motion starts at the origin,5

2. the motion is stationary: ∀0 ≤ s ≤ t ∶ B(t) − B(s) ∼  (0, t − s),6

3. the increments are independent: if intervals [si, ti] are not overlapping than B(ti) − B(si)
are independent.

7

8

An important feature of such a motion is the quadratic variation, which states that the expecta-

tion value of dW 2 is dt. In a regular derivative, the square and other higher-order terms of the
infinitesimal dt of the Taylor expansion are ignored. Due to the quadratic variation, the square
term of dW cannot be ignored and Ito’s lemma states that for a stochastic process Xt:

dXt = �dt + �dWt, (9)

and for f a smooth function, we have that

df (t, Xt) =
(

)f
)t

+ �
)f
)x

+ 1
2
�2 )2f
)x2

)

dt +
)f
)x
dWt, (10)

and as a consequence,

d(ln xi) =
dxi
xi

−
(dxi)2

2x2i
. (11)

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23
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Figure 10. Different stochastic time series (first row) with the corresponding power spectral density (second
row) and autocorrelation functions (last row). The background color of the power spectral density corresponds

to the color of the noise. When there is more structure present in the time series, the autocorrelation function

is less steep at small time delays and the noise is darker.

Discretizations of stochastic models with non-linear noise
In the main manuscript, we discussed choosing a noise term that is linear in the species abundance

because this represents best the external noise on growth and death of the species. Intrinsic noise

(due to discreteness) could be represented by a term that is proportional to the square root of the

species abundance (sqrt multiplicative noise) (Walczak et al., 2012). In this case, the discretization
is:

xi(t + �t) = xi(t) + gixi(t)�t + !ijxi(t)xj(t)�t + ��W
√

xi(t). (12)

We also considered a constant noise term (additive noise), which represents noise due to stochastic

immigration and emigration of species. The corresponding discretization is:

xi(t + �t) = xi(t) + gixi(t)�t + !ijxi(t)xj(t)�t + ��W . (13)

In the main paper, it is shown that the source of the noise, linear multiplicative, square root

multiplicative, or additive, has no influence on the relation between the mean abundance, self-

interaction, and noise color.

Noise color and autocorrelation
For any time series, an autocorrelation function can be calculated. The latter is obtained by

calculating the correlation of a time series with the same time series starting at a later time

point. The difference in time between the starting point of both time series is the delay. The

autocorrelation function is defined as the autocorrelation for all positive delay values. As explained

in the supplemental material of Faust et al. (2018), the noise color is related to the autocorrelation
of the time series. The lighter the noise color is, the steeper the autocorrelation function is for small

time delays. For dark noise, the autocorrelation decreases more slowly and the time series is said

to contain more structure. An illustration of this is given in Figure 10.

The noise color depends on the product of the mean abundance and the self-
interactions.
To study the noise color, we represented it as a function of different variables. We conclude that

the noise color depends on the product of the mean abundance and the self-interaction (Figure 11).
Given the sampling rate, this curve can be fitted by a sigmoid with the x-axis in the log scale
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Figure 12. The curve of the noise color as a function of the logarithm of the mean abundance and
self-interaction can be fitted with a sigmoid function.

(Figure 12) and the fitted function can be used to calculate the self-interaction of a species given its
noise color and mean abundance.

All noise characteristics can be obtained with the logistic model.
Given the abundance and the slope of the power spectral density (noise color), we can determine

the self-interaction and growth rate of a species via the fitted sigmoid curve (Figure 13). The fitted
sigmoid curve gives the value of the product of the mean abundance and self-interaction given

the slope of the power spectral density (Figure 13B). Using this value and the relation between
the self-interaction and the product of the self-interaction and mean abundance (colored lines

of Figure 13F), the self-interaction can be calculated (Figure 13E). For noninteracting species, the
growth rate equals the product of themean abundance and self-interaction (black line in Figure 13H).
Therefore, the growth rate is retrieved immediately (Figure 13G).
Once all the parameters are determined, we can perform simulations with large linear multi-

plicative noise that have the same characteristics as experimental time series. These results are

presented in Figure 4 of the main paper.
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Figure 13. This scheme represents how the self-interaction and growth rate can be retrieved from the noise
color and abundance data. For a given sampling step �t, the relation between the noise color, abundance and
self-interaction can be fitted by a sigmoid curve (B). Given the abundance (D), the relation between the mean

abundance and self-interaction can be drawn (colored lines in F). The value of the noise color can then be

translated to a value of the self-interaction (A-B-F-E). For noninteracting species, the growth rate equals the

product of the mean abundance and self-interaction. The growth rate is thus easily determined (A-B-H-G).
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Figure 14. All properties of the noise remain after normalization: (A) Time series. (B) The rank abundance of a
heavy-tailed abundance distribution remains stable over time. (C) Noise color in the white-pink region with no

dependence on the mean abundance. (D) The slope of the mean absolute difference between abundances at

successive time points is around 1. (E) The width of the distribution of the ratios of abundances at successive

time points is in the order of 1 and independent of the mean abundance. (F) Results of the neutrality test in the

niche regime.

The noise characteristics remain for normalized time series.
It is experimentally often challenging to determine the absolute abundances of species. Therefore,

only fractional abundances are measured. The logistic equation models the absolute abundance of

a species. In Figure 14, we show that normalizing the species abundances for every time point does
not influence the characteristics.

The noise characteristics can also be obtained with generalized Lotka-Volterra
equations.
In the presence of inter-species interactions, the properties of the experimental time series can also

be retrieved. In Figure 15, an example is given with interaction strength 0.02 (!ij ∝  (0, 0.02)) and
connectance 0.1 which means that 90% of the interactions are set to 0. The rank abundance and

self-interactions are derived from the stool A data and the noise is linear with strength �
lin

= 2.5. The
growth rate is calculated given the steady-state abundances and interaction matrix. Interactions

are however not necessary to obtain the characteristics, as seen in the main text. The same results

still hold when normalizing the time series (Figure 16).

The slope of the differences between abundances at successive time points
x(t + �t)∕x(t) can be fine-tuned by a balanced combination of extrinsic and intrin-
sic noise.
We can combine extrinsic (linear multiplicative) and intrinsic (square root multiplicative) noise

such that the slope of the absolute differences between abundances at successive time points

as a function of the mean abundance in the log-log space is smaller than one as observed in the

experimental time series. For linear multiplicative noise, the slope has a value around 1, for sqrt

multiplicative noise the value is around 0.66 (Figure 17). A combination where the strengths of both
noise sources are equal (�

lin
= �

lin
= 0.5) results in an intermediate slope (Figure 17).
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Figure 15. All properties of the noise can still be obtained in the presence of interactions: (A) Time series. (B)
The rank abundance of a heavy-tailed abundance distribution remains stable over time. (C) Noise color in the

white-pink region with no dependence on the mean abundance. (D) The slope of the mean absolute difference

between abundances at successive time points is around 1. (E) The width of the distribution of the ratios of

abundances at successive time points is in the order of 1 and independent of the mean abundance. (F) Results

of the neutrality test in the niche regime.
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Figure 16. All properties of the noise can still be obtained in the presence of interactions and when the time
series are normalized: (A) Time series. (B) The rank abundance of a heavy-tailed abundance distribution

remains stable over time. (C) Noise color in the white-pink region with no dependence on the mean abundance.

(D) The slope of the mean absolute difference between abundances at successive time points is around 1. (E)

The width of the distribution of the ratios of abundances at successive time points is in the order of 1 and

independent of the mean abundance. (F) Results of the neutrality test in the niche regime.
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0.66 (middle). A mix of linear and square root noise results in intermediate slopes (right). Here, a combination

of linear and square root multiplicative noise with equal strengths (�lin = �sqrt = 0.5) was used to obtain a slope
of 0.89.

The width of the distribution of ratios of abundances at successive time points
increases with increasing strength of the noise.
The distribution of the ratios of abundances at successive time points x(t + �t)∕x(t) depends on
the rank abundance, self-interaction, and interaction strengths. In a first implementation, we

simulate 50 interacting species with linear noise. The interaction matrix has elements drawn from

a normal distribution with mean 0 and the standard deviation given by the interaction strength.

All self-interactions are imposed to be -1. For an increasing noise strength �
lin
, the width of the

distribution of ratios of abundances at successive time points x(t + �t)∕x(t) increases (Figure 18). In
a second implementation, we use 50 species with the rank abundance of the experimental human

stool data (Stool A) and self-interactions inferred from the noise color as explained in the main

paper. The interaction matrix for the interacting case is much more sparse here, the connectance

is 0.1 which means that only 10% of the interactions are non-zero. The non-zero interactions are

distributed like a normal distribution with mean 0 and a standard deviation of 0.03. As expected,

increasing the strength of the noise increases the width of the distribution, and adding interaction

also slightly increases the width (Figure 19).

Neutrality of generalized Lotka-Volterra models
The higher the interaction strength, the more niche the time series become (Figure 20).

Rounding time series to integer numbers makes the noise color lighter.
For low abundances, there is a finite precision effect. When we calculate the noise color for the time

series with a precision up to the integer, we see that the noise color becomes lighter for smaller

abundances (Figure 21). This is consistent with the fact that the noise color is correlated with the
autocorrelation and the amount of structure in the time series, i.e. the predictability of the time

series. In the time series that have smaller precision, there is less information and the time series is

less predictable, therefore the noise color is lighter.
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Figure 18. The width of the distribution of the ratios of abundances at successive time points x(t + �t)∕x(t) for
time series of 50 interacting species with equal abundances increases with increasing strength of the linear

noise. For high abundances, the width also increases with the interaction strength.
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Figure 19. The width of the distribution of the ratios of successive time points for time series for 50 interacting
species with a rank abundance and inferred self-interaction of the stool A data. The width increases with

increasing strength of the linear noise.
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Figure 20. The higher the interaction strength the more niche the time series become.
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Figure 21. Finite precision makes the noise color lighter for species with small abundances.
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Table 2. Parameter values of varied parameters.
Column in figure 1 1 2 3

Varying parameter Immigration rate Extinction rate Interaction strength

Immigration (m)  (0, immigration)  (0, 0.02)  (0, 0.1)
Extinction (e)  (0, 0.01)  (0, extinction)  (0, 0.1)
Interaction strength (A)  (-0.2, 0.2)  (-0.2, 0.2)  (-interaction, interaction)

Table 3. Parameter values of fixed parameters.
Parameter Value

Number of individuals / lattice sites (I) 4000

Number of species (S) 100

Positive edge percentage (PEP) 20

Diagonal elements -0.5

Connectance 0.02

The self-organized instability model can be reproduced by the stochastic general-
ized Lotka-Volterra model.
In the main text, we discussed that next to stochastic generalized Lotka-Volterra models there exists

another algorithm to model interacting species stochastically, the individual-based model. We

mention in particular the self-organized instability (SOI) model introduced by Solé et al. (2002). The
question arises whether the SOImodel is equivalent to the generalized Lotka-Volterra models, or if

it can produce more or different characteristics. An elaborate study of the SOI has been performed

in Faust et al. (2018). Most results are in agreement with our findings. However; in a supplemental
figure of Faust et al. (2018) (S3), it is shown that the percentage of taxa with pink noise increases
and the percentage of taxa with brown noise decreases when the stochasticity increases, where

the stochasticity is defined as the ratio between the mean of extinctions and immigrations and

the mean of the absolute interaction strengths (excluding diagonal values). This cannot be easily

concluded from our previous results and we therefore studied this aspect in more detail.

We first evaluated the contributions of the different parameters. We therefore run simulations

using the code provided by the authors of Faust et al. (2018), only changing one of the parameters
at a time. What we notice is that the shift from brown to pink noise is mostly caused by the

extinction rate and not the immigration rate or interaction strength (Figure 22, parameters are in
Table 2 and Table 3).

In Figure 22, we also see that with increasing extinction the mean abundance is decreasing
(top panel). At the same time, the noise color is becoming lighter (shifting to pink). To understand

the connection between the parameters, we made a figure with both the noise color and mean

abundance on the axes for two time series (Figure 23A). We see that the noise color becomes more
pink for smaller mean abundances. How do these results relate to the results for the generalized

Lotka-Volterra equations?

There are multiple differences between the SOI and gLV models. First of all, the SOI model

follows an individual-based approach. It is based on the Gillespie algorithm with the K-leap method.

At every time step, the propensities for all events are calculated and K processes are chosen

accordingly. The elapsed time � is calculated by the gamma function. Since it is an individual-
based model, the abundances will only take integer numbers. GLV models are continuous and the

abundances of the time series are real positive numbers. We showed in the previous section that

Rounding time series to integer numbers makes the noise color lighter.

A second difference between the SOI and our gLV model is that the SOI model is based on
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Figure 22. Time series simulations were performed for multiple values of the immigration, extinction and
interaction rate. Shown are the mean abundance values of these simulations (top panels), the total number of

individuals (second row), the distribution of the noise colors (third row) and the percentages of all noise colors

as delimited by Faust et al. (2018) (bottom row). For the SOImodel, an increase in the extinction rate causes a
shift from brown to pink noise. At the same time, the mean abundances and total number of individuals

decrease.
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Figure 23. (A) Time series generated by the SOImodel for different extinction rates, e = 0.01 for the left column
and e = 0.16 for the right column (additional parameters can be found in the second column of Table 2 and
Table 3). The lower figures show the noise color as a function of the mean abundance for the corresponding
time series. For higher extinction (right side) the mean abundances are lower and the noise color becomes

lighter with decreasing mean abundance. (B) Time series generated with the gLV model and rounded to integer

precision after the simulation for different extinction rates, e = 0.001 on the left and e = 0.8 on the right. The
noise color becomes lighter for low abundances.
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Figure 24. When imposing different constraints—addition of immigration, negative growth rates, small
self-interaction, small precision—on the gLV model, the noise color shifts for increasing extinction as in the SOI

model.

immigration and that no species can grow in the absence of other species. In the gLV model, we

do not consider immigration and the growth rates of species are often positive. Furthermore, the

interaction matrix is interpreted differently. Given the interaction matrix used for the SOImodel (!),
the interaction matrix of the gLV model (!′) needs to obey the following rules for the time series to

be comparable:

1. !′
ii = 0 all self-interactions are zero,

2. if !ij > !ji > 0 : !′
ij = !ij + !ji and !′

ji = 0 mutualistic interactions are transformed into
commensalistic interactions and,

3. if !ij < 0 and !ij < !ji : !′
ij = !ji − !ij and !′

ji = 0 competitive or parasitic interactions are
transformed into amensalistic interactions.

The most important difference is that the self-interactions are zero. For gLV models, the self-

interaction needs to be negative such that the abundance remains bounded and cannot go to

infinity. In the SOImodel, this constraint is imposed by the maximal number of individuals. The

propensity for growth decreases linearly with the number of individuals. When the maximal number

of individuals is attained all growth propensities are zero.

If we include all the aforementioned elements:

1. add immigration,

2. consider only negative growth rates (extinction),

3. small self-interaction,

4. round the results to integer values after performing the complete time series,

then we obtain similar results as the SOImodel (Figure 23B and Figure 24).
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