

eLife's transparent reporting form

We encourage authors to provide detailed information *within their submission* to facilitate the interpretation and replication of experiments. Authors can upload supporting documentation to indicate the use of appropriate reporting guidelines for health-related research (see [EQUATOR Network](#)), life science research (see the [BioSharing Information Resource](#)), or the [ARRIVE guidelines](#) for reporting work involving animal research. Where applicable, authors should refer to any relevant reporting standards documents in this form.

If you have any questions, please consult our Journal Policies and/or contact us: editorial@elifesciences.org.

Sample-size estimation

- You should state whether an appropriate sample size was computed when the study was being designed
- You should state the statistical method of sample size computation and any required assumptions
- If no explicit power analysis was used, you should describe how you decided what sample (replicate) size (number) to use

Please outline where this information can be found within the submission (e.g., sections or figure legends), or explain why this information doesn't apply to your submission:

No power analyses were carried out before sample collection or during experimental design to calculate sample size. Sample sizes (number of embryos analyzed) are indicated within figures.

Replicates

- You should report how often each experiment was performed
- You should include a definition of biological versus technical replication
- The data obtained should be provided and sufficient information should be provided to indicate the number of independent biological and/or technical replicates
- If you encountered any outliers, you should describe how these were handled
- Criteria for exclusion/inclusion of data should be clearly stated
- High-throughput sequence data should be uploaded before submission, with a private link for reviewers provided (these are available from both GEO and ArrayExpress)

Please outline where this information can be found within the submission (e.g., sections or figure legends), or explain why this information doesn't apply to your submission:

Each individual embryo was considered a biological replicate. The number of embryos sampled are indicated on the corresponding figure panels. Whenever possible, all data points/embryos are displayed on figures. All raw data tables as well data processing and analysis scripts are available on GitHub as indicated in the Methods section (Data Processing and Data and Code Availability sections).

Statistical reporting

- Statistical analysis methods should be described and justified
- Raw data should be presented in figures whenever informative to do so (typically when N per group is less than 10)
- For each experiment, you should identify the statistical tests used, exact values of N, definitions of center, methods of multiple test correction, and dispersion and precision measures (e.g., mean, median, SD, SEM, confidence intervals; and, for the major substantive results, a measure of effect size (e.g., Pearson's r, Cohen's d)
- Report exact p-values wherever possible alongside the summary statistics and 95% confidence intervals. These should be reported for all key questions and not only when the p-value is less than 0.05.

Please outline where this information can be found within the submission (e.g., sections or figure legends), or explain why this information doesn't apply to your submission:

No statistical tests were performed. Details of mathematical model are described in the corresponding supplementary material. Code for the model is available upon request and will be made publicly available through GitHub. All data points are represented within graphs and sample sizes indicated where appropriate.

(For large datasets, or papers with a very large number of statistical tests, you may upload a single table file with tests, Ns, etc., with reference to sections in the manuscript.)

Group allocation

- Indicate how samples were allocated into experimental groups (in the case of clinical studies, please specify allocation to treatment method); if randomization was used, please also state if restricted randomization was applied
- Indicate if masking was used during group allocation, data collection and/or data analysis

Please outline where this information can be found within the submission (e.g., sections or figure legends), or explain why this information doesn't apply to your submission:

For every experiment individual embryos were randomly allocated to either control or experimental groups. We used blocking to reduce variability between litters: embryos from each litter were randomly distributed between all groups for each experiment.

Additional data files (“source data”)

- We encourage you to upload relevant additional data files, such as numerical data that are represented as a graph in a figure, or as a summary table
- Where provided, these should be in the most useful format, and they can be uploaded as “Source data” files linked to a main figure or table
- Include model definition files including the full list of parameters used
- Include code used for data analysis (e.g., R, MatLab)
- Avoid stating that data files are “available upon request”

Please indicate the figures or tables for which source data files have been provided:

All raw data is publicly available on GitHub, alongside all source R code for data transformations, analysis, visualization and modeling. Links are provided in the Methods section (Data Processing section). An R project file is available within the GitHub repository that allows the user to reproduce all steps in the analysis, from the loading of raw data, through all transformation steps and plot generation (instructions for cloning the repository are available on the GitHub website). Computational notebooks are also available, detailing the steps taken to perform data transformation and classification, alongside graphical visualizations for each step.