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Abstract Homeostasis in adult tissues relies on the replication dynamics of stem cells, their

progenitors and the spatial balance between them. This spatial and kinetic coordination is crucial to

the successful maintenance of tissue size and its replenishment with new cells. However, our

understanding of the role of cellular replicative lifespan and spatial correlation between cells in

shaping tissue integrity is still lacking. We developed a mathematical model for the stochastic

spatial dynamics that underlie the rejuvenation of corneal epithelium. Our model takes into account

different spatial correlations between cell replication and cell removal. We derive the tradeoffs

between replicative lifespan, spatial correlation length, and tissue rejuvenation dynamics. We

determine the conditions that allow homeostasis and are consistent with biological timescales,

pattern formation, and mutants phenotypes. Our results can be extended to any cellular system in

which spatial homeostasis is maintained through cell replication.

Introduction
In adult tissues, stem cells and their progeny play a crucial role in maintaining homeostasis. Renewal

of the tissue is due to progenitor cells that have limited replication capacity (Watt and Hogan,

2000). The interplay between stem cells and their progenitors with respect to replication, differentia-

tion, and cellular hierarchy is not fully understood. For example, two opposing limiting models of

stem cell replication have been proposed: A ’Hierarchical’ model where stem cells are rare slow-

dividing cells with longevity similar to the hematopoietic stem cell paradigm (Orkin and Zon, 2008)

and a ’Equipotent’ model where stem-cells are abundant equipotent cells that divide frequently and

their loss is dictated by neutral drift (Klein and Simons, 2011; Klein et al., 2010; Losick and Des-

plan, 2008; Lopez-Garcia et al., 2010). Another lingering question is the role of spatial correlation

between replication and removal in homeostasis. Some studies assume a long-range correlation

between replication and cell removal, that is, as a cell replicates, the removed cell can be tens and

even hundreds of cells away (Lobo et al., 2016; Richardson et al., 2018; Park et al., 2019;

Richardson et al., 2017) and other studies, in different experimental systems, suggest short-range

correlations between replication and removal (Mesa et al., 2018; Miroshnikova et al., 2018).

The cornea acts as a lens that focuses light into the eye, and serves as a barrier that protects the

eye against external hazards or injury. Thus, maintaining its integrity and its continuous regeneration

is crucial for proper vision in vertebrates (Yazdanpanah et al., 2017). It is now predominantly

accepted that the regeneration of the corneal epithelium, in homeostasis, is due to limbal epithelial

stem cells (LESCs) residing at the circumference of the cornea, the limbus, which separates the cor-

nea from the conjunctiva (Figure 1A; O’Callaghan and Daniels, 2011; Cotsarelis et al., 1989;

Pellegrini et al., 1997; Lavker et al., 2004; Davanger and Evensen, 1971; Dziasko and Daniels,
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2016). LESCs divide both symmetrically and asymmetrically to yield progenitor cells that have a lim-

ited replicative lifespan (RLS) (Lehrer et al., 1998). In turn, progenitor cells are proliferating from the

limbus to the basal cornea where they can either proliferate or migrate to upper layers

(Figure 1A; Lehrer et al., 1998). The observation that in homeostasis the overall number of cells in

the cornea does not fluctuate dramatically led to the ‘XYZ hypothesis’ that states that the prolifera-

tion of epithelial cells in the limbus and their migration to the cornea is balanced by cell loss

(Thoft, 1983). Lineage-tracing experiments in living mice revealed a pattern of clonal stripes that

propagate from the limbus toward the center of the cornea (Figure 1B and Appendix 1 section I)

(Amitai-Lange et al., 2015; Di Girolamo et al., 2015; Dorà et al., 2015; Nasser et al.,

2018). Some hypotheses have been suggested regarding the mechanism of the centripetal migra-

tion dynamics in the corneal epithelium homeostasis (West et al., 2015), including population

dynamics and electrophysiological or electrochemical cues (Lavker et al., 1991; Gao et al., 2015;

Blanco-Mezquita et al., 2013; Walczysko et al., 2016; Sharma and Coles, 1989). Yet, the underly-

ing mechanism behind these dynamics is not fully understood.

Using one-dimensional mathematical models to infer stem cells and progenitor cells dynamics

from lineage tracing experiments have been useful in modeling different tissues such as murine epi-

thelial homeostasis of the skin (Mascré et al., 2012), gut (Snippert et al., 2010), human epithelial

homeostasis of the epidermis (Simons, 2016), lung (Teixeira et al., 2013), prostate (Moad et al.,

2017), and the cornea (West et al., 2018; Moraki et al., 2019). Yet, while these models are insight-

ful, the unique spatial organization in the cornea requires two-dimensional models to encompass

overall pattern changes. These types of models require some assumptions on the spatial nature and

organization of stem cells and on the spatial interactions between corneal cells. In particular, the

role of interaction range between cells, or the spatial correlation between the location of replication

and location of cell loss, plays a crucial role in the resulting dynamics (Mesa et al., 2018;

Miroshnikova et al., 2018). In addition, another key property of the dynamics is the replicative life-

span (RLS) of corneal cells – the number of times each corneal cell can divide. Approximating the

Figure 1. Model setup. (A) Maintenance of cells in the cornea, the outer transparent part of the eye, is mainly due to stem cells that reside in the

limbus – a niche at the circumference of the cornea. (B) Illustration of in vivo multi-color lineage tracing experiment. Clonal stripes emerge from the

limbus toward the center of the cornea. (C) We consider two limiting scenarios for stem cell distribution and dynamics. In the first (left), stem cells are

evenly distributed all over the limbus. They can divide symmetrically to maintain the limbus or asymmetrically to provide progenitor cells to the cornea.

In the second model (right), stem cells are scarce and divide asymmetrically to give rise to progenitor cells in the limbus that further divide and

populate the cornea. In both models, progenitor cells have limited replicative lifespan capacity. When cells exhaust their replicative lifespan, the cells

can no longer divide in the basal layer and are replaced by other dividing cells. (D) Whether the location of replication and cell removal are correlated

(replication and cell removal occur in the same neighborhood) or not plays a crucial role in the cornea rejuvenation dynamics. Accounting also for

whether there is a centripetal bias results in four possible classes of models.
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tissue as a kind of elastic network that minimizes some energy function (Barton et al., 2017) was

used to suggest that corneal epithelial cells can organize into centripetal patterns in the absence of

external cues (Lobo et al., 2016) under the assumption that stem cells are uniformly distributed, RLS

of few divisions, and no correlation between replication location and cell loss location.

In this work, we combine a novel mathematical model that allows rapid simulation of the stochas-

tic dynamics of epithelial cells and pattern formation in the cornea together with analytical calcula-

tions to consider a broad set of possible physiological scenarios. In particular, we determine the

consequences of different assumptions on the replication-removal coupling range and replicative

lifespan values. We characterize the tradeoff between renewal time and replicative lifespan and

determine the constraints that allow homeostasis and are consistent with the formation of the

observed spatial patterns, biological timescales, and mutant dynamics.

Materials and methods
We developed a lattice-based mathematical model of the cornea’s basal layer, to examine the

potential underlying mechanisms and parameters that govern corneal homeostasis, centripetal

migration and spatial order patterns as seen in the in vivo data (Appendix 1 sections I and II). We

model the cornea as a round assortment of cells in the basal layer of the cornea (Figure 1C) with a

radius R. We assume two types of cells: stem cells (S) and progenitor cells (P) that have different

doubling rates ls and lp, respectively. S cells reside only in the limbus and can either divide symmet-

rically or asymmetrically to produce S and P cells (Figure 1C). In the case of the ’Equipotent’ model,

the P cells can reside only in the cornea while in the ’Hierarchical’ model they can reside both in the

limbus and the cornea, PL and PC, respectively. P cells can divide only symmetrically; if they are in

the cornea they can divide in any direction and if they are in the limbus (’Hierarchical’ model), they

can divide only toward the cornea (Figure 1D). P cells are also limited in their maximal amount of

horizontal replications - their replicative lifespan, RLS, a parameter which will play a major role in the

forthcoming results (Figure 1C).

Assuming corneal homeostasis, as cells in the cornea and the limbus are dividing, new cells are

replacing other cells in the basal layer concurrently. The specific parameters of the replication rate,

replicative lifespan, replication direction, and the coupling between the cells affect the spatial

dynamics. There are two key properties that play a crucial role in tissue homeostasis dynamics, not

only in the cornea. The first is the effective interaction range between replication and removal

events. In one limit, the location of the cell that is removed is independent of the replication event.

In the other limit, the probability of a cell to be removed will be higher in the area near the new cell

(e.g., local pressure). The second property is whether there is an external bias that affects the repli-

cation direction or removal location due to, for example, chemical cues, matrix structures or local

mechanical perturbation such as blinking. While previous modeling efforts focus only on a particular

model, which fits the hypothesis of the study, in this work we systematically account for all these sce-

narios and provide the physical limitations, biological implications, and feasibility of each model.

Dynamics are simulated using a stochastic 2D lattice Monte-Carlo approach (Appendix 1 section

II). In homeostasis, as cells replicate, other cells are removed to keep the overall number of cell con-

stant. In each step of the simulation, a pair of cells is chosen: one for replication and one for removal.

The locations of these cells is determined by the spatial correlation between replication and removal.

In the case that replication and removal are spatially correlated, both cells are more likely to be

closer to each other. To account for bias, the location of the removed cell is randomly drawn from a

uniform distribution of a circular section that is facing the center of the cornea around the replicating

cell, and has an angle of a and radius of few cells (Appendix 1 section II, Figure 1D). If a = 2p, there

is no centripetal bias, and as a is smaller the bias is larger (Figure 1D). In the case there is no corre-

lation between replication and removal, the cells of the pair are chosen independently. To account

for bias in this case, the removed cell is selected from a circle at the center of the eye with radius �.

As � is smaller, the centripetal bias increases (Figure 1D). Once the location of the pair, the repli-

cated and removed cell, has been determined, the cells in the cornea reorient their location accord-

ingly. The probability that a cell will move into the vacant hole depends on its distance from the

vector that connects the replicated cell (that causes local stress) and the removed cell (which leaves

a vacant space) (Appendix 1 section II). At the start of each realization, we label only the limbal stem

cells and track the lineage dynamics by labeling their progenies with the same marker.
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Results

Spatial coupling between cell replication and cell removal
First, we examine the case in which replication and removal processes are spatially coupled in the

absence of centripetal bias. We will introduce the centripetal bias in the next section. In this case,

the replicated and removed cells are from the same neighborhood which is an order of a few cells

and is denoted by m (Figure 1D). Accordingly, the effective step size of clone progression is small,

an order of a few cells, hence there is a limit on the maximal distance of cell renewal from the lim-

bus. This distance depends on the RLS. If the RLS is small then cells will exhaust their replicative

capacity before reaching the center of the eye (Figure 2A, Video 1). For example, if the RLS is one

(i.e. a P cell can divide once and then becomes post-mitotic), in steady-state the renewed cell front

will propagate to fill the local interaction neighborhood, m (Appendix 1 section V). As RLS increases,

cells can replicate further, and the renewed cell front at steady-state will be closer to the center. The

steady-state location of the front is closer to the limbus than what is expected if it propagates an

additional one cell toward the center for each replicative lifespan added (the deterministic limit,

Appendix 1 section V). For example, even if the RLS is equal to the radius of the tissue, R = 100 in

our case, the front still does not reach the center (Figure 2B), because P cells lose their proliferative

potential already in the periphery.

We capture the quantitative details of this phenomenon by considering an effective one-step

binomial stochastic process. At each time point, the front can either stay at the same place or move

forward with some probability. The probability of moving forward in the case there is no centripetal

bias depends on the radial geometry of the front and is estimated to be about 3/8 (Appendix 1 sec-

tion V). The results of this model are consistent with the simulation results. In the case there is no

centripetal bias the expected minimal RLS, which permits replacement of central corneal cells,

RLSmin, is around 130 replications (Figure 2B, Video 1). For RLSs that are above this critical value,

the front can reach the center and a patched pattern is formed. The emerging pattern, in this case,

Figure 2. Spatial coupling between cell replication and cell removal in the absence of centripetal bias. (A) Steady-state snapshots (upper row) and

time-averages over 200 corneal replications (lower row). If the replicative lifespan is below a critical value, the cornea cannot be rejuvenated. For

replicative lifespan values that are above the critical value (RLSmin >~ 130), the emerging pattern is that of contiguous patches reminiscent of in vivo

mutant phenotypes. (B) The fraction of the cornea that is renewed increases with replicative lifespan. Three realizations of the dynamics are shown

(black dots). The purple line is the theoretical upper limit on the renewed area, and the orange line is the result of a theoretical model that

approximates renewal as a one-step process (see text and Appendix 1 section V for details).
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is that of patches (Figure 2B, Appendix 1—fig-

ure 2). While this case does not provide clonal

stripes, it does result in contiguous patches that

resemble the in vivo pattern of mutants that lack

certain genes that are thought to play a role in

centripetal chemotaxis (Findlay et al., 2016;

Kucerova et al., 2012; Mort et al., 2011;

Douvaras et al., 2013) (Appendix 1 section III).

Adding bias to the dynamics of
coupled replication-removal
We hypothesized that biased cell division orienta-

tion toward the center (Figure 1D) would lower

RLSmin and lead to a pattern that resembles the

in vivo clonal stripes. To capture the effect of

external centripetal bias, (that could be the result

of, for example, chemical or mechanical cues),

once a cell replicates, the removed cell is drawn

randomly from a section that is facing the center of the tissue centered around the replicated cell

and has an angle a (Figure 1D). It is convenient to define the centripetal bias in this case to be

between zero and one, bias = 1-a/2p. As the bias increases, a centripetal pattern emerges

(Figure 3A, Video 2), and the required minimal RLS for renewal goes down (Figure 3B). To quantify

how much the pattern resembles stripes that elongate from the limbus to the center, we define a

clonal unmixing parameter that captures the centripetal stripe mixing (Appendix 1 section IV). When

the unmixing parameter is equal to one, the pattern is composed of perfect stripes. As the stripe

order is lower, the unmixing parameter approaches zero (Appendix 1 section IV).

When there is no bias, the minimal RLS is of the order of the radius of the tissue. In the case of

ideal bias, the minimal replicative lifespan required for full renewal, where m is much smaller than R,

is R/m (Appendix 1 section V). In our case, m is five cells which give a minimal RLS of about 20 repli-

cations (Fig, 3B, 3B-inlet). This result is interesting in light of previous literature that attributed very

limited replication capacity (RLS around 3–4) to short-lived P cells (Lobo et al., 2016;

Richardson et al., 2017; Lehrer et al., 1998). It imposes a minimal lifespan for progenitor cells that

scales as the radius of the tissue divided by the radius of the local neighborhood in which cells

interact.

The replicative lifespan also plays a role in determining the normalized renewal time that is

defined as the time it takes for all cells in the cornea to be replaced divided by the doubling time of

corneal cells. As the RLS increases, the renewal time decreases (Figure 3C). As the centripetal bias is

larger the renewal time is faster. In the case of ideal bias, the limit on the renewal time dynamics can

be captured as a one-step process with an average step size that depends on the interaction length,

m (Appendix 1 section V). The limit on the

renewal time is given by 2R/(m+1) (Figure 3C). In

our case, where the radius is about 100 cells, it

results in a renewal time of ~35 replications,

which amount to ~100 days assuming a 3-day cell

cycle (Lehrer et al., 1998; Sagga et al., 2018).

Spatial uncoupling of replication-
removal
Spatial coupling between cell replication and cell

removal has been demonstrated in skin cells, yet

another possibility is the case where replication

and removal are not tightly correlated in space.

In this case, the replication and removal do not

have to be in the same neighborhood

(Figure 1D). First, we consider the case where

Video 1. Coupled spatial correlations in the absence of

bias, RLS = 130. In this case, RLS >~ RLSmin and thus the

cornea is fully rejuvenated. The emerging pattern is

that of contiguous patches.

https://elifesciences.org/articles/56404#video1

Video 2. Coupled spatial correlations with bias,

RLS = 60. Adding local centripetal bias results in a

pattern of centripetal stripes.

https://elifesciences.org/articles/56404#video2
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there is no inherent centripetal bias, that is, cell removal and replication events in the cornea are not

biased toward the center. It was previously suggested that centripetal patterns can be formed even

in the absence of centripetal bias (Lobo et al., 2016). We show here that this phenomenon is limited

to a particular set of RLS and interaction lengths that are associated with slow corneal replenishment

time and high post-mitotic rate.

The emergent pattern, in this case, is inherently different. For low RLS values, a centripetal pat-

tern is formed near the limbus edge. However, the unmixing is diminishing as the stripes are moving

toward the center (Figure 4A and B, Video 3), similar to previous reports (Lobo et al., 2016). The

unmixing is decaying toward the center of the tissue and the pattern becomes mixed akin of a ’salt

and pepper’ noise. In this case, the disordered pattern does not form spatial neighborhoods as the

coupled interaction case.

The emergence of a centripetal pattern occurs only for small RLS values. As the replicative life-

span is larger than a few replications, the emergent unmixing becomes more and more limited to

Figure 3. The effect of centripetal bias in the case of spatial coupling between cell replication and cell removal. (A) Steady-state snapshots (upper row)

and time-averages over 200 replications (lower row) for RLS = 60 and different centripetal bias. (B) The minimal RLS required for renewal as a function of

centripetal bias. Data points are the mean of three realizations, and error bars (some smaller than the marker size) are the standard deviation. In the

case of ideal bias, the minimal theoretical value for RLSmin (dotted horizontal line) is » R/m (where R is the radius of the cornea, and m is the local

replication-removal neighborhood). (B-inset) The lower limit on RLSmin as a function of the corneal radius when m = 5. The green dot marks the corneal

radius used for the simulations, R = 100. (C) The effect of centripetal bias (Different colors, match the colors on panel 3B) on the normalized renewal

time and clonal unmixing. As the bias increases, the corneal renewal time is shorter, and the pattern is more ordered. In the case of ideal bias, the

theoretical lower limit on renewal time (vertical dotted line) is 2R/(m+1).
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the edges of the tissue. This is consistent with previous studies that assumed RLS of only a few repli-

cations. For RLS that is larger than 10, unmixed order formation is very limited. In contrast, small RLS

values result in a high post-mitotic rate (Figure 7B). Interestingly, while only very low RLS values

allowed some organized stripe pattern, in these low RLS values, the vast majority of the cornea was

occupied by post-mitotic P cells that continuously underwent centripetal movement as a conse-

quence of divisions of limbal S and corneal peripheral P cells. Thus, this regime suggests no cell pro-

liferation at the center of the cornea.

Another ramification of short replicative lifespan is the number of replications needed to get to

the center of the tissue (replication times) that also depends greatly on the RLS. When the capacity

of the cells to replicate is low, RLS of only a few replications, the time that is required to get to the

center in units of replication times is in the order of hundreds (Figure 4C). Thus, there is an inherent

tradeoff between the renewal time and the centripetal order.

Figure 4. Spatial uncoupling between cell replication and cell removal. (A) Steady-state snapshots (upper row) and time-averages over 200 corneal

replications (lower row) for different RLS values. (B) The clonal unmixing at different distances from the limbus. Ordered centripetal pattern emerges

mainly at the periphery of the tissue and only for low values of replicative lifespan (blue-lines, three realizations for each RLS value). (C) The renewal

time decreases exponentially with RLS for values that are lower than log2(R) » 7 (black line, three realizations are shown). The orange line is the

theoretical limit when considering renewal as a one-step stochastic process with radial boundary (see text and Appendix 1 section VI).
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It is insightful to estimate the limits on the

maximal and minimal renewal times in this case.

For the maximal time: in case the RLS is zero,

that is only the stem cells can replicate, the fast-

est renewal time is when there is a perfect bias

toward the center. In this case, the renewal time

is determined by the radius of the tissue, the

asymmetric replication rate of the stem cells and

the geometrical difference between the number

of cells that are replicating to the number of cells

that are pushed forward (Appendix 1 section VI).

In terms of the number of corneal cells replica-

tions, twith bias ¼ lp= 2ls � að Þ� �
Rþ 1ð Þ, which is

about 600 corneal replication times in our case.

In the case there is no bias at all, the probability

to move toward the center is not one and

depends on the location of the front (Appendix

1 section VI). In this case, the renewal time is

larger, tno bias ¼ lp= ls � að Þ� � � HR � R, where HR is the Rth harmonic number. In the case the radius is

100 cells, the replenish time increase by a factor of ~10 to ~6000 corneal replication times. As the

replicative lifespan increases, additional corneal cells contribute to the propagation of the front.

Thus, for small RLS the replenishing time is expected to decrease by the factor 2RLS, the number of

cells that contribute to pushing front. This is consistent with the results of the simulated dynamics

(Figure 4C). For the minimal time: In case of ideal bias and high RLS, in each corneal replication time

the traced stripes double their length. Thus, the minimal time needed to renew the whole cornea is

log2(R) which in our case is around 7.

Adding centripetal bias to the uncoupled model
In the previous section, we show that if cell replication and removal are not coupled in space, the

emergent clonal stripe pattern is limited to the periphery and also requires very low RLS values that

lead to post-mitosis of most P cells at the corneal periphery. For these values of low RLS, the

renewal time is slow and requires hundreds of corneal replications. To study the effect of centripetal

bias in this case, we keep the assumption that the location of replication and removal are indepen-

dent, but the location of the removed cell is from a circle that is centered at the center and has a

smaller radius (Figure 1D). This could result from, for example, localized high pressure in the center

of the eye, or from blinking that affects more the cells in the center of the eye. We note that the

area with high probability for cell removal does not have to be a circle, for example, blinking can

cause a horizontal, elliptic, area of high removal probability (Ren and Wilson, 1996; Ren and Wil-

son, 1997; Yamamoto et al., 2002). Here, we assume a circle to capture the qualitative tradeoffs of

increasing the bias on the dynamics.

As the bias increases, the overall clonal unmixing increases (Figure 5A and B, Video 4). Yet, the

overall trend of mixing order in the central region from which cells are removed is bias independent.

RLS smaller than ~5 provide high unmixing but results in slow renewal dynamics (Figure 5B), and still

high post-mitotic rate (Figure 6B). The case of uncoupled replication-removal without bias can be

approximated as a 1D model. In such a model, only cell numbers as a function of time are consid-

ered and there are no spatial limitations (Moraki et al., 2019). Taking physiological parameters, this

model yields homeostasis for RLS values of 4–12, which are comparable to the RLS range that pro-

vides minimal renewal time without bias (Figure 5C). It is insightful to consider two types of time-

scales: one is the time it takes for stripes to reach the center of the tissue, that is an important

experimental observable, and the second is the overall renewal time which is the time that takes to

fill the entire cornea (Figure 5B). These two timescales exhibit different dependencies on the replica-

tive lifespan. As the RLS is larger, the time it takes a clone stripe to reach the center is increasing

exponentially with RLS. For large values of RLS, as the bias is larger, the velocity of stripe progres-

sion is larger. The limit on stripe speed can be estimated in the case of ideal bias, that is the

removed cells are from the center of the tissue, and high replicative capacity, the minimal number of

Video 3. Uncoupled spatial correlations with the

absence of bias, RLS = 10. A centripetal pattern is

formed near the limbus edge, and the order is

diminished in the central cornea.

https://elifesciences.org/articles/56404#video3
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replication needed for a stripe to reach the center is given by log2(R). (Appendix 1 section VI), where

R is the radius of the tissue, which is around seven corneal replication times in the case R = 100. The

renewal time of the entire tissue dynamics exhibits a non-monotonic behavior. For high RLS values,

the centripetal motion slows down the motion in

the direction which is orthogonal to the centripe-

tal direction and thus slows down the overall

renewal dynamics. The interplay between the

renewal time and unmixing is shown in

Figure 5C.

Limits on the different models
We have considered three main properties that

affect the dynamics and pattern formation in the

cornea: spatial correlation between replication

and removal, inherent centripetal bias, and repli-

cative lifespan of cells in the cornea. For different

models, there were different constraints that

determine their biological feasibility. Under con-

ditions of spatial coupling between cell

Figure 5. Dynamics and patterns in the case where replication and removal are uncoupled. (A) Steady-state snapshots (upper row) and time-averages

(lower row) over 200 corneal replications for different values of �, the radius of the area from which cells can be removed, for RLS = 10. (B) The

dependence of centripetal unmixing, halfway to the center, on replicative lifespan. Colors denote the centripetal bias and are the same as in 5A. Data

points are means of three realizations, and error bars are the standard deviation. For all values of RLS, the order decreases as RLS

increases. (C) Normalized renewal time decreases as RLS increases (solid lines). The black dotted line is the theoretical limit in the case of ideal bias and

high RLS. Data points are means of three realizations, and error bars are standard deviation. (D) The interplay between unmixing and renewal time for

different bias (different colors) and different RLS values ranging from 2 to 100. Data points are means of three realizations, and error bars are standard

deviation.

Video 4. Uncoupled spatial correlations with bias,

RLS = 10. Adding centripetal bias increases the overall

clonal unmixing. Yet, the central region is less ordered.

https://elifesciences.org/articles/56404#video4
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replication and cell loss, external cue that imposes a bias of centripetal movement is required for the

emergence of a centripetal pattern. Another major constraint is a requirement for a minimal value of

RLS that allows renewal. This value depends on the replication bias and cannot be shorter than a life-

span of ~20 replications. Once the condition for the minimal RLS is met, dynamics are feasible, and

the emerged unmixing is higher than the unmixing of long-range interactions.

Recent nucleotide analogue incorporation experiments suggest a progenitor cell cycle of 3–5

days (Sagga et al., 2018), and complete renewal of the cornea occurs, in mice, in few months (Ami-

tai-Lange et al., 2015). Thus, the normalized renewal time is in the order of 20–50 replication times,

setting 100 replication times as a conservative upper limit (Figure 6A). In the case of uncoupled

interactions without bias, centripetal unmixing formation is feasible under very specific constraints.

Centripetal clonal unmixing emerges but mainly in the periphery of the tissue and only for small RLS

values that are below ~10. However, for these RLS values, the renewal dynamics and stripe propaga-

tion velocity, of a few hundred corneal replications are much slower than experimental observations

(Figure 6A). Adding bias to these types of interactions allows formation in feasible time scales and

the emergent of a centripetal pattern for slightly lower RLS values (Figure 6A).

Another experimental observation is the fact that in some mutants that abolish centripetal bias,

the resulting pattern is that of contiguous patches. Models of uncoupled interaction cannot provide

such a pattern while coupled can. In the case of uncoupled interactions without bias, the resulting

pattern would be akin to ’salt and pepper’ mixed pattern rather that of patches. Thus, only the cou-

pled model can explain contagious patches in mutants with the constraint of RLS >20.

Another outcome of low replicative lifespan is the distribution of post-mitotic cells. Figure 6B

shows the fraction of post-mitotic cells as a function of the distance from the limbus. Models that

require a low replicative lifespan, such as uncoupled replication-removal without bias, result in a

complete post-mitosis of the central cornea. A scenario of post-mitotic central cornea is not consis-

tent with in vivo data; nucleotide analogue labeling experiments suggest that some

Figure 6. Limits and constraints on the different model classes. (A) The unmixing parameter as a function of the normalized renewal time for different

values of replication lifespan, ranging from 2 to 100. The shaded areas are regions that are not consistent with experimental observations of centripetal

unmixing and renewal time. (B) The hallmark of low RLS models is a high post-mitotic fraction regardless of bias.
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(Richardson et al., 2017) or most of the cells in the central cornea are actively mitotic (Sagga et al.,

2018).

The effect of stem cells distribution and dynamics
There are two limiting common hypotheses for the properties of stem cells, and in particular limbal

stem cells, in their niche. In the previous section, we investigated the case where stem cells populate

all the limbal cells and can replace each other as they replicate. In this section, we also consider the

case in which stem cells are rare cells (~10%) (Sartaj et al., 2017) which divide asymmetrically to lim-

bal progenitor cells that in turn, divide into corneal cells. In this case, the stem cells cannot be

replaced by limbal progenitor cells. The interplay between the emergent pattern and the

Figure 7. The effect of stem cell dynamics and distribution. (A) Steady-state snapshots (upper row) and time-averages (lower row) over 200 corneal

replications for the Equipotent and Hierarchical models. The colors denote the different cases (blue, orange, and green) and are the same for all the

panels. (B) The interplay between clonal unmixing and renewal time for different bias and different RLS values in the case of the Hierarchical model. The

tradeoffs are similar to those of the Equipotent model (Figure 6A). (C) The number of limbal clones as a function of time in the case of the Equipotent

model (solid lines) and the Hierarchical model (dotted lines). While the number of limbal clones in the equipotent case diminishes with time, the

number of limbal clones in the hierarchical case approaches the number of limbal stem cells (red horizontal dotted line). In both models, the spatial

coupling does not affect the dynamics of clone number. (D) The number of corneal clones as a function of time in the case of the Equipotent model

(solid lines) and the Hierarchical model (dotted lines). In the hierarchical case, the dynamics of corneal clone number and limbal clone number are

similar (inset). In the equipotent case, the spatial coupling affects the decay rate of the number of clones. (E) The renewed cells’ front location as a

function scaled time. Time was scaled such that 1 is the time to replenish the cornea. The stripe propagation velocity depends on the spatial coupling

but is less sensitive to the stem cells distribution.
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dependence on replicative lifespan and replication-removal interaction length is similar to the case

of uniform progenitor cells (Figure 7A and B).

To highlight the differences between these two models, it is insightful to examine the number of

clones as a function of time both in the limbus and in the cornea. In the case of the Hierarchical

model, both the number of clones in the limbus and in the cornea goes down in a similar fashion

until it is equal to the number of stem cells. (Figure 7C). These dynamics are invariant to the interac-

tion length and to the degree of centripetal bias. In the case of the Equipotent model, the dynamics

of the number of clones in the limbus and in the cornea is different. In the limbus, there is a mono-

tonic decline in the number of clones. This decline is invariant to the interaction length due to the

continuous competition in the limbus. It is insightful to compare the Equipotent model to the neutral

drift clonal competition model in which the main predictions are that the number of clones declines

Figure 8. Constraints on the different models and their biological feasibility. Each circle represents a model with different spatial correlations between

cell replication and cell removal, high or low replicative lifespan, and whether there is a centripetal bias or not. The colors represent whether the

replicative lifespan is short or long (blue and orange, respectively). The radius of each circle is proportional to the number of properties each model is

consistent with. In the case of the cornea, the only model that can provide all four requirements (centripetal pattern, full tissue renewal, feasible time

scales, and contiguous patches observed in mutants) is coupled replication-removal with bias and long replicative lifespan.
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as 1=
ffiffi
t

p
, the average clone size increases as

ffiffi
t

p
, and the distribution of clone size divided by the

average (n=<n>) is time-invariant (Klein and Simons, 2011).

In the case of the Equipotent model, the dynamics of the limbal clone number and average limbal

clone size are monotonically increasing and monotonically decreasing, respectively. Yet, they do not

follow the neutral drift dynamics during the entire time trajectory (Appendix 1 section VIII, Appen-

dix 1—figure 5). However, the limbal clone size distribution does exhibit scale invariance (Appen-

dix 1—figure 5). The dynamics of the number of clones in the cornea has a bi-phasic shape that

does depend on the interaction length (Figure 7D). The first part of the bi-phasic dynamics is a

decline that is similar to the limbus decline and is due to stem cell competition. A plateau follows

this decline as clones are propagating toward the center. The second decline is due to the clonal

competition when all the tissue is labeled.

Another experimental observable is the location of the clonal front. The normalized front propa-

gation velocity is invariant to the stem cell dynamics (whether it is the Hierarchical or Equipotent

model) and depends mainly on the interaction length and bias (Figure 7E). Moreover, the front loca-

tion as a function of normalized time, suggests that the velocity in which the front propagates

depends on the radial location. A concave curve indicates that the front velocity accelerates as it is

closer to the center, while a convex curve suggests a slowdown (Appendix 1 section VII, Appen-

dix 1—figure 4). In the case there is a centripetal bias, the velocity of the front propagation is accel-

erating as they are moving away from the stem cell niche toward the center (Figure 7E,

Appendix 1—figure 4). This is similar to the dynamics in the intestinal crypts, where cells that are

higher on the crypt axis move faster (Tóth et al., 2017).

Discussion
The dynamics of corneal stem cells and their progenitors play a key role in maintaining homeostasis

in adult tissues. As the total number of cells in homeostasis remains constant, the main facilitators of

cell location and tissue rejuvenation, when the tissue is intact, are cell division and removal. Thus,

the spatial correlation between the locations of the replicated cell and the removed cell determines

the rejuvenation speed and clonal pattern of the tissue. These spatial correlations can arise from

mechanical or chemical interactions. The actual mechanical interaction is complex as it is affected by

many factors such as interactions with the matrix, interactions between cells, and the cornea’s geom-

etry. Moreover, these mechanical interactions can be long-ranged (e.g., in the elastic limit) or dic-

tated by local interactions. In this work, we accounted for two effective spatial correlations between

the location of the replicated and removed cells: a short-range interaction with a typical interaction

range of m cells (the ‘coupled’ model) and the limit of long-range interactions (the ‘uncoupled’

model).

Another feature that is critical in replication-removal dynamics is the replicative lifespan of the

progenitor cells. Here, we use a mathematical model together with analytical benchmarks to derive

the tradeoffs and constraints of varying replication-removal correlation length and replicative life-

span and characterize the conditions that are consistent with experimental measurements. Identifica-

tion of the conditions governing corneal cell dynamics will facilitate new approaches to limbal stem

cell deficiency treatments and translate to other cellular systems that are dependent on spatial cell

arrangement and division.

Spatial coupling of replication and removal dramatically influences the parameters that are

needed for tissue renewal in physiological time scales. Recent studies suggested that replication and

removal events in homeostasis happen in close proximity of a few cells (Mesa et al., 2018;

Miroshnikova et al., 2018). The main consequence of this type of ‘short-range’ interaction is that

they set a minimal replicative lifespan (Figure 3B). The limit for replicative lifespan is the ratio

between the radius of the cornea and the radius of the local neighborhood in which replication and

removal occur. For example, in the case of a cornea with a radius of ~100 cells and a local interaction

neighborhood with a radius of ~5 cells, the minimal replicative lifespan should be at least 20 replica-

tions. This limit is in the case of high bias, that is the cells are replicating toward the center of the tis-

sue. In practice, one should expect a higher limit (Figure 3B). This suggests that if cell replication

and cell removal are indeed spatially correlated, the replicative lifespan of progenitor cells should be

much higher than traditional values which are an order of only a few replications. Another limit is

imposed by the replication-removal interaction range, m. We showed that m dictates RLSmin
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(Appendix 1 section V), and tissue renewal time (Figure 3C). As the interaction range is smaller, the

minimal RLS needed for a complete renewal of the cornea is higher and scale as R/m. For interaction

range that is of the order of the cornea radius, the minimal RLS scale as log2(m) (Appendix 1 section

V). That is, mechanical or chemical interactions that are local require a higher replication capacity of

corneal cells. The relation between the interaction range and cornea renewal time is monotonic,

t = 2R/(m+1) (Appendix 1 section V). Future work can account for a more complex spatial structure

of the correlations that capture more intricate mechanical interactions between the cells and the

tissue.

Another interesting consequence of these results is that increasing the tissue size (e.g. human

and large mammals cornea and large organs) requires increasing the replicative lifespan of progeni-

tor cells or increasing the local replication-removal interaction length. Cancer, aging or other hyper-

plastic conditions (e.g. psoriasis) are extreme examples of potentially extensive changes in

replicative lifespan that may lead to failure in maintaining tissue renewal and proper tissue size, lead-

ing to a burden on stem cells, failure to maintain homeostasis, and/or regenerate the tissue under

stress (Appendix 1 section IX).

In this context, it is insightful to consider the limits on mutation accumulation quantitatively

(Frank and Nowak, 2004; Vermeulen et al., 2013). Cancer in the cornea is relatively rare, and

when it occurs, it is believed to originate from the conjunctiva or the limbus (Basti and Macsai,

2003). The probability of mutation accumulation that results, for example, in cancer depends on the

probability of acquiring oncogenic (or other deleterious) mutations, the number of cells, and the

number of replications before the mutated linage is removed. In the cornea, the number of cells is

low compared to the number of cells in the skin or in the gut, for example (Milo et al., 2009). In

general, symmetric divisions promote cell exchange and can flush out mutations, and therefore the

Equipotent model is more resilient to mutations in the limbus (Appendix 1 section IX). Mutation

accumulation potential of a linage that originates from a mutator in the limbus depends on the lin-

age lifetime and depth. Centripetal bias decreases the depth of a linage, and the radius of the cor-

nea imposes a limit on the median depth (Appendix 1 section IX, Appendix 1—figure 6). The

typical linage depth, together with the small number of cells in the cornea, suggest a low probability

for an accumulation of a series of oncogenic mutations in comparison to other organs such as the

skin or the gut.

We also characterized the dynamics in the limit in which replication and removal events are not

spatially correlated. The case without any spatial consideration, such as bias and replication-removal

correlations, can be approximated by a 1D model. A model, which is a private case of our work, sug-

gested that physiological homeostasis requires RLS in the range of 4–12 replications (Moraki et al.,

2019). This estimate is consistent with our Equipotent uncoupled model in the absence of bias. A

2D uncoupled replication-removal without bias was suggested in the context of the cornea with a

replicative lifespan of fewer than about five replications (Lobo et al., 2016). Our results show that

while rejuvenation of the entire cornea is possible for short replicative lifespan, the rejuvenation time

without external bias is much slower than physiological estimations (Figure 6A). Thus, self-organizing

stripe formation in homeostasis without external cues, while possible, is very limited and results in a

rejuvenation time of hundreds of replications, that is, hundreds of days assuming corneal replication

time of a few days. Another hallmark of a model that has a short replicative lifespan is a cornea in

which most of the cells are post-mitotic (Figure 6B).

Figure 8 summarizes the predictions of each model and its consistency with experimental

data. We focused on four main experimental attributes: (1) Tissue renewal: whether the model allows

complete rejuvenation of all cells in homeostasis. (2) Feasible dynamics: Whether the speed of clonal

spread is physiological. (3) Centripetal pattern: Whether the model allows the formation of centripe-

tal clonal stripes. (4) Contiguous patches: Whether the model allows the formation of contiguous

clonal patches that is reminiscent of VNGL/PAX6 mutants. The model that seems to account for all

features is that of coupled replication-removal dynamics (‘short-range interactions’) with centripetal

bias and a replicative lifespan that is at least ~20 replications. One of the main predictions of such a

model is that cells should proliferate not only near the limbus but also closer to the center of the

cornea.

Our results regarding the interplay between replication-removal interaction length and replicative

lifespan do not depend on whether stem cell dynamics and distribution follow the ’Hierarchical’ or

’Equipotent’ model (Figure 7B). As expected, our results show that the number of clones overtime
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on the limbus and cornea together could distinguish between the two. While in the ’Equipotent’

model, the number of clones in the cornea has a certain plateau and delay between the cornea and

the limbus while in the ’Hierarchical’ model there is no difference in the dynamics of the number of

clones in the limbus and in the cornea (Figure 7C; Figure 7D).

While stem cells, that are considered as long-lived cells that can self-renew, are at the focus of

regenerative medicine, progenitor cells, that are viewed as short-lived cells with a very limited repli-

cation potential, are often overlooked. Our work highlights the crucial role of replicative lifespan of

progenitor cells in shaping rejuvenation dynamics in homeostasis. Our conclusions regarding the

interplay between replication-removal locality and replicative lifespan are relevant for any tissue in

which conditions do not permit significant cell motility and thus spatial homeostasis is maintained

through cell replication.
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Appendix 1

I. Experimental linage tracing
Current linage tracing experimental setups are based on the confetti mouse system (such as double

transgenic K14-CreERT2; Brainbow2.1 or UBC-CreERT2; Brainbow2.1) in which injection of tamoxifen

results in a stochastic, irreversible, expression of fluorescent markers. This expression can occur in all

the basal epithelial cells, including basal limbal epithelial cells and basal corneal epithelial cells. With

time, radial stripes that emerge from the limbus can be distinguished, and their kinetics can be mea-

sured (Figure 1B). Moreover, with time, these stripes constitute the majority of the labeled area

(Amitai-Lange et al., 2015). Our model aims to capture the role of cellular properties, such as repli-

cative lifespan, and tissue properties, such as spatial correlations between cell replication and cell

removal on radial stripes dynamics in homeostasis. As we focus on the radial stripes dynamics and

data, the labeled cells in the model originate from the labeling of limbal stem cells.

Appendix 1—figure 1 shows typical linage tracing radial stripes of mouse 16 weeks after tamoxi-

fen injection side by side with a simulation.

Appendix 1—figure 1. Radial stripes as measured in an in vivo lineage tracing experiment. (A) A

fluorescence microscopy photomicrograph of a cornea from a double transgenic UBC-CreERT2;

Brainbow mice were injected with tamoxifen when six weeks old and sacrificed 16 weeks later.

Tamoxifen treatment induced a stochastic and irreversible expression of one out of four “confetti”

fluorescent proteins (namely, nuclear green (GFP), cytoplasmic red (RFP), cytoplasmic yellow (YFP),

or membrane cyan (CFP) fluorescent protein). (B) Image representation of our model with the

following parameters: spatial coupling of replication-removal, full centripetal bias, and replicative

lifespan (RLS) of 100.

II. Stochastic 2D lattice Model
Model setup

We modeled the corneal epithelium as a circle on a square 2D lattice, where each pixel is a cell. The

limbus is a one-cell (that is, a one-pixel wide ring) perimeter in the circumference of the cornea.

Stem cells (S) reside in the limbal region in the circumference of the cornea. They are also character-

ized by immense replicative capacity rendering them ‘immortalized’ for the sake of the model. Pro-

genitor cells (P) that reside in the cornea are limited in their replicative lifespan (RLS): after a defined

number of divisions, they cease to divide on the corneal plane.

In the case of the ‘Equipotent’ model (Figure 1A), the entire limbus is composed out of S cells

that divide in the limbus with a rate ls. The cells can divide asymmetrically with probability pa and

give rise to a P cell that resides in the cornea or divides symmetrically with a probability of (1-pa),

both S cells remain in the limbus. In the cornea, P cells replicate with a rate lp. The cells that
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originate from the stem cells, have RLS replications (Figure 1B). That is, the maximal number of cells

from each P cell is 2RLS.

In the case of the ‘Hierarchical’ model (Figure 1A), only a small fraction of cells in the limbus, fS,

is S cells. These cells are distributed uniformly in the limbus. The S cells can divide asymmetrically

with a rate ls. The resulting progenitor cells, PL, remain in the limbus and divides with a rate lp to

give rise to a limbal and corneal P cells, PL and PC, respectively. Both PL and PC have finite RLS.

We used a radius of R = 100 cells to match the in vivo mouse data (Appendix 1—table 1). A dis-

tance of 50 pixels was taken from the central pixel to define the pixels of the boundary (that is, the

horizontal and vertical axis contains 101 pixels). The one-pixel wide ring in the circumference is

marked as the limbus. The cornea is maintained in homeostasis. Thus, cell number is constant and in

each step of the simulation cell division is concurrent with cell desquamation. The dynamics of spatial

rearrangement of cells in the grid are based on a ‘pushing’ mechanism that represents the effective

mechanical interactions between the cells. In this mechanism, cells reorient in a pushing manner

from the duplicated cell to the vacant hole (see details below).

Simulation steps

We used a 2D Monte-Carlo (MC) simulation. In each MC step of the simulation, a pair of a replicat-

ing cell and a removed cell is selected as described below. P cells exceeding their RLS cannot be

selected as a dividing cell. The probability of choosing a cell for replication depends on the replica-

tion rates according to the Gillespie algorithm (Gillespie, 1977; Gillespie, 1976; Gibson and Bruck,

2000).

The selection of the removed cell depends on the model class: whether the replication-removal

are coupled or uncoupled (short-range or long-range interaction), and on the magnitude of the cen-

tripetal bias (see details below).

1. If the replicated cell is a corneal cell, that is a P cell (in the Equipotent case) or a PC cell (in the
Hierarchical case) the removed cell will be in the cornea as well. The location of the removed
cell will be:
a. Coupled replication-removal: Randomly selected from a circular sector with a radius m and

an angle a. The center of the circle is the replicated cell, and the sector is oriented towards
the center of the cornea (Figure 1D).

b. Uncoupled replication-removal: Randomly selected from a circle around the center of the
cornea and has a radius � (Figure 1D).

c. After the pair of a replicating cell and a removed cell is selected:

i. The replicating cell generates a P cell that is in a random direction from the replicating
cell and in a distance of 0.5 cell grid distance off-grid.

ii. The algorithm finds the path of cell replacement closest to a straight line that connects
the replicating cell and the ‘hole’ that is left on the removed cell location.

iii. The path is based on eight directional movements on the square lattice. Excluding
directions that make the path cross the limbus of the cornea or exit the boundaries of
the cornea.

iv. On the generated path, the cell closest to the hole moves into it, creating a new ‘hole’.
The next cell on the path that is closest to the hole moves into it and so on until the
new progenitor cell which was off-grid replaces the last cell in the path.(‘Pushing’)

2. If the replicating cell is a limbal cell (S in the Equipotent case; S or PL in the Hierarchical case):

a. In the Equipotent case:

i. S cells divide asymmetrically with probability pa. In this case, the S offspring remains in
the location of the parental S cell in the limbus and the P offspring becomes a corneal
cell. The removed cell will be from the cornea and the location of the removed cell and
the rearrangement of cells location is the same as in 1.

ii. S cell divides symmetrically with a probability (1-pa). In this case, the removed cell is
chosen randomly from the limbus. The rearrangement of the limbal cells follows the
same steps as in 1c, with a path that is confined to the limbus.

b. In the Hierarchical case:

i. S cells divide asymmetrically. The S offspring remains in the parental S cell in the limbus
and the PL offspring remains a limbal cell. The removed cell is chosen randomly from
the PL cells that are between the two sides of the parental S cell and it neighboring S
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cells. The rearrangement of the limbal cells follows the same steps as in 1 c, with a
path that confined to the limbus.

ii. PL cells divide to produce a corneal P cell, Pc. the PL offspring remains in the location
of the parental PL cell in the limbus and the PC offspring becomes a corneal cell. The
removed cell will be from the cornea and the location of the removed cell and the rear-
rangement of cells location is the same as in 1.

Initial conditions

The simulation is initialized as follows:

1. A square lattice grid is created with a size of (2R+3 � 2R+3) while R equals the radius of the
cornea. A circle representing the cornea is also created around the center of the grid with the
radius R. We used R = 100 cells to match the in vivo data.

2. A 1 cell wide ring in the circumference is marked as the limbus.
3. Each S cell in the limbus is given a distinctive lineage marker, numbered from 1 to 642 (~2pR).
4. The RLS of P cells is initialized to the steady-state distribution determined by running the simu-

lation for long periods of time.
5. For visualizing the data, each S cell is also color-coded randomly with a color index from 1 to 5

to create the supplementary movies.

III. Patterns without bias
To highlight the differences in the emerging patterns, Appendix 1—figure 2 illustrates the realiza-

tions of a few cases where there is no centripetal bias and there is only one labeling color. Half of

the limbal stem cells were randomly selected for labeling. In a similar way to Figure 2A in the main

text, in the case of coupled replication-removal, the resulting pattern is that of contiguous patches

(Appendix 1—figure 2A, C). In the case of uncoupled replication-removal, the pattern is inherently

different; there are stripes in the periphery near the boundary and ‘salt and pepper’ pattern of

mixed clones in the center (Appendix 1—figure 2B). One of the parameters that can affect the

sharpness of the patches’ boundaries, in the coupled replication-removal case, is the size of the envi-

ronment in which replication and removal are coupled, m. Appendix 1—figure 2D shows the disper-

sion parameter (Corominas-Murtra et al., 2020), as the function of time for different values of m. As

m is lower, the borders are slightly sharper, yet the overall pattern remains the same.
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Appendix 1—figure 2. Realizations of the emerged patterns in the absence of centripetal bias.

(A) The case of coupled replication-removal with m = 5 and RLS = 150. The emerged pattern is that

of contiguous patches. (B) Uncoupled replication-removal with RLS = 4. (C) coupled replication-

removal with m = 1 and RLS = 150. The overall contiguous patches are similar to the m = 5 case.

Note that in this case, RLS = 150 is lower than the critical RLS needed to renew the

cornea. (D) Dispersion parameter as a function of normalized time for different values of m. Labeling

of the limbal stem cell occurs at time zero. As m is smaller, the dispersion is slightly lower, yet the

overall pattern is similar.

IV. Unmixing parameter
The are several parameters that capture clonal dispersion. For example, the parameter by Coromi-

nas-Murtra et al., 2020 quantifies the dispersion of each clone by finding for each clonal cell the

maximal distance to its closest clonal neighbor. While useful, in this work we wanted to capture not

only clonal dispersion but also the deviation from a distribution where all the clones are perfect cir-

culars sectors with a base in the limbus and an apex in the center of the cornea (‘centripetal stripes’).

To quantify the clonal unmixing, we defined a parameter, f, that captures the deviation from this

‘centripetal stripes’ distribution (Appendix 1—figure 3). Consider a ring of cells (Appendix 1—fig-

ure 3A), in this ring, there could be several clones. The maximal angle between cells of a specific

same clone c is denoted by �c, such that 0 � �c � p (Appendix 1—figure 3A). This angle defines a

ring sector �c. The unmixing parameter of the clone c in the ith ring is defined as,

fc;i ¼
Number of cells of clone c in ring sector �c

Total number of cells in ringsector �c
: (S1)

If all the cells in the sector �c are of from clone c, then, fc,i = 1. If the sector �c contains different
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clones, other than c, than fc,i is smaller than 1. fc,i is always positive and approaches zero and the

number of cells from the clone c is small, relative to other clones in the sector. The unmixing param-

eter of the ith ring is,

fi ¼
1
Nc;i

XNc;i

c¼1

fc;i

 !
Nc;i

Nc;limbus

� �
; (S2)

where Nc,i is the number of clones in the ith ring, and Nc,limbus is the number of clones in the limbus.

The first term in Equation S2 is simply the average of fc,i on the ring while the second term penal-

izes the case in which the number of clones in the ring decreases relative to the number of clones in

the limbus. Appendix 1—figure 2B illustrates the value of f for different patterns. In the case of a

perfect ‘centripetal stripes’ pattern, fi=1. In the case of mixed ‘salt and paper,’ pattern fi

approaches zero. In the case of smooth patches that are not stripes, the unmixing parameter gets

intermediate values. Appendix 1—figure 3C illustrates the dispersion parameter (Corominas-

Murtra et al., 2020) for the different patterns that are shown in Appendix 1—figure 3A. The dis-

persion parameter is sensitive to the sharpness of the boundaries yet cannot differentiate between

patches and stripes.

Appendix 1—figure 3. The unmixing parameter. (A) Example of different patterns. The color above

each pattern is used in panels B and C. (B) The unmixing parameter as a function of the distance

from the limbus for the different patterns in A. Patterns that have centripetal stripes (blue) get a

high value compared to a mixed pattern (orange) or a patchy pattern (green). (C) The dispersion

parameter for the different patterns in A. This metric is sensitive to the boundaries mixing and does

not differentiate between patches and stripes (Note that the lines for the centripetal stripes (Blue)

and patchy pattern overlay). (D) The unmixing parameter for ideal (left) and noisy(right) stripe

pattern.
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V. Limits on coupled dynamics
Renewal without bias

In this case, replication and removal occur at the same local environment of a circle with a radius of

m cells. As the cells are replicating, the lineage starts to propagate from the limbus towards the cen-

ter. When RLS = 1, each corneal cell can replicate only once and therefore the maximal possible

location of a removed cell is m cells from the limbus. Thus, in steady-state, after many replications,

the linage front will propagate to a distance of m cells from the limbus.

When the RLS is increasing, the front location in steady-state will propagate further towards the

center. Increasing the replicative lifespan by one will lead to a maximal increase of one cell in the

front location (the deterministic limit). (Figure 2B). In the deterministic limit, the front location is

equal to m + RLS and thus the area of the renewed cornea scales as a C – RLS2, where C is a con-

stant. The actual location of the front in the simulation is indeed closer to the limbus (Figure 2B).

We captured the simulation trend by considering the propagation of the front as a stochastic

process.

Consider a random variable, x tð Þ. At time interval, t ,

x tþ tð Þ ¼ x tð Þþ 1 p

x tð Þ 1� p

� �
(S3)

Taking t ¼ 1, after N generation p x tþNð Þ ¼ �ð Þ is the same as binomial distribution; having � suc-

cesses out of N trials, where p is the probability of success.

If this process is being carried out many times, all possible locations, �, in which

p x t þ Nð Þ ¼ �ð Þ>0, will be populated. That is, we define the front location in steady-state as,

�s ¼ min �jp x t þ Nð Þ<�ð Þ ¼ 1ð Þ which amounts to �s ¼ min �j1� p x t þ Nð Þ<�ð Þ ¼ 0ð Þ.
In the case of the tissue, the number of trials is the replicative lifespan (RLS). The new cells that

are formed can replace cells in a local neighborhood with a radius of m cells. When there is no cen-

tripetal bias, the probability of success depends on the geometry of the grid and the radial shape of

the front. Without bias, the probability of moving forward depends on the fraction of neighbors that

are not reached by the clone yet. In the case of a rectangular grid, this fraction is 3/8. Using p=0.35

was used in the graph shown in Figure 2B.

Limit on minimal RLS for renewal

We show in Figure 3B of the main text, that the minimal replicative lifespan required for renewal,

RLSmin, decreases as a function of centripetal bias. Here we derive the theoretical lower limit on

RLSmin in the case of perfect bias.

As the front location from the limbus is smaller than m, the radius of the replication-removal area,

the maximal propagation possible is doubling of the current distance from the limbus. Therefore,

the minimal number of replication it will take the front to reach a distance m from the limbus is log2

(m). Once the front reached a distance m from the limbus, the number of remaining replications is

RLSmin � log2 mð Þd e and the maximal propagation of the front per one replication is m. Therefore the

minimal number of replications to reach the center of the cornea is given by solving,

R¼ log2 mð Þd eþ RLSmin � log2 mð Þd eð Þ �m; (S4)

and therefore,

RLSmin ¼ R
m
þ log2 mð Þd e 1� 1

m

� �
: (S5)

In the case of Figure 3B, m = 5, R = 100 and therefore the limit on RLSmin is around 22

replications.

Limit on minimal renewal time

Figure 3C shows that as the centripetal bias is increased, the renewal time goes down. In the case

of perfect bias, the average progress of the front is given by,
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sh i ¼
Xm
i¼1

i
m
¼mþ 1

2
: (S6)

Therefore, the renewal, in this case, is simply,R= sh i ¼ 2R= mþ 1ð Þ.

VI. Limits on uncoupled dynamics
Renewal time dependence RLS. In Figure 4C, we show the dependence of the renewal time on RLS

in the case of uncoupled replication-removal. First, we assume perfect bias and RLS = 0. In this case,

only the stem cells replicate and the cells are removed from the center of the cornea. During td, the

corneal doubling time, the number of stem cells which divide asymmetrically is given by,

ls=lp
� � � pa � 2pR. If the front is located at a distance R - r from the limbus, the average number of

advances per cell in the front per one corneal doubling time is

ls=lp
� � � pa �Rr : (S7)

Thus, the time to propagate from the limbus to location r is given by,

t0 ¼
XR
r¼1

1
ls=lp
� � � pa � Rr ¼

lp
lspa

Rþ 1
2

� �
: (S8)

In the case of lp=1, ls=0.1, a=0.85, R = 100, t0 is around 600.

In the case there is no bias, the removed cell location is random. Thus, the probability that the

front moves towards the center each time a stem cell divides depends on whether the removed cell

is within the linage area or not. Therefore, the probability to propagate upon division is reduced by

a factor of r2=R2 and Equation S8 is changed to

t0 ¼
XR
r¼1

1

ls=lp
� � � pa � Rr r2

R2

� �¼ lp
lspa

�R �HR: (S9)

where HR is the Rth harmonic number. In the case that lp=1, ls=0.1, a=0.85 and R = 100, t0 is

around 6000.

As RLS is larger than zero, corneal cell replication also contributes to the advance of the front. At

low RLSs, the number of cells that replicate increases by the factor of 2RLS, and thus the renewal

time scales as 2-RLS (Figure 3C).

Stripe arrival time

In the case of perfect centripetal bias, in each division, cells are removed from the center of the cor-

nea. Therefore, the maximal distance a stripe can advance in a single replication time is doubling its

length and the minimal number of divisions needed for the stripe to reach the center is log2 Rð Þ
(Figure 5B).

VII. Velocity as a function of radial position
Figure 7E in the main text, which describes the front location as a function of normalized time, sug-

gests that the velocity in which the front propagates depends on the radial location. Appendix 1—

figure 4 shows the propagation velocity (dr/dt) explicitly, for three different cases, as a function of

radial position, r.

Close to the limbus (r = 0), in all cases, the front accelerates regardless of the model due to the

radial boundary conditions. After r ~ 10, acceleration continues only if there is an inherent centripetal

bias. In particular, the acceleration is significant in the case replication-removal is coupled. In this

case of ‘short-range’ interaction, the front ring is getting smaller and thus the time to label them

decreases. In the case of uncoupled replication-removal and RLS 4, most of the cornea is non-

mitotic, and thus acceleration is impeded. In all cases with bias there is a deceleration near the cen-

ter as the interaction of stripes through the center leads to clonal competition. In the case where

there is no bias and no replication-removal coupling, there is a deceleration in the front velocity as

the cells are farther from the boundary source.
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Appendix 1—figure 4. Propagation velocity as a function of radial position from the limbus. The

data plotted is the mean of the three realizations shown in Figure 7E of the main text.

VIII. Clones distributions
Figure 7 in the main text shows how stem cell distribution affects the number of limbal and corneal

clones as a function of time. The main predictions of the neutral drift clonal competition (which

assumes that clones growth is based on diffusion) are that the number of clones declines as 1=
ffiffi
t

p
,

the average clone size increases as
ffiffi
t

p
, and that the distribution of clone size divided by the average

(n=<n>) is time-invariant (in other words, clone size distributions scaled by the average will collapse

onto the same curve) (Klein and Simons, 2011). The cornea geometry is different than the skin or

the gut due to the unique circular geometry of the niche and tissue. Thus, clonal competition is

affected by different, strict boundary conditions.

In the case of the Equipotent model, the dynamics of the limbal clone number and average limbal

clone size are monotonically increasing and monotonically decreasing, respectively. Yet, they do not

follow the neutral drift dynamics during the entire time trajectory. However, the limbal clone size dis-

tribution does exhibit scale invariance (Appendix 1—figure 5). In the case of the Hierarchical model,

as expected, the clone number and average clone reach a plateau, and there is no scale invariance.
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Appendix 1—figure 5. The dependence of limbal clone size distributions on time and stem cells

properties. The fraction of clones as a function of time (left), the average clone size as a function of

time (middle), and one minus the cumulative distribution function (CDF) of the clone size scaled by

the average at three time points. Three realizations are shown. Blue lines are the best fit for the

model.

IX. Mutations and aging
The probability of mutation accumulation that results, for example, in cancer, depends on (i) the

probability of acquiring oncogenic (or other deleterious) mutations, (ii) the number of proliferating

cells, and (iii) the number of replication rounds in which mutations can happen before the mutated

linage is removed. In the cornea, the number of cells is extremely low compared to the number of

cells in the skin or the gut by a few orders of magnitude. Thus, just by considering the cell number,

the probability of acquiring a particular set of mutations in the cornea is expected to be much

smaller than the skin or the gut.

In the case of the Equipotent model, the mean time for a stem cell to be flushed out of the limbus

is ts ¼ 1
ls 1�pað Þ. If there are no asymmetric replications, pa ¼ 0, the typical flush out rate is the typical

stem cell replication time. If there are no symmetric replications, pa ¼ 1,stem cells in the limbus are

not replenished. Thus, mutations tend to be flushed out faster as there are more symmetric replica-

tions. In the cornea, all the replications are symmetric, and thus the mean dwell time is

tc ¼ 1
pals Ns=Npð Þþlp

» 1
lp
. In the case of the Hierarchical model, once a mutation occurs in the stem cells

it cannot be flushed out, and the clone with this mutation can continue to accumulate mutations.

In the Equipotent case, once a mutation occurs, it has a probability of 1�pa
2�pa

to be removed within

one replication. Thus, in our case, about 15% of the mutations will not leave the cornea. The limbal

cells that were able to lunch a clone to the cornea have a lifetime distribution with a median of

around 100 replication times in the case of the coupled model with bias, around 130 replication

times in the case of uncoupled with bias, and around 270 replication times in the case of uncoupled

without bias (Appendix 1—figure 6). It is important to note that linage lifetime does not indicate

the maximal number of divisions that the linage underwent. The limit on the maximal depth of a lin-

age is shown in Appendix 1—figure 6, and its median is in the order of 100 replications in the case

of the coupled model with bias, around 20 replications in the case of uncoupled with bias, and

around 30 replications in the case of uncoupled without bias.
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Appendix 1—figure 6. The cumulative probability distribution of linage removal time (left) and lin-

age depth (right) for different models.

X. Model parameters

Appendix 1—table 1. Model parameters and references.

Parameter Value and references

The radius of the cornea and basal corneal
epithelial cell, R.

100 Cells. (Di Girolamo et al., 2015; Dorà et al., 2015)

Probability of asymmetric replication of S
cells, pa.

0.85, Cornea (Richardson et al., 2016), Epidermis (Mascré et al.,
2012), Esophagus (Doupé et al., 2012)

Neighborhood radius of interacting cell in
the ‘coupled’ model, m.

5 cells (Mesa et al., 2018; Miroshnikova et al., 2018)

Normalized renewal time. Estimated cell cycle times based on double DNA labeling:
Limbal label retaining cells ~ 14–21 days
Limbal area cells (stem and early progenitors), Peripheral cornea,
Central cornea ~ 3.0–5.5 days (Sagga et al., 2018).
All of our time estimations are normalized to the doubling time of the
cells. We used a relative proliferative rate ls=lp

� �
that equals to 0.1.

Relative proliferative rates of the stem cells
and progenitor cells ls=lp

� �
.

0.1, (Lavker et al., 1991; Sartaj et al., 2017)

The fraction of stem cells inside the limbus in
the Hierarchical model, fs.

In the Hierarchical model estimates using label retaining vary from 3%
to 20% (Lavker et al., 1991; Sagga et al., 2018; Sartaj et al., 2017; )
we used 10%.
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