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Abstract The tomato russet mite, Aculops lycopersici, is among the smallest animals on earth. It

is a worldwide pest on tomato and can potently suppress the host’s natural resistance. We

sequenced its genome, the first of an eriophyoid, and explored whether there are genomic

features associated with the mite’s minute size and lifestyle. At only 32.5 Mb, the genome is the

smallest yet reported for any arthropod and, reminiscent of microbial eukaryotes, exceptionally

streamlined. It has few transposable elements, tiny intergenic regions, and is remarkably intron-

poor, as more than 80% of coding genes are intronless. Furthermore, in accordance with ecological

specialization theory, this defense-suppressing herbivore has extremely reduced environmental

response gene families such as those involved in chemoreception and detoxification. Other losses

associate with this species’ highly derived body plan. Our findings accelerate the understanding of

evolutionary forces underpinning metazoan life at the limits of small physical and genome size.

Introduction
The free-living microarthropod Aculops lycopersici (Tryon) belongs to the superfamily of the Erio-

phyoidea (Arthropoda: Chelicerata: Acari: Acariformes) that harbors the smallest plant-eating ani-

mals on earth (Keifer, 1946; Navia et al., 2010; Sabelis and Bruin, 1996). Eriophyoids are known

by many names including gall, blister, bud, and rust mites, depending on the type of damage they

cause (Hoy, 2004). Since the 1930s, the tomato russet mite A. lycopersici has been reported as a

minor pest of cultivated tomato (Solanum lycopersicum L.) worldwide (Massee, 1937). For unknown

reasons, it has emerged in recent years as a significant pest of tomatoes in European greenhouses

(Moerkens et al., 2018). While it is extremely small – only ~50 mm wide and 175 mm in length

(Figure 1a,b) – it can reach high population densities (Figure 1c). The damage it causes to plants

superficially resembles that of microbial disease (Figure 1d), for which it is often misdiagnosed, and

controlling it is troublesome (Gerson and Weintraub, 2012; Van Leeuwen et al., 2010).
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The mite feeds on plant epidermal cells (Royalty and Perring, 1988), which are relatively low in

nutrients, with needle-shaped mouth parts (stylets) that allow the transfer of saliva and the uptake of

cell contents (Nuzzaci and Alberti, 1996). The first visible signs of a russet mite infestation are a

rapid local collapse of the leaf hairs (trichomes) on the stem, leaflet or petiole upon which the mites

are feeding (van Houten et al., 2013). This is followed by withering and necrosis of infested leaves,

which ultimately leads to a bronzed or russet color, from which the mite owes its name

(Jeppson et al., 1975; Kawai and Haque, 2004). Although it is now a global pest on tomato, it can

survive on many related solanaceous plants (nightshade family) such as potato, tobacco, petunia,

nightshade, and various peppers (Perring and Farrar, 1986), as well as on a few hosts outside the

nightshade family (Perring and Royalty, 1996; Rice and Strong, 1962).

The Eriophyoidea belong to the Chelicerata, a subphylum of Arthropoda which includes spiders,

scorpions, ticks, and mites. The Eriophyoidea consists of three families – Phytoptidae, Eriophyidae

(or eriophyids, to which A. lycopersici belongs), and Diptilomiopidae, and comprises 357 herbivorous

genera found on more than 1800 different plant species (Oldfield, 1996; Zhang, 2011). Eriophyoids

are known to manipulate host plant resource allocation and resistance, and many species do so by

inducing the formation of plant galls (de Lillo et al., 2018), possibly by secreting molecular mimics

of plant hormones in their saliva (De Lillo and Monfreda, 2004; de Lillo and Skoracka, 2010).

Although A. lycopersici is not a gall-inducing species, it nevertheless manipulates the defense mech-

anisms of its tomato host to its benefit. Through an unknown mechanism during feeding, this mite

suppresses the jasmonic acid (JA) signaling pathway (Glas et al., 2014; Schimmel et al., 2018). This

blocks the ability of the tomato host plant to produce defensive metabolites and proteins against

eLife digest Arthropods are a group of invertebrates that include insects – such as flies or

beetles – arachnids – like spiders or scorpions – and crustaceans – including shrimp and woodlice.

One of the tiniest species of arthropods, measuring less than 0.2 millimeters, is the tomato russet

mite Aculops lycopersici. This arachnid is among the smallest animals on Earth, even smaller than

some single-celled organisms, and only has four legs, unlike other arachnids. It is a major pest on

tomato plants, which are toxic to many other animals, and it feeds on the top cell layer of the stems

and leaves. Tomato growers need a way to identify and treat tomato russet mite infestations, but

this tiny species remains something of a mystery.

One way to tackle this pest may be to take a closer look at its genome, as this could reveal what

genes the mite uses to detoxify its diet. Examining the mite’s genome could also reveal information

about how evolution handles creatures becoming smaller. An area of particular interest is the overall

size of its genome. Not all of the DNA in a genome is part of genes that code for proteins; there are

also sections of so-called ‘non-coding’ DNA. These sequences play important roles in controlling

how and when cells use their genes. In the human genome, for example, just 1% of the DNA codes

for protein. In fact, most human protein-coding genes are interrupted by sequences of non-coding

DNA, called introns.

Here, Greenhalgh, Dermauw et al. sequence the entire tomato russet mite genome and reveal

that not only is the mite’s body size miniature: these tiny animals have the smallest arthropod

genome reported to date, almost a hundred times smaller than the human genome. Part of this

genetic miniaturization seems to be down to massive loss of non-coding DNA. Around 40% of the

mite genome codes for protein, and 80% of its protein coding genes contain no introns. The rest of

the miniaturization involves loss of genes themselves. The mites have lost some of the genes that

determine body structure, which could explain why they have fewer legs than other arachnids.

Additionally, they only carry a small set of genes involved in sensing chemicals and clearing toxins,

which could explain why they are mostly found on tomato plants.

Greenhalgh, Dermauw et al.’s findings shed light on what may happen to the genome at the

extremes of size evolution. Sequencing the genomes of other mites could reveal when in

evolutionary history this genetic miniaturization occurred. Furthermore, a better understanding of

the tomato russet mite genome could lead to the development of methods to detect the infestation

of plants earlier and be highly beneficial for tomato agriculture.
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herbivorous insects and mites (Alba et al., 2015; Howe and Jander, 2008), thereby rendering the

plant defenseless. The consequences of suppressing host defenses for the herbivore’s selective envi-

ronment may be variable depending on the degree of host specialization (Blaazer et al., 2018;

Kant et al., 2015) but for mite species that can feed on multiple hosts, there are indications of a

trade-off between the ability to suppress defenses and the ability to cope with xenobiotics

(Kant et al., 2008; Wybouw et al., 2015). Many species of eriophyoid mites cause little damage to

their hosts (Jeppson et al., 1975), or alternatively induce damage indirectly as vectors of pathogens

(Navia et al., 2013). In contrast, while A. lycopersici is not known to vector plant diseases, its ability

to alter the chemistry and morphology of tomato severely weakens the plants, which are then over-

whelmed and killed by exponentially growing A. lycopersici populations (Figure 1c,d;

Perring, 1996).

In addition to being a priority pest of tomato, A. lycopersici and related eriophyoids are among

the most extreme examples of miniaturization in arthropods. As one of the smallest documented ani-

mal species (Bailey and Keifer, 1943), with dimensions smaller than some single-celled organisms

(Polilov, 2015), it is not surprising that A. lycopersici has a derived morphology. Compared to

almost all adult arachnids outside of the Eriophyoidea, which have a body plan with eight legs, A.

lycopersici has only four legs (Figure 1a,b). Further, reproductive structures, which are located at

the terminal end in other mites, are positioned in the central ventral region (Nuzzaci and Alberti,

1996). This type of morphology has resulted in altered reproductive behavior wherein males, instead

of direct insemination, deposit spermatophores (packets of sperm) in the environment that are sub-

sequently picked up by females (Al-Azzazy and Alhewairini, 2018; Oldfield and Michalska, 1996).

Despite these morphological and behavioral innovations, A. lycopersici retains the haplodiploid

mechanism of sex determination characteristic of many other mite species (Anderson, 1954). Fur-

ther, female A. lycopersici mites can lay up to four eggs per day, and the generation time is as little

as 5 days under optimal conditions (Kawai and Haque, 2004; Rice and Strong, 1962). These fea-

tures, which resemble those of other agriculturally important mite herbivores, result in rapid

Figure 1. The tomato russet mite Aculops lycopersici is a devastating pest of tomato. (a) Habitus of the

eriophyoid mite A. lycopersici. Male (left) and female (right) mites are slender, worm-like animals bearing, in

contrast to non-eriophyoid mites with four pairs of legs, only two pairs of small legs (indicated by L1 and L2). (b)

Low temperature (LT) - scanning electron microscopy (SEM) image of A. lycopersici on a leaf of S. lycopersicum. (c)

A. lycopersici populations can rapidly build to extremely large numbers on tomato stems and leaves. (d) A.

lycopersici damage of heavily infested tomato plants is shown. Scale bars in panels a and b represent 0.05 mm.
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overexploitation of the host plant and have undoubtedly contributed to the importance of this spe-

cies as a field and greenhouse pest of tomato.

Here, we present the genome of A. lycopersici, the first for an eriophyoid mite. At only 32.5 Mb,

it is the smallest arthropod genome reported to date (Grbić et al., 2011; Waldron et al., 2017). As

revealed by contrasting the genomic architecture of the tomato russet mite with other sequenced

arthropods, including the two-spotted spider mite Tetranychus urticae (Grbić et al., 2011), a gener-

alist herbivore often found in co-infestations alongside A. lycopersici (Glas et al., 2014), we eluci-

date mechanisms underlying dramatic genome reduction. In particular, we observed typical features

of streamlined genomes (Arkhipova, 2018; Hessen et al., 2010a), including a marked reduction in

the distance between adjacent genes, and few repetitive sequences. Massive loss of introns was

apparent. Moreover, reductions in specific genes and gene families, such as environmental response

genes, associate with A. lycopersici’s ability to suppress host plant defenses as well as its derived

morphology. The genome therefore sheds light not only on mechanisms of extreme metazoan

genome reduction, but also on the interplay between gene content and the lifestyle of small herbi-

vores that manipulate their environment.

Results

Genome size, assembly, and annotation
We assembled the genome of A. lycopersici into seven scaffolds of cumulative length 32.53 Mb, of

which 99.98% is represented on scaffolds 1–5 of lengths 12.44, 10.50, 3.66, 3.57 and 2.36 Mb,

respectively. The remaining two scaffolds are each <6 kb in length, in addition to a mitochondrial

genome scaffold. The observed assembly length is similar to the length estimated by a k-mer analy-

sis with genomic sequence reads (34.81 Mb). Separate genome completeness estimates with

CEGMA (Parra et al., 2007) and BUSCO (Simão et al., 2015) located 90.7% and 86.0% of the

expected core eukaryotic genes, respectively; these values are within the same range as those for T.

urticae, the only other sequenced chelicerate herbivore, and for which a high-quality Sanger assem-

bly is available (95.16% and 92.07%, respectively). As an additional assessment of completeness, we

generated a de novo assembly of the A. lycopersici transcriptome using deep, paired-end Illumina

RNA-seq reads derived from mixed sex and developmental stages, and aligned it to the genome

sequence. We found that 98.2% of transcript contigs could be located on the reference sequence.

Of the remaining 243 unplaced transcript sequences, only eight had similarity to known arthropod

sequences; the others had homology to bacterial, fungal, or plant sequences, or lacked homology to

sequences in existing databases.

Features of extreme genome reduction in A. lycopersici
Annotation of the A. lycopersici genome by automated methods, coupled with extensive manual

curation, revealed only 10,263 protein-coding genes. As assessed against other mite genomes,

including T. urticae, Dermatophagoides pteronyssinus (the European house dust mite)

(Waldron et al., 2017), and Metaseiulus occidentalis (a phytoseiid predatory mite) (Hoy et al.,

2016), as well as the Drosophila melanogaster and human genomes, several features of genic orga-

nization in A. lycopersici stand out (Table 1). The fraction of the genome comprising coding

sequence is highest in A. lycopersici, and the distance between genes is the lowest. Associated with

the compact genic landscape of A. lycopersici (Figure 2 and Figure 2—figure supplements 1–

6), the percentage of the genome consisting of transposable elements was merely 1.54%, which is

more than fourfold less than that observed in several other mite genomes, or in the insect D. mela-

nogaster (Figure 2—figure supplement 1, Supplementary file 1 — ‘Table S1’ Tab). Nevertheless,

sequences homologous to the major classes of transposable elements, such as DNA transposons,

including Helitrons, as well as both long terminal repeat (LTR) and non-LTR retrotransposons, were

detected (Supplementary file 1 — ‘Table S1’ Tab and ‘Table S2’ Tab). Across the A. lycopersici

genome, extended regions of low genic composition and high TE density were not observed (Fig-

ure 2—figure supplement 2), consistent with the purported holocentric chromosome architecture

(lack of regional centromeres) of eriophyoid mites (Helle and Wysoki, 1996).

We also observed that the A. lycopersici genome has only 3057 introns in coding sequences (CDS

introns), which is more than an order of magnitude fewer than the 44,881 in the 90 Mb T. urticae
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genome, and the 35,841 in the 70.8 Mb D. pteronyssinus genome. Strikingly, nearly 84% of A. lyco-

persici protein coding genes were intronless, which is more than threefold higher than observed for

the other mite species we analyzed, and more than fivefold higher than for D. melanogaster

(Table 1). To further investigate the dynamics of intron evolution, we evaluated patterns of intron

gain and loss in orthologous genes among A. lycopersici and 17 other animal genomes using the

Malin analysis pipeline (Csurös, 2008; Figure 2, and Figure 2—figure supplements 3 and 4, and

Supplementary file 2). At 29,447 conserved intron sites (Figure 2a), A. lycopersici has a mere 207

introns. This is an ~11 fold reduction from that seen in the species with the next lowest counts, the

European house dust mite D. pteronyssinus, at 2292. Apart from A. lycopersici, Acari intron loss

rates were broadly similar to those observed for other arthropods, except for M. occidentalis, for

which high rates of both intron loss and gain were apparent, a finding previously reported

(Hoy et al., 2016). However, the rate of intron loss in A. lycopersici was higher than observed in M.

occidentalis (Figure 2b), and in contrast to M. occidentalis, intron gains were minimal (Figure 2—fig-

ure supplement 4). The only evidence for retention of the minor spliceosome in A. lycopersici comes

from the presence of a single canonical U12 (minor) intron in the gene aculy03g00270 that encodes

an ultra-conserved calcium channel (splice sites AT-AC in intron one of length 12.5 kb). Splicing of

this large intron is supported by RNA-seq read alignments, and the orthologous intron one of the T.

urticae orthologue of this gene is one of the three U12 introns documented previously in T. urticae

(Grbić et al., 2011).

Although relatively few conserved introns are present in the A. lycopersici genome, they exhibit a

bias toward 5’ gene ends (Figure 2—figure supplement 5), and compared to most arthropods, the

median intron length is larger (Table 1 and Figure 2—figure supplement 6). In a single copy

(orthologous) gene set for which introns were lost in A. lycopersici, but conserved in five other

closely related or high-quality mite or insect genomes (see Materials and methods), the impact of

intron loss on A. lycopersici-encoded protein sequences was generally minimal. In fact, in the respec-

tive protein sequences spanning 97 of 100 A. lycopersici-specific intron loss events (97%), multi-spe-

cies alignments did not reveal insertions or deletions (indels) of amino acid residues (e.g. Figure 2c,

and Supplementary file 1 — ‘Table S3’ Tab and Supplementary file 3); for the remaining few cases

(3%), the respective sites of loss events in A. lycopersici were coincident with the gain or loss of one

or several amino acid residues (e.g. Figure 2d). Within this gene set, similar findings were apparent

for the larger number of A. lycopersici intron losses as compared to intron sites conserved between

the two closest relatives (D. pteronyssinus and T. urticae; Supplementary file 3). Despite striking

examples of intronless genes arising from the loss of multiple conserved introns, as for acu-

ly03g01320 (Figure 2c), some A. lycopersici genes have both lost and retained arthropod conserved

introns (i.e. aculy02g00250, aculy03g02140, and aculy01g28080, Supplementary file 3).

Table 1. Genome metrics for A. lycopersici, other mite species, D. melanogaster and H. sapiens.

Species Genome size (Mb) PCG* % intronless† Coding %‡ Intergenic %§ Intronic %¶ Intergenic M Intron M

A. lycopersici 32.53 10,263 83.67 42.26 45.12 12.62 538 bp 170 bp

D. pteronyssinus 70.76 12,530 25.29 35.26 46.00 18.73 542 bp 75 bp

T. urticae 90.83 19,086 18.26 22.10 54.12 23.78 1302 bp 94 bp

M. occidentalis 151.90 17,310 24.97 15.25 59.14 25.61 2035 bp 135 bp

D. melanogaster 143.73 13,931 16.37 15.60 57.37 27.03 1228 bp 69 bp

H. sapiens 3088.27 19,636 6.74 1.10 68.14 30.77 23,279 bp 1,505 bp

*PCG: protein coding genes.
†Percent coding genes with no introns.
‡Percentage of genome in coding regions.
§Percentage of genome in between genes.
¶Percentage of genome in introns.

M = Median. See ‘Genome metric calculations’ in Materials and methods and Table 1—source data 1 for more information.

The online version of this article includes the following source data for Table 1:

Source data 1. GFF3 annotation file of the A. lycopersici genome.
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Figure 2. Number of conserved introns and intron loss rate across 18 metazoan species. (a) Phylogenetic tree built from 147 single copy orthologues

(left; numbers at nodes indicate bootstrap support), and a histogram of introns present at 29,447 conserved positions identified by the software

package Malin (right). (b) Phylogenetic tree with branch lengths labeled and scaled to the intron loss rate calculated by Malin. The unedited tree in

both panels is given in Figure 2—figure supplement 3, and was, together with 2371 orthologous protein clusters (Supplementary file 2), used as

input for Malin. (c) Alignment of A. lycopersici aculy03g01320 (which encodes an ADP-ribosylation factor-like 8, or Arl8, protein) with single copy

orthologues from five other mite and insect species as indicated. Analogous positions of phase 0, 1, and 2 introns are denoted by colored triangles

(legend, bottom right), with amino acids at the analogous intronic positions indicated beneath (identity, similarity, and non-similarity are indicated by

‘*’, ‘:’, and ‘.’, respectively, for aculy03g01320 and its orthologue from D. pteronyssinus, the most closely related genome; in descending order, the

sequence identifiers are aculy03g01320.1, g8154.t1, tetur10g00460, rna18006, BGIBMGA010943-RA, and FBtr0339723). The letter ‘E’ indicates that this

intron position is conserved across other model organisms in Eukaryota; Dictyostelium purpureum (GenBank Accession XM_003283650), C. elegans

(NM_070390.9), H. sapiens (NM_018184.3), Monosiga brevicollis (XM_001744342.1), and A. thaliana (NM_114847.5). (d) Local protein alignment, after

panel c, revealing a candidate imprecise intron loss event in aculy04g10480 (which encodes a polymerase delta-interacting protein) in A. lycopersici

(insertion of S and N amino acid residues, top). Numbers denote positions in the A. lycopersici orthologue; sequence identifiers, in descending order,

are aculy04g10480.1, g5664.t1, tetur01g12540, rna9399, BGIBMGA013121-RA, and FBtr0078681. Panels (c) and (d) are drawn based on Malin output.

Other findings for intronic features and factors contributing to A. lycopersici’s genome reduction, and the supporting analyses, are presented in

Figure 2—figure supplements 1, 2, 4, 5 and 6.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Transposable element (TE) composition of the genome of A. lycopersici as well as that of four other animals.

Figure supplement 2. Gene and TE density along the major A. lycopersici genome scaffolds.

Figure supplement 3. Maximum likelihood phylogenetic analysis of 18 metazoan species including A. lycopersici.

Figure supplement 4. Intron gain rate across 18 metazoan species including A. lycopersici.

Figure supplement 5. Density plot of conserved intron positions identified by Malin in 18 metazoan species.

Figure supplement 6. Median length of all introns in 18 metazoan species.
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Gene family contractions predominate in A. lycopersici
As revealed by the clustering algorithm implemented in the CAFE software (Han et al., 2013), A.

lycopersici exhibits one of the highest rates of gene family contractions (1725), and by far the lowest

rate of gene family expansions (206), among the 18 metazoans we analyzed (Figure 3; input data for

the analysis are provided in Supplementary file 4 and Supplementary file 5). It also has the lowest

average expansion per gene family (Supplementary file 1 — ‘Table S4’ Tab). Of the 105 gene fami-

lies that were identified as ‘rapidly evolving’ in A. lycopersici, only four – as represented by

orthogroups (OGs) OG0000007 (containing an Asteroid domain: IPR026832), OG0000546 (contain-

ing a Major Facilitator Superfamily, or MFS, domain: IPR011701), OG0000583 (containing a Troponin

domain: IPR001978), and OG0002260 (hypothetical proteins) – were identified as expanding. The

remaining 101 families were all identified as contracting (Supplementary file 1 — ‘Table S5’ Tab).

Six of these contracting families did contain more than 10 members in A. lycopersici (OG0000000,

containing a Zinc finger C2H2-type domain: IPR013087; OG0000003, containing a Homeobox

domain: IPR001356; OG0000005, containing a Serine protease, trypsin domain: IPR001254;

OG0000014, containing a Cytochrome P450 domain: IPR001128; OG0000015, containing a G-pro-

tein-coupled receptor, rhodopsin-like domain: IPR000276; G0000025, containing a Homeobox

domain: IPR001356) and, except for OG0000014 containing members of the P450 family, which is

known to have only few orthologous relationships (Feyereisen, 2011), on average 72.2% of retained

A. lycopersici genes had an orthologue in the majority of chelicerate species (Supplementary file 1

— ‘Table S6’ Tab). Further, among the 101 rapidly contracted gene families we identified families

previously implicated in mite and insect xenobiotic detoxification (Dermauw et al., 2013a;

Dermauw et al., 2013b; Snoeck et al., 2018; Van Leeuwen and Dermauw, 2016) – carboxyl/cho-

line esterases (CCEs: OG0000021 and OG0001201), cytochrome P450 monooxygenases (CYPs:

OG0000014, OG0000030 and OG0000052), glutathione-S-transferases (GSTs: OG0000102,

OG0000124), short-chain dehydrogenases/reductases (SDRs: OG0000096), ATP-binding cassette
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Figure 3. CAFE analysis of 6487 metazoan orthogroups. The number of expanding orthogroups are indicated in

green font, while contracting orthogroups are indicated in red font. The number of rapidly expanding or

contracting orthogroups (p-value<0.05) is shown in parentheses and details regarding these orthogroups can be

found in Supplementary file 1 — ‘Table S5’ Tab and ‘Table S7’ Tab.
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(ABC) transporters (ABCs: OG0000051 and OG0000109) and MFS proteins (OG0000029,

OG0000071, OG0000099, OG0000187) (Supplementary file 1 — ‘Table S5’ Tab and ‘Table S7’

Tab). Given the role of these families in herbivory and host plant use (Després et al., 2007;

Heckel, 2014; Van Leeuwen and Dermauw, 2016), we analyzed a selection of these gene families

in detail (see the following sections).

We also found 315 orthogroups with no members in A. lycopersici but at least one member in all

other arthropod species. This is the highest number of absent orthogroups of all arthropods

included in our analysis, is ~2-fold more than those lacking in D. pteronyssinus (171), and more than

threefold those absent in T. urticae (101) (Supplementary file 1 — ‘Table S8’ Tab). A gene ontology

(GO) enrichment analysis for D. melanogaster members within these conserved arthropod

orthogroups without A. lycopersici members revealed that N-acetylglucosamine metabolic process

(GO:0006044), transferase activity (GO:0016740) and Golgi apparatus (GO:000579) were the most

highly significantly enriched GO terms within the Biological Process, Molecular Function and Cellular

Component GO categories, respectively (Supplementary file 1 — ‘Table S9’ Tab). Lastly, we found

that 427 D. melanogaster essential genes (Aromolaran et al., 2020) coded for members of 390

orthogroups. Forty-eight of these essential orthogroups did not have members within the Acari-

formes, the mite superorder comprising A. lycopersici, D. pteronyssinus, and T. urticae, while 21

(5.4%) orthogroups were absent in A. lycopersici but present in other acariform mites

(Supplementary file 1 — ‘Table S10’ Tab).

Furthermore, in a number of cases, orthogroups absent in A. lycopersici harbor conserved genes

with potential roles in the development of tissues or structures that are absent or modified in the

russet mite relative to other chelicerates or insects (see also Discussion, and Results section, ‘Loss of

highly conserved transcription factors’). For instance, orthologues of Drosophila unkempt, a known

developmental regulator, and Drosophila dachs, essential for appendage growth, are both absent in

A. lycopersici but present in all other arthropods (OG0002898 and OG0006002, respectively). Dachs

is known to interact with four-jointed (Buckles et al., 2001), which is also absent in A. lycopersici,

even though it is present in all insect and chelicerate species included in our analysis (OG0003305).

Finally, fat belongs, together with dachs and four-jointed, to the Fat/Hippo pathway and plays a key-

role in tissue proliferation and development in both invertebrates and vertebrates (Simon et al.,

2010). Although dachsous, another player in this pathway, is present (aculy04g02000 in

OG0001018), a fat orthologue could not be identified in A. lycopersici while this orthologue was

found in other acariform mites (OG0000383, Supplementary file 1 — ‘Table S7’ Tab).

Detoxification genes
We curated the A. lycopersici genome for sequences encoding established detoxification enzymes

(Després et al., 2007; Heckel, 2014; Van Leeuwen and Dermauw, 2016) including GSTs, CCEs,

and CYPs. In A. lycopersici, detoxification gene families are especially reduced, with a mere 4 GSTs,

8 CCEs, and only 23 CYPs (Table 2, Figure 4a, and Figure 4—figure supplements 1, 2 and

3; Van Leeuwen and Dermauw, 2016). In particular, the number of GSTs and CCEs is remarkably

low (see Discussion). This finding was corroborated by mining of the A. lycopersici transcriptome

assembly (the 4 GSTs and 8 CCEs present in the genome assembly were also present in transcrip-

tome assembly, with no other transcript contigs with homology to GSTs or CCEs identified). Of

note, half of the GSTs and almost all (7 out of 8) CCE genes in A. lycopersici are evolutionarily con-

served across chelicerates or arthropods (Figure 4—figure supplements 1 and 2). We also exam-

ined transporters of the ABC family and MFS proteins that have been implicated in detoxification

responses in arthropod species, although transporters in both of these families have diverse other

roles as well (de la Paz Celorio-Mancera et al., 2013; Dermauw et al., 2013a; Dermauw et al.,

2013b; Dermauw and Van Leeuwen, 2014; Govind et al., 2010). In contrast to genes encoding

‘classic’ detoxification enzymes like CYPs, CCEs, or GSTs, dramatic reductions in ABC transporter

genes were not observed. For example, A. lycopersici has 9 ABCC and 16 ABCG transporters, while

22 and 2 are present in M. occidentalis and 39 and 23 are present in T. urticae, respectively (Table 2,

Figure 4—figure supplement 4). Further, in contrast to the trend for contractions of the classic

detoxification gene families, we also observed two A. lycopersici expansions - comprising three

orthogroups, OG0000024, OG0000546, and OG0006109 - of the MFS, which is involved in mem-

brane-based transport of small molecules (Figure 4b, Figure 4—figure supplement 5; Pao et al.,

1998; Yan, 2015).
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Table 2. Detoxification enzyme (CYPs, GSTs, CCEs) and ABC transporter gene family size in A. lycopersici, T. urticae, M. occidentalis,

and D. melanogaster.

Detoxification enzyme A. lycopersici T. urticae M. occidentalis D. melanogaster

CYPs (total) 23 78* 63 86

CYP2 1 38 16 7

CYP3 17 9 23 36

CYP4 2 26 19 32

Mito Clan 3 5 5 11

GSTs (total) 4 31 13 37

Delta/Epsilon 1 16 3 25

Mu 2 12 5 0

Omega 0 2 3 5

Sigma 0 0 0 1

Theta 0 0 0 4

Zeta 1 1 1 2

Unknown 0 0 1 0

CCEs (total) 8 69 44 35

Dietary class (clade A-C) 0 0 0 13

Hormone class

D (integument CCEs) 0 0 0 3

E (secreted beta-esterases) 0 0 0 2

F (dipteran JHEs†) 0 0 0 3

F’ (chelicerate JHEs) 0 2 1 0

Neurodevelopmental class

H (glutactins) 0 0 0 4

J (AChE) 1 1 1 1

J’ (Acari-specific CCEs) 0 32 19 0

J’’ (Acari-specific CCEs) 0 22 15 0

K (gliotactin) 1 1 1 1

L (neuroligins) 2 5 5 4

M (neurotactin) 1 1 0 1

U (unchar. conserv. clade in Acariformes/L. polyphemus) 2 3 0 0

I (unchar. conserv. clade in insects) 0 0 0 2

No clear clade assignment 1 2 2 1

ABCs (total) 44 103 55 56

ABCA 4 9 8 10

ABCB-FT‡ 3 2 1 4

ABCB-HT§ 1 2 4 4

ABCC 9 39 22 14

ABCD 2 2 4 2

ABCE 1 1 1 1

ABCF 3 3 3 3

ABCG 16 23 2 15

ABCH 5 22 6 3

Unknown 0 0 4 0

Total 79 281 175 214
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Chemosensory and related receptors
To see if A. lycopersici’s specialized lifestyle has had a notable impact on chemoreception, we also

exhaustively mined and annotated the A. lycopersici genome for gustatory receptors (GRs), degen-

erin/epithelial Na+ channels (ENaCs), ionotropic receptors (IR) and transient receptor potential (TRP)

channels. Members of these four families have been previously documented to play important roles

in sensing environmental (chemical) cues in other arthropod species (Damann et al., 2008;

Hoy et al., 2016; Ngoc et al., 2016; Robertson et al., 2003; Rytz et al., 2013; Whiteman and

Pierce, 2008). The GR family, which contains seven transmembrane spanning regions (Touhara and

Vosshall, 2009) and is linked to the detection of sweet and bitter compounds (Silbering and Ben-

ton, 2010), was the most strongly reduced, with only two of these genes identified (Figure 4c, Fig-

ure 4—figure supplement 6), as opposed to the 447 intact GRs reported in T. urticae (Ngoc et al.,

2016). Further, only four ENaCs are present in the A. lycopersici genome (Figure 4d, Figure 4—fig-

ure supplement 7). Members of this family have recently been shown or suggested to be chemore-

ceptors for diverse compounds in insects and mites, but some family members likely have highly

conserved roles in acid sensing (Ben-Shahar, 2011; Silbering and Benton, 2010), as well as in the

perception of mechanical or osmotic cues (Ben-Shahar, 2011; Zelle et al., 2013). Of the two ENaCs

likely to play these conserved roles in T. urticae, one is in a well-supported clade with a single ENaC

in the tomato russet mite (aculy04g09940) (Figure 4 , Figure 4—figure supplement 7).

The IR family, which has been linked to odorant detection (Joseph and Carlson, 2015), humidity

and temperature sensing in D. melanogaster (Enjin et al., 2016), is markedly reduced in A. lycoper-

sici compared to most insects and M. occidentalis (Hoy et al., 2016). However, the numbers are sim-

ilar to those in T. urticae (each has four putative IRs with strong bootstrap support), including

homologues of the highly conserved IR25a and IR93a receptors (Figure 4—figure supplement 8).

Interestingly, A. lycopersici may have as few as six ionotropic glutamate receptors (iGluRs), as com-

pared to 14 in T. urticae (Figure 4—figure supplement 8); proteins in this family are related to IRs,

but have ultra-conserved roles in synaptic transmission in animals (Benton et al., 2009).

Finally, we found both expansions and contractions of the TRP family (Figure 4—figure supple-

ment 9). Like the other sequenced herbivorous mite, T. urticae, no orthologue of TRPA1 was

located, but orthologues for TRPgamma, NopmC, and TRPML are present, with three copies of

NopmC as compared to T. urticae’s two. Unlike T. urticae, members of the TRPP and TRPM clades

were completely absent in the russet mite, but strikingly, two putative members of the TRPV clade

(Inactive and Nanchung), previously thought to be lost in mites and ticks (Peng et al., 2015;

Regier et al., 2010), appear to be present.

Loss of highly conserved transcription factors
Among two vertebrates, one nematode and the 15 arthropod species we analyzed, A. lycopersici

has the lowest number (364) of transcription factor (TF) genes (Supplementary file 1 — ‘Table S11’

Tab). Nevertheless, when accounting for the total number of genes by species, the TF fraction in A.

lycopersici (3.55%) is higher than that of T. urticae (2.98%), and is within the range reported for

metazoan animals (4.7% ±1.4, Charoensawan et al., 2010). However, a lower number of the PFAM

TF domains Zinc finger (zf-C2H2 and zf-CCHC), Forkhead, Homeobox, Hormone (nuclear) receptor,

HLH, bZIP_2 and T-box were found in A. lycopersici compared to all other species included in our

analysis (Supplementary file 1 — ‘Table S11’ Tab). In addition, A. lycopersici orthologues of the

Hairy Orange protein family (hey, cwo and deadpan) have lost the Hairy Orange domain (Figure 4—

figure supplement 10), while an orthologue of D. melanogaster SoxNeuro could not be identified in

A. lycopersici despite being present in the spider and Acari genomes examined (Figure 4—figure

Numbers and class/clade/subfamily assignments were derived from previous studies (Grbić et al., 2011; Wei et al., 2020; Wu and Hoy, 2016) and this

study.

*Of the 81 T. urticae CYPs identified by Grbić et al., 2011, three CYP genes (tetur46g00150, tetur46g00170 and tetur47g00090) and tetur602g00010 were

considered as allelic variants and a pseudogene, respectively, and one new full-length CYP gene (tetur01g13730) was identified in this study.
†JHE, juvenile hormone esterases.
‡FT, full transporter.
§HT, half transporter.
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Figure 4. Gene family contractions and mini-expansions in A. lycopersici. Maximum likelihood phylogenetic analysis of selected detoxification and

chemosensory families among A. lycopersici, T. urticae, M. occidentalis and D. melanogaster. (a) Glutathione-S-transferases (GSTs); the different GST

classes (zeta, theta, delta, epsilon, omega, mu, sigma) are indicated with arches. (b) Major facilitator superfamily (MFS). (c) Gustatory receptors (GRs). (d)

Epithelial Na+ Channels (ENaCs). All trees are midpoint rooted and only topology is shown. Gustatory receptors for D. melanogaster as well as the

species-specific class A and B expansions identified in T. urticae are collapsed for clarity. Only bootstrap values above 70 are shown. Phylogenetic

reconstructions for gene families, or analyses of domain losses in A. lycopersici in arthropod conserved genes, are given in Figure 4—figure

supplements 1–20. For panels a-d, the detailed versions for each tree, including sequence identifiers, can be found in Figure 4—figure supplements

1, 5, 6 and 7, respectively. The alignments used for phylogenetic inference can be found in Supplementary file 7.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Phylogenetic analysis of GST protein sequences of A. lycopersici.

Figure supplement 2. Phylogenetic analysis of CCE protein sequences of A. lycopersici.

Figure supplement 3. Phylogenetic analysis of CYP protein sequences of A. lycopersici.

Figure supplement 4. Phylogenetic analysis of nucleotide-binding domains of ABC proteins of A. lycopersici.

Figure supplement 5. Phylogenetic analysis of MFS protein sequences of A. lycopersici.

Figure supplement 6. Phylogenetic analysis of GRs of A. lycopersici.

Figure supplement 7. Phylogenetic analysis of ENaCs of A. lycopersici.

Figure supplement 8. Phylogenetic analysis of ionotropic and related receptors of A. lycopersici.

Figure supplement 9. Phylogenetic analysis of TRP channels of A. lycopersici.

Figure 4 continued on next page
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supplement 11). Among nuclear receptors (NRs), we identified eight canonical NRs in the A. lyco-

persici genome (E78, HR3, EcR, two RXRs, ERR, FTZ-F1, HR96) that contained both a DNA-binding

domain (DBD) and a ligand-binding domain (LBD). However, no homologues of the evolutionary con-

served NRs HNF4, HR39, HR78, and HR83 (Bodofsky et al., 2017; Bonneton and Laudet, 2012),

nor a homologue of the T. urticae Photoreceptor-specific NR (PNR), were detected in the A. lycoper-

sici genome, even though HR78, HNF4, and PNR are present in D. pteronyssinus

(Supplementary file 1 — ‘Table S12.1’ Tab and ‘Table S12.2’ Tab). Further, for six nuclear receptors

(E75, DSF, HR4, HR38, HR51, and SVP) that are evolutionary conserved across arthropods and nor-

mally have a canonical (DBD+LBD) structure (Fahrbach et al., 2012; Grbić et al., 2011;

Hwang et al., 2014; Litoff et al., 2014), an LBD was not predicted for the respective A. lycopersici

homologues. LBDs for all of these except HR4 were predicted for both the D. pteronyssinus and T.

urticae homologues (Supplementary file 1 — ‘Table S12.1’ Tab and ‘Table S12.2’ Tab, Figure 4—

figure supplements 12–17).

The basic helix-loop-helix (bHLH) gene family is an ancient family found in fungi, plants, and ani-

mals, and members of this family are essential both for organisms to respond to environmental fac-

tors, as well as for cellular differentiation during development (Skinner et al., 2010). The D.

melanogaster achaete and scute bHLH genes play crucial roles in bristle development (Garcı́a-

Bellido and de Celis, 2009). Within the bHLH family group we found that T. urticae, M. occidentalis

and I. scapularis have five bHLH proteins with an achaete-scute InterPro domain (IPR015660), while

only three were found in both D. pteronyssinus (g4111.t1, g7028.t1 and g6164.t1) and A. lycopersici

(aculy01g18470, aculy01g18540 and aculy02g28230).

A number of other specific transcription factors that are highly conserved among most arthropods

are also absent from the A. lycopersici genome. For A. lycopersici, we were unable to identify pro-

boscipedia, a member of the Hox gene family. Members of this family (labial, proboscipedia, Hox3/

zen, Deformed, Sex combs reduced, fushi tarazu, Antennapedia, Ultrabithorax, abdominal-A, and

Abdominal-B) encode homeodomain transcription factors and act to determine the identity of seg-

ments along the anterior–posterior axis in arthropods (Hughes and Kaufman, 2002). Proboscipedia

is present in all chelicerate genomes (horseshoe crab, scorpions, spiders, mites and ticks) for which

Hox genes have been analyzed (Figure 5, Supplementary file 1 — ‘Table S13.1’ Tab and ‘Table

S13.2’ Tab, Supplementary file 6; Di et al., 2015; Hoy et al., 2016; Kenny et al., 2016;

Schwager et al., 2017), and is believed to be ancestral to all arthropods (Pace et al., 2016). Of par-

ticular note, proboscipedia is located in close proximity (<35 kb) of labial in Acariformes, but in Acu-

lops labial was the only Hox gene that was present on scaffold 2 (Supplementary file 1 — ‘Table

S14’ Tab). Furthermore, A. lycopersici lacks a homologue of the T-box encoding gene org-1 (Fig-

ure 4—figure supplement 18), which in D. melanogaster plays a pivotal role in diversification of cir-

cular visceral muscle (Schaub and Frasch, 2013). Finally, we also mined the A. lycopersici genome

Figure 4 continued

Figure supplement 10. Alignment of the Hairy Orange domain region from deadpan, hey and cwo proteins of A. lycopersici, D. pteronyssinus, and

T. urticae with deadpan, hey and cwo of D. melanogaster.

Figure supplement 11. Bayesian phylogenetic analysis of A. lycopersici Sox proteins.

Figure supplement 12. Alignment of the DNA-binding domain and the ligand-binding domain region of D. melanogaster E75 with those of T. urticae,

D. pteronyssinus and A. lycopersici.

Figure supplement 13. Alignment of the DNA-binding domain and the ligand-binding domain region of D. melanogaster HR4 with those of T. urticae

and A. lycopersici.

Figure supplement 14. Alignment of the DNA-binding domain and the ligand-binding domain region of D. melanogaster HR38 with those of

T. urticae, D. pteronyssinus and A. lycopersici.

Figure supplement 15. Alignment of the DNA-binding domain and the ligand-binding domain region of D. melanogaster HR51 with those of

T. urticae, D. pteronyssinus, and A. lycopersici.

Figure supplement 16. Alignment of the DNA-binding domain and the ligand-binding domain region of D. melanogaster SVP with those of T. urticae,

D. pteronyssinus, and A. lycopersici.

Figure supplement 17. Alignment of the DNA-binding domain and the ligand-binding domain region of D. melanogaster DSF with those of T. urticae,

D. pteronyssinus, and A. lycopersici.

Figure supplement 18. Phylogenetic analysis of A. lycopersici protein sequences with a T-box (PF00907) domain.

Figure supplement 19. Phylogenetic analysis of A. lycopersici UGT protein sequences.

Figure supplement 20. Phylogenetic analysis of A. lycopersici C1A proteases.
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for transcription factors and other genes involved in circadian rhythm (so-called ‘clock’ genes)

(Supplementary file 1 — ‘Table S15’ Tab). Orthologues of the helix-loop-helix TFs cycle, Clock and

tango and the bZIP TF vrille were identified in the A. lycopersici genome. However, we did not iden-

tify period and timeless, known negative regulators of Clock and cycle (Lee et al., 1999;

Peschel and Helfrich-Förster, 2011). Other circadian regulators, like the circadian photoreceptor

cryptochrome and the bZIP TF PAR-domain protein 1", were also not identified, even though these

are present in T. urticae (Hoy et al., 2016).

Horizontally transferred genes
We identified 18 putatively intact horizontal gene transfer (HGT) candidate genes

(Supplementary file 1 — ‘Table S16’ Tab), and performed subsequent phylogenetic analyses that

suggested that nine were acquired from a foreign source. Seven of these genes code for UDP-glyco-

syltransferases (UGTs), members of which have well documented roles in xenobiotic

detoxification (Snoeck et al., 2019). Phylogenetic inference with all T. urticae¸ D. pteronyssinus and

A. lycopersici UGTs (80, 27, and 7, respectively) indicated that the seven UGTs in the tomato russet

mite genome were the result of a lineage-specific expansion (Figure 4—figure supplement 19).

Although we did not observe a clear phylogenetic signature of HGT (Wybouw et al., 2016), our

phylogenetic reconstruction is consistent with previous studies which indicated that, prior to the for-

mation of the Acariformes lineage, an ancestral mite species laterally acquired a UGT gene copy

from a bacterial source (Ahn et al., 2014)(Wybouw et al., 2018).

Two intact genes of bacterial origin (aculy01g38350 and aculy04g02470) were also identified in

the tomato russet mite genome that are predicted to code for enzymes in the microbial and plant

pantothenate biosynthesis pathway (an apparent duplicate of aculy01g38350 was also uncovered,

but the coding sequence was disrupted, and it lacked expression, suggesting it is a pseudogene)

(Figure 6). PCR amplification linked both laterally acquired genes with either neighboring intron-

containing genes (aculy01g38350) or conserved eukaryotic genes (aculy04g02470 is located next to

aculy04g02480, which encodes a Gtr1/RagA protein); in addition, an aculy01g38350 transcript (Illu-

mina contig 1934) had a polyA tail, suggestive of eukaryotic transcription (Figure 6—figure supple-

ment 1). Pantothenate, or vitamin B5, is a life-essential compound, and whereas plants and bacteria

are able to synthesize this compound de novo, animals rely on dietary uptake. Genes for pantothe-

nate synthesis are present in tetranychid mites, and genomic and phylogenetic approaches have

pointed to an ancient HGT event prior to speciation within the Tetranychidae family for both genes.

Constrained tree tests rejected the topology where ketopantoate hydroxymethyltransferase of A.

lycopersici was the sister lineage to the group of spider mite biosynthetic proteins, but not for pan-

toate b-alanine ligase, suggesting that A. lycopersici acquired the ketopantoate hydroxymethyltrans-

ferase gene from a different bacterial donor species (Figure 6, Approximately Unbiased tests,

p-value cut-off of 0.01).
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M. occidentalis

I. scapularis

T. urticae

Tardigrada

Insecta

A. longisetosus

Nematoda

D. pteronyssinus

Figure 5. Hox genes in Acari and other ecdysozoan lineages. Hox orthology groups are indicated by different

colored boxes. Gray boxes with a dashed outline represent missing Hox genes. Some species have duplications of

Hox genes and these are indicated by multiple boxes that overlap. T. castaneum, H. dujardini and C. elegans were

selected as representative species for the Hox gene clusters of Insecta, Tardigrada and Nematoda, respectively.
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Figure 6. Maximum-likelihood phylogenetic inference for ketopantoate hydroxymethyltransferase and pantoate b-alanine ligase of A. lycopersici. (a)

Ketopantoate hydroxymethyltransferase. (b) Pantoate b-alanine ligase. Branches are color coded depending on their position within the tree of life;

plants: green, animals: orange, fungi: red and bacteria: blue. RAxML phylogenetic reconstructions are consistent with the evolutionary scenario of

independent horizontal transfer events of the two pantothenate biosynthetic genes in the A. lycopersici lineage, tetranychid spider mites, and

hemipterans. Only RAxML bootstrap support values higher than 70 are depicted and the scale bars represent 0.2 amino acid substitutions per site.

Informative nodes were identical and well-supported in another maximum-likelihood analysis (IQ-TREE; an asterisk indicates nodes with ultrafast

bootstrap values above or equal to 95 in the IQ-TREE analyses). Plant homologues were used to root both phylogenetic trees. The alignments used for

phylogenetic inference can be found in Supplementary file 7.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Integration of the ketopantoate hydroxymethyltransferase (aculy01g38350, panB) and pantoate b-alanine ligase (aculy04g02470,

panC) genes into the A. lycopersici genome.
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In T. urticae the acquisition of pantothenate biosynthetic genes is accompanied by the horizontal

gene transfer of two methylenetetrahydrofolate dehydrogenases (MTHFDs), enzymes of the folate

pathway and connected to the pantothenate biosynthesis pathway (Wybouw et al., 2018). Although

such a HGT was not detected in A. lycopersici, an expansion of MTHFDs was detected compared to

other mite species (OG0000706 in Supplementary file 1 — ‘Table S7’ Tab).

Secreted proteins
Small molecules or proteins produced in salivary glands are one mechanism by which arthropod her-

bivores can manipulate the defenses of their host plants. As A. lycopersici is able to potently sup-

press tomato defenses (Glas et al., 2014; Schimmel et al., 2018), we predicted its secretome, and

found that 612 of the 10,263 annotated A. lycopersici proteins (6%) are putatively secreted

(Supplementary file 1 — ‘Table S17’ Tab). Only one of the more than 600 secreted A. lycopersici

proteins (aculy02g17370, a glycosyl hydrolase, family 13, IPR013780) had a best BLASTp hit with a T.

urticae protein that was previously identified in T. urticae saliva using an LC-MS/MS

(Jonckheere et al., 2016). More than half (351) of these proteins were absent in orthogroups in

non-herbivorous arthropod species, and are less than 350 amino acids in length. Only 15 of these

351 proteins belonged to an orthogroup with more than one member in A. lycopersici (OG0006384,

OG0009325, OG0009954 and OG0010904). Among these, OG0009325 contains three short A. lyco-

persici proteins <90 amino acids in length (aculy01g11450, aculy01g12600, and aculy01g12690). Of

note, the gene encoding the single T. urticae representative in this group, tetur24g01070, was previ-

ously found to be overexpressed in the T. urticae salivary gland region (Jonckheere et al., 2016).

OG0006384, on the other hand, contains cysteine peptidases (Peptidase C1A, papain

C-terminal domain; InterPro IPR000668), which are enzymes reported to have key roles in plant-path-

ogen/pest interactions (Shindo and Van der Hoorn, 2008), and for which two lineage-specific

expansions are present in A. lycopersici (Figure 4—figure supplement 20).

Small RNA pathways
We also characterized components of small RNA pathways that might be of potential relevance for

agricultural control methods. The A. lycopersici genome harbors highly conserved miRNA sequen-

ces, such as let-7, miR-1, and miR-9a (Supplementary file 1 — ‘Table S18’ Tab). However, in con-

trast to T. urticae, a clear A. lycopersici homologue of Exportin-5, a dsRNA-binding protein

mediating nuclear transport of pre-miRNAs (Bohnsack et al., 2004; Kim, 2005), is lacking, suggest-

ing a deviating miRNA pathway in A. lycopersici. In line with the latter hypothesis, we could not

identify an A. lycopersici homologue of Staufen, while this gene is present in T. urticae (Grbić et al.,

2011; Supplementary file 1 — ‘Table S19’ Tab) and other arachnids (OrthoDb v 9.1, group

EOG091G07A0 and EOG090Z04UZ, respectively) and was shown to negatively modulate miRNA

activity in the nematode C. elegans (Ren et al., 2016).

The A. lycopersici genome contains, in line with T. urticae, clear homologues of Dicer-1, Loqua-

cious, Drosha and Pasha and an expansion of the AGO1 and PIWI/AGO3 subfamilies. Of note, we

found one A. lycopersici protein (aculy02g00240) that was highly homologous to the T. castaneum

Dicer-1 enzyme (bitscore of 294) and that contained both an RNA-binding domain (PAZ-domain,

cl00301) and the RNAse III domain (cd00593) while two A. lycopersici proteins (aculy02g04810 and

aculy02g19970) showed reciprocal BLASTp hits with T. castaneum Dicer-2 and Dicer-1, respectively,

but were relatively short (about 500 amino acids (aa) compared to 1726 aa for aculy02g00240) and

only contained the RNAse III domain. However, the genes encoding these proteins are located next

to a sequencing gap in the current assembly and it could be that gene-models for these Dicer-like

enzymes are not complete. Similar to T. urticae, we could not identify clear homologues of R2D2

and AGO2 (Grbić et al., 2011; Supplementary file 1 — ‘Table S19’ Tab), suggesting that the siRNA

pathway is either absent or non-canonical in both mite species (Okamura et al., 2011).

Further, important players in the PIWI-interacting RNA (piRNA) pathway (Iwasaki et al., 2015)

were identified in the A. lycopersici genome (PIWI/AGO3, Zucchini, Armitage, Maelstrom and SoYb;

Supplementary file 1 — ‘Table S19’ Tab), while homologues of Armitage and Zucchini could not be

identified in T. urticae, which is in line with the recently suggested non-canonical piRNA pathway in

T. urticae (Supplementary file 1 — ‘Table S19’ Tab, Huang et al., 2014; Mondal et al., 2018b).
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Finally, RNA-dependent polymerases are known to be essential for the amplification of the RNA

silencing effect (systemic RNAi) in C. elegans and some plants (Tomoyasu et al., 2008). Genes

encoding these enzymes are absent in insect genomes while 1 to 5 have been reported in Acari

genomes (Grbić et al., 2011; Hoy et al., 2016; Joga et al., 2016; Mondal et al., 2018a;

Zong et al., 2009). Surprisingly, we could not identify RNA-dependent polymerase genes in the A.

lycopersici genome (Supplementary file 1 — ‘Table S19’ Tab), which might indicate that these

genes have been lost since the divergence of Eriophyoidea from other acariform lineages. However,

as systemic RNAi does seem to occur in some insect orders, for example, Coleoptera (Joga et al.,

2016), we cannot exclude that systemic RNAi might also occur in A. lycopersici.

Discussion
Genome size varies enormously within the Acari. While tick genomes can be larger than 2 Gb (Gulia-

Nuss et al., 2016), those of mite species belonging to the Acariformes are small (Gregory and

Young, 2020). This is especially true for mites within the order Sarcoptiformes, including dust mites

and scabies mites, for which genomes of lengths ~55-60 Mb have been reported (Chan et al., 2015;

Rider et al., 2015). Eriophyoid mites like A. lycopersici have traditionally been placed in the order of

the Trombidiformes, but recent work suggests they belong to the Sarcoptiformes, or a sister taxon

(Arribas et al., 2020; Bolton et al., 2017; Klimov et al., 2018; Xue et al., 2017). Our work supports

this conjecture, as within Acariformes, A. lycopersici fell in a well-supported clade with the house

dust mite D. pteronyssinus (Sarcoptiformes), as opposed to T. urticae (Trombidiformes) (Figure 2—

figure supplement 3).

Mirroring that of its closest sequenced relatives, the genome of A. lycopersici is tiny. At 32.5 Mb,

it is the smallest reported to date for an arthropod and among the smallest metazoan genomes

sequenced so far (Slyusarev et al., 2020). Its size is also consistent with cytological data that erio-

phyoid mites have few chromosomes that are extremely small (Helle and Wysoki, 1996; Helle and

Wysoki, 1983) and with several trends. In broad terms eukaryotic genome sizes correlate positively

with larger cell (nuclei) sizes, and vary inversely with cell division times (Elliott and Gregory, 2015;

and references therein). While little is known about the minimal cell sizes for A. lycopersici, the whole

mite is smaller than many single eukaryotic cells and neuron somata sizes of less than 1 mm have

been observed for another eriophyoid mite of similar size (Whitmoyer et al., 1972). A. lycopersici is

also half the size (or less) of mites like D. pteronyssinus, and its minute physical stature and genome

size are consistent with a recent analysis that revealed a positive correlation within Acari between

organismal size and haploid DNA content (Gregory and Young, 2020). The A. lycopersici genera-

tion time, a potential (albeit imperfect) proxy for cell cycle progression, is also near the minimum

reported for other mites, or for microinsects (Danks, 2006; Kawai and Haque, 2004; Rice and

Strong, 1962). The force(s) that have led to the small physical and genome size of A. lycopersici are

not known. However, russet mites can use their short stylets only to feed on plant epidermal

cells (Royalty and Perring, 1988). This is in contrast to many other (larger) herbivores, including

other herbivorous mites like T. urticae (Bensoussan et al., 2016), that can reach and consume the

photosynthetically active, sugar-rich mesophyll cells (Borsuk and Brodersen, 2019; Koroleva et al.,

2000) underneath the epidermis. The nutrient-poor diet of A. lycopersici may favor small physical

size, and under some conditions, nutrient limitations have been proposed to select specifically for

low DNA content (Hessen et al., 2010a). Regardless, the rapid generation time of A. lycopersici

facilitates dense populations on its host (Figure 1c,d), and outcrossing by deposition of spermato-

phores (Al-Azzazy and Alhewairini, 2018) in the environment may approximate panmixia, and

hence high effective population sizes, and therefore more efficient selection against the accumula-

tion of non-coding sequences associated with large eukaryotic genomes (Lynch et al., 2011). There-

fore, a collection of life history features may underlie the streamlining observed in the A. lycopersici

genome.

In addition to a very low content of repetitive sequences, a derived genomic organization under-

pins the reduced A. lycopersici genome. As compared to the ~3 fold larger T. urticae genome

(Grbić et al., 2011), the relative intergenic and intronic fractions are reduced, while compared to

the ~2 fold larger D. pteronyssinus genome (Waldron et al., 2017), the intergenic fraction is nearly

identical, while the genomic percent in introns is less. The latter reduction reflects massive intron

loss in A. lycopersici, as 83.7% of genes were intronless, a value more than threefold higher than for
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T. urticae or D. pteronyssinus. As observed in other intron-poor species (Mourier and Jeffares,

2003), we observed greater retention of 50 introns in A. lycopersici, potentially a consequence of

intron loss via 30-biased intron removal by recombination with cDNAs following reverse transcription

of spliced transcripts (also known as Reverse Transcriptase-Mediated Intron Loss, or RTMIL)

(Mourier and Jeffares, 2003; Roy and Gilbert, 2005). Alternatively, or in concert, the pattern may

reflect retention of 50 introns rich in cis regulatory sequences (Roy and Gilbert, 2005), an explana-

tion consistent with A. lycopersici’s relatively long median intron lengths as compared to other

insects and mites with compact genomes (Table 1, Figure 2—figure supplement 6). Previously,

comparisons of intron loss events among close relatives, where few mutational steps have occurred,

have been important in establishing plausible mechanisms of intron loss (Yenerall et al., 2011;

Zhu and Niu, 2013). Such analyses are challenging to perform for A. lycopersici, as the time of diver-

gence from the most recent common ancestor with a sequenced genome is hundreds of millions of

years. Nevertheless, for a set of A. lycopersici intron losses in highly conserved genes – for which

confident assignment of intron positions could be made in multi-species protein alignments – the

overwhelming majority of loss events were consistent with precise intron excisions (i.e. Figure 2c).

This pattern is consistent with a major role for intron removal via RTMIL, which has also been sug-

gested to be a frequent mechanism underlying intron loss events in the genomes of (comparatively)

closely related Drosophila species (Yenerall et al., 2011). However, a more prominent role for pre-

cise (or nearly precise) genomic deletions of introns as a loss mechanism in A. lycopersici cannot be

ruled out, especially as our analysis necessarily involved conserved genes for which imprecise intronic

deletions would likely be highly detrimental. A. lycopersici also has a very rapid generation time, and

as it is evolutionary distant from its closest sequenced relatives (Figure 3), many lineage-specific

uncommon mutation events (such as genomic deletion of introns) have potentially been sampled.

Currently, more closely related genomes are needed to distinguish between RTMIL or genomic dele-

tions as the predominant driver of intron loss in A. lycopersici, as well as to assess contributions of

other possible mechanisms – for instance, retrotransposition by target-primed reverse transcription

of spliced transcripts (Cordaux and Batzer, 2009; Wang et al., 2014), with subsequent loss of

source, intron-containing loci. Likewise, more closely related genomes will be critical to establish the

timing of intron losses. As additional genomes in this lineage become available, eriophyoid mites

promise to be an attractive system to investigate the dynamics of intron evolution.

Apart from the dearth of introns, the complement of coding genes in the A. lycopersici genome

deviates from that of relatives with larger genomes, and seems to be associated with its reduced

morphology and distinct life history (Lindquist and Oldfield, 1996). Compared to other arthropods,

a mere handful of gene families were expanded, including one that encodes a troponin domain.

While this result was unexpected, as troponin performs a conserved role in muscle contraction and is

single or low copy number in most arthropods, in a transcriptome assembly of Aceria tosichella, a

non-galling eriophyoid pest of wheat and other grasses, an expansion of troponin-encoding genes

was also observed (Gupta et al., 2019). Possibly, this expansion may be related to the derived body

musculature of eriophyoids, as their skeletal and peripheral musculature is very pronounced, with

the latter enabling the maintenance of body turgidity (Nuzzaci and Alberti, 1996). Nevertheless,

the dominant force in shaping the genic composition of A. lycopersici is loss, including for genes

involved in highly conserved metazoan or arthropod cell processes (e.g. for the Golgi apparatus), as

well as gene families and specific genes (or conserved domains) involved in many aspects of arthro-

pod development and physiology. The latter include Hairy Orange domain proteins, nuclear recep-

tors, and other transcription factors that have broadly conserved roles in animal development

(Holland, 2013; Iso et al., 2003; Pflugfelder et al., 2017; Sebé-Pedrós and Ruiz-Trillo, 2017;

Shimeld et al., 2010), and whose reduction (or simplification by domain loss) in A. lycopersici may

be related to the eriophyoid body plan. For example, in contrast to other mites, A. lycopersici has

no orthologue of the T-box gene org-1, which in D. melanogaster plays a pivotal role in diversifica-

tion of circular visceral muscle (Schaub and Frasch, 2013). This musculature is reduced in the Erio-

phyoidea (Nuzzaci and Alberti, 1996; Whitmoyer et al., 1972) compared to other mites

(Alberti and Crooker, 1985; Coons, 1978; Mathieson and Lehane, 2002), as it also is in studied

microinsects (Polilov, 2015). Furthermore, in most chelicerates, the Hox gene pb is expressed in the

pedipalps and in three to four pairs of legs (Barnett and Thomas, 2013; Schwager et al., 2015;

Telford and Thomas, 1998). Whether the lack of pb in the A. lycopersici genome is related to the

reduction in legs in Eriophyoidea is unknown; however, pb has also been lost in other ecdysozoan
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animals such as Nematoda (Aboobaker and Blaxter, 2003) and Tardigrada (Smith et al., 2016;

Yoshida et al., 2017), lineages that either lack legs (Nematoda) or in which leg formation has been

suggested to be highly aberrant (‘walking heads’, Maderspacher, 2016) from the panarthropodan

ancestor (Tardigrada, Smith and Goldstein, 2017). Further, in D. melanogaster mutants of both

dachs and four-jointed, each of which is absent in A. lycopersici, have similar phenotypes including

shortened legs (Buckles et al., 2001). A. lycopersici-specific losses in cell cycle regulatory genes like

unkempt and fat are also candidates to underlie allometric changes in tissues and organs, a general

feature of diminutive mites (like A. lycopersici) and microinsects (Danks, 2006; Polilov, 2015).

A remarkable feature of the genome of T. urticae is the presence of hundreds of genes acquired

from fungal or bacterial sources, including microbe-derived UGTs (Wybouw et al., 2018). While a

modest number of UGTs of putative bacterial origin are present in A. lycopersici, horizontally trans-

ferred genes were otherwise absent, except for two genes in the pathway for the synthesis of panto-

thenate, an essential B vitamin. Previous studies have shown that pantothenate biosynthetic genes

have been laterally transferred into tetranychid mites, the silverleaf whitefly, and nematodes

(Chen et al., 2016; Craig et al., 2009; Wybouw et al., 2018)(Ren et al., 2020). In A. lycopersici,

the HGT event of ketopantoate hydroxymethyltransferase appears to be distinct from the transfer in

the tetranychid mite lineage. The apparent independent HGT of pantothenate biosynthetic genes in

Acariformes, coupled with acquisitions in insect lineages, is a strong signal of adaptive significance

for de novo pantothenate biosynthesis in arthropod herbivores.

Finally, nowhere were reductions in A. lycopersici gene families more striking than in genes asso-

ciated with host plant use. Recently, the importance of chemosensory receptors in host plant use

and breadth has attracted intense interest (Gloss et al., 2019; Ngoc et al., 2016). A. lycopersici

completely lacks the expansion of chemosensory receptors reported (to varying extents) in nearly all

other arthropods, as only a handful of members are present for any of the characterized chemosen-

sory receptor families. This finding is consistent with a reduced role for chemosensation in specialist

herbivores, although it may also reflect a more general loss of sensory structures during miniaturiza-

tion, as the number of sensilla (which include sites of chemosensation) are dramatically reduced in

microinsects (Polilov, 2015), as well as in eriophyoid mites (Figure 1a,b; Lindquist and Oldfield,

1996). Next to chemosensory receptor genes, the detoxification gene complement of A. lycopersici

is minimal compared to the generalist herbivore T. urticae (Dermauw et al., 2013b; Grbić et al.,

2011), as well as to insect herbivores (Rane et al., 2019). This was particularly striking for CCEs and

GSTs, for which lineage-specific expansions are absent, and for which most members are in highly

conserved clades that likely perform more general (non-detoxification) roles. Several of the few nota-

ble lineage-specific expansions in A. lycopersici do involve subfamilies of the MFS. However, while

some MFS genes are differentially regulated upon host shift or xenobiotic exposure in T. urticae

(Dermauw et al., 2013b), MFS proteins have diverse roles, and additional work is needed to assess

if MFS mini-expansions in A. lycopersci are associated with host use.

The minimal detoxification gene repertoire and the paucity of chemoreceptor genes in A. lyco-

persici are in line with ecological specialization theory that predicts that herbivores with a narrow

host range only need a limited number of environmental response genes (Berenbaum, 2002;

Rane et al., 2019). However, although A. lycopersici has a narrow host-range relative to the spider

mite T. urticae, it can be found on related solanaceous plant species (Perring and Farrar, 1986), as

well as on several hosts outside the nightshade family (Perring and Royalty, 1996; Rice and Strong,

1962). Hence, the extent to which this mite has specialized on these hosts is unclear. Nevertheless,

the minimal detoxification and chemoreception repertoire gene sets support the idea that modifica-

tion of the local environment by defense suppression may alter selection imposed by the environ-

ment, thereby reducing the requirement for environmental response genes (Laland et al., 2016).

How eriophyoids manipulate their hosts is unknown, but likely involves orally delivered salivary

metabolites (De Lillo and Monfreda, 2004), or alternatively secreted proteins, termed effectors.

Currently, the molecular nature of herbivore effectors, and their mechanisms of action, are poorly

understood (Blaazer et al., 2018; Erb and Reymond, 2019). However, proteins secreted by the lar-

vae of several lepidopteran species have been shown to attenuate plant defenses, including by phys-

ical interaction with a component of the JA signal transduction pathway (Chen et al., 2019;

Musser et al., 2002). Further, a salivary ferritin from the whitefly Bemisia tabaci suppresses oxidative

signals in tomato, and blunts JA-mediate defense responses (Su et al., 2019), and expression of sali-

vary products of unknown molecular function from spider mites in plants was recently demonstrated
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to impair defense signaling downstream of the phytohormone salicylic acid (Villarroel et al., 2016),

and may also act to suppress JA signaling (Schimmel et al., 2017). The divergent molecular nature

of these effectors mirrors findings from plant-pathogen (Toruño et al., 2016) and plant-nematode

(Rehman et al., 2016) systems, where secreted effectors can be highly species-specific, hindering

identification based solely on sequence information. These findings highlight the need for functional

studies to establish if secreted proteins (or metabolites) in A. lycopersici saliva underlie this mite’s

ability to potently suppress tomato defenses. More generally, as additional genomes of herbivores

that induce or suppress plant defenses become available – and that vary in their magnitude and

mechanisms of host suppression – the A. lycopersici genome will serve as a key reference for com-

parative studies to test hypotheses surrounding the evolution of gene families that respond to or

modulate plant defenses.

Conclusion
At only 32.5 Mb, the A. lycopersici genome is the smallest sequenced arthropod genome to date. In

contrast to its closest sequenced relatives, the majority of genes lack introns, few repetitive sequen-

ces are present, and many genes conserved in most animals are absent. Compared to its larger rela-

tives, the simplification of A. lycopersici’s body plan, and that of eriophyoid mites more generally, is

reminiscent of that observed in other microarthropods (Maderspacher, 2016). The compressed

genome architecture of A. lycopersici is in line with genome streamlining concepts (Hessen et al.,

2010a; Hessen et al., 2010b), some of which speculate that maintaining a high growth rate in nutri-

tionally limited environments (in this study the plant epidermis) may be a driver for the evolution of

compact genomes. Further, the extreme reduction of several environmental response gene families

aligns with predictions that follow from ecological specialization theories (Devictor et al., 2010;

Futuyma and Moreno, 1988; Laland et al., 2016) since the mite’s suppression of plant defenses

may allow for such families to minimize during the course of its evolution. Finally, this first eriophyoid

genome provides a resource for methods of early detection of mite infestations using molecular

markers, and its reduced complement of defense genes – a common source of pesticide resistance –

may also reveal novel Achilles’ heels for the control of A. lycopersici. But foremost, this genome is a

milestone for accelerating our understanding of the evolutionary forces underpinning metazoan life

at the limits of small physical and genome size.

Materials and methods

Collection of DNA for genomic sequencing
A. lycopersici individuals were reared in insect cages (BugDorm-44590DH, Bug Dorm Store, Mega-

View Science, Taichung, Taiwan) in a walk-in growth chamber on tomato plants (Solanum lycopersi-

cum, cv. Castlemart) that were between 3 and 6 weeks old. The climate room was set to day/night

temperatures of 27˚C/25˚C, a 16/8 hr light/dark regime and 60% relative humidity. Harvesting of A.

lycopersici mites was performed by detaching highly infested tomato leaflets and placing them in

1.5 mL Eppendorf tubes. Eppendorf tubes were filled with water and mites (adults, juveniles and

eggs) were washed off by rinsing and briefly vortexing the tubes. The tubes were then centrifuged

(13,000 rpm for 2 min), after which bulk tomato tissue was removed and water was pipetted away.

Contamination from tomato tissue was limited to small amounts (less than ~5%) of material consist-

ing primarily of tomato trichomes. Resulting ‘pellets’ of russet mites were frozen in liquid nitrogen

and stored at �80˚C until DNA was extracted.

DNA sequencing and genome assembly
DNA was extracted using a modified version of the CTAB method (Doyle and Doyle, 1987). Sixty

mg of DNA dissolved in TE buffer was sent to Eurofins MWG Operon (Ebersberg, Germany) for

sequencing. Sequencing reads were produced with the standard Roche/454 sequencing protocol on

the GS FLX system running Data Analysis Software Modules version 2.3. Three different libraries

were prepared and sequenced in accordance with the recommendations of Roche/454: random

primed shotgun, 8 kb paired-end, and 20 kb paired-end. From the shotgun library the mean length

was 503 bp, while for the 8 kb and 20 kb libraries the mean lengths were 366 bp and 359 bp,

respectively. Sequencing reads were trimmed to remove adapters and low-quality bases, as well as
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to split each paired-end read into a forward and reverse pair; this yielded a total of 1,854,028 shot-

gun reads, 1,076,303 reads from the 8 kb library, and 1,274,414 reads from the 20 kb library. Con-

tigs were assembled by the in-house pipeline of Eurofins MWG Operon (Ebersberg, Germany)

based on Newbler 2.6 (Margulies et al., 2005). Following scaffolding and filtering for plant (tomato),

prokaryotic, and adaptor sequences, a reference for the nuclear genome was generated that con-

sisted of seven scaffolds (scaffolds 1, 2, 3, 4, 5, 11, and 17) with a total length of 32.53 Mb (the New-

bler ‘peakDepth’, or coverage, for the assembly was 38). An additional scaffold (scaffold 6) of length

13.5 kb consisted of the mitochondrial genome.

Genome size and completeness estimations
A k-mer size estimate of the A. lycopersici genome was performed using the genomic 454 sequence

reads and Jellyfish 2.2.6 (Marçais and Kingsford, 2011). Following the recommendations of T. Nish-

iyama (http://koke.asrc.kanazawa-u.ac.jp/HOWTO/kmer-genomesize.html), genome size was esti-

mated by running Jellyfish (Marçais and Kingsford, 2011) with the following settings ‘-t 24 iC -s

20M’ for all odd k-mer values from 17 to 31, with averaging of the results provided from the eight

different estimates. Completeness of the genome was also assessed using CEGMA 2.5 (Parra et al.,

2007) as well as BUSCO v3 (Simão et al., 2015), as well as with an alignment of the A. lycopersici

Illumina-based transcriptome assembly to the genomic scaffolds (see below, and Results section).

RNA collection, 454 cDNA sequencing, and transcriptome assembly
Mixed developmental stages (adults, juveniles, and eggs) were collected from tomato leaflets as was

done for DNA preparation. Similar to DNA extraction, small amounts of tomato trichome contamina-

tion were evident, but at low levels. RNA was extracted using a Qiagen RNeasy kit (Qiagen, Hilden,

Germany) according to the manufacturer’s instructions. Forty-five mg of RNA was provided to Euro-

fins MWG Operon for library preparation according to standard Roche protocols. Following poly(A)

selection and strand-specific cDNA library preparation, the library was analyzed on a Shimadzu Mul-

tiNA microchip electrophoresis system (Shimadzu, Kyoto, Japan) to verify that the gel size selection

was in the range of 500–800 bp. A total of 1,370,892 sequencing reads were collected using a Roche

GS FLX system employing the Titanium series chemistry. After trimming of cDNA reads to remove

low quality reads and adapter sequences, the remaining 1,370,005 reads were assembled using

MIRA (Chevreux et al., 2004).

RNA collection, Illumina sequencing, and transcriptome assembly
RNA was extracted from eight A. lycopersici pools using the Qiagen RNeasy purification kit (Qiagen,

Hilden, Germany) with the following adaptations: Step 3: 50 ml of RNEasy lysis buffer (RLT) + ß -mer-

captoethanol were added to the mite pool in a 1.5 mL tube, followed by 1–2 min of cell lysis per-

formed by twisting and turning a 1.5 mL-tube-pestle. Three hundred ml of RLT + -mercaptoethanol

was then used to rinse the pestle; Step 11: RNA was eluted in 30 ml RNAse-free water and stored on

ice. All samples were stored at �20˚C. Strand-specific paired-end RNA library preparation and

sequencing were carried out by the Centro Nacional de Análisis Genómico (Barcelona, Spain) to

yield a total of 86.6 million 101 bp read pairs.

To construct a transcriptome assembly from the Illumina RNA-seq reads, the reads were first

aligned to the A. lycopersici reference genome sequence using STAR 2.5.2b (Dobin et al., 2013)

with the following settings: twopassMode Basic, sjdbOverhang 100, and alignIntronMax 20000.

Reads that did not align to the reference were subsequently aligned against the tomato genome

release SL 2.50 (Tomato Genome Consortium et al., 2012) to filter out contamination from the

host plant with the same settings used to align to the mite genome except for alignIntronMax, which

remained unspecified. The reads that did not align to the tomato genome were pooled with the

reads that aligned to the A. lycopersici genome and imported into CLC Genomics Workbench 9.0.1

(https://www.qiagenbioinformatics.com/), where they were trimmed using the default parameters

(quality score limit 0.05 and a maximum of two ambiguous nucleotides) before being assembled

with the default settings and a minimum contig length of 200. The resulting 13,428 transcript

sequences were aligned back to the A. lycopersici genome assembly using BLAST 2.5.0+

(Camacho et al., 2009) to provide a measure of the genome completeness for transcribed regions.

Of the 243 transcripts that did not align, 23 had no hits in any database, and 108, 84 and 20
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appeared to be from bacterial, plant and fungal sources, respectively. Only eight had homology to

arthropod sequences present in the NCBI NR, NT, Other Genomic, RefSeq Genomic, RefSeq RNA,

Representative Genomes, and WGS databases (downloaded January 9, 2017).

Annotation of the Aculops lycopersici genome
A first-pass annotation was produced using EuGene (Schiex et al., 2001) specifically trained for the

studied genome using the 454 transcript read data as a guide. As a consequence of the close prox-

imity of adjacent genes (see Results and Table 1), we observed that transcript contigs often merged

adjacent genes, creating apparent chimeric genes. To circumvent this issue, only junctions spanning

introns as assessed from the aligned 454 data were kept after mapping. Besides using transcript

data, protein homology to the invertebrate section from RefSeq, curated proteins from SWISSprot

and the proteome from T. urticae were used.

Subsequently, the annotation was revised in several ways. The deep dataset of Illumina RNA-seq

reads was aligned to the genome using the default settings of Bowtie 2.2.3 (Langmead and Salz-

berg, 2012)/TopHat 2.0.12 (Kim et al., 2013), as well as STAR 2.5.2b (Dobin et al., 2013) with the

parameters described previously. Transcripts from the CLC transcriptome assembly were also

located on the genome using BLAT 36 (Kent, 2002). Then, Cufflinks 2.2.1 (Trapnell et al., 2013)

and TransDecoder (Release 20140704) (Haas et al., 2013) were used to identify additional ORFs of

over 300 bp in length that had not been detected by EuGene. Resulting gene models were then

added where supported by the strand-specific RNA-seq reads and/or transcript alignments. The

compact nature of the A. lycopersici genome, coupled with the finding that most genes were intron-

less (Table 1), made it feasible to then manually inspect all gene models against the aligned Illumina

RNA-seq read data. This inspection step was performed using the Integrative Genomics Viewer

(Robinson et al., 2011), which allowed simultaneous display of gene models and RNA-seq read

alignments. Manual adjustments to gene models, where required, were performed using Genome-

View N29 (Abeel et al., 2012). Additionally, members of specific gene families were expertly anno-

tated as described in the section ‘Comparative analyses with specific gene families’, with resulting

adjustments also incorporated in the final annotation. GenomeTools 1.5.10 (Gremme et al., 2013)

was used to sort, correct phase information, and validate the resulting GFF3.

Genome metric calculations
Coding gene numbers and the percentages of intronless genes were calculated with the ‘stat -exon-

numberdistri’ command of the GenomeTools 1.5.6 package (Gremme et al., 2013) using the

respective GFF3 annotation files as input (Table 1). Where multiple isoforms were present for a

gene, only the longest isoform was used for this and subsequent analyses. Regions of the respective

genomes were then classified as coding, intergenic or intronic by parsing the location of coding

sequences (CDS) from the respective GFF3 annotation files; due to the unreliability of untranslated

sequence prediction or their complete absence in some annotations, these regions were not consid-

ered. In instances where CDS sequences overlapped, their coordinates were merged so that no

region of the genome would be counted multiple times. Regions of the genome between the start

and end of the CDS sequences of adjacent genes were classified as intergenic, while regions of the

genome within genes that did not fall into CDS coordinate blocks were classified as intronic (in

instances where genes were located within the introns of other genes, the CDS sequences of the

genes within the introns were classified as coding, with the remaining portion counted as intronic).

Transposable element annotation
The consensus of the repeated DNA (�2 copies) in the genome was constructed by employing

RepeatScout (v.1.0.5) (Price et al., 2005). The repeats that were �90% identical with a minimum

overlap of 40 bp were assembled using CAP3 (Huang and Madan, 1999). Gene families were identi-

fied based on homology with cellular genes by employing tBLASTx 2.2.28+ (Altschul et al., 1997)

searches against the Refseq mRNA database at NCBI and BLASTn 2.2.28+ (Altschul et al., 1997)

searches against the annotated genes in the A. lycopersici genome. All candidate gene families

were filtered upon manual verification. The remaining repeats were classified by REPCLASS

(Feschotte et al., 2009) and RepeatMasker (Smit et al., 2013) protein searches (http://www.repeat-

masker.org/cgi-bin/RepeatProteinMaskRequest). The repeats that were classified based on the
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structure or TSD module of REPCLASS were manually verified. The criteria of requiring at least one

defined end were used to classify a repeat as a TE. To identify if the elements had at least one

defined end, the unclassified repeats (�65 bp) were aligned with the respective copies with

extended flanking sequences using MUSCLE (Edgar, 2004). Repeats were classified and full-length

copies were extracted when possible. To identify low copy non-LTR retrotransposons, the non-LTR

proteins from the related mite T. urticae were used as queries in homology-based tBLASTn 2.2.25+

(Altschul et al., 1997) searches against the A. lycopersici genome. To identify the genomic cover-

age, the curated repeat library was used to mask the genome using RepeatMasker (v 4.0.5)

(Smit et al., 2013). The final RepeatMasker output was parsed using parseRM.pl (Kapusta et al.,

2017; Kapusta, 2017) to identify the contribution of TEs (Figure 2—figure supplement 1,

Supplementary file 1 — ‘Table S1’ Tab). Last, a gene and TE density plot was constructed using kar-

yoploteR version 1.14.0 (Gel and Serra, 2017) and the GFF3 annotation file of the A. lycopersici

genome (Table 1—source data 1) and the RepeatMasker output (Supplementary file 1 — ‘Table

S2’ Tab), respectively.

Analysis of intronic features
The longest protein isoforms for the following organisms were extracted for orthologue identifica-

tion: A. lycopersici (current genome), Anopheles gambiae AgamP4.7 (Holt et al., 2002), Bombyx

mori ASM15162 (Ensembl release 37) (Mita et al., 2004), Caenorhabditis elegans Wormbase release

WS261 (The C. elegans The C. elegans Sequencing Consortium, 1998), Centruroides sculpuratus

CEXE 0.5.3 (Schwager et al., 2017), Danio rerio GRCz10 (Ensembl release 89) (Howe et al., 2013),

Daphnia pulex PA42 3.0 (Ye et al., 2017), Dermatophagoides pteronyssinus (ASM190122v2)

(Waldron et al., 2017), Drosophila melanogaster Flybase release 6.16 (Adams et al., 2000;

Gramates et al., 2017), Homo sapiens GRCh38.p10 (Ensembl release 89) (Lander et al., 2001;

Venter et al., 2001), Ixodes scapularis (IscaW1.5) (Gulia-Nuss et al., 2016), Limulus polyphemus

2.1.2 (Simpson et al., 2017), Metaseiulus occidentalis 1.0 (GNOMON release) (Hoy et al., 2016),

Parasteatoda tepidariorum 1.0 (Schwager et al., 2017), Pediculus humanus PhumU2 (Ensembl

release 36) (Kirkness et al., 2010), Strigamia maritima Smar1 (Ensembl release 36) (Chipman et al.,

2014), T. urticae (ORCAE August 11, 2016 release) (Grbić et al., 2011), and Tribolium castaneum

Tcas5.2 (Ensembl release 36) (Richards et al., 2008). The identification of orthologous protein

sequences was performed with OrthoFinder 1.1.8 (Emms and Kelly, 2015) using BLAST 2.6.0+.

We found 147 single-copy orthologues across all species that we then aligned using MAFFT

7.305b (Katoh and Standley, 2013) with ‘genafpair’ and ‘maxiterate 1000’; a concatenation of the

alignments for the 147 orthologues was then generated prior to trimming with trimAl 1.4.rev15

(Capella-Gutiérrez et al., 2009) using the ‘strictplus’ option. The trimmed sequences were used for

a phylogenetic reconstruction with RAxML 8.2.12 (Stamatakis, 2014) using the LG+G+F model as

identified for phylogenetic reconstruction by ProtTest 3.4.2 (Darriba et al., 2011) according to the

Akaike Information Criterion, and a total of 1000 rapid bootstrap replicates (‘-f a -x 12345’ option).

Although the ‘estimate proportion of invariable sites (+I)’ was also recommended by ProtTest, the

developer of RAxML v8, on page 59 of the RAxML v8.2.X manual, cautions against using this option,

and this and all subsequent optimal models for reconstructions with RAxML were adjusted to adhere

to this developer recommendation.

Orthologous protein clusters were selected for intron analysis on the basis of the following crite-

ria: the cluster had to have at least one orthologue from A. lycopersici, orthologous protein sequen-

ces from at least 14 other species had to be present, and no species could have more than three

orthologous proteins in the cluster; when multiple orthologues for a single species were present,

only the longest one was retained. The sequences in these clusters were aligned using MAFFT

7.305b (Katoh and Standley, 2013) with the settings previously described. GNU Parallel

(Tang, 2011) was used to align multiple clusters at once. Custom Python scripts using BioPython

1.70 (Chapman and Chang, 2000) and the BCBio GFF parser (Chapman, 2016) were used to parse

and append intron position information to the FASTA sequence identifier line as required by Malin

(Csurös, 2008). The 2371 clusters that met the requisite criteria, along with the tree built from the

147 single-copy orthologues, were used in the Malin analysis (Csurös, 2008). Intron positions for

gain/loss analysis were selected from those that were considered unambiguous in A. lycopersici and

at least 11 other species, with five amino acids present on either side of the intron position (a Malin

criteria to reduce the possibility of incorrect inference resulting from misalignments).
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To investigate the consequence of intron losses in A. lycopersici on predicted protein sequences,

which can shed light on underlying mechanisms of loss (see Discussion), a subset of orthogroups was

selected for which sequences for each of A. lycopersici, D. pteronyssinus, T. urticae, M. occidentalis,

B. mori and D. melanogaster were present as single copies (1216 in total); apart from A. lycopersici,

the five other species were selected because of their close phylogenetic position to A. lycopersici

(Figure 3), and/or because they have high-quality genomes and annotations. The protein sequences

for the six species for each of these orthogroups were aligned using MAFFT 7.407 with the settings

previously described, and a table of intron sites for these orthogroups was generated in Malin using

the following settings: Minimum nongap positions: 0 (On both sides); Minimum unambiguous char-

acters at a site: 1; There must be at least one unambiguous character in the following clades: All

unselected. From this table, intron positions that were present and had the same phase in all arthro-

pods except A. lycopersici (indicating a high degree of conservation), and for which Malin identified

a missing intron in a region of unambiguous alignment for A. lycopersici sequences, were manually

examined across all protein sequence alignments to assess if intron loss events in the respective

genes introduced gains or losses of residues in the encoded products. The classification results for

these sites (100 in total among 80 orthogroups), are included in Supplementary file 1 — ‘Table S3’

Tab; the sequence alignments and annotations of intron positions for each orthogroup are given in

Supplementary file 3.

Gene family expansions and contractions
The OrthoFinder analysis (see section ‘Analysis of intronic features’) generated 86,686 orthologous

groups (OGs) in total, of which 13,817 contained more than one protein (Supplementary file 1 —

‘Table S7’ Tab). InterProScan 5.25–64.0 (Quevillon et al., 2005) was run to assign domains to each

of the proteins in all 18 species, and the domain information was subsequently assigned to the

OrthoFinder OGs using the KinFin software (Laetsch and Blaxter, 2017) and an associated Python

script (functional_annotation_of_clusters.py with the options: ‘–p 0.3 and –x 0.3’). Two different strat-

egies were used to identify contracted and/or expanded gene families in A. lycopersici. First, we

used the CAFE software to detect contracted/expanded orthologous groups (orthogroups, OGs)

among 18 metazoan species, while the second strategy was focused on OG expansions within the

acariform mites, A. lycopersici, D. pteronyssinus and T. urticae using an arbitrary rule. OrthoFinder

1.1.8 (Emms and Kelly, 2015) with BLAST 2.6.0+ was used to identify OGs among the proteomes of

18 metazoan species (see ‘Analysis of intronic features’ for proteome versions that were used as

input for OrthoFinder).

To maximize the probability of achieving convergence in the maximum likelihood analysis per-

formed in CAFE, OGs were processed to remove OGs present in only a few species and were subse-

quently divided into OGs having <100 gene copies in any species (‘small’ OGs) and orthogroups

having one or more species with �100 gene copies (‘large’ OGs); see ‘Known Limitations’ section in

CAFE 4.0 Manual of March 14, 2017 and section 2.2.4 of the CAFE 4.0 tutorial online at https://iu.

app.box.com/v/cafetutorial-pdf, and also Casola and Koralewski, 2018. We retained 6,496 OGs

that occurred in no less than 10 out of 18 species consisting of 6,467 ‘small’ OGs and 29 ‘large’

OGs. Together with an ultrametric species tree the ‘small’ OG dataset was used as input in CAFE to

estimate the birth/death parameter l (the probability that a gene will be gained or lost) and to iden-

tify rapidly evolving OGs (p-value threshold of 0.05). The estimated l (0.00055594301461) was then

used to identify rapidly evolving OGs in a CAFE analysis with ‘large’ OGs and using the same p-value

threshold and ultrametric species tree as in the CAFE analysis with ‘small’ OGs. The ultrametric spe-

cies tree used as input in both CAFE analyses was obtained by using the species tree generated for

the Malin intron analysis, subsequently rooting this tree using vertebrates as outgroup, and convert-

ing this rooted tree into an ultrametric tree using the convert_to_ultrametric() command in the Tree

package of the ETE toolkit (ete 3.0.0b35) (Huerta-Cepas et al., 2016). Next, branch lengths of the

ultrametric tree were scaled to time units using the software treePL (Smith and O’Meara, 2012)

with the following options: ’smooth = 0.01, numsites = 41107 (number of sites in the alignment used

for the Malin analysis), thorough, opt = 4, moredetailad, optad = 2, optcvad = 2, moredetailcvad’

and using seven calibration timepoints: the divergence time between Eriophyoidea and Sarcopti-

formes (352–410 MYA), Sarcoptiformes and Trombidiformes (410–421 MYA) and Mesostigmata and

Ixodida (283–418 MYA) as derived from Xue et al., 2017, and the divergence time between D. mel-

anogaster and A. gambiae (211–335 MYA), Scorpiones and Araneae (379–410 MYA), Mandibulata
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and Chelicerata (560–642 MYA) and H. sapiens and D. rerio (425–446 MYA), as obtained from Time-

Tree (Kumar et al., 2017) on February 20, 2019. The options used in treePL were determined follow-

ing the ‘Quick run’ guidelines of the treePL wiki (Smith, 2012). The output of the two CAFE analyses

(‘small’ and ‘large’ OGs) was summarized using a Python script (cafetutorial_report_analysis.py using

the ‘-l’ option and with a p-value cutoff set to 0.05) available at the CAFE tutorial website (https://iu.

app.box.com/v/cafetutorial-files/folder/22161236877, accessed February 20, 2019). The tree with

OG expansions and contractions was visualized in MEGA 6.0 (Tamura et al., 2013) and edited with

Corel Draw software (Corel Draw, Inc); the list of rapidly evolving (expanding or contracting) OGs

can be found in Supplementary file 1 — ‘Table S5’ Tab. Rapidly contracting A. lycopersici gene

families with more than ten members were analyzed for the percentage of A. lycopersici members

showing orthology with the majority of chelicerate species (Supplementary file 1 — ‘Table S6’ Tab).

Orthology was determined based on the Orthofinder generated output in the ‘Orthologues_Aculop-

s_lycopersici’ folder. One of the six rapidly contracted A. lycopersici families belonged to the CYP

family and was excluded from the analysis, as only few orthology relationships has been observed

within this family (Feyereisen, 2011).

Apart from gene families that we identified as expanded in the high-level CAFE analysis, we

looked as well for more subtle expansions across acariform mites. Across all orthogroups identified

by Orthofinder, we identified eleven orthogroups with (1) A. lycopersici having more than five mem-

bers and (2) A. lycopersici having twofold more members than the average number in T. urticae and

D. pteronyssinus (OG0000024, OG0000271, OG0000546, OG0000706, OG0004829, OG0006109,

OG0006384, OG0007553, OG0007554, OG0008410, OG0008412). For two orthogroups

(OG0007554, OG00084112), no InterPro domain could be assigned, while OG0000271,

OG0000706, OG0004829, OG0006384, OG0007553, and OG0008410 contained proteins with a

DnaJ domain (IPR011701), Formate-tetrahydrofolate ligase domain (IPR000559), Acyltransferase 3

domain (IPR002656), a Peptidase C1A domain (IPR000668), Chromo domain (IPR023780) and a

Lipase/vitellogenin domain (IPR013818), respectively. The proteins of the three remaining

orthogroups (OG0000024, OG0000546, and OG0006109) belonged to the Major facilitator super-

family (MFS, IPR011701 or IPR024989).

Gene ontology enrichment analysis of absent conserved genes and
identification of orthogroups containing Drosophila essential genes
For D. melanogaster proteins belonging to orthogroups with (1) members in all included arthropods

except A. lycopersici and (2) a maximum of two D. melanogaster members (343 D. melanogaster

proteins in total, Supplementary file 1 — ‘Table S8’ Tab), we performed an Over-Representation

analysis (ORA) using the WEB-based GEne SeT AnaLysis Toolkit (Liao et al., 2019). An ORA was per-

formed for each GO category (Biological Process, Molecular Function and Cellular Component)

using default settings (and ‘genome protein coding’ as reference set) and a Benjamini-Hochberg

multiple testing correction (false discovery rate, FDR, of 0.05). In addition, we also identified those

orthogroups that contain purported D. melanogaster essential genes, using the list of 427 essential

genes provided in the respective study’s first supplementary data table (Aromolaran et al., 2020).

Comparative analyses with specific gene families
We specifically analyzed genes and gene families associated with herbivory in other animals, as well

as those associated with physiological or developmental process related to A. lycopersici’s life his-

tory or derived morphology (GSTs, CCEs, CYPs, ABC transporters, MFS proteins, proteases, chemo-

sensory receptors, and transcription factors, including Hox genes). We also characterized genes

involved in processes including circadian rhythm, small RNA pathways, and potential regulation of

plant defense responses (secreted proteins).

Characterization of detoxification and feeding associated gene families
Glutathione-S-transferases
The A. lycopersici genome and proteome were mined for glutathione-S-transferases (GSTs) by

tBLASTn and BLASTp searches, respectively, using cytosolic and microsomal T. urticae GST protein

sequences as query (Grbić et al., 2011) and an E-value threshold of E�5. In total, four A. lycopersici

cytosolic GSTs were identified. A. lycopersici cytosolic GSTs were aligned with those of T. urticae (31

Greenhalgh, Dermauw, et al. eLife 2020;9:e56689. DOI: https://doi.org/10.7554/eLife.56689 24 of 45

Research article Evolutionary Biology Genetics and Genomics

https://iu.app.box.com/v/cafetutorial-files/folder/22161236877
https://iu.app.box.com/v/cafetutorial-files/folder/22161236877
https://doi.org/10.7554/eLife.56689


GSTs) (Grbić et al., 2011), D. melanogaster (36 GSTs, the atypical GST CG4623/Gdap1 was not

included as it is very divergent from other D. melanogaster GSTs) (Shi et al., 2012) and M. occiden-

talis (13 GSTs) (Wu and Hoy, 2016) using the online version of MAFFT v7.356b (Katoh and Stand-

ley, 2013) with 1000 iterations with the options ‘E-INS-i’ and ‘reorder’ (see Supplementary file 7).

Model selection was performed with ProtTest 3.4 (Darriba et al., 2011), and according to the

Akaike information criterion LG+I+G+F was optimal for the phylogenetic reconstruction. A maximum

likelihood analysis was performed using RAxML v8 HPC2-XSEDE (Stamatakis, 2014) on the CIPRES

Science Gateway (Miller et al., 2010) with 1000 rapid bootstrapping replicates (‘-f a -x 12345’

option). The resulting tree was midpoint rooted, visualized using MEGA 6.0 (Tamura et al., 2013)

and edited with Corel Draw software (Corel Draw Inc).

Carboxyl/cholinesterases
Putative carboxyl/cholinesterase (CCE) genes were identified in A. lycopersici using tBLASTn and

BLASTp searches (E-value threshold of E�5) with T. urticae CCE sequences (Grbić et al., 2011) as

query. Putative A. lycopersici CCEs were aligned with those of T. urticae (Grbić et al., 2011), M.

occidentalis (Wu and Hoy, 2016), a selection (8) of conserved CCEs from the horseshoe crab Limu-

lus polyphemus (Wei et al., 2020), a selection (10) of D. melanogaster CCEs belonging to different

CCE clades (Claudianos et al., 2006), and AChE1/AChE2 of B. mori and D. pulex using the online

version of MAFFT v7.380 (Katoh et al., 2019) with 1000 iterations and the options ‘L-INS-i’ and

‘reorder’ (see Supplementary file 7). Maximum likelihood phylogenetic analysis was performed as in

Wei et al., 2020 using RAxML v8 HPC2-XSEDE (Stamatakis, 2014) on the CIPRES Science Gateway

(Miller et al., 2010) and the automatic protein model assignment algorithm using maximum likeli-

hood criterion and 500 rapid bootstrap replicates (‘-f a -x 12345’ option). The resulting tree was mid-

point rooted and visualized using MEGA 6.0 (Tamura et al., 2013) and edited with Adobe Illustrator

software (Adobe Inc).

Cytochrome P450 monooxygenases and diflavin reductases
The A. lycopersici genome and proteome was mined for cytochrome P450 monooxygenase (CYP)

genes by tBLASTn and BLASTp searches using T. urticae CYP protein sequences as query

(Grbić et al., 2011) and an E-value threshold of E�5. All CYP gene models with predicted proteins

that included the canonical heme-binding sequence were verified manually for the presence of the

other key features of P450 enzymes (Feyereisen, 2012) and gene models were corrected when nec-

essary. New A. lycopersici CYP gene models were created using GenomeView (Abeel et al., 2012).

All CYP sequences were named according to the CYP nomenclature by Dr. D. R. Nelson (University

of Tennessee, USA). Pseudogenes (CYP18C2P and CYP3120A4P) were distinguished from putative

full length CYP coding sequences by a long in frame non-P450 insertion (CYP18C2P) and by a stop

codon and frameshift (CYP3120A4P), both anomalies confirmed by their respective transcripts. All A.

lycopersici CYP protein sequences (full-length and pseudogenes) were aligned with CYP protein

sequences from T. urticae, M. occidentalis, a set of D. melanogaster marker P450 sequences and the

CYP18 protein sequence of the house dust mite D. pteronyssinus (Dpte.g6170.1) using MAFFT

v7.380 (Katoh et al., 2019) with 1000 iterations and the options ‘E-INS-i’ and ‘reorder’ (see

Supplementary file 7). Model selection was done with ProtTest 3.4 (Darriba et al., 2011) and

according to the Akaike information criterion LG+I+G+F was optimal for phylogenetic reconstruc-

tion. A maximum likelihood analysis was performed using RAxML v8 HPC2-XSEDE (Stamata-

kis, 2014) on the CIPRES Science Gateway (Miller et al., 2010) with 1000 rapid bootstrapping

replicates (‘-f a -x 12345’ option). The resulting tree was midpoint rooted and visualized using

MEGA 6.0 (Tamura et al., 2013).

ABC transporters
Putative A. lycopersici ATP-binding cassette (ABC) genes were identified by BLASTp and tBLASTn

searches (E-value threshold of E�5) against the A. lycopersici proteome and genome, respectively,

and using T. urticae ABC protein sequences (Dermauw et al., 2013a) as query. A. lycopersici ABC

pseudogenes and incomplete genes [aculy01g37790, aculy01g37820 (pseudogenes), and acu-

ly01g27210 (incomplete gene)] were separated from putative full-length ABC coding sequences.

Putative M. occidentalis ABC genes were identified by a BLASTp search against the M. occidentalis

proteome using T. urticae and D. melanogaster ABC protein sequences as query (Dermauw et al.,
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2013a). The nucleotide-binding domain (NBD) sequences of A. lycopersici, T. urticae, M. occidenta-

lis, and D. melanogaster ABC protein sequences were extracted using the ScanProsite facility

(de Castro et al., 2006) and the Prosite profile PS50893. The NBDs of four putative M. occidentalis

ABC proteins (GNOMON-2147495233, GNOMON-2147494257, GNOMON-2147494305 and GNO-

MON-2147512403) had best BLASTp hits with bacterial ABC sequences and were excluded from fur-

ther analysis. N-terminal NBDs of A. lycopersici (44), T. urticae (103), M. occidentalis (55), and D.

melanogaster (56) ABC proteins were aligned using the online version of MAFFT v7.380

(Katoh et al., 2019) with 1000 iterations and the options ‘G-INS-i’ and ‘reorder’ (see

Supplementary file 7). Model selection was performed with ProtTest 3.4 (Darriba et al., 2011) and

according to the Akaike information criterion LG+G+F was optimal for phylogenetic reconstruction.

Next, a maximum likelihood analysis was performed using RAxML v8 HPC2-XSEDE (Stamata-

kis, 2014) on the CIPRES Science Gateway (Miller et al., 2010) with 1000 rapid bootstrapping repli-

cates (‘-f a -x 12345’ option). The resulting tree was midpoint rooted and visualized using MEGA 6.0

(Tamura et al., 2013) and edited with Adobe Illustrator software (Adobe Inc).

Major facilitator superfamily proteins
A. lycopersici members of two orthogroups (OG0000024 and OG0006109) that have an MFS Inter-

Pro domain (IPR011701 or IPR024989), and were expanded in A. lycopersici (see Results), were used

as query in tBLASTn and BLASTp searches (with an E-value threshold of E�5) against the A. lycoper-

sici genome and proteome, respectively. Next, the A. lycopersici queries and resulting hits were

used as query in tBLASTn and BLASTp searches (with an E-value threshold of E�5) against the

genome and proteome of T. urticae and in a BLASTp search (using an E-value threshold of E�5)

against the proteomes of M. occidentalis and D. melanogaster (for genes with multiple isoforms,

only the longest protein isoform was retained). Incomplete MFS genes (less than 250 amino acids

long) were separated from full-length MFS genes. Full-length MFS proteins (A. lycopersici: 27, T.

urticae: 23, M. occidentalis: 60 and D. melanogaster: 18) were aligned using MAFFT v7.356b

(Katoh and Standley, 2013) with 1000 iterations with the options ‘E-INS-i’ and ‘reorder’ (see

Supplementary file 7). Model selection was done with ProtTest 3.4 (Darriba et al., 2011) and

according to the Akaike information criterion LG+I+G+F was optimal for the phylogenetic recon-

struction of mite and D. melanogaster MFS proteins. A maximum likelihood analysis was performed

using RAxML v8 HPC2-XSEDE (Stamatakis, 2014) on the CIPRES Science Gateway (Miller et al.,

2010) with 1000 rapid bootstrapping replicates (‘-f a -x 12345’ option). The resulting tree was mid-

point rooted, visualized using MEGA 6.0 (Tamura et al., 2013) and edited with Corel Draw software

(Corel Draw, Inc).

C1A cysteine proteases
OG0006384, one of the few expanded OGs in A. lycopersici contained proteins with a ‘Peptidase

C1A, papain C-terminal’ domain (InterPro domain IPR000668) (see Results). Subsequently the com-

plete proteome of A. lycopersici, M. occidentalis and D. melanogaster was mined for IPR000668

domain containing proteins/C1A peptidases. T. urticae C1A peptidases were previously annotated

(Grbić et al., 2011). Thirty-nine, 16, 28, and 57 C1A peptidase genes were found in A. lycopersici,

M. occidentalis, D. melanogaster, and T. urticae, respectively. Protein sequences from 32, 13, 27,

and 52 A. lycopersici, M. occidentalis, D. melanogaster and T. urticae C1A peptidase genes were

larger than 250 aa, respectively, and aligned using MAFFT version 7 (Katoh and Standley, 2013)

with 1000 iterations with the options ‘E-INS-i’ and ‘reorder’ (see Supplementary file 7). Model selec-

tion was performed with ProtTest 3.4 (Darriba et al., 2011), and according to the Akaike informa-

tion criterion VT+G was optimal for phylogenetic reconstruction. A maximum likelihood analysis was

performed using RAxML v8 HPC2-XSEDE (Stamatakis, 2014) on the CIPRES Science Gateway

(Miller et al., 2010) with 1000 rapid bootstrapping replicates (‘-f a -x 12345’ option) and the VT+G

model. The resulting tree was midpoint rooted, visualized using MEGA 6.0 (Tamura et al., 2013)

and edited with Corel Draw software (Corel Draw Inc).

Gustatory receptors
Potential gustatory receptor (GR) genes were identified with BLASTp using query gustatory receptor

sequences from D. melanogaster (Robertson et al., 2003), D. pulex (Peñalva-Arana et al., 2009),

M. occidentalis (Hoy et al., 2016), and T. urticae (Ngoc et al., 2016), as well as odorant receptor
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sequences from D. melanogaster (Robertson et al., 2003). Further, searches were performed with

query sequences against the A. lycopersici genome using tBLASTn from the BLAST 2.6.0+

(Camacho et al., 2009) suite allowing an E-value of up to 1 (Ngoc et al., 2016). Where required,

existing gene models were modified or new models were added using GenomeView N29

(Abeel et al., 2012). InterProScan 5.25–64.0 (Quevillon et al., 2005) was used to validate one of the

two existing genes (aculy03g00430) with the ‘7tm Chemosensory Receptor’ InterPro domain, while

strong BLAST support against T. urticae GR genes (best hit E-value <E�22) was observed for acu-

ly03g06080. The two putative GR genes were then aligned back to the genome with tBLASTn to

identify additional sequences, but none were identified. Protein sequences of GR genes from A.

lycopersici, T. urticae, M. occidentalis, and D. melanogaster, were aligned using version 7 of MAFFT

(Katoh and Standley, 2013) with the ’E-INS-i’ option selected on the web service hosted by the

Computational Biology Research Consortium (https://mafft.cbrc.jp/alignment/server/) (see

Supplementary file 7). Model selection was performed by ProtTest 3.4.2 (Darriba et al., 2011),

with the JTT+I+G+F model selected as the best according to the Akaike information criterion for

phylogenetic reconstruction. The CIPRES Science Gateway (Miller et al., 2010) ‘RAxML-HPC on

XSEDE’ tool (Stamatakis, 2014) was used to construct a phylogenetic tree using 1000 rapid boot-

strap replicates (‘-f a -x 12345’ option), which was subsequently visualized using MEGA7

(Kumar et al., 2016, p. 7) and edited in Adobe Illustrator CC 2017 (Adobe Software, Inc).

Degenerin/epithelian Na+ channels
Candidate A. lycopersici degenerin/epithelial Na+ Channels (ENaC) genes were identified by align-

ing D. melanogaster (Zelle et al., 2013) and T. urticae ENaCs (Ngoc et al., 2016) against the A.

lycopersici genome using tBLASTn, allowing an E-value of up to 1. Gene model adjustment or crea-

tion was performed with GenomeView N29. The presence of the Pfam PF00858 domain (‘Amiloride-

sensitive sodium channel’) identified using InterProScan 5.25–64 was used as an additional criteria to

identify ENaCs genes, see Ngoc et al., 2016. An additional round of genomic searches using

tBLASTn with the four A. lycopersici ENaCs revealed no additional members. A. lycopersici, T. urti-

cae, M. occidentalis and D. melanogaster ENaC protein sequences were aligned using MAFFT ver-

sion 7 (Katoh and Standley, 2013) with the ’E-INS-i’ option selected on the web service hosted by

the Computational Biology Research Consortium (https://mafft.cbrc.jp/alignment/server/) (see

Supplementary file 7). WAG+I+G+F was identified as the best model for phylogenetic reconstruc-

tion according to the Akaike information criterion by ProtTest 3.4.2 (Darriba et al., 2011). The

‘RAxML-HPC on XSEDE’ tool (Stamatakis, 2014) hosted by the CIPRES Science Gateway

(Miller et al., 2010) was used to construct a phylogenetic tree with 1000 rapid bootstrap replicates

(‘-f a -x 12345’ option). MEGA7 (Kumar et al., 2016) was used to visualize the resulting tree, which

was subsequently edited in Adobe Illustrator CC 2017 (Adobe Software, Inc).

Ionotropic receptors
Putative ionotropic receptor (IR) and related genes were identified by aligning D. melanogaster

(Gramates et al., 2017) and T. urticae IRs (Ngoc et al., 2016) along with ionotropic glutamate

receptors (iGluR) and glutamate ionotropic receptor NMDA type (GRIN) sequences from T. urticae

(Ngoc et al., 2016) to the A. lycopersici reference genome using tBLASTn with an E-value of up to

one allowed. Where appropriate, GenomeView N29 was used to manually adjust or create new

gene models based on the alignments. BLAST hits with E-values <E�5, in combination with detection

of the Pfam domains PF00060, PF01094 and/or PF10613 were used to classify A. lycopersici genes

as members of the IR/iGluR/GRIN group (Ngoc et al., 2016). Iterative tBLASTn searches with the 10

identified sequences to the A. lycopersici genome identified no additional candidates. IR/iGluR/

GRIN protein sequences from A. lycopersici, T. urticae, M. occidentalis, and D. melanogaster were

aligned using the Computational Biology Research Consortium’s MAFFT version 7 (Katoh and

Standley, 2013) web service (https://mafft.cbrc.jp/alignment/server/) with the ’E-INS-i’ option

selected excepting M. occidentalis non-IR sequences, which were not provided in the supplementary

files of Hoy et al., 2016 (see Supplementary file 7). ProtTest 3.4.2 (Darriba et al., 2011) identified

LG+I+G+F as the best model for phylogenetic construction according to the Akaike information cri-

terion. A phylogenetic tree was constructed using the ‘RAxML-HPC on XSEDE’ tool (Stamata-

kis, 2014) hosted by the CIPRES Science Gateway (Miller et al., 2010) with 1000 rapid bootstrap

replicates (‘-f a -x 12345’ option). Visualization of the tree was performed using MEGA7
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(Kumar et al., 2016, p. 7), with further edits carried out in Adobe Illustrator CC 2017 (Adobe Soft-

ware, Inc).

Transient receptor potential channels
The transient receptor potential (TRP) channel sequences for D. melanogaster, M. musculus, M. occi-

dentalis, and T. urticae identified by Peng et al., 2015 were downloaded from Ensembl (for D. mela-

nogaster, M. musculus, and M. occidentalis) or ORCAE (T. urticae) using the IDs provided in that

study. These protein sequences were aligned to the A. lycopersici genome sequence using tBLASTn

2.6.0+ to identify candidate TRP genes using an E-value of E�10, as in Peng et al., 2015. Where

appropriate, gene models were manually updated with GenomeView N29 using a combination of

the BLAST alignments and transcriptome data. TRP channel protein sequences for A. lycopersici, T.

urticae, M. occidentalis, and D. melanogaster were aligned using MAFFT version 7 (Katoh and

Standley, 2013) with the ’E-INS-i’ option selected using the web service hosted by the Computa-

tional Biology Research Consortium (https://mafft.cbrc.jp/alignment/server/) (see

Supplementary file 7). The LG+I+G+F model was identified as optimal for phylogenetic construc-

tion by ProtTest 3.4.2 (Darriba et al., 2011) according to the Akaike information criterion. A phylo-

genetic tree was generated using the ‘RAxML-HPC on XSEDE’ tool (Stamatakis, 2014) hosted on

the CIPRES Science Gateway (Miller et al., 2010), with 1000 rapid bootstrap replicates (‘-f a -x

12345’ option) and members of the Shaker family set as an outgroup after Peng et al., 2015 to

anchor the tree. MEGA7 (Kumar et al., 2016) was used to visualize the tree, with subsequent edit-

ing performed in Adobe Illustrator CC 2017 (Adobe Software, Inc).

Characterization of transcription factors
Pfam domains that were assigned by InterProScan to each of the proteins in the 18 metazoan spe-

cies included in the Orthofinder analysis (see ‘Gene family expansions and contractions’ in Results)

were mined for all Pfam transcription factor (TF) domains as defined in ’Table 1’ of Huang et al.,

2012 and two PFAM domains [BTB (PF00651) and BACK (PF07707)] that have been implicated in

transcriptional regulation (Stogios and Privé, 2004). Results were summarized using the dplyr

(Wickham et al., 2017) and stringr packages (Wickham, 2017) within the R framework

(R Development Core Team, 2018). Additionally, we characterized a subset of transcription factor

families in greater depth [the nuclear receptor (NR), T-box, Hairy Orange, and Hox families].

Analysis of nuclear receptors
A reciprocal BLASTp analysis (using an E-value threshold of E�10) was performed using the A. lyco-

persici, D. pteronyssinus, and T. urticae proteomes and using the T. urticae nuclear receptor (NR)

protein sequences as queries (Grbić et al., 2011) to identify putative A. lycopersici and D. pteronys-

sinus NRs. A tBLASTn search (using an E-value threshold of E�10) using T. urticae NR protein sequen-

ces as queries (Grbić et al., 2011) was also performed against the A. lycopersici genome but only

overlap with existing A. lycopersici NR gene models was found. LBDs of A. lycopersici NRs were con-

sidered present if searching with PfamScan (https://www.ebi.ac.uk/Tools/pfa/pfamscan/) or Con-

served domain (CD)- search (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) yielded either a

PF00104 (LBD of hormone nuclear receptor) or cl11397 (The ligand binding domain of nuclear recep-

tors, a family of ligand-activated transcription regulators) domain, respectively. Those A. lycopersici

NRs that, in contrast to their orthologues in arthropods, were not predicted with a LBD were aligned

with their orthologues in D. melanogaster (Thomson et al., 2009), D. pteronyssinus and T. urticae

using the online version of MAFFT v7.380 (Katoh et al., 2019) with 1000 iterations and the options

‘E-INS-i’ and ‘reorder’.

T-box transcriptional regulators
All A. lycopersici T-box proteins identified in our PFAM transcription factor domain analysis were first

used in BLASTp and tBLASTn searches (E-value threshold E�10) against the A. lycopersici predicted

proteome and genome, respectively, and no additional T-box gene models were identified. T-box

proteins of D. pteronyssinus and M. occidentalis were identified in their proteomes by a BLASTp

search (E-value threshold E�10) using the conserved T-box domain amino acids 198–385 of D. mela-

nogaster org-1 (FBpp0311870) as query, while those of T. urticae and D. melanogaster were derived

from the PFAM analysis. A. lycopersici T-box proteins were aligned with those of T. urticae, D.
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pteronyssinus, M. occidentalis, and D. melanogaster using the online version of MAFFT v7.380

(Katoh et al., 2019) with 1000 iterations and the options ‘E-INS-i’ and ‘reorder’ (see

Supplementary file 7). Model selection was performed with ProtTest 3.4 (Darriba et al., 2011) and

according to the Akaike information criterion LG+I+G+F was optimal for phylogenetic reconstruc-

tion. Next, a maximum likelihood analysis was performed using RAxML v8 HPC2-XSEDE (Stamata-

kis, 2014) on the CIPRES Science Gateway (Miller et al., 2010) with 1000 rapid bootstrapping

replicates (‘-f a -x 12345’ option). The resulting tree was midpoint rooted, visualized using MEGA

6.0 (Tamura et al., 2013) and edited with Corel Draw software (Corel Draw, Inc).

A. lycopersici Hairy Orange domain proteins
A. lycopersici and D. pteronyssinus orthologues of T. urticae Hairy Orange domain (PF07527) pro-

teins were identified by a BLASTp search (E-value E�5) against the A. lycopersici (this study) and D.

pteronyssinus proteome (Waldron et al., 2017) using T. urticae Hairy Orange domain proteins as

query. The resulting A. lycopersici hits were aligned with their counterparts in D. melanogaster

(Dearden, 2015), D. pteronyssinus, and T. urticae using the online version of MAFFT v7.380

(Katoh et al., 2019) with 1000 iterations and the options ‘E-INS-i’ and ‘reorder’.

A. lycopersici Sox proteins
The high mobility group (HMG)-box domain (Pfam domain PF00505) of D. melanogaster Sox pro-

teins (Janssen et al., 2018) was used as query in a BLASTp search against the A. lycopersici, D. pter-

onyssinus, T. urticae, and M. occidentalis proteomes. For each species, those BLASTp hits that had

an E-value lower than the lowest E-value of BLASTp hits with the species orthologue of Drosophila

capicua (a HMG-box domain protein used as outgroup in phylogenetic analysis of Sox proteins

[Janssen et al., 2018]; aculy02g30040, g444.t1, tetur21g00740 and rna18440 in A. lycopersici, D.

pteronyssinus, T. urticae, and M. occidentalis, respectively) were retained as putative Sox proteins.

Almost all Acari Sox proteins contained the highly conserved RPMNAFMVW motif, characteristic of

Sox proteins (Bonatto Paese et al., 2018); the one exception was aculy04g11170, which has a minor

conservative substitution (Ala to Ser) in this motif. A tBLASTn search, using the HMG-box domain of

A. lycopersici BLASTp hits with D. melanogaster Sox proteins as query, was performed to identify

non-annotated A. lycopersici proteins; yielding one additional A. lycopersici Sox protein (acu-

ly02g08510), for which a pseudogene model was created using GenomeView (Abeel et al., 2012).

D. pteronyssinus, T. urticae, and M. occidentalis Sox and capicua proteins were aligned with the

HMG domain of D. melanogaster and P. tepidariorum Sox proteins (Janssen et al., 2018) using

MAFFT v7.380 (Katoh et al., 2019) with 1000 iterations and the options ‘E-INS-i’ and ‘reorder’.

Next, the alignment was trimmed (see Supplementary file 7) to contain the HMG domain only and

a phylogenetic analysis of Sox HMG-box domains was performed, similar to the analysis described in

Zhong et al., 2011. Model selection was performed with ProtTest 3.4 (Darriba et al., 2011) and

according to the Akaike information criterion LG+I+G was optimal for phylogenetic reconstruction.

A Bayesian inference was performed using MrBayes 3.2.7a (Huelsenbeck and Ronquist, 2001) on

XSEDE on the CIPRES Science Gateway (Miller et al., 2010). The Monte Carlo Markov Chain search

was run with four chains over 1000000 generations with trees sampled every 1000 generations. The

first 250 trees were discarded as ’burn-in’. The remaining trees were used to calculate Bayesian pos-

terior probabilities. The resulting tree was converted into a newick format using a Perl script named

AfterPhylo.pl (Zhu, 2014), rooted with capicua proteins, visualized using MEGA 6.0 (Tamura et al.,

2013) and edited with Corel Draw software (Corel Draw, Inc).

Hox genes
Hox protein sequences of the oribatid mite A. longisetosus (Sharma et al., 2014), the spider mite T.

urticae (Grbić et al., 2011), the deer tick I. scapularis (Pace et al., 2016) and the red flour beetle T.

castaneum (Pace et al., 2016) were aligned using MAFFT v7.38 (Katoh et al., 2019) with 1000 itera-

tions and the options ‘L-INS-i’ and ‘reorder’. The 57 amino acid Homeobox domains (Pfam domain

PF00046) were extracted from this alignment and used as query in a tBLASTn search (using an

E-value threshold of E�10) against the A. lycopersici genome to identify Hox (and by extension, also

Homeobox) genes that were not automatically predicted. In one case a tBLASTn hit did show no

overlap with an existing gene model and a new A. lycopersici Homeobox gene model (acu-

ly01g39110) was created using GenomeView (Abeel et al., 2012).
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To identify putative A. lycopersici orthologues of Hox proteins, a reciprocal BLASTp analysis

(using an E-value threshold of E�10) was performed against the A. lycopersici proteome (including

proteins encoded by newly created gene models) using full-length T. urticae, I. scapularis and T. cas-

taneum Hox protein sequences and their available proteomes (T. urticae version 11 August 2016, T.

castaneum version 5.2.36 and Ixodes scapularis Wikel colony version 1.5). Finally, to verify the results

of our reciprocal BLASTp analysis, we performed an additional BLASTp search (using an E-value

threshold of E�10) with the partial but well-studied A. longisetosus Hox protein sequences

(Barnett and Thomas, 2013; Sharma et al., 2014; Telford and Thomas, 1998) as query. Using a

similar approach (reciprocal BLASTp analysis with I. scapularis Hox proteins/Ixodes scapularis Wikel

colony version 1.5 proteome and a BLASTp search with A. longisetosus Hox protein sequences), we

also identified Hox protein sequences in D. pteronyssinus, version 2 (Waldron et al., 2017).

Annotation of clock genes
Clock genes of A. lycopersici were identified by a tBLASTn search and reciprocal best BLASTp hit

analysis (E-value threshold of E�10) against the A. lycopersici genome and proteome, respectively,

with T. urticae clock proteins (Hoy et al., 2016) as query.

Prediction of the A. lycopersici secretome
Signal peptides of A. lycopersici proteins were predicted with SignalP 5.0 and using default settings

(Almagro Armenteros et al., 2019). Transmembrane domains were predicted using the Phobius

server (Käll et al., 2007) at http://phobius.sbc.su.se/ and protein subcellular localization was pre-

dicted using WoLF PSORT (organism type: ‘Animal’) at https://wolfpsort.hgc.jp/. A. lycopersici pro-

teins that, according to Phobius, did not have transmembrane regions outside the 60 amino acid

N-terminal region, were predicted with a signal peptide by SignalP 5.0 and were predicted to be

extracellular according to Wolf PSORT, were considered as putatively secreted proteins. Putatively

secreted A. lycopersici proteins were used as query in a BLASTp search (with E-value threshold of

E�10 and maximum target sequences set at 1) against the T. urticae proteome. Subsequently, T. urti-

cae best BLASTp hits were mined for their presence in an LC-MS/MS analysis of T. urticae saliva

(Jonckheere et al., 2016).

miRNA identification
Mature miRNA sequences for all available arthropod species were downloaded from Release 21 of

miRbase (Kozomara and Griffiths-Jones, 2014). miRNA sequences were aligned using STAR 2.5.2b

(Dobin et al., 2013) to the genome of A. lycopersici with the following parameters ‘–alignIn-

tronMax 0 –alignEndsType EndToEnd –outFilterMismatchNmax 2X–outFilterMultimapN-

max 100’; this ensured that all miRNA sequences that aligned had no more than two mismatches;

alignments with insertions or deletions relative to the reference were removed from further consider-

ation, and the resulting alignment file was sorted by position and indexed using SAMtools 1.3.1

(Li et al., 2009). Where miRNAs from different species aligned to the same position, they were

denoted as being members of the same clusters (Supplementary file 1 — ‘Table S18’ Tab).

Identification of genes in small RNA pathways
A tBLASTn search (with an E-value threshold of E�5) using T. castaneum (Prentice et al., 2015;

Rodrigues et al., 2017), C. elegans (Hoy et al., 2016), and D. melanogaster (Iwasaki et al., 2015)

small RNA pathway-related protein sequences as query, was performed against the A. lycopersici

genome to identify putative A. lycopersici small RNA pathway related genes that were not automati-

cally predicted by the gene prediction software. As all tBLASTn hits showed overlap with existing

gene models, no new gene models needed to be created. Next, a reciprocal best BLASTp hit analy-

sis (with an E-value threshold of E�5) was performed against the A. lycopersici and T. urticae prote-

ome using T. castaneum (Prentice et al., 2015; Rodrigues et al., 2017), C. elegans (Hoy et al.,

2016) and D. melanogaster (Iwasaki et al., 2015) small RNA pathway-related protein sequences

and their available proteomes (T. castaneum version 5.2.36, C. elegans version WS262 and D. mela-

nogaster FB2020_02 release) to identify putative small RNA pathway-related genes in A. lycopersici

and T. urticae.
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Genomic HGT screen and phylogenetic validation
We performed a genomic HGT screen as previously described in Wybouw et al., 2018. Briefly, the

A. lycopersici proteome was aligned with metazoan and non-metazoan proteome databases and the

bitscores of the best BLASTp hits were recorded. For each protein query, the h-index metric was cal-

culated by subtracting the best metazoan bitscore from the best non-metazoan bitscore. An A. lyco-

persici gene was designated as a horizontally transferred gene candidate when it exhibited a best

non-metazoan bitscore �75 and an h-index �30. In our screen, we also performed a tBLASTn-search

against the tomato russet mite scaffolds using all identified horizontally transferred T. urticae genes

as queries. Maximum-likelihood phylogenies were subsequently constructed for all A. lycopersici

horizontally transferred gene candidates, except for a putative UGT pseudogene that was located

on scaffold 5 between coordinates 140,638 and 140,871. All complete A. lycopersici UGT genes

were sent to the UGT Nomenclature Committee to obtain unique UGT gene names (https://prime.

vetmed.wsu.edu/resources/udp-glucuronsyltransferase-homepage). For the final phylogenetic recon-

struction of the pantothenate biosynthetic genes, homologues of aculy01g38350 (ketopantoate

hydroxymethyltransferase, panB) and aculy04g02470 (pantoate b-alanine ligase, panC) were identi-

fied by BLASTn and tBLASTn searches (E�10 cut-off) against the nonredundant nucleotide and pro-

tein NCBI databases, respectively, and were grouped based on their position in the tree of life

(fungi, animals, bacteria, plants, and other). Proteins were selected per group based on manual

inspection of the alignments and were combined with homologues as identified by Wybouw et al.,

2018. In addition, we also added a panC homologue of the mealybug Ferrisia virgata to the final set

of proteins (Husnik and McCutcheon, 2016). For the phylogenetic analysis of UGTs, we added UGT

protein sequences from the annotated genome assembly of the house dust mite D. pteronyssinus

(Waldron et al., 2017) to our UGT phylogenetic reconstruction. Applying an E-value of E�10 as the

cut-off for the alignments, 27 D. pteronyssinus sequences were identified by reciprocal BLASTp-

searches between the D. pteronyssinus proteome and the 87 T. urticae and A. lycopersici UGT

sequences. Protein sequences were aligned using the online version of MAFFT v7.380 (Katoh et al.,

2019) (available at https://mafft.cbrc.jp/alignment/software/) with 1000 iterations and the options

‘E-INS-i’ and ‘reorder’ (see Supplementary file 7). Protein models were selected based on the

Akaike Information Criterion using ProtTest 3.4 (Darriba et al., 2011) (panB: LG+G, panC: LG+G,

and UGT: LG+G+F). Maximum likelihood analyses were performed using RAxML v8 HPC2-XSEDE

(Stamatakis, 2014) on the CIPRES Science Gateway (Miller et al., 2010) with 1000 rapid bootstrap

replicates (‘-f a -x 12345’ option). An additional maximum likelihood tree reconstruction with ultra-

fast bootstrapping (1000 replicates) was performed for the pantothenate biosynthetic proteins using

IQ-TREE version 1.6.12 (Hoang et al., 2018; Nguyen et al., 2015). ModelFinder identified LG+I+G4

as the best protein model based on the Bayesian Information Criterion (Kalyaanamoorthy et al.,

2017). Constrained tree tests for alternative topologies whereby A. lycopersici is the sister lineage

to the spider mite pantothenate biosynthetic proteins were performed using the approximately unbi-

ased test of IQ-TREE version 1.6.12 (10,000 RELL replicates) (Shimodaira, 2002). The random num-

ber seed was set at 12345. Last, the physical location of the aculy01g38350 and aculy04g02470

genes in the A. lycopersici genome was examined by PCR amplification. A. lycopersici mites were

collected by soaking infested tomato leaves overnight in 40 mL of 70% ethanol. Mites in ethanol

were centrifuged at 2000 rpm for 1 min, ethanol was removed, and pelleted mites were ground

using liquid nitrogen. One mL of CTAB buffer with 2% beta-mercaptoethanol and 1% proteinase K

was added to the ground mites, followed by incubation in a warm water bath at 56˚C. Next, samples

were washed with 1 ml of choloroform:isoamyl alcohol (21:1) and DNA was precipitated with isopro-

panol on ice for 1 hr. Primer sequences that successfully amplified genomic regions are listed in

Supplementary file 1 — ‘Table S20’ Tab. PCRs were performed using the recommended protocol

for Phusion High Fidelity polymerase (Thermo Scientific, The Netherlands) and 1 mL of extracted

DNA (50 ng/microL) and 0.2 mM of each primer. PCR conditions for fragment 1 and 3 were 98˚C for

30 min, followed by 35 cycles of denaturation at 98˚C for 10 s, annealing at 55˚C for 30 s, and exten-

sion at 72˚C for 1 min (fragment 1) or 45 s (fragment 3) followed by a final extension step at 72˚C for

5 min. PCR conditions for fragment two were as follows: 98˚C for 30 s, 5 cycles of 98˚C for 10 s, 65˚C

for 10 s, 72˚C for 60 s, five cycles of 98˚C for 10 s, 60˚C for 10 s, 72˚C for 60 s, and 20 cycles of 98˚C

for 10 s, 60˚C for 10 s, 72˚C for 60 s, followed by a final extension step at 72˚C for 3 min. Resulting

amplicons were Sanger sequenced by Eurofins (Leiden, The Netherlands) using PCR (with ‘PCR’
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suffix) and sequencing (with ‘seq’ suffix) primers as indicated in Supplementary file 1 — ‘Table S20’

Tab.
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Janssen R, Andersson E, Betnér E, Bijl S, Fowler W, Höök L, Leyhr J, Mannelqvist A, Panara V, Smith K, Tiemann
S. 2018. Embryonic expression patterns and phylogenetic analysis of panarthropod sox genes: insight into
nervous system development, segmentation and gonadogenesis. BMC Evolutionary Biology 18:88.
DOI: https://doi.org/10.1186/s12862-018-1196-z, PMID: 29884143

Jeppson LR, Keifer H, Baker EW. 1975. Mites Injurious to Economic Plants. Univ of California Press.

Greenhalgh, Dermauw, et al. eLife 2020;9:e56689. DOI: https://doi.org/10.7554/eLife.56689 38 of 45

Research article Evolutionary Biology Genetics and Genomics

https://doi.org/10.1002/9781118829783.ch3
https://doi.org/10.1002/9781118829783.ch3
https://doi.org/10.1080/01647958308683315
https://doi.org/10.1080/01647958308683315
https://doi.org/10.1016/S1572-4379(96)80008-X
https://doi.org/10.1016/j.tree.2009.08.004
http://www.ncbi.nlm.nih.gov/pubmed/19796842
http://www.ncbi.nlm.nih.gov/pubmed/19796842
https://doi.org/10.1016/j.tree.2010.03.003
https://doi.org/10.1093/molbev/msx281
http://www.ncbi.nlm.nih.gov/pubmed/29077904
https://doi.org/10.1002/wdev.78
http://www.ncbi.nlm.nih.gov/pubmed/23799629
https://doi.org/10.1126/science.1076181
http://www.ncbi.nlm.nih.gov/pubmed/12364791
https://doi.org/10.1038/nature12111
http://www.ncbi.nlm.nih.gov/pubmed/23594743
https://doi.org/10.1146/annurev.arplant.59.032607.092825
http://www.ncbi.nlm.nih.gov/pubmed/18031220
https://doi.org/10.1007/978-1-4020-6359-6_3883
https://doi.org/10.1093/gbe/evw048
https://doi.org/10.1093/gbe/evw048
http://www.ncbi.nlm.nih.gov/pubmed/26951779
https://doi.org/10.1007/s00438-012-0696-6
https://doi.org/10.1007/s00438-012-0696-6
http://www.ncbi.nlm.nih.gov/pubmed/22570076
https://doi.org/10.1083/jcb.201401002
https://doi.org/10.1083/jcb.201401002
http://www.ncbi.nlm.nih.gov/pubmed/25049272
https://doi.org/10.1101/gr.9.9.868
http://www.ncbi.nlm.nih.gov/pubmed/10508846
https://doi.org/10.1093/bioinformatics/17.8.754
http://www.ncbi.nlm.nih.gov/pubmed/11524383
https://doi.org/10.1093/molbev/msw046
http://www.ncbi.nlm.nih.gov/pubmed/26921390
http://www.ncbi.nlm.nih.gov/pubmed/26921390
https://doi.org/10.1046/j.1525-142X.2002.02034.x
http://www.ncbi.nlm.nih.gov/pubmed/12492146
https://doi.org/10.1073/pnas.1603910113
http://www.ncbi.nlm.nih.gov/pubmed/27573819
http://www.ncbi.nlm.nih.gov/pubmed/27573819
https://doi.org/10.1186/1471-2164-15-993
http://www.ncbi.nlm.nih.gov/pubmed/25407996
https://doi.org/10.1002/jcp.10208
http://www.ncbi.nlm.nih.gov/pubmed/12548545
https://doi.org/10.1146/annurev-biochem-060614-034258
http://www.ncbi.nlm.nih.gov/pubmed/25747396
https://doi.org/10.1186/s12862-018-1196-z
http://www.ncbi.nlm.nih.gov/pubmed/29884143
https://doi.org/10.7554/eLife.56689


Joga MR, Zotti MJ, Smagghe G, Christiaens O. 2016. RNAi efficiency, systemic properties, and novel delivery
methods for pest insect control: what we know so far. Frontiers in Physiology 7:553. DOI: https://doi.org/10.
3389/fphys.2016.00553, PMID: 27909411

Jonckheere W, Dermauw W, Zhurov V, Wybouw N, Van den Bulcke J, Villarroel CA, Greenhalgh R, Grbić M,
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