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Abstract A goal of cancer research is to reveal cell subsets linked to continuous clinical

outcomes to generate new therapeutic and biomarker hypotheses. We introduce a machine

learning algorithm, Risk Assessment Population IDentification (RAPID), that is unsupervised and

automated, identifies phenotypically distinct cell populations, and determines whether these

populations stratify patient survival. With a pilot mass cytometry dataset of 2 million cells from 28

glioblastomas, RAPID identified tumor cells whose abundance independently and continuously

stratified patient survival. Statistical validation within the workflow included repeated runs of

stochastic steps and cell subsampling. Biological validation used an orthogonal platform,

immunohistochemistry, and a larger cohort of 73 glioblastoma patients to confirm the findings from

the pilot cohort. RAPID was also validated to find known risk stratifying cells and features using

published data from blood cancer. Thus, RAPID provides an automated, unsupervised approach for

finding statistically and biologically significant cells using cytometry data from patient samples.

Introduction
A modern goal of quantitative analysis of single cell data in human cancers is to move beyond

human-driven identification of cell types using known markers (expert gating) to machine learning

tools that can reveal and characterize novel and abnormal cells (Diggins et al., 2015;

Greenplate et al., 2019; Irish, 2014; Saeys et al., 2016). Citrus, an automated analysis tool based

on assignment of samples to binary categories (e.g. ‘healthy’ and ‘disease’) before testing whether

cell populations are associated with these categories, was designed with this purpose in mind

(Supplementary file 1; Bruggner et al., 2014). However, many important clinical features of patient

tissue samples are reported as continuous variables, such as time to progression, overall survival, or

percentage of immune infiltrate, which can be challenging to convert to arbitrary binary categories

and may not be driven by a single unified cellular phenotype (Gonzalez et al., 2018; Good et al.,

2018; Levine et al., 2015). Similarly, known, healthy cell populations from different stages of devel-

opment or differentiation may be required for some approaches, such as developmentally depen-

dent predictor of relapse (DDPR Good et al., 2018), and are not always available or fully

represented for all datasets. This is especially acute for some tissues, such as brain, which may be

quiescent in adults and not routinely sampled in clinical care or research. Tools are needed that can

take into account continuous clinical variables that may be censored, such as overall survival or pro-

gression free survival (PFS), and which operate in an unsupervised manner. Ultimately, tools that
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work with high dimensional data should help users to translate findings from an algorithmic machine

learning tool to common practice by identifying lower dimensional correlates that can be used to

validate signatures using a complementary, clinically tractable approach. This transparency was a

focus of the tool design and validation strategy used here. A computational workflow constructed

for this purpose should also be validated via repeated subsampling of data to ensure the pheno-

types identified are robust, by testing of different dimensionality reduction tools, by testing across

multiple datasets, and by validation of prognostic signatures using complementary approaches.

Finally, a practical challenge of modern single cell discovery projects is that they may often be at a

project point where they are working with a smaller initial cohort (around 25 patients). This study

size is powered to closely correlate cell subsets with patient outcomes using signaling cytometry

data, as this study and others have shown for blood cancers (Gonzalez et al., 2018; Good et al.,

2018; Irish et al., 2004; Irish et al., 2010; Kotecha et al., 2008; Levine et al., 2015), but necessi-

tates extensive statistical and biological validation, as discussed below.

RAPID (Risk Assessment Population IDentification) is a newly created algorithm that was designed

using single cell cytometry data and which addresses the key challenges of clinical research using

discovery cohorts of patients (https://github.com/cytolab/RAPID; Leelatian, 2020; copy archived at

https://github.com/elifesciences-publications/RAPID). This open-access tool can couple single cell

experiments to clinical outcome and other variables in an unsupervised manner and provide informa-

tion that can be translated into simplified tests on other platforms. For this study, the algorithm was

assessed for 1) cluster stability (Melchiotti et al., 2017) for both cells and phenotypes; 2) modularity

(Diggins et al., 2015; Saeys et al., 2016), which would allow the algorithm to function with a range

of dimensionality reduction approaches, such as no dimensionality reduction, t-distributed stochastic

neighbor embedding (t-SNE Amir et al., 2013), or uniform manifold approximation and projection

(UMAP Becht et al., 2019), clustering tools, such as FlowSOM (Van Gassen et al., 2015) or dbscan

(Akers et al., 2013), and enrichment analysis tools, such as marker enrichment modeling (MEM

Diggins et al., 2017); 3) transparency, evaluated as the ability to derive simple models of data struc-

ture (Gandelman et al., 2019), such as decision trees or flow cytometry gating hierarchies, so that

new datasets could be easily assessed; 4) independence - whether risk stratifying cell populations

are independent of known predictors (age, others); and 5) reproducibility and translational potential,

tested by gathering additional data using traditional, one-dimensional immunohistochemistry (IHC)

that is widely used in clinical testing.

Here, the utility and validity of the RAPID algorithm were tested using two datasets with varying

levels of prior knowledge, numbers of patients and cells, and outcome trajectories. The first was a

new data set of 28 glioblastoma patient samples and is described in detail below. Central findings

from this first dataset were then validated using 73 additional samples analyzed using a different

technology. The second was a previously published data set of 54 bone marrow samples from B cell

precursor acute lymphoblastic leukemia (Good et al., 2018). This study was chosen as an example

of a dataset in which prognostic features had already been independently identified, and so valida-

tion was assessed by whether known features were revealed by RAPID.

When applied to single cell cytometry data from human tumors, as shown here, the aim of RAPID

was to reveal and characterize populations of risk stratifying cells. For this goal, glioblastoma, the

cancer type in the first dataset, represents an excellent challenge, since glioblastoma is a highly het-

erogeneous solid tumor that is amenable to single cell approaches (Doxie et al., 2018;

Gonzalez et al., 2018; Greenplate et al., 2019; Leelatian et al., 2017a) and where there is a great

opportunity for molecular prognostic features to have an impact on new treatments and clinical

care. Glioblastoma is the most common primary brain tumor in adults, is highly aggressive, and is

known to contain cells with diverse genomic and transcriptomic features reflecting abnormal neural

lineages (Bhaduri et al., 2020; Leelatian et al., 2017a; Ostrom et al., 2017; Patel et al., 2014;

Wei et al., 2016). Previous studies in glioblastomas have either measured signaling states in bulk

primary tumors (Brennan et al., 2009; Brennan et al., 2013; Verhaak et al., 2010) or characterized

genomic and transcriptomic profiles in a limited number of single cells (<33,000) (Bhaduri et al.,

2020; Johnson and White, 2014; Neftel et al., 2019; Patel et al., 2014; Stommel et al., 2007;

Wei et al., 2016). While differing subclasses of glioblastomas were proposed a decade ago

(Verhaak et al., 2010), these categories do not correspond to large differences in prognosis and are

not always reflected by individual cells (Patel et al., 2014). Mosaic amplifications of receptor tyro-

sine kinase (RTK) genes are commonly observed in subsets of cells within a single glioblastoma
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tumor (Snuderl et al., 2011), suggesting that single cell analysis of glioblastoma should include sig-

naling measurements. In other cancer types, phospho-protein signaling has repeatedly revealed can-

cer cell subsets that are closely linked to patient clinical outcomes (Gonzalez et al., 2018;

Good et al., 2018; Irish et al., 2004; Irish et al., 2010; Kotecha et al., 2008; Levine et al., 2015).

These results suggest that a protein-level approach in a small pilot cohort may reveal phenotypically

distinct cancer cell subsets whose abundance provides new ways to stratify glioblastoma outcomes.

While it is known that upstream regulators of pro-growth and pro-survival signaling are altered in

brain tumors, little is known about the activation states of signaling effector proteins in single glio-

blastoma cells, as these features are inaccessible to sequencing modalities (Meyer et al., 2015;

Mistry et al., 2019; Snuderl et al., 2011; Spitzer and Nolan, 2016).

Another challenge that the RAPID algorithm was designed to address was the need to work with

heterogeneous cell phenotypes and populations that might be rare and variable across patients.

Cytometry data are a good match for this type of algorithm, as a large number of cells are collected

from each tumor sample, the data have an excellent signal-to-noise ratio and support quantitative

comparisons, and cytometry enables direct measurement of signaling pathway activation

(Irish et al., 2010; Kotecha et al., 2008; Mistry et al., 2019; Myklebust et al., 2017). When glio-

blastoma mass cytometry data were analyzed by RAPID, both negative- and positive-prognostic

phenotypes were identified, with protein-level phenotypes not described by prior studies. Statistical

description of prognostic phenotypes within the RAPID algorithm then enabled the design of a sim-

ple workflow using traditional IHC, which stratified outcome in a separate set of 73 glioblastoma

patient tissues.

Results

RAPID identifies stratifying cell subsets in an automatic and
unsupervised manner
The RAPID algorithm workflow is depicted in Figure 1 using results from Dataset 1. Following

patient-specific identification of major cell types (Figure 1a), the algorithm (Figure 1b) randomly

sampled an equal number of glioblastoma cells from each patient’s tumor and analyzed the cells on

a single, common t-SNE. This even sampling was conducted to generate a t-SNE analysis where

each patient contributed equally. Subsequent statistical testing (Figure 1c) included repeated sub-

sampling to ensure that sampled cells were representative of the original tumors. After multiple sta-

tistical tests, the most robust and reproducible cell types identified by RAPID were validated

biologically, including using a new data type and a larger cohort (Figure 1d).

The RAPID algorithm was unsupervised and included two key statistical decisions. The first deci-

sion was the automation of the number of target clusters sought at the clustering step (Figure 1b,

middle). This was achieved through repeated analysis with the chosen clustering tool, in this case

FlowSOM (Van Gassen et al., 2015), followed by statistical analysis. RAPID iteratively tested a range

(cluster number 5–50) of unsupervised self-organizing maps from FlowSOM to identify an appropri-

ate number of stable clusters containing phenotypically homogenous cells. The minimum number of

clusters that minimized intra-cluster variance for each feature was calculated after all iterations were

completed and set as the optimized target cluster number (see Materials and methods). Clustering

with other tools, such as DBSCAN, or clustering on untransformed axes, was both slower and less

accurate in identifying stable, phenotypically distinct clusters, consistent with published observations

(data not shown and Weber and Robinson, 2016). The second decision was in assessing cluster

abundance in patients (Figure 1b, right). RAPID assigned patients to high or low abundance for

each automatically identified cluster based on a statistical cut point, set as the interquartile range of

the population abundance across the samples (see Materials and methods). These two decisions

resulted in automation of steps that are typically manual in cytometry analysis.

After finding clusters in an unsupervised manner and determining which patients’ tumors con-

tained a high level of each cluster, the last step in a run of RAPID was to test whether each cluster

stratified risk of death. For this last test, RAPID applied a univariate Cox survival analysis to deter-

mine the correlation between the abundance of tumor cells in each cluster and patient survival out-

come (Supplementary file 2). Clusters were identified as prognostic by assessing the hazard ratio

(HR) of death in patients who had either high or low abundance of the cell cluster. Negative and
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Figure 1. RAPID identifies single cell phenotypes associated with continuous clinical variables that are stable and

validated via complementary approaches. (a) Graphic of tumor processing and data collection. After data

collection and standard pre-processing, non-immune, non-endothelial glioblastoma cells were computationally

isolated for analysis by RAPID. (b) RAPID workflow on glioblastoma cells identified from 28 patients and

computationally pooled for t-SNE analysis. Cell subsets were automatically identified by FlowSOM and were

systematically assessed for association with patient overall or progression-free survival. 43 glioblastoma cell

subsets were identified and were color-coded based on hazard ratio of death and p-values (HR >1, red; HR <1,

blue). Cell density, FlowSOM clusters, and cluster significance are depicted on t-SNE plots. (c) RAPID results were

tested for stability. Each tumor was randomly subsampled for 4,710 cells multiple times. Each of these cell

subsampling runs was subject to 100 iterative FlowSOM analyses and an F-measure was calculated for each

cluster. Only clusters with an F-measure of greater than 0.5 were considered stable. Then, the phenotypes of

stable clusters associated with patient outcome were assessed via RMSD and used to determine stable

phenotypes. (d) Validation of the findings from the mass cytometry data was done using lower dimensional gating

strategies and an orthogonal technology to confirm the biological findings.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure 1 continued on next page
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positive prognostic clusters were colored red or blue, respectively, if they were significantly associ-

ated (p<0.05) with an HR that was >1 (negative, red) or <1 (positive, blue). The RAPID algorithm

used statistical analysis of the common t-SNE, feature variance, and population abundance to auto-

matically set all computational analysis parameters, independent of clinical outcomes.

The output of RAPID includes a PDF containing a color-coded, 2D t-SNE plot depicting all Flow-

SOM clusters, a 2D t-SNE plot colored by clusters which were significantly associated with patient

outcome, and Kaplan-Meier survival plots of patients for each subset (additional files described in

Materials and methods) (Figure 1b). To compactly report and depict the phenotype of algorithmi-

cally identified cell subsets, RAPID used Marker Enrichment Modeling (MEM) labels (Diggins et al.,

2017). Thus, feature enrichment was reported on a +10 to �10 scale, where +10 indicated that the

feature was especially enriched in those cells and �10 indicated that the feature was specifically

excluded from those cells, relative to all other cells in other clusters. The MEM label here was thus

an objective description of what made each population distinct from the other clusters identified by

RAPID. In summary, RAPID provided an unsupervised, automated, statistical approach to revealing

and characterizing clinically significant cells.

Identification of risk stratifying glioblastoma cells in Dataset 1
RAPID was designed for datasets like Dataset 1, a pilot glioblastoma mass cytometry dataset includ-

ing cells collected from 28 patients with isocitrate dehydrogenase (IDH) wild-type glioblastoma at

the time of primary surgical resection (Supplementary file 3). This dataset is currently available

online (https://flowrepository.org/id/FR-FCM-Z24K). The median PFS and overall survival (OS) after

diagnosis were 6.3 and 13 months, respectively, typical of the trajectory of this disease (Stupp et al.,

2005). Resected tissues were immediately dissociated into single cell suspensions as previously

reported (Leelatian et al., 2017b) and the resulting cells were stained with a customized antibody

panel, which was designed to capture the expression of known cell surface proteins, intracellular

proteins, and phospho-signaling events (Supplementary file 4). Collectively, the antigens included

in this panel positively identified >99% of viable single cells within any given tumor sample (see

Materials and methods). To identify glioblastoma cells prior to RAPID, as in Figure 1a, a patient-spe-

cific t-SNE was created using 26 of the measured markers for the tumor and stromal cells from each

patient’s tumor (Amir et al., 2013; Figure 1—figure supplement 1 and Supplementary file 4).

Patient-specific t-SNE maps revealed non-glioblastoma populations of immune (CD45+) and endo-

thelial (CD45-CD31+) cells, consistent with prior mass cytometry and sequencing studies of gliomas

(Diggins et al., 2017; Greenplate et al., 2019; Leelatian et al., 2017a; Neftel et al., 2019;

Patel et al., 2014). Immune and endothelial cells from each individual patient were computationally

excluded prior to subsequent downstream analysis (Figure 1, Figure 1—figure supplement 1), and

CD45-CD31- cells were labeled as glioblastoma cells.

Plots of cell density on the t-SNE axes revealed phenotypically distinct subpopulations of glioblas-

toma cells within a single patient’s tumor (example patient LC26: Figure 1—figure supplement 1,

maps for all patients: Supplementary file 6) Intra-tumoral subsets were distinguished by differences

in expression of core neural identity proteins and by aberrant co-expression of neural lineage and

stem cell proteins. In the example case of tumor LC26, abnormal phenotypes in glioblastoma cells

included co-expression of astrocytic S100B and stem-like CD133 or co-expression of markers associ-

ated with different molecular subtypes of glioblastoma, such as mesenchymal (CD44) and classical

(EGFR) (Figure 1—figure supplement 1; Verhaak et al., 2010). These results with protein

Figure 1 continued

Figure supplement 1. Single cell quantification of identity proteins and phospho-protein signaling in

glioblastoma.

Figure supplement 2. Quantitative MEM labels of the enriched identity proteins and signaling features of all

glioblastoma cell subsets identified by RAPID.

Figure supplement 3. Glioblastoma cell subsets showed differential enrichment of identity proteins and

phosphorylated signaling effectors.

Figure supplement 4. Divergent phenotypes are associated with patient outcomes.

Figure supplement 5. Abundance of immune cells correlated with the abundance of prognostic cell subsets.

Figure supplement 6. RAPID identified four populations associated with time to disease progression.
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confirmed the existence of non-canonical cell types that had previously been observed in single-cell

RNA-seq (Patel et al., 2014). The abnormal co-expression of identity proteins seen here, as well as

previously reported single cell studies relying on inferred DNA alterations (Neftel et al., 2019), indi-

cate that the large majority of the CD45-CD31- cells were likely cancer lineage cells.

Using an equal number of subsampled glioblastoma cells from each patient (see

Materials and methods), a single, common t-SNE map was created to represent glioblastoma cell

protein phenotypes across all patients (N = 131,880 cells; 4,710 cells x 28 patients, using 24 mea-

sured features). The RAPID algorithm, using the pooled data from all patients, identified 43 pheno-

typically distinct cell clusters, and then determined for each tumor whether a patient was high or low

for a particular cluster using the interquartile range of abundance for that cluster. For example, for

glioblastoma cluster 24, the interquartile range was 0.67% to 3.36%, resulting in a cut point of

2.69%. Those patients with �2.69% were designated ‘low’ for cluster 24 while those with >2.69%

were assigned to the ‘high’ group. Additional cut points, based on splitting populations into quar-

tiles or tertiles, were tested and resulted in consistent prognostic phenotypes (the average F-mea-

sure of patients being consistently assigned to the high, low, or neither categories identified below

was 0.86). The number of tumors that contributed to each cluster varied between the 43 clusters,

but a median of 8 tumors contained cells in each cluster (Supplementary file 2, Supplementary file

6). Furthermore, each cluster contained cells from at least 4 tumors and, at the median, contained

cells from 12 tumors (Supplementary file 5, Supplementary file 6).

The RAPID algorithm identified four Glioblastoma Negative Prognostic (GNP) clusters (red; clus-

ters 33, 34, 37, and 42) and five Glioblastoma Positive Prognostic (GPP) clusters (blue; clusters 2, 3,

4, 5, and 41) whose abundance was associated with overall survival (Figure 1b). MEM labels were

used to identify the enriched features of risk stratifying glioblastoma cells (Figure 1—figure supple-

ments 2 and 3). MEM labels were calculated for both total proteins (P), such as S100B and EGFR,

and signaling effectors (S), such as p-STAT5. GNP cells aberrantly co-expressed neural-lineage pro-

teins (astrocytic S100B and stem-like SOX2). Additionally, GNP cells displayed phosphorylation of

RTK signaling effectors known to promote cell survival, growth, and proliferation (e.g. p-STAT5Y694,

p-S6S235/S236, p-STAT3Y705) (Figure 1—figure supplements 2 and 4). The MEM protein enrichment

values (average and standard deviation) for GNP cells included neural lineage determinants

(~S100B+5±1.6, SOX2+5±1) and phospho-proteins (~p-STAT3+3±2.1, p-STAT5+2±1.8, p-S6+3±1.4) and

identified proteins that were specifically lacking in GNP cells relative to other glioblastoma cell clus-

ters (!EGFR-2±0.1, GFAP-4±0.7, CD44-4±0) (Figure 1—figure supplement 4). In contrast, GPP cells

were positively enriched for EGFR (~EGFR+5±0.8) and consistently lacked pro-survival phospho-pro-

teins (!p-S6-4±3.7, p-STAT5-2±0.8, p-STAT3-2±1.6) and one of the proliferation markers measured

(!cyclin B1-3±3.3) (Figure 1—figure supplement 4).

Non-malignant cells, including immune and endothelial cells, were excluded from initial RAPID

analyses and subsequent biaxial gating confirmed that the GNP and GPP subsets were not unex-

pected residual CD45+ or CD31+ cells (Figure 1—figure supplement 4). However, infiltrating

immune cells can comprise a large proportion of non-cancer cells in glioblastomas and have highly

variable overall abundance across patients (Hussain et al., 2006). Notably, GPP-high (n = 7)

patients’ tumors all contained more than 9% CD45+ cells (median %=25.3 ± 13.8), whereas all GNP-

high (n = 8) patients’ tumors contained less than 9% CD45+ cells (median %=3.3 ± 2.4, p<0.001, Fig-

ure 1—figure supplement 5, Supplementary file 2).

Identification of risk stratifying B-cell leukemia cells in Dataset 2
FCS files from a previously published mass cytometry study of B-cell precursor acute lymphoblastic

leukemia (BCP-ALL) by an independent lab were input into the RAPID workflow to test whether the

RAPID algorithm could re-discover prognostic cell subsets in other disease settings (Good et al.,

2018). Dataset 2 is available online (originally: https://github.com/kara-davis-lab/DDPR/releases, in

this study: https://github.com/cytolab/RAPID). This dataset contained almost twice the number of

patients (n = 54) but less than half the number of total cells compared to Dataset 1 (48,600) because

of a single patient with only 900 live, lineage-negative blast cells (Good et al., 2018). A total of 47

clusters were identified by RAPID, 3 of which were negative prognostic cell subsets that were associ-

ated with time to relapse (Figure 2). Importantly, features identified in the original publication as

part of the signature associated with relapse (black text, Figure 2) were re-identified using RAPID. In

the protein feature MEM values, enrichment of CD38 and CD34 was consistent with previously
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reported trends in pre-pro B cell-like phenotypes in BCP-ALL. Most notably, the signaling features

p-S6, p-SYK, and p-4EBP1, which were important features positively associated with relapse in the

DDPR model, were enriched in the negative prognostic populations identified by RAPID. Thus,

RAPID was able to identify cells and features associated with time to relapse in another disease set-

ting, generating a signature of negative-prognostic cells consistent with the original findings by

another research group.

Statistical validation 1: Clusters identified by RAPID were statistically
robust
To determine the stability of the clusters identified by RAPID, 99 additional runs of FlowSOM were

performed within the RAPID workflow (Figure 1c). Due to the stochastic nature of FlowSOM, the

clusters identified in each subsequent run could contain different cells. For each of the clusters, an

F-measure was calculated, based on the accuracy of cell assignment within a cluster in subsequent

iterations of FlowSOM (see Methods, Supplementary file 2). Of the original 43 clusters, five had an

average F-measure of less than 0.5 (average F-measure of all clusters = 0.75). These five clusters,

including cluster 33, previously identified as a GNP cluster, were considered unstable and were not

included in subsequent analyses (indicated by shading in Figure 1 and Figure 1—figure supple-

ment 2, and asterisks in Figure 1—figure supplement 3 and Supplementary file 2).

Figure 2. RAPID analysis of a published B-cell leukemia dataset to identify negative prognostic cell subsets. (a) t-SNE plot of 54 B-cell leukemia patient

samples with negative prognostic populations (A, B, C) colored in red. (b) MEM labels for three negative prognostic cell subsets (NP_A, NP_B, NP_C).

Features important in the original discovery of predictors of relapse are colored in black. (c) Kaplan-Meier Curve comparing time to relapse in patients

with high abundance of negative prognostic cells (identified by RAPID) to patients with low abundance of negative prognostic cells.
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Statistical validation 2: Clusters identified by RAPID were not
dependent on individual patients or sub-samplings
A key design decision in RAPID was the use of an equal number of cell events from each patient to

avoid tumors disproportionately impacting the analysis based on the number of cells collected. How-

ever, this decision limits a given RAPID analysis run to a number of cells equal to the smallest col-

lected from any one patient. For the tumors studied here, the number of live glioblastoma cells

ranged from 4,710 to 330,000 cells per patient. To test whether the cells subsampled for RAPID

were representative of the total tumor sample and eliminate the possibility that randomly sub-

sampled cells from larger samples are not representative, 9 additional t-SNE analyses were gener-

ated, each with a different sample of 4,710 cells selected at random, with replacement, from each

patient. Each of these 9 t-SNE projections was then used in a new RAPID analysis, creating 10 total

analyses (the original and 9 new tests). Of these, a total of 55 clusters from the 10 runs were consid-

ered stable (F-measure >0.5) and prognostic (see Methods, Figure 3). An F-measure could not be

calculated on a cell-by-cell basis because the cells varied between analyses, but the average

Figure 3. Subsampling of glioblastoma cells repeatedly resulted in GNP and GPP subsets with similar phenotypes. RMSD map comparing MEM scores

for stable GNP and GPP subsets identified in the main figures and from nine additional t-SNE runs. GNP subsets are noted by red circles and GPP

subsets are noted by blue circles. Colored boxes to the left of the red or blue circles indicate the t-SNE run from which the subset is derived. Median

MEM labels (± standard deviation) are shown for five major populations to the right. The number of t-SNE analyses represented in each group, as well

as median p-value and hazard ratio (HR) are noted in the bottom right corner of each MEM label.
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F-measure based on patient categorization (GNP-high, GPP-high, and GNP and GPP low) was 0.79

between t-SNE runs.

To quantify the degree of similarity between the 47 newly identified prognostic clusters and the 8

representative GNP (34, 37, 42) and GPP (2, 3, 4, 5, 41) clusters, the root-mean-square deviation

(RMSD) in the MEM enrichment values was calculated (Diggins et al., 2018; Diggins et al., 2017).

GNP subsets from subsequent runs were highly similar to the GNP subsets identified by the initial

analysis described above, and the same was observed for GPP subsets (Figure 3; GNP v GNP aver-

age RMSD = 92.8, GPP v GPP average RMSD = 88.9, and GNP v GPP average RMSD = 80.9). How-

ever, some phenotypes were only observed in a small number of t-SNE runs. For example, the

phenotype representing cluster 41 was only seen in one other t-SNE. Because this cell type was not

observed in at least 50% of the cell sub-samplings, it was considered phenotypically unstable and

removed from subsequent analyses (indicated by shading in Figure 1 and Figure 1—figure supple-

ment 2, and asterisks in Figure 1—figure supplement 3 and Supplementary file 2).

Statistical validation 3: Comparable clusters were identified by RAPID
using UMAP instead of t-SNE
To test the modularity of RAPID, the algorithm was implemented using different dimensionality

reduction values as input parameters, replacing t-SNE with UMAP, a tool that emphasizes both local

and global data structure (Becht et al., 2019). RAPID identified 31 populations using UMAP input; 4

of these were prognostic and significantly associated with OS (1 GNPUMAP and 3 GPPUMAP) (Fig-

ure 4). GNPUMAP MEM scores reflected the characteristic S100B and SOX2 co-expression observed

in the GNP populations along with an active pro-survival basal signaling status. GPPUMAP subsets

were similarly defined by co-expression of EGFR and CD44 and a general lack of the measured

phosphorylated signaling effectors (Figure 4). When the cells identified using t-SNE were overlaid

on the UMAP axes, they occupied similar phenotypic space as UMAP-identified clusters, and vice

versa (F-measure for cell assignment to GNP, GPP, or neither = 0.87, Figure 4). Thus, when UMAP

was used in the RAPID algorithm, GNP and GPP populations were identified that had comparable

phenotypes to those identified previously in t-SNE analyses, confirming that RAPID is not dependent

upon a specific dimensionality reduction tool (Figure 4).

Statistical validation 4: Risk stratifying cells were continuously
associated with outcomes and independent of other glioblastoma
stratifying features
At the conclusion of the RAPID analysis, to ensure that results were not an artifact of the high-low

cut point choice and to determine if the effect of cell subset abundance was continuous and inde-

pendent of other features known to stratify glioblastoma survival, a multivariate Cox proportional-

hazards model analysis was performed incorporating known predictive features and GNP or GPP cell

abundance. The included known predictors were age (Ohgaki et al., 2004; Shapiro et al., 1989),

O6-alkylguanine DNA alkyltransferase (MGMT) promoter methylation status (Brown et al., 2016a;

Hegi et al., 2005), and treatment variables including the extent of surgical resection (Brown et al.,

2016b; Grabowski et al., 2014), therapy with temozolomide (Stupp et al., 2005), and radiation

(Mirimanoff et al., 2006; Walker et al., 1980). Multivariate survival analysis of GNP cell abundance

on a continuous scale, keeping the other predictors constant, indicated that each 1% increase in

GNP cells was associated with an approximately 7% increase in mortality compared to baseline (OS

HR = 1.07 [95% CI 1.02–1.12], p=0.003). Similarly, a 1% increase in GPP cells was associated with an

approximately 7% decrease in mortality rate (OS HR = 0.93 [0.87–1.0], p=0.05) and an approximately

4% increase in time to tumor progression, as compared to baseline (PFS HR = 0.96 [0.93–0.998],

p=0.04). When GNP and GPP were assessed simultaneously, abundance of GNP cells was the pri-

mary predictor of mortality (OS HR = 1.05 [1.00–1.10], p=0.04), while abundance of GPP cells was

the primary predictor of time to tumor progression (PFS HR = 0.96 [0.92–1.00]; p=0.03). Thus, the

abundances of GNP and GPP cell subsets were associated with distinct and contrasting patient out-

comes (Figure 1—figure supplement 4), and their predictive value was independent of each other

and known prognostic factors of patient survival.

Since assessing progression-free survival (PFS) can be especially useful in the clinic for cancers

with longer median survival, RAPID was also used for the identification of glioblastoma cell clusters
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Figure 4. GNP and GPP cells were also identified using dimensionality reduction tool UMAP in the RAPID algorithm. (a) UMAP analysis of 131,880 cells

from 28 patients. Upper left plot - heat on cell density; lower left plot – colored by FlowSOM cluster; right plot – colored by GNP(red)/GPP(blue)

designation and p-value. (b) Per-cell expression levels of 5 identity proteins, 3 phosphorylated signaling effectors, and proliferation marker cyclin B1 are

depicted. (c) Enrichment of identity proteins (P) and phosphorylated signaling effectors (S) of glioblastoma cell subsets was quantified using MEM. GNP

Figure 4 continued on next page
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with differential PFS, as opposed to OS. Of the 43 subsets identified by RAPID, 4 subsets were sig-

nificantly associated with PFS (subsets 20, 33, and 43 with unfavorable PFS (GNPPFS) and subset 3

was associated with favorable PFS (GPPPFS), Figure 1—figure supplement 6).

Tumors are mosaics of multiple subsets but number of subsets does not
correlate with outcome
In the representative t-SNE run (Figure 1), RAPID identified 43 phenotypically distinct glioblastoma

cell subsets within the tumors analyzed by mass cytometry in this study (Figure 1, Figure 1—figure

supplement 4). The abundance of the 43 clusters varied extensively across patients

(Supplementary file 2). Tumors contained a median of 14 clusters at >1% with a range from 5 cell

clusters in LC06 to a maximum of 27 cell clusters represented in LC25 (Supplementary file 2, per-

patient maps in Supplementary file 6). Although intra-tumor diversity has been hypothesized to

contribute to poor response to treatment and survival, here, the number of glioblastoma cell clusters

present within a tumor at >1% abundance (a surrogate for intra-tumor diversity) was not observed

to be associated with differential survival (r = 0.047, p=0.812). In contrast, the abundance of each of

the 7 stable and prognostic glioblastoma cell clusters was closely correlated with overall survival

(Figure 1—figure supplement 4).

Biological validation 1: A transparent algorithm enables creation of a
simple cell identification strategy that captures the cells identified in
Dataset 1
After patterns are recognized by a machine learning approach, it is useful to learn from key features

and create a straightforward test using alternative technologies or simpler models. One such model

is a decision tree using one- or two-dimensional cytometry gating (Gandelman et al., 2019), consis-

tent with traditional strategies in immunology and hematopathology. Therefore, a two-dimensional

prognostic strategy was designed based on the MEM labels generated from the mass cytometry

data. As described above (and Figure 1—figure supplements 2, 3 and 4), MEM labels were gener-

ated for each GNP and GPP population, as well as the combined subsets (GNP_Total and GPP_To-

tal), reflecting enriched proteins in each population. These quantitative labels highlighted the most

enriched proteins and were used to select S100B (enriched in GNP cells and largely absent from

GPP cells) and EGFR (enriched in GPP cells and largely absent from GNP cells) for two-parameter

analysis (Figure 5). Using only these two proteins, patients could be grouped as GNP-like, GPP-like

or GNP and GPP Low, and these groups again exhibited stratified clinical outcomes (HR = 6.56,

GNP-like median OS = 111.5 days, GPP-like median OS = 896 days, Figure 5). Thus, a simple gating

model based on the two most divergent features identified by RAPID was able to meaningfully sepa-

rate patients into clinically distinct groups.

Biological validation 2: A larger cohort of glioblastoma samples was
stratified using IHC based on phenotypes discovered by RAPID
Unlike fluorescence or mass flow cytometry, IHC is routinely used in surgical pathology. To confirm

the ability of S100B and EGFR in separating clinically distinct patient populations using an orthogo-

nal approach, a tissue microarray (TMA) of 73 glioblastoma patient samples was developed. Serial

TMA sections were stained with antibodies against S100B and EGFR and the overall signal intensity

was determined using QuPath software for each feature (see Methods). By comparing S100B and

EGFR staining intensity, patients were scored as GNP-like, GPP-like, or GNP and GPP Low (Figure 5).

A Kaplan-Meier analysis comparing overall survival between patients enriched with GNP-like cells to

those with GPP-like cells confirmed that GNP-like cell enrichment is associated with a shorter overall

Figure 4 continued

and GPP cells are labeled in red and blue, respectively. (d) Histogram analysis depicts the expression of key identity proteins and phosphorylation

signaling effectors of GNP (red) and GPP (blue) compared to all glioblastoma (GBM) cells (gray, top row). (e) Overall survival curves for four UMAP-

identified populations associated with survival. Cox-proportional hazard model was used to determine a hazard ratio (HR) of death. Censored patients

are indicated by vertical ticks. (f) GNP (red) and GPP (blue) cells identified via t-SNE (‘t-SNE GNP’ or ‘t-SNE GPP’) and UMAP (‘UMAP GNP’ or ‘UMAP

GPP’) are overlaid on either UMAP or t-SNE axes. (g) Categorization of each patient (dots) based on GNP high (red), GPP high (blue), or neither (gray)

according to abundance based on RAPID using t-SNE or RAPID using UMAP (F-measure = 0.86).
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survival (HR = 2.3, GNP-like median OS = 298 days, GPP-like median OS = 560 days, Figure 5).

These results validated the suspension mass cytometry findings and demonstrated that once

revealed by RAPID, GNP-like and GPP-like cells could be identified in new samples by complemen-

tary approaches used in laboratory and clinical settings.

Figure 5. A simple gating strategy based on S100B and EGFR can stratify patients using mass cytometry or immunohistochemistry data. (a) Biaxial plot

of S100B (y-axis) and EGFR (x-axis). Gray contours depict all 131,880 cells from all patients. Density contour overlays depict GNP (top) or GPP (bottom)

cells identified by the RAPID algorithm. (b) Biaxial plot of S100B (y-axis) and EGFR (x-axis). Gray contours depict all 131,880 cells from all patients as in

(a). Red box indicates gate for S100B+/EGFR- cells, called GNP-like. Blue box indicates gate for EGFR+ cells, called GPP-like. (c) Kaplan Meier curve

comparing overall survival (in days) of patients with high percentages of GNP-like cells in red (red gate in a, >65.7% = high) and patients with high

percentages of GPP-like cells in blue (blue gate in a, >31.2% = high). The hazard ratio of death, calculated using a Cox proportional hazards model, is

6.56 (p=0.0007). (d) Example TMA cores stained for S100B (left) or EGFR (right). Brown signal is from 3,30-Diaminobenzidine (DAB). (e) Graph depicting

DAB signal intensity for S100B (y-axis) or EGFR (x-axis) from tissue microarray immunohistochemistry on 73 glioblastoma patient samples. The red box

outlines patients described as GNP-like (S100Bhigh/EGFRlow) and the blue box outlines patients designated GPP-like (EGFRhigh). All other patients are

shown in gray. (f) A Kaplan-Meier curve showing overall survival (in days) of patients in the GNP-like (red) or GPP-like (blue) groups. The hazard ratio of

death, calculated using a Cox proportional hazards model, is 2.3 (p-value=0.03).
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Discussion
The focus of this study was the creation of an unsupervised approach that could work with pilot

datasets to suggest prognostic cell types for validation. Ultimately, the RAPID algorithm was tested

using numerous statistical approaches, validated with two datasets, and validated as revealing bio-

logically robust cells detectable on other platforms in a larger follow up cohort with formalin-fixed,

paraffin-embedded tissue. Prior workflows and algorithms were developed to identify cell popula-

tions of interest in cancer samples and emphasized supervised modeling, as with Citrus

(Bruggner et al., 2014) and Cytofast (Beyrend et al., 2018), or comparison to known subsets, as

with DDPR (Good et al., 2018) and Phenograph (Levine et al., 2015). These approaches could not

be used with Dataset 1, either because they required a level of prior knowledge about non-malig-

nant adult human brain cells which was not available, or because they required supervision using cat-

egorical outcomes, which are not always clearly delineated for continuous variables. Another

advantage of RAPID is that it does not require a target cluster number, which is important when it is

not known how many phenotypically distinct subsets will be observed in a given cancer type. Cell

subsets in tumors can be challenging to manually annotate as they may reasonably be assigned to

multiple known cell types, as was apparent here and in prior studies (Neftel et al., 2019;

Patel et al., 2014). RAPID is unsupervised, provides a quantitative label of features enriched in each

cluster, and is modular, such that a variety of dimensionality reduction and clustering tools can be

used. Currently, a user inputs raw data files (e.g., FCS files from cytometry platforms or equivalent

data types from other platforms) and annotated patient survival data. The recommended use of

RAPID is to run the full algorithm at least 10 times to seek consensus populations that are stable in

phenotype and risk stratification. Both single-run implementation for discovery and a version using

these best practices are included as R markdown scripts on the RAPID Github page (https://github.

com/cytolab/RAPID). RAPID outputs quantitatively described cell clusters and their significance with

respect to patient outcome. While the focus of this study was cytometry data, the design is suitable

to other single cell data types where clinical outcomes or similar continuous variables have been

scored for pilot cohorts, typically at least 25 individuals. Published datasets were not available for

single-cell RNA-seq that matched the criteria for RAPID, including having thousands of cells per sam-

ple, more than 25 individuals with annotated clinical outcomes, and multiple features scored consis-

tently for every cell. As single cell RNA-seq and imaging cytometry technologies advance, we

anticipate RAPID will be useful for such datasets, especially given how widespread t-SNE, UMAP,

and related approaches are within these fields.

The utility of RAPID includes its ability to identify stable, robust clusters that are independent of

known prognosticators, provide users with opportunities to customize the workflow with a variety of

tools, and inform subsequent studies on validation datasets or using different technologies. Here,

RAPID was extensively probed for its performance in each of these areas. By repeated subsampling

of each tumor and iterative FlowSOM analyses, clusters with consistent cell content and phenotypes

observed in the majority of subsamplings were identified (Figure 3). Furthermore, these clusters

were independently associated with continuous clinical variables - patient overall survival and PFS. A

subsequent, low dimensional decision tree applied to both mass cytometry data and a new set of

patient samples stained via IHC was also able to stratify patients, suggesting that the biology

learned from the high dimensional approach could be used to inform complementary approaches.

Critically, RAPID was also used to analyze a dataset from different tissue in a different disease col-

lected at a different institution, Dataset 2 in Figure 2 (Good et al., 2018). In this application of

RAPID, features previously identified by the original authors to be associated with time to relapse

were re-captured, identifying cellular phenotypes concordant with prior results without requiring the

normal developmental trajectory reference used in the original analysis.

Within Dataset 1 analyzing 28 IDH wild-type pre-therapy glioblastoma patient samples, the RAPID

workflow automatically uncovered two prognostic phenotypic signatures which were independent of

other known predictors of outcome. Glioblastoma Negative Prognostic (GNP) cells, characterized by

enrichment for S100B, SOX2, p-STAT3, and p-STAT5, were associated with decreased overall sur-

vival, while Glioblastoma Positive Prognostic (GPP) cells, characterized by co-enrichment of EGFR

and CD44 proteins, were associated with longer overall survival. Once revealed in high-dimensional

data, a simple gating scheme using S100B and EGFR could be used to stratify outcome in a sepa-

rate, expanded set of samples using traditional pathological approaches. High-dimensional
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cytometry and RAPID were critical to revealing novel prognostic cells in glioblastoma data in two

ways. First, assessment of a large number of cells per tumor – over 2 million viable single cells, with

at least 4,710 glioblastoma cells from each patient - enabled the use of an unsupervised approach in

the identification of rare, novel cell subsets across patients. Second, per-cell quantification of phos-

phorylated signaling effector proteins revealed potential mechanisms of tumor cell regulation that

are not readily apparent in bulk tumor data, genomic analyses, or lower dimensional approaches

such as one- to four-color imaging. Supervised analysis of single cell data has previously uncovered

signaling events tied to patient survival in hematologic malignancies (Good et al., 2018; Irish et al.,

2004; Levine et al., 2015; Myklebust et al., 2017), and a similar pattern was observed here.

The GNP signature was defined by abnormal neural development features such as co-expression

of stem cell transcription factor SOX2 and astrocyte lineage marker S100B (Ikushima et al., 2009;

Raponi et al., 2007) and simultaneous high basal phosphorylation of multiple signaling effectors

downstream of receptor tyrosine kinases reported to be important in tumor biology (Bhat et al.,

2013; Carro et al., 2010; Dolma et al., 2016; Fan et al., 2017; Tan et al., 2019; Wei et al., 2013;

Figure 1—figure supplement 4). RAPID also uncovered a connection between p-STAT5 and glio-

blastoma outcome previously unidentified in primary patient samples. STAT5 signaling is required in

development of many tissues to block apoptosis and drive cell cycle entry (Irish et al., 2006) for

example, p-STAT5 is an essential feature of negative prognostic acute myeloid leukemia signaling

profiles (Irish et al., 2004; Levine et al., 2015). The signaling events of the negative and positive

prognostic cells can now be studied in glioblastoma research models, such as patient xenografts

and glioblastoma organoids (Bhaduri et al., 2020; Hubert et al., 2016; Jacob et al., 2020;

Ogawa et al., 2018), using new combinations of targeted therapies, such as JAK inhibitors that tar-

get molecules upstream of STAT5 and STAT3, in combination with PI3K/mTOR pathway inhibitors,

which will target molecules upstream of AKT and S6 signaling. In this way, new combinations of

existing therapies may prove useful in targeting the signaling that defines the negative prognostic

cells seen here.

Recent work using single cell gene expression has described the existence of multiple cellular

states in glioblastoma tumors and the ability of cells to transition between states (Neftel et al.,

2019). Similar to most transcript-based studies, RAPID analyses were performed on cells collected

at a single timepoint, precluding a direct investigation of the ability of GNP or GPP cells to transition

to other phenotypes; however, it is possible that phosphorylated, active STAT3, STAT5, and S6 may

enable transition between progenitor-like states as they do in earlier development, and thus influ-

ence patient outcome (Rushing et al., 2019; Yoshimatsu et al., 2006). Another key research ques-

tion for the future will be whether the signature features of the risk stratifying cells seen here will

also be seen in other types of intractable human malignancies. Intriguingly, p-STAT5, p-ERK, and

p-STAT3 signaling profiles reminiscent of the negative prognostic cells from glioblastoma have been

seen in leukemia (Irish et al., 2004; Kotecha et al., 2008; Levine et al., 2015) and ovarian cancer

(Gonzalez et al., 2018).

The GPP signature, in contrast, was defined by EGFR and CD44 co-enrichment, diminished evi-

dence of proliferation, and specific lack of STAT5 phosphorylation. GPP cells were further associated

with higher proportions of tumor-infiltrating immune cells. This result suggests an understanding of

prognostic cell content or biomarkers may be relevant for immunotherapy research in glioblastoma.

Previous DNA and RNA-driven molecular subtyping predicts EGFR expression in the classical subset

of glioblastoma tumors and CD44 expression in mesenchymal tumors (Verhaak et al., 2010). As

these categories were primarily based on bulk tumor data, cells co-expressing EGFR and CD44 (clas-

sified as GPP cells in this study) may have previously been missed, although single glioma cells have

been shown to simultaneously amplify sequence or co-express transcripts for important signaling

regulators (Patel et al., 2014; Snuderl et al., 2011). EGFR has been extensively studied as a driver

of gliomas in the past (reviewed in Saadeh et al., 2018), and the association of this gene and tran-

script with outcome has been a matter of debate (Li et al., 2018; Saadeh et al., 2018; Xu et al.,

2017). This study finds that expression of EGFR protein is associated with better overall survival.

One reason for the difference between this study and other reports may be that EGFR protein levels

were measured in individual cells rather than copy number analysis or transcript levels in bulk tumor

samples; our own analyses and others’ have indicated that copy number or transcript level are not

necessarily predictive of protein expression (Baser et al., 2019; Brennan et al., 2009;

Chakravarty et al., 2017). Although antibody-based methods for protein detection, like those used
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here, depend on the specificity of each selected clone, it is important to note that two different, rig-

orously validated antibodies (mass cytometry, clone AY13; TMA, clone A-10) gave the same results

(Figure 5). S100B has been explored as a serum biomarker (Holla et al., 2016), and S100B is known

for its impact on macrophages, including microglia (Wang et al., 2013). These features of negative

and positive prognostic cells extend the single cell phospho-specific flow cytometry approach to a

new solid tumor that is in urgent need of new biological insights and targets.

When applied to a new glioblastoma dataset as well as a previously published study of blood can-

cer, RAPID reliably identified cells whose abundance was predictive of good or poor outcome. Cellu-

lar identification was robust, stable, and reproducible, and independent of the specific

dimensionality reduction tools used. Critically, the discoveries from RAPID were able to inform a

scoring system for detection of GNP-like and GPP-like phenotypes in IHC data that stratified patient

outcome in 73 patient samples. RAPID also led to the development of a lower-dimensional cytome-

try pipeline which could be optimized for clinical stratification. There is now the exciting potential to

extend the hypotheses suggested by RAPID into clinical research studies using either traditional flow

cytometry or IHC on widely available formalin-fixed, paraffin-embedded samples, as in the biological

validation here (Figure 5). Thus, techniques accessible to clinical research, such as IHC, could be

informed by the results from RAPID and envisioned as a way to assign glioblastoma patients to treat-

ment groups in early phase clinical trials.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Biological sample
(Homo Sapien)

Primary
glioblastoma
tumors

Vanderbilt
University
Medical Center

Freshly isolated
from primary
glioblastoma
resections

Reagent Rhodium Fluidigm Cat# 201103A MC (1:4000)

Antibody Anti-Cyclin B1
(mouse-
monoclonal)

BD Biosciences RRID:AB_395287
Cat#554176
Clone: GNS-1

MC (1:100)

Antibody Anti-TUJ1
(mouse-
monoclonal)

Biolegend RRID:AB_2313773
Cat#801201
Clone: TUJ1

MC (1:100)

Antibody Anti-cCasp3
(rabbit-
monoclonal)

Fluidigm RRID:AB_2847863
Cat#3142004A
Clone: 5A1E

MC (1:100)

Antibody Anti-CD117
(mouse-
monoclonal)

Fluidigm RRID:AB_2847864
Cat#3143001B
Clone:104D2

MC (1:100)

Antibody Anti-S100B
(mouse-
monoclonal)

BD Biosciences RRID:AB_647296
Cat#612376
Clone: 19/S100B

MC (1:100)

Antibody Anti-CD31
(mouse-
monoclonal)

Fluidigm RRID:AB_2737262
Cat#3145004B
Clone: WM59

MC (1:100)

Antibody Anti-VH2AX
(mouse-
monoclonal)

Fluidigm RRID:AB_2847865
Cat# 3147016A
Clone: JBW301

MC (1:100)

Antibody Anti-CD34
(mouse-
monoclonal)

Fluidigm RRID:AB_2810243
Cat#3148001B
Clone: 581

MC (1:100)

Antibody p-4E-BP1
(T37/T46)

Fluidigm RRID:AB_2847866
Cat# 3149005A
Clone: 236B4

MC (1:100)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-p-STAT5
(Y694) (mouse-
monoclonal)

Fluidigm RRID:AB_2744690
Cat#3150005A
Clone:47

MC (1:100)

Antibody Anti-BMX
(mouse-
monoclonal)

BD Biosciences RRID:AB_2290762
Cat# 610793
Clone: 40/BMX

MC (1:100)

Antibody Anti-p-AKT
(S473) (rabbit-
monoclonal)

Fluidigm RRID:AB_2811246
Cat#3152005A
Clone: D9E

MC (1:100)

Antibody Anti-p-STAT1 (Y701)
(rabbit-monoclonal)

Fluidigm RRID:AB_2811248
Cat#3153003A
Clone: 58D6

MC (1:100)

Antibody Anti-CD45
(mouse-
monoclonal)

Fluidigm RRID:AB_2810854
Cat# 3154001B
Clone: HI30

MC (1:400)

Antibody Anti-NCAM/
CD56 (mouse-
monoclonal)

Biolegend RRID:AB_604092
Cat# 318302
Clone: HCD56

MC (1:100)

Antibody Anti-p-p38
(T180/Y182)
(rabbit-
monoclonal)

Fluidigm RRID:AB_2661826
Cat# 3156002A
Clone: D3F9

MC (1:100)

Antibody Anti-p-STAT3
(Y705) (mouse-
monoclonal)

Fluidigm RRID:AB_2811100
Cat# 3158005A
Clone: 4/P-STAT3

MC (1:100)

Antibody Anti-ITGa6/
CD49F (rat-
monoclonal)

Biolegend RRID:AB_345296
Cat# 313602
Clone: GoH3

MC (1:100)

Antibody Anti-CD133
(mouse-
monoclonal)

Miltenyi Biotech RRID:AB_244339
Cat# 130-090-422
Clone: AC133

MC (1:50)

Antibody Anti-PDGFRa
(mouse-
monoclonal)

Biolegend RRID:AB_755996
Cat#323502
Clone: 16A1

MC (1:50)

Antibody Anti-SOX2
(mouse-
monoclonal)

BD Biosciences RRID:AB_10694256
Cat# 561469
Clone: O30-678

MC (1:100)

Antibody Anti-SSEA-1/
CD15 (mouse-
monoclonal)

Fluidigm RRID:AB_2810970
Cat# 3164001B
Clone: W6D3

MC (1:100)

Antibody Anti-EGFR
(mouse-
monoclonal)

Biolegend RRID:AB_10945161
Cat# 352902
Clone:AY13

MC (1:100)

Antibody Anti-p-NFkB p65
(S529) (mouse-
monoclonal)

Fluidigm RRID:AB_2847867
Cat# 3166006A
Clone: K10-895.12.50

MC (1:100)

Antibody Anti-L1CAM
(mouse-
monoclonal)

BD Biosciences RRID:AB_395337
Cat#554273
Clone: 5G3

MC (1:100)

Antibody Anti-Nestin
(mouse-
monoclonal)

Millipore RRID:AB_2251134
Cat# MAB5326
Clone:10C2

MC (1:100)

Antibody Anti-CD44
(mouse-
monoclonal)

Biolegend RRID:AB_1501199
Cat# 338802
Clone: BJ18

MC (1:100)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-GFAP
(mouse-
monoclonal)

BD Biosciences RRID:AB_396366
Cat# 556328
Clone: 1B4

MC (1:200)

Antibody Anti-p-ERK1/2
(T202/Y204)
(rabbit-monoclonal)

Fluidigm RRID:AB_2811250
Cat#3171010A
Clone: D13.14.4E

MC (1:100)

Antibody Anti-p-S6
(S235/S236)
(mouse-
monoclonal)

Fluidigm RRID:AB_2811251
Cat#3172008A
Clone: N7-548

MC (1:100)

Antibody Anti SOX10
(mouse-
monoclonal)

Santa Cruz RRID:AB_10844002
Cat#sc-365692
Clone: A-2

MC (1:100)

Antibody Anti-HLA-DR
(mouse-
monoclonal)

Fluidigm RRID:AB_2665397
Cat# 3174001B
Clone: L243

MC (1:200)

Antibody Anti-p-HH3
(rat-monoclonal)

Fluidigm RRID:AB_2847869
Cat# 3175012A
Clone: HTA28

MC (1:400)

Antibody Anti-Histone
H3 (rabbit-
monoclonal)

Fluidigm RRID:AB_2847870
Cat# 3176016A
Clone: D1H2

MC (1:200)

Antibody S100B
(rabbit-
polyclonal)

Dako RRID:AB_2811056
Cat#GA50461-2

IHC (RTU)

Antibody EGFR Santa Cruz RRID:AB_10920395
Cat# sc-373746
Clone: A-10

IHC (1:100)

Software,
algorithm

RAPID https://github.
com/cytolab/
RAPID

Data files FCS data files https://flowrepository.
org/id/FR-FCM-Z24K

Lead contact and materials availability
Further information and requests for datasets and materials should be addressed to jonathan.irish@-

vanderbilt.edu.

Experimental model and subject details
Patient samples
Surgical resection specimens of 28 IDH-wildtype glioblastomas collected at Vanderbilt University

Medical Center between 2014 and 2016 were processed into single cell suspensions following an

established protocol (Leelatian et al., 2017b). Only samples that were confirmed to be IDH-wildtype

glioblastomas by standard pathological diagnosis were used. All samples were collected with patient

informed consent in compliance with the Vanderbilt Institutional Review Board (IRBs #030372,

#131870, #181970), and in accordance with the declaration of Helsinki.

Patient characteristics and collection of clinical data
Additional patient characteristics are included in Supplementary file 3 for all samples in this study.

All patients were adults (�18 years of age) at the time of their maximal safe surgical resection of

their cerebral (supratentorial) glioblastomas. Extent of surgical resection was independently classi-

fied as either gross total or subtotal resection by a neurosurgeon and a neuroradiologist. Gross total

resection was defined as agreement by both viewers of no significant residual tumor enhancement

on patients’ gadolinium-enhanced magnetic resonance imaging (MRI) of the brain obtained within
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24 hr after surgery. All patients were considered for treatment with postoperative chemotherapy

(temozolomide) and radiation according to the standard of care (Stupp et al., 2005), after determi-

nation of MGMT promoter methylation status by pyrosequencing (Cancer Genetics, Inc, Los

Angeles, CA, USA). Multiplex polymerase chain reaction (PCR) was used to determine IDH1/2 muta-

tional status. Patients’ postoperative course was followed until February 2019, noting time to first,

definitive radiographic progression or recurrence of glioblastoma as agreed upon by the treating

neuro-oncologist and neuroradiologist, and the time to patients’ death. All deaths were deemed to

be due to the natural course of patients’ glioblastoma. Median overall survival of the analyzed 28

patients with IDH wild-type glioblastoma was 388.5 days (13 months) and median PFS was 187.5

days (6.3 months), which is typical for the disease (Ostrom et al., 2017; Stupp et al., 2005).

Method details
Mass cytometry analysis
Cells derived from patient samples were prepared as previously described (Leelatian et al., 2017b).

A multi-step staining protocol was used, which included 1) live surface stain, 2) 0.02% saponin per-

meabilization intracellular stain, and 3) intracellular stain after permeabilization with ice-cold metha-

nol. All antibodies used, including clone information, and the steps when used are given in

Supplementary file 4. After staining, cells were resuspended in deionized water containing standard

normalization beads (Fluidigm) (Finck et al., 2013), and collected on a CyTOF 1.0 instrument

located in the Cancer and Immunology Core facility at Vanderbilt University. Mass cytometry stan-

dardization beads were used to remove batch effects and to set the variance stabilizing arcsinh scale

transformation for each channel following field-standard protocols (Greenplate et al., 2019;

Leelatian et al., 2015; Leelatian et al., 2017b). Rhodium viability stain and cleaved caspase-3 anti-

body were included in staining to exclude non-viable and apoptotic cells, respectively. Detection of

total histone H3 was used to identify intact, nucleated cells (Leelatian et al., 2017a). A 34-dimen-

sional mass cytometry antibody panel was used to analyze over 2 million viable cells from 28 tumors

(ranging from 4860 to 336,284 cells per tumor). Data were normalized with MATLAB-based normali-

zation software (Finck et al., 2013), and were arcsinh transformed (cofactor 5), prior to analysis using

the Cytobank platform (Kotecha et al., 2010). Positively identified cells were defined by having sig-

nal above 10 on any channel on which an antibody was used to detect antigen. A patient-specific

t-SNE view was generated, using 26 of the measured markers for all tumor and stromal cells from

each patient’s tumor (Amir et al., 2013; Supplementary file 4). Immune (CD45+) and endothelial

cells (CD31+) were computationally excluded from each individual patient prior to subsequent down-

stream analysis. Remaining CD45-CD31- cells were included in a common t-SNE analysis, generated

using 24 of 34 measured markers (Supplementary file 4). Distribution of each of the 28 patients’

cells on the common t-SNE axes and mass intensity for each marker are shown in

Supplementary file 6. This common t-SNE analysis was used for automated analysis of risk stratify-

ing cell subsets in RAPID (below).

Quantification and statistical analysis
Implementation of RAPID in R
FCS files for each patient sample (28) containing only cells of interest (non-immune, non-endothelial

cells) were input in R (4,710 cells from each patient, 131,880 cells total). Cell subset identification

was performed using the previously published FlowSOM R package (Van Gassen et al., 2015).

t-SNE values (t-SNE1_glioblastoma and t-SNE2_glioblastoma) from t-SNE (or UMAP values from

UMAP) analysis of CD45-CD31- glioblastoma cells from 28 patients were used as parameters for cell

subset clustering. Within the RAPID workflow, the optimal number of clusters was determined by

first identifying, for each feature, the smallest number of clusters that minimizes the intra-cluster sig-

nal variance for that feature. Then, the optimal cluster number of the data set was determined by

taking the median of the optimal numbers for each individual feature. Once the cluster number was

determined, the abundance of cell subsets and their clinical significance was assessed using out-

come-guided analysis. Patients were divided into Low and High groups, based on the distribution

(interquartile variance, IQR) of the abundance of a given cell subset across the cohort. A univariate

Cox regression analysis was then used to estimate the effect size (hazard ratio, HR, of death) on sur-

vival and quantify its statistical significance with a p-value. The RAPID program output included: 1) a
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PDF containing two color coded, 2D t-SNE (or UMAP) plots (.png), one depicting all FlowSOM clus-

ters and one depicting prognostic status and p-value, Kaplan-Meier survival plots of patients for

each subset; 2) MEM outputs including a PDF of the MEM heatmap as well as. txt files of MEM and

Median values for each feature, enrichment scores, and IQR values; 3) a .txt file of the FlowSOM

cluster value for prognostic subsets, a .txt file of survival statistics for each FlowSOM cluster, and a .

csv file with subset abundance information per patient;and 4) new FCS files with added columns for

cluster and prognostic status for each cell. In this study, abundance of Glioblastoma Negative Prog-

nostic (GNP) and Glioblastoma Positive Prognostic (GPP) cells in each tumor was quantified as per-

centages per total glioblastoma cells (i.e. immune and endothelial cells were already excluded).

Total GNP and GPP cell abundance was determined for each patient by adding the events in all

GNP (or GPP subsets, respectively) together. GNP high patients were identified as containing more

GNP cells than the IQR of total GNP abundance (3.1%). GPP high patients were defined in the same

manner (total GPP cell abundance IQR = 8.58%). MEM analysis was performed in R, using the previ-

ously published R package (Diggins et al., 2017). In short, MEM captured and quantified cell sub-

set-specific feature enrichment by scaling the magnitude (median) differences between clusters,

depending on the spread (IQR) of the data. These values were then computed in comparison to the

remaining cells in a given dataset. MEM values were interpreted as either being positively enriched

(~, UP positive values) or negatively enriched (!, DN negative values). The variation of a given cel-

lular feature across GNP or GPP cell subsets was quantified as ± standard deviations (SD). For the

primary data set used in this study (131,880 cells), RAPID ran in 15 min from start to finish after

dimensionality reduction.

Cluster stability testing
Ten independent t-SNE analyses were performed on equal numbers of randomly sampled cells from

each patient (4,710 cells per patient, 131,880 total cells). RAPID was used to analyze each of these

ten t-SNE runs. For each sub-sampling of cells and the respective t-SNE, an additional 99 FlowSOM

clusterings were performed without setting a seed for reproducible results. After each analysis, an

F-measure was calculated per cluster, measuring both the precision and recall of cell assignment.

After 100 total FlowSOM runs, each of the original clusters had an average F-measure, interpreted

here as a measure of cluster stability.

Survival and statistical analysis
Time from surgical resection to death (overall survival, OS) and time from surgical resection to the

initial radiographic recurrence or death before radiographic assessment (PFS) were depicted using

right-censored Kaplan-Meier curves and analyzed in R. Survival time points were censored if, at last

follow up, the patient was known to be alive or had not had radiographic progression. Differences in

the survival curves of groups were compared using the Cox univariate regression model, reporting a

hazard ratio (HR) with 95% confidence intervals between the survival curves.

A Cox proportional-hazards regression model was created to assess the influence of GNP and

GPP cells on OS and PFS as continuous variables while accounting for other factors known to affect

survival, including age at diagnosis, MGMT promoter methylation status, extent of surgical resection

(EOR), treatment with temozolomide (TMZ), and radiation (XRT). The hazard model can be written

as:

HR¼
h tð Þ

h0 tð Þ
¼ e bGNPGNPþbageAgeþbMGMTMGMTþbEOREORþbXRTXRTþbTMZTMZð Þ

where h tð Þ
h0 tð Þ represents the ratio of hazard comparing the risk of death at time t to the baseline hazard

(obtained when all variables are equal to zero) and ebx represents the hazard ratio of variable x. The

data were fit using R software, version 3.5 (R foundation for Statistical Computing, Vienna, Austria).

The proportional-hazards assumption was tested in all multivariate models and supported by a non-

significant relationship between Schoenfeld residuals and time for each covariate included in the

model (p > 0.38; degree of freedom = 1) and the overall model (p = 0.96; degrees of freedom = 6

and 7). Statistical significance a was set at 0.05 for all statistical analyses, one- or two-tailed noted in

figure legends.
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An F-measure was used to quantify the level of agreement between classifications of patients or

cells between alternative analysis strategies as wells as multiple RAPID iterations. The F-measure is

the harmonic mean of the precision and recall given by the equation F = 2 * (Precision * Recall) /

(Precision + Recall) where Precision = True Positive / (True Positive + False Positive) and

Recall = True Positive / (True Positive + False Negative). An F-measure of 1 indicates perfect agree-

ment between two different strategies or iterations as opposed to an F-measure of 0 which would

mean no agreement between classifications of patients or cells from two strategies or iterations.

Patients could be classified as GNP high, GNP and GPP low, or GPP high, while cells were classified

as GNP, GPP, or neither. None of the patients in this study were classified as both GNP high and

GPP high. To calculate the F-measure of patient categorization, the classification of the 28 patients

into the three prognostic groups from the t-SNE implementation of RAPID was used as the reference

point from which to compare patient classification resulting from the UMAP implementation of

RAPID. Similarly, the stability of the RAPID workflow in assigning cells to GNP, GPP, or non-signifi-

cant clusters was tested by using the t-SNE implementation of RAPID (FlowSOM seed 38) as the ref-

erence from which to compare 100 iterations of RAPID (random FlowSOM seed per iteration).

Calculation of the F-measure was implemented using R software, version 3.5.

Computer specifications
R was downloaded from https://cran.r-project.org/bin/ and implemented using the R Studio GUI

https://www.rstudio.com/products/rstudio/download/#download. PC users also needed to down-

load R Tools https://cran.r-project.org/bin/windows/Rtools/ and MAC users needed to download

X11 Quartz https://www.xquartz.org/. RAPID was implemented, using these tools, on several per-

sonal computers. It was developed on a Dell Precision 7820 with a solid state hard drive and 64 GB

RAM.

Tissue microarray construction and analysis
TMA sample selection
Formalin-fixed paraffin-embedded (FFPE) glioblastoma specimens were identified using the Vander-

bilt Surgical Pathology database. The absence of IDH mutation was determined by multiplex PCR

coupled with base extension assay (SNaPshot reaction mixture, Life Technologies, Carlsad, CA,

USA), followed by capillary electrophoresis on an ABI Genetic Analyzer 3130XL and GeneMapper

v.4.1. Following confirmation of the previously rendered histologic diagnosis, hematoxylin and eosin

stained slides were scanned on the Panoramic P250 (3DHistech) whole slide scanner. Areas contain-

ing viable tumor were identified and circled by two pathologists (BM, NL).

TMA construction and staining
Blocks were delivered to the Vanderbilt University Medical Center TPSR (Translational Pathology

Shared Resource), where cores were extracted from the encircled areas. Donor blocks and recipient

blocks were loaded into the Tissue Microarray Grandmaster (3DHistech). The virtual slide images

were aligned and overlaid on the tissue block and cores were removed from the donor block based

on the pathologist annotation. Three 1 mm core samples were collected from each tumor and

placed in the recipient block. IHC of serial sections of two TMA blocks (<10 mm thick) were stained

with primary antibodies conjugated to HRP and 3,30-Diaminobenzidine (DAB) detection for EGFR

and S100B, and counter stained with Hematoxylin by the Translational Pathology Shared Resource

(TPSR) at Vanderbilt University. Digital images were obtained with an Ariol SL-50 automated scan-

ning microscope and the Leica SCN400 Slide Scanner from VUMC Digital Histology Shared

Resource.

Marker Clone Company

S100B polyclonal Dako

EGFR A-10 Santa Cruz Biotechnology
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TMA imaging and analysis
Whole slide imaging was performed in the Digital Histology Shared Resource at Vanderbilt Univer-

sity Medical Center (www.mc.vanderbilt.edu/dhsr). For each marker, a QuPath project was created

and all slide images were uploaded to be processed in batch. In QuPath, regions of interest (ROI’s)

were designated by circling each tumor core. Each ROI was computationally linked to the patient by

a unique identifier, allowing cores from the same patient to be grouped. For each marker, the ‘Esti-

mate Stain Vectors’ function in QuPath was used to find the appropriate deconvolution parameters

to isolate the signal intensity contribution from Hematoxylin and DAB respectively. The deconvolu-

tion parameters are listed below:

Marker Hematoxylin DAB Background

S100B 0.60484 0.67532 0.422044 0.20996 0.50234 0.83879 224 223 221

EGFR 0.72353 0.63737 0.26508 0.24952 0.52384 0.81445 221 219 220

For each ROI, nuclear segmentation on the Hematoxylin Optical Density (OD) was optimized

using the ‘Watershed cell detection’ function in QuPath, and the cytoplasm around each nucleus was

estimated by performing a 3 mm expansion from the nuclear outline. All measurements from all

detections were exported for analysis in R. In R, specific parameters (Name, Cell.DAB.OD.mean,

Cytoplasm.DAB.OD.mean, and Nucleus.DAB.OD.mean) were extracted for every detection (cell)

from every patient. These parameters identify the ROI/core from which the cell was segmented, its

corresponding patient ID, the mean optical density of the deconvoluted DAB signal in each entire

segmented cell, the DAB signal in only the cytoplasm, and the signal exclusively in the nucleus

respectively. The full TMA map linking QuPath IDs, Patient_IDs, Block, and Core_IDs was also

imported. In addition, for each marker, the median DAB intensity was calculated for each patient

(averaged over three cores). The thresholds and measurements on which these thresholds were

applied are summarized below:

Marker Measurement Threshold - Block A Threshold - Block B

S100B Cell_DAB 0.4 0.4

EGFR Cell_DAB 0.2 0.2

Patients were categorized as GNP-like if their TMA cores had S100B staining intensity above the

first quartile of S100B intensities (>0.6728) and had EGFR staining below the 50th percentile

(<0.4199). Patients were categorized as GPP-like if their TMA cores scored in the top tertile of EGFR

intensity (>0.6929).

Data and code availability
Data availability
Annotated flow data files are available at the following link https://flowrepository.org/id/FR-FCM-

Z24K. FCS files that contain the cells from the representative t-SNE can also be found on the GitHub

page: https://github.com/cytolab/RAPID. Patient-specific views of population abundance and chan-

nel mass signals for all analyzed patients in this study are found in Supplementary file 6.

Code availability
RAPID code is currently available on Github, along with FCS files from Dataset 1 and 2 for analysis,

at: https://github.com/cytolab/RAPID ‘2020-01-15 RAPID Workflow Script on Davis Dataset.Rmd’

contains RAPID code for a single run as presented in Figure 1b. ‘2020-04-21 RAPID Stability Tests.

Rmd’ contains RAPID code for repeated stability tests as presented in Figure 1c.
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