
THE NATURAL HISTORY OF MODEL ORGANISMS

The unlimited potential of the
great pond snail, Lymnaea
stagnalis
Abstract Only a limited number of animal species lend themselves to becoming model organisms in

multiple biological disciplines: one of these is the great pond snail, Lymnaea stagnalis. Extensively

used since the 1970s to study fundamental mechanisms in neurobiology, the value of this freshwater

snail has been also recognised in fields as diverse as host–parasite interactions, ecotoxicology,

evolution, genome editing and ’omics’, and human disease modelling. While there is knowledge

about the natural history of this species, what is currently lacking is an integration of findings from the

laboratory and the field. With this in mind, this article aims to summarise the applicability of L.

stagnalis and points out that this multipurpose model organism is an excellent, contemporary choice

for addressing a large range of different biological questions, problems and phenomena.
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Introduction
In ancient Greece, over 2,400 years ago, it was

already recognised that by studying animals we

could learn much about ourselves. Over the cen-

turies since then, it has become clearer that

some species are highly suitable in the fields of

medical, basic and applied biological research

(Ericsson et al., 2013). However, when consid-

ered carefully, there is perhaps only a limited set

of animal species that are versatile enough to

lend themselves to become model organisms in

multiple biological disciplines (Frézal and Félix,

2015; Hilgers and Schwarzer, 2019; Mar-

kow, 2015; Phifer-Rixey and Nachman, 2015).

In the second half of the 20th century, one

booming line of research has focused on mol-

luscs. Neuroscientists such as the Nobel Prize

winners Alan Hodgkin, Andrew Huxley and Eric

Kandel recognised these animals’ potential as

models for understanding basic neurobiological

processes (Hodgkin and Huxley, 1952;

Kupfermann and Kandel, 1969; Wachtel and

Kandel, 1967). One particularly well-suited mol-

lusc for this type of research is the freshwater

pond snail, Lymnaea stagnalis, which has been

used extensively since the 1970s to study the

functioning of the nervous system from molecu-

lar signalling to behaviour.

The value of L. stagnalis also has been recog-

nised in a wide range of applied biological

fields. These include the study of host–parasite

interactions, ecotoxicology, evolution, develop-

mental biology, genome editing, ’omics’ and

human disease modelling. This extensive suit-

ability stems from the most obvious advantages

of L. stagnalis: its well-known anatomy, develop-

ment (both of the embryonic and post-embry-

onic processes), and reproduction biology; its

well-characterised central and peripheral ner-

vous and neuroendocrine systems from key mol-

ecules to behavioural processes; and its readily

accessible and mostly large neurons. There is

also a growing body of available sequence data

with an impending annotated genome and the

option to use new technical approaches such as

genome editing. Taking all of the above into

consideration, these advantages simplify the

study of different scientific topics integrated

from the molecular to the population level.

*For correspondence: pirger.

zsolt@okologia.mta.hu

†These authors contributed

equally to this work

Competing interests: The

authors declare that no

competing interests exist.

Funding: See page 10

Reviewing editor: Stuart RF

King, eLife, United Kingdom

Copyright Fodor et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

Fodor et al. eLife 2020;9:e56962. DOI: https://doi.org/10.7554/eLife.56962 1 of 18

FEATURE ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.56962
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


This article is a tribute to over 50 years of

research with L. stagnalis that has resulted in a

considerable contribution to the understanding

of general biological processes. Here, we pres-

ent the essential background information on the

natural history of this freshwater snail. We also

provide an overview of the ground-breaking and

recent information on different research fields

using L. stagnalis (and snails in general). Our aim

is to showcase L. stagnalis as a contemporary

choice for addressing a wide range of biological

questions, problems and phenomena, to inspire

more researchers to use this invertebrate as a

model organism, and to highlight how findings

from the laboratory and the field could be better

integrated.

Natural history of L. stagnalis
Initially described by Linnaeus in 1758 as Helix

stagnalis, the species now known as L. stagnalis

is generally referred to as the great pond snail

(Panpulmonata; Hygrophila; Lymnaeidae). It is

found throughout Northern America, Europe,

and parts of Asia and Australia (Atli and Grosell,

2016; Zhang et al., 2018a; Figure 1). The snails

inhabit stagnant and slowly running shallow

waters rich in vegetation and are mainly herbi-

vores, preferring algae, water plants and detritus

(Lance et al., 2006). They are active all year

round (even when there is a layer of ice on the

water) but typically reproduce from spring to

late autumn (Nakadera et al., 2015). They do

not have a clear day-night rhythm, but display

sleep-like behaviour (Stephenson and Lewis,

2011) and are more likely to lay eggs during

daytime (Ter Maat et al., 2012). They are light

to dark brown in colour and relatively large for

pond snail species, with their spiral shells reach-

ing lengths of up to 55 mm (Benjamin, 2008). In

highly oxygenated water, they absorb oxygen

directly across their body wall; but when dis-

solved oxygen levels drop, they switch to

breathing via a lung accessed by a respiratory

orifice called the pneumostome

(Lukowiak et al., 1996).

L. stagnalis serves as the intermediate host

for parasites including flatworms responsible for

diseases such as fascioliasis (liver fluke and river

rot) and cercarial dermatitis (swimmer’s itch) in

humans (Adema et al., 1994; Davison and

Blaxter, 2005; Ferté et al., 2005; Núñez et al.,

1994; Skála et al., 2020). Laboratory and field

studies showed that penetration of a parasite

into a snail will initiate a chronic infection in

which the parasite alters snail neurophysiology,

metabolism, immunity, growth and reproduction

(Kryukova et al., 2014; Langeloh and Seppälä,

2018; Vorontsova et al., 2019). These studies

have also investigated how selection acts on

immune defence traits (Langeloh et al., 2017).

Investigations of the natural history of L. stagna-

lis, which focus on host-parasite associations, aid

the development of novel control measures that

reduce snail-mediated parasitic transmissions.

Primary predators of juveniles and adults include

leeches, crayfish and fish, some of which snails

can detect via chemicals that the predators emit

(Dalesman and Lukowiak, 2012).

The life cycle and reproductive biology of the

species are well-characterised (Ivashkin et al.,

2015; Koene, 2010; Mescheryakov, 1990;

Figure 1. Geographical distribution of L. stagnalis. Places where this species of snail has been reported to occur

(hexagons), shaded based on population density (white indicates low density and dark grey indicates high density;

source data from GBIF Secretariat, 2019).
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Morrill, 1982; Figure 2A). Embryos develop

inside transparent eggs packaged in a translu-

cent gelatinous mass allowing observers to fol-

low their developmental stages in detail over

the 11–12 days to hatching. The time from laid

eggs to mature reproductive adults can be as

short as two months depending on the tempera-

ture, photoperiod, feeding regime and mate

availability at the location where they are being

raised. In their natural habitat, they have been

found to reach an age in excess of one year, but

in the laboratory they live longer, up to two

years (Janse et al., 1988; Nakadera et al.,

2015). For laboratory breeding, a large and

genetically diverse breeding stock is recom-

mended as this will facilitate a well-standardised

stock population without too much inbreeding.

The largest and longest-maintained breeding

facility is found at the Vrije Universiteit in

Amsterdam, where L. stagnalis has been bred

continuously for over 50 years (Nakadera et al.,

2014).

Its well-characterised embryonic and post-

embryonic processes have promoted extensive

use of L. stagnalis in the field of developmental

biology. This snail has helped us to understand

the mechanisms underlying shell formation

(Hohagen and Jackson, 2013), the transfer of

non-genetic information to the developing

embryos (Ivashkin et al., 2015), and resource

allocation during development (Koene and Ter

Maat, 2004). Moreover, studies with L. stagnalis

has also helped develop and evaluate models in

physiology, such as the “dynamic energy

budget” model (Zonneveld and Kooijman,

1989; Zimmer et al., 2014).

This snail is a simultaneous hermaphrodite,

meaning that mature individuals express a func-

tional male and female reproductive system at

the same time within one body. Despite having

Figure 2. Life cycle and wild reproductive habit of L. stagnalis. (A) The embryonic development in the egg from zygote to hatching (over 11–12 days)

is depicted in the white area of the life cycle and consists of six main stages: cleavage, blastula, gastrula, trochophore, veliger and metamorphosis

(Source data from Ivashkin et al., 2015). The grey area of the life cycle depicts growth and development after hatching. Although L. stagnalis is a

simultaneous hermaphrodite, the male reproductive organs are functional before the female ones (Koene and Ter Maat, 2004): specimens reach male

and female maturation on average at an age of 30 and 60 days, respectively (based on Koene, 2010). (B) In the wild, generations only partly overlap, as

depicted by the two dotted growth curves (top; based on Nakadera et al., 2015). Individuals that are born during spring and summer, overwinter as

adults (light grey dotted line) after which they overlap with the adult generation of the next year (black dotted line). The external conditions such as

light and temperature (middle), which strongly influence when egg laying occurs (bottom), are depicted for the situation in a typical temperate zone.
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two functional sexes, specimens copulate unilat-

erally; one individual plays the male role and the

other the female role within one mating interac-

tion (Hoffer et al., 2017). There is no obligate

alternation of sexual roles, but when both indi-

viduals of a mating pair are motivated to mate in

the male role they can perform a second copula-

tion with the same partner in the opposite sex-

ual role (Koene, 2010; Ter Maat et al., 2012;

Van Duivenboden and Maat, 1985). An inte-

grated laboratory and field study showed that,

in the wild, most individuals are born during the

spring and summer seasons and generations

partly overlap because the latter cohorts over-

winter and overlap with mature individuals of

the new spring cohort (Figure 2B;

Nakadera et al., 2015). The same study showed

that both age and size significantly affected the

sex role decision under laboratory conditions.

This species is quite fecund in the laboratory:

snails from the mass culture in Amsterdam pro-

duce a large number of offspring all year round

(Nakadera et al., 2014); however, an initial field

study found a more moderate fecundity rate in

natural populations (Nakadera et al., 2017). In

the laboratory, specimens produce on average

2–3 egg masses per week each containing 100–

150 eggs, depending on the body size of the

individual (Nakadera et al., 2014). The hatching

rate under laboratory conditions is generally

above 90% (Hoffer et al., 2017). Based on labo-

ratory, semi-field and field studies, explicit

inbreeding or self-fertilisation depression for this

species have been found to be absent

(Coutellec and Lagadic, 2006; Escobar et al.,

2011; Koene et al., 2008; Puurtinen et al.,

2007) or very unlikely (Coutellec and Caquet,

2011), however the reasons for this remain

unclear (Box 1). Nevertheless, eggs are prefer-

entially outcrossed with sperm from mating part-

ners, which can be stored for two months, and

individuals only use their own ’autosperm’ when

this ’allosperm’ is not available (Nakadera et al.,

2014).

A gold standard model organism
for neuroscience
The squid Loligo forbesii and sea hare Aplysia

californica were the first molluscan models for

examining neuronal processes. L. stagnalis

emerged shortly afterwards, and was described

as “a reductionistic, yet sophisticated model to

address fundamental questions in learning and

memory” (Rivi et al., 2020). Molluscs were used

extensively in the field of neurobiology in the

20th century, typically because their central ner-

vous systems were, in most cases, more

Box 1. Outstanding questions about the natural history of the great pond

snail.

. Why is inbreeding depression less strong in L. stagnalis than in related freshwater snail species?

. How different are long-term laboratory-bred strains from natural populations as a result of different selection pressures
influencing development, mating propensity, self-fertilisation, learning and/or changes in sensitivity due to changing
biotic and abiotic factors?

. How can the knowledge about host-parasite interaction be applied to control the spread of parasites in the natural
habitat?

. How phenotypically plastic or evolutionarily adaptable is this species to changes in biotic and abiotic conditions in its
habitat (e.g., temperature, light and/or chemical pollution, and resulting changes in ecosystem composition)?

. Why are sinistral individuals not found more often in natural populations and what does that mean for the natural selec-
tion pressures on this chiral morph?

. Are the detection and avoidance of positive and negative stimuli only present in the laboratory or is this learned behav-
iour also exhibited under field conditions (e.g., predicting presence of food, mating partners and/or predators)?

. How can the knowledge about the regulatory mechanisms underlying reproduction be better used to understand the
evolution and flexibility of the hermaphroditic lifestyle?
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accessible than those of vertebrate animals.

Technical developments since then mean many

such experiments can now be performed on ver-

tebrates as well, yet we would argue that inver-

tebrates still have substantial advantages for our

understanding of the central nervous system.

The relatively simple central nervous system

of L. stagnalis is organised in a ring of 11 inter-

connected ganglia (Figure 3A,B) with ~25,000

neurons. The neurons are mostly large (30–150

mm in diameter) and their bright, orange-col-

oured cell bodies are located on the surface of

the ganglia (Figure 3B; Kemenes and Benjamin,

2009). Thus they are readily accessible for

experimental purposes, simplifying investiga-

tions of neural clusters, circuits and even single

neurons, which can be reliably identified for

functional examination using a variety of

approaches such as electrophysiological, molec-

ular and analytical techniques (Crossley et al.,

2018; de Hoog et al., 2019; El Filali et al.,

2015; Harris et al., 2012; Kemenes et al.,

2011; Lu et al., 2016; Samu et al., 2012;

Wagatsuma et al., 2005; Zhang et al., 2018b).

Individual neurons (Figure 3C; Benjamin and

Crossley, 2020) and their synaptic connectivity

were identified as parts of circuits controlling

behaviours (Audesirk et al., 1985; Benja-

min, 2012; McCrohan and Benjamin, 1980a;

McCrohan and Benjamin, 1980b; Syed and

Winlow, 1991; Syed et al., 1990). Combining

this knowledge with an understanding of the

molecular mechanisms, often from laboratory

studies, has helped produce an integrated pic-

ture of the processes underlying learning and

memory, such as consolidation, reconsolidation,

extinction and forgetting. The molecular path-

ways involved in memory formation in L. stagna-

lis were recently identified, providing further

evidence the mechanisms of learning and mem-

ory consolidation are conserved across phyloge-

netic groups in a variety of learning paradigms,

including non-associative or associative learning,

and operant or classical conditioning

(Benjamin and Kemenes, 2013; Fulton et al.,

Figure 3. The central nervous system and identified single neurons of L. stagnalis. (A) Schematic map (dorsal view) of the isolated whole central

nervous system that is formed of the paired (left and right) buccal (LB, RB), cerebral (LC, RC), pedal (LPe, RPe), pleural (LPl, RPl), parietal (LPa, RPa) and

unpaired visceral (V) ganglia. (B) Isolated central nervous system showing the arrangement of the 11 interconnected ganglia. Brightly pigmented

orange-coloured neurons are localised on the surfaces of the ganglia. (C) Identified single neurons: B4 (left), B3 (right; motor neurons responsible for

the implementation of feeding), CGC (interneuron in cerebral ganglia modulating the feeding and learning) and RPeD1 (interneuron in pedal ganglia

regulating the respiration and heartbeat).
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2005; Josselyn and Nguyen, 2005;

Kemenes and Benjamin, 2009; Kemenes et al.,

2002; Marra et al., 2013; Michel et al., 2008;

Nikitin et al., 2008; Park et al., 1998;

Pirger et al., 2010; Pirger et al., 2014a;

Pirger et al., 2014b; Ribeiro et al., 2003;

Rivi et al., 2020; Sadamoto et al., 1998;

Sadamoto et al., 2010; Schacher et al., 1988;

Vigil and Giese, 2018; Wan et al., 2010).

Recently studies have also revealed differences

in learning ability at the behavioural level

between situations in the laboratory and the

field (e.g., Dalesman and Lukowiak, 2012;

Dalesman et al., 2015; Dalesman, 2018).

The well-characterised proximate processes

at the molecular, cellular and circuit levels mean

studying this simple nervous system has the

potential to provide insights into how snails can

respond appropriately to environmental chal-

lenges (e.g., climatic change or pharmacologi-

cally active compounds). Also, since their

behaviours are generated by reflexive and cen-

tral pattern generator networks similar to those

of vertebrates (Katz and Hooper, 2007), results

from snails offer insights into the fundamental

processes important for these animals too.

Finally, recent developments have enabled

this species to be used as a model for under-

standing the basis of neurodegenerative dis-

eases. Comparative analyses have yielded

several homologs to human genes linked to age-

ing and neurodegenerative diseases in A. cali-

fornica and this species has proved well suited

for studying these processes (Moroz et al.,

2006; Moroz and Kohn, 2010). Similar molecu-

lar sequences have been identified in L. stagnalis

(Fodor et al., 2020b). With the appropriate

genetic background, its accessible central ner-

vous system and relatively long and well-charac-

terised life span mean L. stagnalis is highly

suitable for studying the biological mechanisms

of ageing, age-related memory loss and neuro-

degenerative diseases, such as Parkinson’s and

Alzheimer’s diseases (Arundell et al., 2006;

de Weerd et al., 2017; Ford et al., 2017;

Hermann et al., 2007; Hermann et al., 2020;

Maasz et al., 2017; Patel et al., 2006;

Pirger et al., 2014b; Scutt et al., 2015;

Vehovszky et al., 2007; Yeoman and Faragher,

2001; Yeoman et al., 2008).

Ecotoxicology and risk assessment
in a changing global environment
It has become clear that in the globalised world,

climate change, light pollution, micro- and nano-

plastics, and pharmacologically active com-

pounds all pose a challenge to animal life. These

challenges affect the availability of suitable habi-

tats and reduce the quality of the land, lakes

and rivers. They also change the environmental

composition of pathogens, parasites, competi-

tors and invaders. Understanding how global

ecosystems are adapting to pollution is a com-

plex problem; it requires researchers to monitor

natural populations and conduct laboratory

studies to discover the bases of adaptations or

the lack thereof (Markow, 2015).

Box 2. How can findings at different biological levels be integrated to better

understand this species’ natural history?

. It needs to be established at what level L. stagnalis can function as a model for medical research such as neurodegenera-
tive disease and be a substitute for standard vertebrate models. This requires a better understanding of how such func-
tions affect this species in its natural habitat.

. The new molecular techniques and available ’omics’ data provide an incentive for research that aims to understand the
mechanisms underlying natural history processes such as sex allocation, simultaneous hermaphroditism, reproductive
success, chirality and learning.

. The knowledge about learning and decision-making in the laboratory needs to be extended to field populations to pro-
mote future developments in, for example, neural network-inspired robotics.
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Molluscs the second most diverse animal

group and considered to be excellent indicators

of ecosystem health. For example, L. stagnalis is

a sensitive and reliable species for such studies

(Amorim et al., 2019), in a large part because

of its well-characterised developmental and

reproductive biology as described above. The

major targets in this field of study have been

metal-risk assessment (Crémazy et al., 2018;

Pyatt et al., 1997; Vlaeminck et al., 2019), the

effects of pesticides (Coutellec et al., 2008;

Lance et al., 2016; Tufi et al., 2015;

Vehovszky et al., 2015), nanotoxicology

(Hudson et al., 2019; Stoiber et al., 2015), the

development of toxicokinetic models

(Baudrot et al., 2018), immunocompetence

analyses (Boisseaux et al., 2018; Gust et al.,

2013b), and global warming risk assessment

(Leicht et al., 2017; Leicht and Seppälä, 2019;

Teskey et al., 2012). Studies on L. stagnalis

have measured toxicological values such as mor-

tality concentrations (e.g., LC50) and impairment

of reproduction (e.g., EC50) but also sub-lethal

and more sensitive endpoints such as reproduc-

tive success, growth, cellular and molecular bio-

markers that may be coupled with behavioural

responses (Amorim et al., 2019).

L. stagnalis has also been recognised as a

useful organism to examine the effects of phar-

macologically active compounds and micro- and

nanoplastics on aquatic organisms

(Amorim et al., 2019; Charles et al., 2016;

Ducrot et al., 2014; Gust et al., 2013a;

Horton et al., 2020; Pirger et al., 2018;

Zrinyi et al., 2017). However, it must be pointed

out that researchers need to be critical of the

generalisability of results while performing such

experiments since there are differences between

the endocrine system of molluscs and verte-

brates; molluscs, for example, do not have func-

tional oestrogen receptors (Eick and Thornton,

2011; Lagadic et al., 2007; Scott, 2012). It is

also important to recognise that molluscs are

not suitable for some types of ecotoxicological

studies and they cannot always substitute for

fish.

Notably, L. stagnalis is the first aquatic non-

arthropod invertebrate model organism to be

recognised in environmental risk assessments.

The developed standard reproduction test was

officially approved by the national coordinators

of the Organisation for Economic Cooperation

and Development (OECD, 2016) thus paving

the way for investigating ecotoxicological effects

in more detail. Such information will contribute

to a more complete picture of the mode of

action of potentially toxic substances and other

environmental factors and provide assessments

of risk for individual species of different types

and wider ecosystems.

Combining evolution and natural
history
Within the field of evolutionary biology, L. stag-

nalis has helped us to understand the evolution

of several phenomena. Left-right asymmetry is a

general evolutionary phenomenon seen across a

variety of species, including humans where the

congenital condition situs inversus results in the

mirrored position and shape of the heart and

liver (Blum et al., 2014; Oliverio et al., 2010;

Palmer, 2009; Palmer, 2016). The coil or chiral-

ity of snail shells is one of the more spectacular

outward manifestations of this asymmetry. Snails

found in nature can have shells that coil either to

the right or left, with most species being right-

coiling. Specimens of L. stagnalis that coil in the

opposite left-winding, or sinistral, direction are

rare and often categorised as ’unlucky’ because

their different chirality makes it difficult for them

to mate the more usual, right-winding individu-

als (Davison et al., 2009). Left-winding snails

are also less able to learn in a mate-choice con-

text (Koene and Cosijn, 2012). The existence of

the two different morphs has made this species

ideal for studying chiromorphogenesis, i.e. the

first step of left-right symmetry breaking. Genes

and signalling pathways that are responsible for

snail coiling have been identified (Abe et al.,

2014; Davison et al., 2016; Kuroda, 2014; Kur-

oda, 2015; Kuroda et al., 2016), and similar sig-

nalling pathways are required for vertebrate

chiromorphogenesis as well (Kuroda, 2015).

Studies on L. stagnalis can give important

insights into the evolution of body plans in other

phyla, and may have wider medical implications,

including an understanding of situs inversus.

L. stagnalis has also played a crucial role in

studies into the evolution of hermaphroditism

and its consequences for sexual selection. This

area of research relies heavily on a solid under-

standing of the natural history of this species.

Selection of sexual traits that affect mating suc-

cess was previously considered not to act in

simultaneous hermaphrodites (Charnov, 1979;

Darwin, 1871; Greeff and Michiels, 1999; Mor-

gan, 1994). However, recent research, including

work with L. stagnalis, has contradicted this ear-

lier conclusion (Anthes et al., 2010; Baur, 1998;

Chase, 2007; Janicke et al., 2016; Michi-

els, 1998; Nakadera and Koene, 2013).
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Unilateral mating of L. stagnalis offered a unique

opportunity to test whether sexual selection acts

independently on the two sexual roles of a

simultaneous hermaphrodite (Anthes et al.,

2010; Arnold, 1994; Hoffer et al., 2017).

Recent experiments have also revealed that

male and female reproductive strategies can be

optimised independently in this species. This

was done by measuring sexual selection gra-

dients (also called Bateman gradients), which

reveal the relationship between the number of

matings and the reproductive success of the sex-

ual functions (Anthes et al., 2010). Experiments

with L. stagnalis showed that this mating system

seems largely male-driven, and that the sexual

selection gradients are consistently positive for

the male function but change over time to bene-

fit the opposite sex (Anthes et al., 2010;

Hoffer et al., 2017; Janicke et al., 2016;

Pélissié et al., 2012). These pioneering works,

which measured and quantified the processes of

sexual selection and their underlying mecha-

nisms, thus incorporated this hermaphrodite into

the general Darwin-Bateman paradigm that had

so far mainly been tested on separate-sexed

species. They also described both the evolution-

ary potential and limitations of hermaphrodite

animals and revealed important practical appli-

cations for the conservation of wildlife.

New opportunities from a
growing multi-omics coverage
From about 1980, continued attention was given

to the physiological characterisation of L. stag-

nalis, but more recent research has focussed on

an ’omics’ approach to better understand the

underlying molecular processes (Santama et al.,

1993; Santama et al., 1995a; Santama et al.,

1995b; Santama and Benjamin, 2000). Due to

its pre-eminence as a model system in

Table 1. List of some of the most important (neuro)peptides identified in L. stagnalis.

Molecule Abbreviation Function Accession number Reference

caudodorsal cell hormones CDCH reproduction P06308 Vreugdenhil et al., 1988

FMRFamides FMRF reproduction,
cardiac control

P19802 Linacre et al., 1990

conopressin - reproduction AAB35220 Van Kesteren et al., 1995

neuropeptide Y NPY reproduction,
development

CAB63265 De Jong-Brink et al., 1999

actin-related diaphanous genes (1,
2)

dia 1, dia 2 development,
chirality

KX387869, KX387870
KX387871, KX387872

Kuroda et al., 2016

insulin-related peptides
(I, II, III, V, VII)

MIPs development CAA41989; P25289;
AAB28954; AAA09966;
AAB46831

Smit et al., 1991; Smit et al., 1992; Smit et al.,
1993b; Smit et al., 1996; Smit et al., 1998

sodium stimulating hormone SIS ion and water
control

P42579 Smit et al., 1993a

small cardioactive peptide SCP feeding, cardiac
control

AAC99318 Perry et al., 1999

myomodulin MIP feeding, cardiac
control

CAA65635 Kellett et al., 1996

pituitary adenylate cyclase-
activating polypeptide-like
molecule

PACAP-like learning and
memory

- Pirger et al., 2010

cAMP response element-binding
proteins (1, 2)

CREB 1
CREB 2

learning and
memory

AB041522; AB083656 Sadamoto et al., 2004

glutathione reductase and
peroxidase

Gred
Gpx

metabolic
detoxification

FJ418794,
FJ418796

Bouétard et al., 2014

catalase CAT metabolic
detoxification

FJ418795 Bouétard et al., 2014

superoxide dismutase SOD metabolic
detoxification

AY332385 Zelck et al., 2005

heat-shock protein HSP70 stress response DQ206432 Fei et al., 2007

molluscan defence molecule MDM immune system AAC47132 Hoek et al., 1996

allograft inflammatory factor-1 AIF-1 immune system DQ278446 van Kesteren et al., 2006

Fodor et al. eLife 2020;9:e56962. DOI: https://doi.org/10.7554/eLife.56962 8 of 18

Feature Article The Natural History of Model Organisms The unlimited potential of the great pond snail, Lymnaea stagnalis

https://doi.org/10.7554/eLife.56962


neuroscience, early molecular studies tended to

focus on the central nervous system (Feng et al.,

2009; Johnson and Davison, 2019). The favour-

able anatomical features enabled the accumula-

tion of peptidomic data from the mass

spectrometry of single neurons (Perry et al.,

1999; Worster et al., 1998), making the neuro-

peptidergic system the most intensely studied

part of the central nervous system

(Buckett et al., 1990; Perry et al., 1998). Tak-

ing advantage of a variety of platforms available

for nucleotide sequencing: Sanger (Davison and

Blaxter, 2005; Sadamoto et al., 2004;

Swart et al., 2019), Illumina (Korneev et al.,

2018; Sadamoto et al., 2012; Stewart et al.,

2016), BGISEQ (Jehn et al., 2018) and Oxford

Nanopore (Fodor et al.,

2020a), many sequencing methodologies have

been successfully applied to this species.

Extensive genomic, transcriptomic and pepti-

domic data for L. stagnalis are available in the

NCBI database. Four major transcriptome data-

sets were established by sequencing mRNA

from the central nervous system

(Bouétard et al., 2012; Davison and Blaxter,

2005; Feng et al., 2009; Sadamoto et al.,

2012), and then used to identify genes and pro-

teins, thus providing a solid genetic background

for L. stagnalis. Furthermore, an unannotated

draft genome is already available and a collabo-

rative effort is underway to produce an anno-

tated genome (Johnson and Davison, 2019)

which would largely solve the problem of the

lack of molecular information that has so far

inhibited research in the L. stagnalis model sys-

tem (Rivi et al., 2020). Approximately 100

(neuro)peptides have been identified so far

(Benjamin and Kemenes, 2020), encoded by

genes involved in various regulatory processes

(Table 1). These findings contributed to a global

understanding of the natural history of L. stagna-

lis by characterising the molecular and cellular

processes underlying chirality, reproduction,

immune processes, host-parasite interaction,

and acute and chronic adaptive responses to

toxic substances in the environment.

Furthermore, the CRISPR/Cas9 genome edit-

ing method has recently been applied to mol-

luscs (Henry and Lyons, 2016; Perry and

Henry, 2015). In L. stagnalis, it was used to

knock out the gene responsible for coiling direc-

tion during development, leading to a better

understanding of chirality in the life of the two

morphs (Abe and Kuroda, 2019). The establish-

ment of genome editing in L. stagnalis opens up

significant opportunities for functional genomics

to investigate the role of specific genes, for

example, in snail developmental, toxicology and

immunobiological studies.

Conclusion
Research on model organisms has been essential

to developing the current understanding of how

life works. The unique features of L. stagnalis

make it an excellent experimental system to

complement the classic invertebrate (C. elegans,

D. melanogaster) and vertebrate (D. rerio, M.

musculus) models. Research utilising this species

is expected to lead to future breakthroughs in a

number of scientific fields, especially in neurosci-

ence and evolutionary biology. For example, as

a simultaneously hermaphroditic outcrossing

species, it presents the opportunity to test the

generality of hypotheses that are mainly based

on non-hermaphroditic or self-fertilising models.

There is considerable information about the nat-

ural history of L. stagnalis compared to some

other model species, but we feel some areas of

research using L. stagnalis – in particular neuro-

biology and ecotoxicology – would benefit by

extending more of their studies out of the labo-

ratory and into the field. We believe that a

deeper integration of information from field

studies with input from laboratory findings –

such as applying experimental designs and

approaches developed in the laboratory to pop-

ulations in the wild – will provide future opportu-

nities for further innovation (Box 2). Such efforts

could address the unanswered questions regard-

ing this model organism (see Box 1). Signifi-

cantly, emerging recent technical approaches

such as pocket-sized sequencing devices, espe-

cially with their impending breakthrough also in

protein sequencing, start allowing researchers to

perform more experiments in the field such as

following molecular mechanisms of learning.
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2019. Lymnaea stagnalis as a freshwater model
invertebrate for ecotoxicological studies. Science of
the Total Environment 669:11–28. DOI: https://doi.
org/10.1016/j.scitotenv.2019.03.035, PMID: 30877957
Anthes N, David P, Auld JR, Hoffer JN, Jarne P,
Koene JM, Kokko H, Lorenzi MC, Pélissié B, Sprenger
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2013a. Effects of short-term exposure to
environmentally relevant concentrations of different
pharmaceutical mixtures on the immune response of
the pond snail Lymnaea stagnalis. Science of the Total
Environment 445-446:210–218. DOI: https://doi.org/
10.1016/j.scitotenv.2012.12.057
Gust M, Fortier M, Garric J, Fournier M, Gagné F.
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