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Abstract The organizational integrity of the adaptive immune system is determined by

functionally discrete subsets of CD4+ T cells, but it has remained unclear to what extent lineage

choice is influenced by clonotypically expressed T-cell receptors (TCRs). To address this issue, we

used a high-throughput approach to profile the ab TCR repertoires of human naive and effector/

memory CD4+ T-cell subsets, irrespective of antigen specificity. Highly conserved physicochemical

and recombinatorial features were encoded on a subset-specific basis in the effector/memory

compartment. Clonal tracking further identified forbidden and permitted transition pathways,

mapping effector/memory subsets related by interconversion or ontogeny. Public sequences were

largely confined to particular effector/memory subsets, including regulatory T cells (Tregs), which

also displayed hardwired repertoire features in the naive compartment. Accordingly, these

cumulative repertoire portraits establish a link between clonotype fate decisions in the complex

world of CD4+ T cells and the intrinsic properties of somatically rearranged TCRs.

Introduction
Adaptive immunity relies on populations of lymphocytes that express somatically rearranged antigen

receptors, including CD4+ T cells, which differentiate from the naive pool into functionally and phe-

notypically distinct effector/memory subsets that determine how the immune system responds to

specific challenges. In the classic dichotomy, mycobacterial and viral infections typically elicit T

helper 1 (Th1) cells, which produce interferon (IFN)-g under the control of T-bet, whereas parasitic

infections typically elicit Th2 cells, which produce interleukin (IL)-4, IL-5, and IL-13 under the control

of GATA3 and STAT6 (Mosmann and Coffman, 1989). Many other subsets have been described in

the intervening years (DuPage and Bluestone, 2016; Sallusto, 2016). The importance of subset
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choice as a proximal determinant of response efficacy is apparent from various immune dysregula-

tion syndromes. For example, individuals with Th1 deficiency are predisposed to recurrent bacterial

and mycobacterial infections, and individuals with Th17 deficiency are predisposed to chronic muco-

candidiasis (McDonald, 2012; Cook and Tangye, 2009; Hernández-Santos et al., 2013). In con-

trast, systemic autoimmunity is more common in individuals with Th17 overactivity and/or regulatory

T-cell (Treg) deficiency (Osnes et al., 2013; Costa et al., 2017; Bonelli et al., 2008; Miyara et al.,

2005), and allergy is more common in individuals with a similar imbalance between Th2 cells and

Tregs (Bacher and Scheffold, 2018; McGee and Agrawal, 2006; Finotto, 2008). Pathogenic and

protective roles have also been described for Th9 and Th22 cells in the context of inflammatory skin

diseases and various autoimmune conditions, including type I diabetes (Ryba-Stanisławowska et al.,

2016) and multiple sclerosis (Rolla et al., 2014). Similarly, adverse and beneficial outcomes have

been associated with the functional attributes of tumor-specific CD4+ T cells, consistently linking

Th1-like activity with enhanced survival across a range of cancers (Protti et al., 2014). A strictly regu-

lated effector/memory CD4+ T-cell profile is therefore essential for immune function and

homeostasis.

Subset choice is dictated by the context of antigen presentation (Zhu et al., 2010; Groom et al.,

2012; Vroman et al., 2015; Baumjohann and Ansel, 2015; Waickman et al., 2017; Barberis et al.,

2018; Eisenbarth, 2019) and potentially by the mode of antigen engagement (Barberis et al.,

2018; Adams et al., 2011; Wang and Reinherz, 2012; Hoffmann et al., 2015; Sibener et al.,

2018; Constant and Bottomly, 1997; Corse et al., 2011). If the latter supposition is correct, then

generic molecular signatures may be present among subset-specific repertoires of expressed T-cell

receptors (TCRs). To explore this possibility, we systematically deconvoluted the physicochemical

and recombinatorial properties of TCRa and TCRb chains encoded by transcripts isolated from rigor-

ously defined naive and effector/memory subsets of CD4+ T cells. These characteristics provide a

broad overview of antigen recognition preferences within a given repertoire and help delineate

relatedness among distinct subsets based on patterns of clonotype selection.

Each effector/memory subset was characterized by distinct features that were recapitulated

across genetically unrelated donors, indicating a predisposition to certain fate decisions at the level

of the somatically rearranged TCR. In line with this notion, similar characteristics were observed in

some of the corresponding naive repertoires, most notably those derived from Tregs. Repertoire

overlaps further identified effector/memory subsets that were related by common ontogenetic and/

or permissible transition pathways. Collectively, these findings map the clonal ancestry and organiza-

tional complexity of the human CD4+ T-cell compartment and demonstrate that subset fate is influ-

enced by the structural topography of clonotypically expressed TCRs.

Results

Experimental logic and study design
We set out to investigate the naive origins and effector/memory relationships of classically defined

CD4+ T-cell subsets in humans. An overview of the experimental workflow designed to capture these

complexities is presented in Figure 1.

Effector/memory CD4+ T-cell subsets express physicochemically distinct
TCRs
To investigate the TCR repertoires of functionally and phenotypically distinct effector/memory CD4+

T cells, we used polychromatic flow cytometry to identify and sort the commonly recognized Tfh,

Th1, Th1-17, Th17, Th22, Th2a, Th2, and Treg subsets from the peripheral blood of healthy donors

(n = 5). The gating strategy is described in Figure 1—figure supplement 1 and Table 1. Subset fre-

quencies are listed in Table 2. The corresponding TCRa and TCRb repertoires were obtained from

purified mRNA using a high-throughput approach with template switch-based incorporation of

unique molecular identifiers (UMIs) as described previously (Egorov et al., 2015).

Statistical analyses of the curated TCRa and TCRb datasets allowed us to describe the somatically

rearranged third complementarity-determining region (CDR3) loops in terms of amino acid represen-

tation among distinct subsets of effector/memory CD4+ T cells. As in previous studies

(Bolotin et al., 2017; Izraelson et al., 2018; Egorov et al., 2018; De Simone et al., 2019;
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Logunova et al., 2020), we focused on amino acid residues located in the middle of the CDR3 loop,

which typically dominate contacts with the peptide component of any cognate pMHC

(Egorov et al., 2018), and quantified several key physicochemical properties, including hydropho-

bicity (Kidera et al., 1985) and the predicted energy of TCR interactions averaged across diverse

pMHCs (Miyazawa and Jernigan, 1996; Kosmrlj et al., 2008; Kosmrlj et al., 2010). This latter

parameter provides a generic measure of interaction strength and depends mainly on the prevalence

of aromatic and hydrophobic amino acid residues (Chakrabarti and Bhattacharyya, 2007).
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Figure 1. Experimental overview. Top: schematic representation of the general questions addressed in this study.

Bottom: schematic representation of the experimental pipeline. Naive and effector/memory CD4+ T-cell subsets

were flow-sorted from peripheral blood samples obtained from healthy donors. Repertoire characteristics were

extracted from normalized datasets obtained from each subset via high-throughput sequence analysis of all

expressed TCRs.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Gating strategy for the identification of effector/memory CD4+ T-cell subsets.

Table 1. Gating strategy for the identification of effector/memory CD4+ T-cell subsets.

Gates 1 and 2 Gate 3 Gate 4 Gate 5 Gate 6 Gate 7 Gate 8 Subset

Live single
CD3+

CD14�

CD19� lymphocytes

CD4+ Exclude
CCR7+

CD45RA+

CD25high

CD127low
Treg

CD25low

CD127+
CXCR5+ Tfh

CCR10+ Th22

CXCR5�

CCR10�
CXCR3+

CCR6�
CCR4� Th1

CXCR3�

CCR6+
CCR4+ Th17

CXCR3+

CCR6+
CCR4� Th1-17

CXCR3�

CCR6�
CCR4+

CRTh2�
Th2

CCR4+

CRTh2+
Th2a

See also Figure 1—figure supplement 1.
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Hydrophobicity and the propensity to form strong interactions are common but not necessarily

determinative features of highly cross-reactive TCRs (Kosmrlj et al., 2008; Kosmrlj et al., 2010;

Stadinski et al., 2016).

Although some distinct features, including high scores for hydrophobicity (low Kidera factor 4)

and interaction strength in the Treg CDR3b repertoires, were expected from previous studies in

mice (Bolotin et al., 2017; Izraelson et al., 2018; Logunova et al., 2020; Feng et al., 2015), more

unanticipated characteristics were identified among other subsets of effector/memory CD4+ T cells

(Figure 2). In particular, the Tfh CDR3b repertoires exhibited the lowest averaged scores for hydro-

phobicity (high Kidera factor 4; Figure 2C), interaction strength (Figure 2D), and volume (Figure 2F,

reflects the number of bulky amino acid residues, namely W, R, K, Y, and F [Shugay et al., 2015]),

and the highest averaged score for surface (Figure 2E, provides an in silico predictive measure of

amino acid residues that remain unchanged in terms of accessibility and position in the liganded ver-

sus unliganded state [Martin and Lavery, 2012]). These exceptional features suggest that selection

into the Tfh subset is driven by highly antigen-specific and minimally cross-reactive TCRs. It is tempt-

ing to speculate that such defined molecular patterns, which are mirrored in mature antibody reper-

toires (Grimsholm et al., 2020), act to minimize the risk of autoimmunity, given that Tfh cells play a

critical role in the development of B-cell responses.

In addition to Tregs, relatively high numbers of strongly interacting amino acid residues were

observed in the Th22, Th2a, and Th2 CDR3b repertoires, which also scored highly in the volume

analyses. Of particular note, Th22 cells expressed TCRs with the highest averaged number of ran-

dom nucleotide (N) additions and the longest averaged CDR3b length, suggesting a distinct but as

yet unknown selection process. Consistent physicochemical differences were also apparent between

subsets considered as two distinct groups. In general, amino acid characteristics in the Th1/Th1-17/

Th17 group resembled those of Tfh cells, whereas amino acid characteristics in the Th22/Th2a/Th2

group resembled those of Tregs (Figure 2A–F). Similar patterns were detected in the corresponding

CDR3a repertoires (Figure 2—figure supplement 1). This overall dichotomy at the population level

was clearly visualized using principal component analysis of the cumulative CDR3a and CDR3b rep-

ertoires (Figure 2G).

Collectively, these data show that subset fate is associated with the physicochemical properties

of amino acids in the middle of the CDR3a and CDR3b loops, which typically dominate TCR contacts

with the peptide moiety in cognate pMHCs.

Repertoire diversity varies substantially among effector/memory
CD4+ T-cell subsets
In further analyses, we compared repertoire clonality and diversity across the same phenotypically

defined subsets of effector/memory CD4+ T cells. Each cloneset was normalized to the lower bound

of 16,000 randomly sampled UMI-labeled TCRa or TCRb cDNA molecules (Izraelson et al., 2018).

Consistent differences in the corresponding metrics were observed among the various subsets

(Figure 3).

Prominent clonal expansions, reflected by low normalized Shannon-Wiener indices, were appar-

ent in the Th22 and Th2a subsets, indicating focused antigen-specific proliferation. In contrast, the

Tfh subset was highly diverse, incorporating approximately 14,500 distinct sequence variants per

Table 2. Frequencies of sorted effector/memory CD4+ T-cell subsets.

Donor Tfh Th1 Th1-17 Th17 Th22 Th2a Th2 Treg

D1 5.44 1.91 1.44 3.06 2.60 1.04 4.86 3.99

D2 5.82 3.29 3.50 3.14 6.64 1.53 9.24 6.92

D3 2.05 0.19 0.31 1.31 0.81 0.26 1.93 1.84

D4 6.70 2.33 2.11 4.22 2.02 0.57 7.19 3.95

D5 4.39 1.16 1.17 3.32 2.12 0.82 3.96 3.99

Mean 4.88 1.78 1.71 3.01 2.84 0.84 5.44 4.14

SD 1.79 1.17 1.19 1.06 2.23 0.48 2.84 1.81

Shown as % of live CD3+CD4+CD14�CD19� non-naive cells. Details in Figure 1—figure supplement 1.
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16,000 cDNA molecules. Similar levels of diversity have been observed in umbilical cord blood sam-

ples, which almost exclusively contain naive T cells (https://www.biorxiv.org/content/early/2018/09/

05/259374). The absence of large clonal expansions among circulating Tfh cells concurs with the

findings of a recent study, which also reported greater clonality among donor-matched samples of

tonsil-resident Tfh cells (Brenna et al., 2020). Relatively high levels of diversity were also observed

in the Th1, Th17, and Th2 subsets.

Collectively, these results expose substantial variations in clonality and diversity among effector/

memory subsets of CD4+ T cells, likely reflecting distinct selection processes driven by cognate inter-

actions with distinct arrays of pMHCs.
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Figure 2. Averaged physicochemical characteristics of CDR3b repertoires from effector/memory CD4+ T-cell subsets. (A–F) Averaged physicochemical

characteristics were measured for the five amino acids in the middle of the CDR3b sequences obtained from each effector/memory CD4+ T-cell subset

(n = 8) from each healthy donor (n = 5). Calculations were weighted by clonotype frequency. Unweighted analyses yielded similar results (data not

shown). (A) Non-germline nucleotide (N) additions. (B) CDR3b length (nucleotides). (C) Kidera factor 4 (arbitrary scale). (D) Interaction strength (arbitrary

scale). (E) Surface (arbitrary scale). (F) Volume (arbitrary scale). (G) Principal component analysis of the cumulative CDR3a and CDR3b repertoires from

each subset of effector/memory CD4+ T cells (n = 28 parameters computed in VDJtools). Top contributing factors to PC1: CDR3b volume, mjenergy,

core, beta, length, number of added nucleotides, strength, and alpha. Top contributing factors to PC2: CDR3a disorder, CDR3a Kidera factor 3, CDR3b

disorder, CDR3a Kidera factor 1, CDR3a strength, CDR3b Kidera factors 2, 3, 4, and 10, and CDR3b charge. (H) Relative publicity measured for each

effector/memory CD4+ T-cell subset as the number of identical or near-identical (maximum n = 1 mismatch) amino acid residue-defined CDR3b variants

shared between the top 20,000 most frequent clonotypes in the corresponding repertoires from each pair of donors. Dashed lines indicate means.

*p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001 (one-way ANOVA followed by the two-sample Welch t-test with Bonferroni correction for each group

versus the mean).

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Averaged physicochemical characteristics of CDR3a repertoires from effector/memory CD4+ T-cell subsets.
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Clonal transitions identify related subsets of effector/memory CD4+ T
cells
Effector/memory CD4+ T cells can switch from one functional subset to another, both in vitro, driven

by cytokines, and in vivo, driven by changes in the microenvironment. For example, Th2 cells have

been shown to adopt a Th1-like phenotype in mice after infection with lymphocytic choriomeningitis

virus, which induces type I and type II IFNs (Hegazy et al., 2010). Conversely, Th1 and Th17 cells

effectively transitioned into the Th2 subset after transfer into helminth-infected mice, whereas effec-

tor Tregs maintained a stable phenotype in the same model (Panzer et al., 2012). Previous studies

have also shown that human effector Tregs are relatively stable, with rare transitions to the Th1 phe-

notype occurring only under extreme conditions (Zhou et al., 2009a; Krebs and Steinmetz, 2016;

McClymont et al., 2011). However, experiments conducted in vitro or ex vivo are not sufficient to
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Figure 3. Clonality and diversity of effector/memory CD4+ T-cell subsets. Observed diversity (top), the Chao1 estimator (middle), and the normalized

Shannon-Wiener index (bottom) were calculated for each TCRa (left) and TCRb repertoire (right) obtained from each effector/memory CD4+ T-cell

subset (n = 8) from each healthy donor (n = 5). Dashed lines indicate means. *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001 (one-way ANOVA

followed by the two-sample Welch t-test with Bonferroni correction for each group versus the mean).
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allow reliable quantitative estimates of plasticity among human effector/memory CD4+ T-cell subsets

in vivo.

To address this issue, we measured relative overlap as the number of nucleotide-defined CDR3b

clonotypes shared between each pair of subsets in each donor. Similar analyses were conducted

using a weighted metric to account for clonotype frequency. The top 20,000 most frequent clono-

types were selected from each TCRb cloneset to normalize the comparisons (Figure 4), and the top

2000 most frequent clonotypes were used to generate the corresponding Cytoscape plots (Figure 5

and Figure 5—figure supplements 1–4). Overall, these analyses revealed prominent clonal

exchange among two groups of subsets, namely Th17/Th22/Th2a/Th2 and Th1/Th1-17.

The complementarity and relative functional proximity of the Th17 and Th22 subsets was

described previously, albeit without direct evidence of clonal transitions in vivo (Eyerich et al.,

ANOVA, p < 2.2e-16
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Figure 4. Clonotype overlap among effector/memory CD4+ T-cell subsets. (A) Relative overlap between

nucleotide-defined CDR3b repertoires obtained from donor-matched pairs of effector/memory CD4+ T-cell

subsets. Clonotypes were matched on the basis of identical TRBV gene segments and identical CDR3b sequences.

Data were normalized to the top 20,000 most frequent clonotypes and weighted by clonotype frequency (F2

metric in VDJtools). The dashed line indicates the mean (n = 5 donors). *p<0.05, **p<0.01, ***p<0.001, and

****p<0.0001 (one-way ANOVA followed by the two-sample Welch t-test with Bonferroni correction for each

group versus the mean). (B) Heatmap representations of the weighted overlap (F2 metric in VDJtools, left) and the

estimated relative overlap of nucleotide-defined CDR3b clonotypes (calculated via the D metric in VDJtools, right)

between donor-matched pairs of effector/memory CD4+ T-cell subsets.
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Figure 5. Clonal relatedness among effector/memory CD4+ T-cell subsets. Cytoscape network analysis schemes represent the number and size

(frequency) of nucleotide-defined clonotype variants shared among the top 2000 most frequent CDR3b clonotypes in each subset. Each bubble

represents one CDR3b clonotype. The size of each bubble is proportional to the frequency of each CDR3b clonotype in the corresponding repertoire.

Shared clonotypes are depicted as connected clouds among the corresponding subsets. The size of each bubble in these clouds is proportional to the

frequency of each CDR3b clonotype averaged across the maternal subsets. Representative plots were selected for illustrative purposes from donors D1,

D3, and D5. (A) Th1/Th1-17/Th17. (B) Th17/Th22/Th2a/Th2. (C) Tregs versus other subsets. Only clonotypes shared with Tregs are shown. (D) Tfh cells

versus other subsets. Only clonotypes shared with Tfh cells are shown.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. Clonal relatedness among the Th17, Th22, Th2a, and Th2 subsets of effector/memory CD4+ T-cells.

Figure supplement 2. Clonal relatedness among the Th1, Th1-17, and Th17 subsets of effector/memory CD4+ T-cells.

Figure supplement 3. Clonal relatedness among Tregs and other subsets of effector/memory CD4+ T-cells.

Figure supplement 4. Clonal relatedness among Tfh cells other subsets of effector/memory CD4+ T-cells.

Kasatskaya, Ladell, et al. eLife 2020;9:e57063. DOI: https://doi.org/10.7554/eLife.57063 8 of 22

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.57063


2009; Akdis et al., 2012). However, the close relationships between the Th17 and Th2 subsets and

between the Th22 and Th2a/Th2 subsets were unforeseen. Of note, several subsets, including Th17

and Th2 cells, shared large clonal expansions with the Th22 subset (Figure 5B and Figure 5—figure

supplement 1). This observation appears to conflict with the dogma that Th22 cells are stable

(Eyerich et al., 2009; Plank et al., 2017) and suggests that individual clonotypes can seed and/or

transition among distinct subsets within the Th17/Th22/Th2a/Th2 group.

It has been suggested previously that Th1-17 cells represent a more mature form of Th17 cells

(Muranski and Restifo, 2013). In contrast, our findings suggest that Th1-17 cells are more closely

related in terms of clonal proximity to Th1 cells rather than Th17 cells. Repertoire overlap between

the Th1-17 and Th17 subsets was nonetheless variable among donors, ranging from zero to levels

that approximated those observed between the Th1 and Th1-17 subsets (Figures 4 and 5A, and

Figure 5—figure supplement 2).

Collectively, these findings suggest that plasticity is common between certain subsets, such as

Th17/Th22 and Th17/Th2, but rare between other subsets, such as Th17/Treg and Th1/Th17

(Maggi et al., 2012). In addition, the Tfh and Treg subsets were largely discrete at the clonal level

(Figures 4 and 5, and Figure 5—figure supplements 3 and 4). This latter observation contrasts with

previous reports of Treg plasticity (Zhou et al., 2009a) but does not exclude the possibility of tran-

sient conversions from the committed Treg phenotype (Yang et al., 2008; Voo et al., 2009).

Publicity is a notable feature of Tfh cells and Tregs
To extend these analyses, we estimated the extent to which amino acid residue-defined CDR3b clo-

notypes in each subset were shared among donors, essentially providing a measure of publicity. The

top 20,000 most frequent clonotypes were selected from each TCRb cloneset to normalize the

comparisons.

Publicity was observed most commonly among Tfh cells and Tregs, the latter in agreement with

previous reports (Pacholczyk and Kern, 2008; Lei et al., 2015). In contrast, relatively few CDR3b

clonotypes in the Th22 and Th2a subsets were shared among donors (Figure 2H). These publicity

metrics aligned to some extent with subset-specific differences in CDR3b length and the number of

N additions (Figure 2A,B). One possible explanation for the enrichment of public clonotypes in the

Tfh and Treg repertoires lies in the nature of the corresponding antigen-driven selection events. In

the case of Tfh cells, common foreign antigens presented in a degenerate manner by MHCs may be

recognized predominantly by germline-encoded components of the corresponding TCRs, and in the

case of Tregs, common self-derived antigens presented and recognized similarly in the thymus may

drive the preferential recruitment of different clonotypes bearing germline-like TCRs.

The relative paucity of N additions in these subsets could reflect low levels of terminal deoxynu-

cleotidyl transferase (TdT) activity, especially among Tregs, some of which arise early in life

(Tulic et al., 2012; Coutinho et al., 2005; Thiault et al., 2015; Darrigues et al., 2018). A similar

phenomenon may likewise explain interindividual differences in publicity, given that all subset-spe-

cific effector/memory CD4+ T-cell repertoires in one donor were characterized by low numbers of N

additions and relatively short CDR3b loops (Figure 2A,B).

Tregs display similar repertoire features in the naive and effector/
memory pools
In general, naive CD4+ T cells are thought to be capable of differentiating into any effector/memory

subset from the Th0 state, depending on the composite strength of TCR interactions with cognate

pMHCs, costimulatory signals, and the cytokine microenvironment (Sad and Mosmann, 1994). How-

ever, this paradigm of multipotency has been challenged by the demonstration in several reports

that at least some naive CD4+ T cells are predisposed to a specific functional program or even com-

mitted to a predetermined fate. This phenomenon was first described for thymic Tregs (tTregs),

which maintain a largely stable phenotype in the periphery (Silva et al., 2016; Hoffmann et al.,

2006). At the early immature double-negative stage, thymocytes are already predisposed to the

Treg lineage via epigenetic modifications and increased expression of FoxP3 (Ohkura et al., 2012;

Arvey et al., 2015). Other inputs are then required to confirm this commitment, including signals

delivered by the IL-2 receptor and intermittent stimulation via high-affinity TCRs (Levine et al.,

2014). A similar process of agonist-driven selection has been described for thymic Th17 cells in mice
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(Marks et al., 2009). Accordingly, subset fate may be imprinted at the progenitor stage

(Feng et al., 2015), during thymic development (Li and Rudensky, 2016), after thymic emigration

and before determinative antigen encounter (Fink, 2013), and/or during the key priming event that

signals expansion and maturation (Figure 1).

On the basis of these considerations, we reasoned that certain subset-specific repertoire features,

at least in the case of Tregs, could be conserved between the corresponding naive and effector/

memory pools. To investigate this prediction, we profiled the TCRa and TCRb repertoires of naive

CD4+ T cells flow-sorted as recent thymic emigrants (RTEs) (Kilpatrick et al., 2008), mature naive T

cells, or naive Tregs from the peripheral blood of healthy donors (total, n = 12; twin pairs, n = 5).

The naive Treg CDR3b repertoires were enriched for bulky, hydrophobic, and strongly interacting

amino acid residues compared with the corresponding RTE and mature naive T-cell repertoires

(Figure 6A and Figure 6—figure supplement 1). These observations are consistent with potent

agonist-driven selection in the thymus (Feng et al., 2015; Jordan et al., 2001). In addition, naive

Tregs expressed TCRs with shorter CDR3a and CDR3b loops. Similar features were observed in the

effector/memory Treg compartment (Figure 2).

To confirm and extend these findings, we conducted similar analyses of naive CD4+ T-cell subsets

flow-sorted as Th1-like cells (non-Treg CCR4�CXCR3+), Th2-like cells (non-Treg CCR4+CXCR3�), and

Tregs (CD25highCD127low) from healthy donors (n = 4) matching those shown in Figure 2. The corre-

sponding non-Treg CCR4�CXCR3� and non-Treg CCR4+CXCR3+ populations were analyzed in par-

allel for comparative purposes.

The naive Treg CDR3b repertoires were again enriched for bulky, hydrophobic, and strongly inter-

acting amino acid residues compared with the other naive subset-specific CDR3b repertoires
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Figure 6. Averaged physicochemical characteristics of CDR3b repertoires from naive CD4+ T-cell subsets. (A) Repertoire analysis of RTEs

(CD25�CD31+), mature naive T cells (mNaive; CD25�CD31�), and naive Tregs (nTreg; CD25high) from healthy donors (n = 12). Matched letters in the key

indicate twin pairs. (B) Repertoire analysis of naive Th1-like cells (non-Treg CCR4�CXCR3+), naive Th2-like cells (non-Treg CCR4+CXCR3�), naive Tregs

(CD25highCD127low), and the corresponding non-Treg CCR4�CXCR3� and non-Treg CCR4+CXCR3+ populations from healthy donors (n = 4) matching

those shown in Figure 2. Averaged physicochemical characteristics were measured for the five amino acids in the middle of the CDR3b sequences

obtained from each naive CD4+ T-cell subset. Calculations were weighted by clonotype frequency. Parameter details as in Figure 2. Dashed lines

indicate means. *p<0.05, **p<0.01, ***p<0.001, and ****p<0.0001 (one-way ANOVA followed by the two-sample Welch t-test with Bonferroni

correction for each group versus the mean).

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Averaged physicochemical characteristics of CDR3a repertoires from naive CD4+ T-cell subsets.

Figure supplement 2. Gating strategy for the identification of naive CD4+ T-cell subsets.
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(Figure 6B). In addition, both naive CXCR3+ subsets were characterized by increased numbers of

strongly interacting amino acid residues compared with the corresponding naive CXCR3� subsets. A

similar dichotomy has been reported for naive CD8+ T cells (De Simone et al., 2019). However, the

naive Th1-like and naive Th2-like CDR3b repertoires were generally physicochemically distinct from

the corresponding effector/memory CDR3b repertoires, in contrast to Tregs (Figure 2).

Collectively, these results indicate that distinct repertoire features are hardwired in the Treg line-

age during thymic selection, whereas other subset-specific repertoires are generally shaped later in

ontogeny, most likely driven by naive CD4+ T-cell interactions with cognate pMHCs.

Discussion
In this study, we used polychromatic flow cytometry and an unbiased high-throughput sequencing

approach to probe the ontogeny and relatedness of commonly recognized effector/memory

CD4+ T-cell subsets via in-depth analyses of clonotypically expressed TCRs. We found that each sub-

set-specific repertoire was characterized by distinct physicochemical and recombinatorial features

that were highly reproducible across multiple donors. Importantly, these differences were multivari-

ate, such that each subset displayed an array of repertoire characteristics, which in aggregate delin-

eated the spectrum of preferred TCRs.

The CDR3a and CDR3b repertoires of effector/memory Tregs contained the highest numbers of

hydrophobic and strongly interacting amino acid residues. These features were recapitulated in the

corresponding naive Treg repertoires, suggesting that lineage fate was predetermined by selection

events in the thymus (Feng et al., 2015; Jordan et al., 2001). Similar physicochemical characteristics

have been associated previously with highly cross-reactive TCRs (Kosmrlj et al., 2008;

Kosmrlj et al., 2010; Stadinski et al., 2016). However, naive and effector/memory Tregs also

expressed TCRs with relatively short CDR3a and CDR3b loops, which might limit steric flexibility and

thereby enhance the specificity of antigen-driven selection (Li and Rudensky, 2016; Bacher et al.,

2016; Su et al., 2016; Spence et al., 2018; Akkaya et al., 2019). Such composite properties are

compatible with an inherent predilection for self-derived peptides tempered by a capacity for ligand

discrimination. Of note, the effector/memory Treg subset as identified in this study potentially incor-

porated both thymus-derived and peripherally induced Tregs (Hoffmann et al., 2006). In line with

the possibility of mixed origins, higher numbers of N additions were detected in the naive Treg rep-

ertoires compared with the effector/memory Treg repertoires, potentially indicating the long-term

persistence of early fetal Tregs (Booth et al., 2010).

Substantial heterogeneity is thought to exist in the Treg lineage (Sawant and Vignali, 2014). For

example, peripheral interconversion between Th17 cells and Tregs has been observed in the pres-

ence of IL-6 and TGF-b1 (Murphy and Stockinger, 2010), and a loss of Foxp3 expression along with

regulatory functions has been observed in the context of lymphopenia (Tang et al., 2008;

Lathrop et al., 2008). In a more recent evaluation of this latter phenomenon, however, the ex-

Foxp3+ cells that accumulated under lymphopenic conditions were not bona fide Tregs, but rather

descendants of non-Tregs that transiently expressed Foxp3 (Miyao et al., 2012). Partial transition

from the Treg subset has also been associated with the Tr1 phenotype, distinguished by high pro-

duction levels of IL-10 (Häringer et al., 2009). In contrast, we found little evidence of plasticity

among effector/memory Tregs, suggesting a largely fixed lineage choice, irrespective of potentially

diverse origins.

Our analysis of circulating Tfh (cTfh) cells likely included migratory components of the Th1-like,

Th17-like, Th2-like, and follicular regulatory (Tfr) subpopulations of Tfh cells (Bentebibel et al.,

2013; Morita et al., 2011; Linterman et al., 2011; Chung et al., 2011; Maceiras et al., 2017;

Yang et al., 2019). Unexpectedly in light of this potential heterogeneity, we found that the cTfh

CDR3a and CDR3b repertoires were characterized by extreme features, including the lowest num-

bers of bulky, hydrophobic, and strongly interacting amino acid residues, with low dispersion among

donors and little overlap with other subsets. These characteristics were further associated with short

CDR3a and CDR3b loops. Accordingly, cTfh cells formed a distinct cluster in the principal compo-

nent analysis, closest to the Th1 subset. This configuration suggests a high degree of antigen speci-

ficity with minimal cross-reactivity (Kosmrlj et al., 2008; Kosmrlj et al., 2010; Stadinski et al.,

2016). It is tempting to speculate that such features are required to prevent the induction of autoan-

tibody responses. In support of this hypothesis, remarkably similar features are acquired
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progressively in the B-cell repertoire during the course of affinity maturation, reflecting intense nega-

tive selection of cross-reactive antibody variants (Grimsholm et al., 2020). Our data also suggest

that non-hydrophobic contacts underpin antigen specificity in the context of high-affinity interactions

between Tfh cell-expressed TCRs and cognate pMHCs (Fazilleau et al., 2009a).

In the periphery, cTfh cells survey multiple tissue sites and respond swiftly to previously encoun-

tered antigens, providing a systemic mirror of germinal center reactions after exiting the inceptive

lymph node (Shulman et al., 2013; Vella et al., 2019). We found no evidence of clonal expansions

in the cTfh repertoires of healthy donors, likely reflecting the random nature of recirculation and the

consequent sampling of mixed specificities. This interpretation concurs with the findings of a recent

study, in which clonality was low among cTfh cells and high among tonsillar Tfh cells (Brenna et al.,

2020). Network analysis further revealed that cTfh-expressed TCRs were largely subset-specific and

rarely exhibited clonal transitions. This observation again concurs with previous work (Brenna et al.,

2020). Accordingly, cTfh cells appear to represent a distinct lineage rather than a differentiation

step in the progressive maturation of other subsets, as proposed in some earlier models

(Fazilleau et al., 2009b; Vinuesa et al., 2016).

Th22 cells are typically found in the skin, where they play a key role in wound healing

(Alabbas et al., 2018) and epidermal immunity (Eyerich et al., 2009). Pathogenic activity has also

been ascribed to this subset in the contexts of multiple sclerosis (Rolla et al., 2014), rheumatoid

arthritis (Miyazaki et al., 2018), and chronic skin graft-versus-host disease (Gartlan et al., 2018). On

the basis of in vitro studies, Th22 cells are thought to exhibit plasticity with Th1 and possibly with

Th2 cells (Plank et al., 2017). Our systematic analysis of plasticity in vivo does not support this view.

Instead, we found that Th22 cells shared large expansions of unique clonotypes with the Th17, Th2a,

and Th2 subsets. This pattern was recapitulated across all donors. Cluster feature analysis nonethe-

less suggested the existence of clonotypically discrete populations of bona fide Th22 cells.

Th1 and Th2 cells are widely considered to be the most stably differentiated subsets of effector/

memory CD4+ T cells (Zhou et al., 2009b), both in vitro and in vivo (Murphy and Stockinger, 2010;

Murphy et al., 1996; Messi et al., 2003; Brown et al., 2015). However, some central memory Th1

cells can produce large quantities of IL-4 under Th2-polarizing conditions (Rivino et al., 2004). Con-

versely, murine Th2 cells primed in vivo can acquire the ability to produce IFN-g as well as IL-4

(Hegazy et al., 2010), whereas human Th2 cells seem to be more immutable (Messi et al., 2003). In

functional terms, Th2 cells are clearly defined by the production of IL-4, but in phenotypic terms, the

key lineage-defining markers remain a matter of debate, with most laboratories using either

CCR4+CCR6� or CCR6�CRTh2+ as the critical parameters. To bypass this controversy, we analyzed

CCR4+CCR6�CRTh2� (Th2) cells and CCR4+CCR6�CRTh2+ (Th2a) cells separately. The core reper-

toire of the Th2a subset was unique, implying a specialized function, but interestingly, both the Th2a

and Th2 subsets shared clonal expansions with the Th22 subset. This unexpected finding nonethe-

less aligns with current revisions of the classic paradigm toward a more plastic view of Th1 cells

(Leipe et al., 2020).

In contrast to Th1 and Th2 cells, Th17 cells and Tregs, including naturally occurring and peripher-

ally induced Tregs, are thought to be inherently plastic (Geginat et al., 2014), especially in mice

(Cohen et al., 2011). For example, murine and human Th17 cells differentiated in vivo can be

induced to adopt a Th1-like or Th1-17-like phenotype in vitro (Lee et al., 2009; Annunziato et al.,

2007; Hirota et al., 2011), and human Th17 cells migrating to sites of inflammation can acquire a

Th1-like phenotype, characterized by the expression of CD161 as well as CCR6 (Maggi et al., 2012).

We found that Th17 cells most commonly shared clonal expansions with Th22 cells, which also

shared clonal expansions with Th2a and Th2 cells. Little is known about such transitions, in part

because TGF-b1 promotes the development of Th17 cells and inhibits the development of Th2 cells,

which are consequently separated in most differentiation schemes (Muranski and Restifo, 2013).

Further studies are therefore required to interpret these findings in mechanistic terms. Of note, we

did not analyze Th9 cells, which appear to derive from Th17 cells under inflammatory conditions

(Beriou et al., 2010) and are thought to be relatively unstable (Schlapbach et al., 2014).

The development of Th17 cells and Tregs in the thymus is linked due to shared microenvironmen-

tal factors that favor commitment to both lineages. These cells may also derive from common thymic

progenitors (Yang et al., 2008). In vivo, Th17 cells have been shown to acquire certain regulatory

features, including the ability to produce IL-10 under the influence of IL-12 or IL-27
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(Heinemann et al., 2014). However, we found no evidence of interconversion between Th17 cells

and Tregs, at least within the effector/memory pool of CD4+ T cells.

Th1-17 cells are thought to represent a more mature form of Th17 cells (Muranski and Restifo,

2013). Unexpectedly, we found that Th1-17 cells shared few or no clonotypes with Th17 cells,

whereas clonal overlap was common between Th1 and Th1-17 cells. In line with this dichotomy,

Th17 cells, but not Th1-17 cells, shared large clonal expansions with Th22 cells. The intermediate

nature of Th1-17 cells has been predicted using computational models (Puniya et al., 2018) and

observed directly in vitro (Zielinski et al., 2012). Ex vivo, Th1-17 cells are characterized by the

coproduction IL-17, IL-22, and IFN-g (Duhen and Campbell, 2014). Our data suggest that Th1-17

cells are more closely related to Th1 cells rather than Th17 cells, but nonetheless, the core Th1-17

repertoires were largely unique, suggesting that a majority of these cells occupy a distinct lineage

and do not simply represent a maturation stage in the development of Th1 or Th17 cells.

Effector/memory CD4+ T-cell subsets are classified according to distinct patterns of cytokine pro-

duction, reflecting differential expression of various master transcription factors. However, these

profiles were largely established on the basis of in vitro studies, and consequently, our current

understanding of subset phylogeny is most likely an oversimplification (Zhu et al., 2010). Mixed and

unexplored subsets therefore almost certainly exist in vivo, reflecting nuances in the epigenetic land-

scape (Allan et al., 2012) and the relative activities of master regulators (Kanhere et al., 2012;

Aune et al., 2009). Greater understanding of these complexities could inform efforts to develop

more effective therapies for autoimmune diseases (Ryba-Stanisławowska et al., 2016; Rolla et al.,

2014; Walker and von Herrath, 2016) and cancer (Kreiter et al., 2015; Borst et al., 2018;

Wei et al., 2017), as well as better targeted vaccines (Misiak et al., 2017). In this context, our data

provide an important step on the path to systematic deconvolution of the CD4+ T-cell compartment,

specifically via the demonstration that subset fate is associated with the non-random selection of clo-

notypes expressing physicochemically distinct TCRs.

Materials and methods

Samples
Venous blood samples were collected from healthy adult donors (n = 17) directly into heparinized

syringes or Vacutainer EDTA Tubes (BD Biosciences). Peripheral blood mononuclear cells (PBMCs)

were isolated via density gradient centrifugation over Ficoll-Paque (PanEco) or Histopaque-1077

(Sigma-Aldrich). Ethical approval was granted by the institutional review committees at Cardiff Uni-

versity School of Medicine (16/55) and the Pirogov Russian National Research Medical University

(2017/52). All donors provided written informed consent in accordance with the Declaration of

Helsinki.

Flow cytometric sorting of effector/memory CD4+ T-cell subsets
PBMCs were stained immediately after isolation (n = 5 donors) with LIVE/DEAD Fixable Aqua

(Thermo Fisher Scientific) and the following directly conjugated monoclonal antibodies: anti-CCR6–

PE (clone 11A9), anti-CCR7–PE-Cy7 (clone 3D12), anti-CD14–V500 (clone M5E2), anti-CD19–V500

(clone HIB19), and anti-CRTh2–PE-CF594 (clone BM16) from BD Biosciences; anti-CCR4–BV605

(clone L291H4), anti-CD3–APC-Fire750 (clone SK7), anti-CD25–BV711 (clone MA251), anti-CD45RA–

PE-Cy5 (clone HI100), anti-CD127–BV421 (clone A019D5), and anti-CXCR5–BV785 (clone J252D4)

from BioLegend; anti-CCR10–APC (clone 314305) and anti-CXCR3–FITC (clone 49801.111) from

R&D Systems; and anti-CD4–PE-Cy5.5 (clone S3.5) from Thermo Fisher Scientific. The gating strategy

is described in Figure 1—figure supplement 1 and Table 1. Subsets were flow-sorted at >98%

purity after exclusion of naive CCR7+CD45RA+ events from the Aqua�CD3+CD4+CD14�CD19� gate

as Tfh cells (CXCR5+), Th1 cells (non-Tfh/Th22/Treg CCR4�CCR6�CXCR3+), Th1-17 cells (non-Tfh/

Th22/Treg CCR4�CCR6+CXCR3+), Th17 cells (non-Tfh/Th22/Treg CCR4+CCR6+CXCR3�), Th22 cells

(CCR10+), Th2a cells (non-Tfh/Th22/Treg CCR4+CCR6�CRTh2+CXCR3�), Th2 cells (non-Tfh/Th22/

Treg CCR4+CCR6�CRTh2�CXCR3�), or Tregs (CD25highCD127low) using a modified FACSAria II (BD

Biosciences). All cells (n = 6,000–150,000 per subset) were sorted directly into RLT buffer (Qiagen)

containing 1% 2-mercaptoethanol (Sigma-Aldrich). Subset frequencies are listed in Table 2. Acquisi-

tion and post-sort data were analyzed using FlowJo software version 10.6.1 (Tree Star).
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Flow cytometric sorting of naive CD4+ T-cell subsets
To identify RTEs, mature naive T cells, and naive Tregs in the CD4+ lineage, PBMCs were stained

immediately after isolation (n = 12 donors) with the following directly conjugated monoclonal anti-

bodies: anti-CD4–PE (clone 13B8.2) and anti-CD27–PE-Cy5 (clone O323) from Beckman Coulter; and

anti-CD25–eFluor450 (clone BC96), anti-CD31–PE-Cy7 (clone WM59), and anti-CD45RA–FITC (clone

JS-83) from eBioscience. The gating strategy was described previously (Egorov et al., 2018). Sub-

sets were flow-sorted at >98% purity from the CD4+CD27+CD45RA+ gate as RTEs (CD25�CD31+),

mature naive T cells (CD25�CD31�), or naive Tregs (CD25high) using a FACS Aria III (BD Biosciences).

To identify naive Th1-like cells, naive Th2-like cells, and naive Tregs in the CD4+ lineage, PBMCs

were stained immediately after isolation (n = 4 donors) with LIVE/DEAD Fixable Aqua (Thermo Fisher

Scientific) and the following directly conjugated monoclonal antibodies: anti-CCR7–PE-Cy7 (clone

3D12), anti-CD8–V500 (clone RPA-T8), anti-CD14–V500 (clone M5E2), and anti-CD19–V500 (clone

HIB19) from BD Biosciences; anti-CCR4–BV605 (clone L291H4), anti-CD3–APC-Fire750 (clone SK7),

anti-CD25–BV711 (clone MA251), anti-CD45RA–PE-Cy5 (clone HI100), anti-CD95–PE (clone DX2),

and anti-CD127–BV421 (clone A019D5) from BioLegend; anti-CXCR3–FITC (clone 49801.111) from

R&D Systems; and anti-CD4–PE-Cy5.5 (clone S3.5) from Thermo Fisher Scientific. The gating strategy

is described in Figure 6—figure supplement 2. Subsets were flow-sorted at >98% purity from the

Aqua�CD3+CD4+CD8�CD14�CD19�CCR7+CD45RA+CD95� gate as naive Th1-like cells (non-Treg

CCR4�CXCR3+), naive Th2-like cells (non-Treg CCR4+CXCR3�), or naive Tregs (CD25highCD127low),

alongside the corresponding non-Treg CCR4�CXCR3� and non-Treg CCR4+CXCR3+ populations,

using a modified FACS Aria II (BD Biosciences). All cells (n = 260-150,000 per subset) were sorted

directly into RLT buffer (Qiagen) containing 1% 2-mercaptoethanol (Sigma-Aldrich). Subset frequen-

cies are listed in Table 3. Acquisition and post-sort data were analyzed using FlowJo software ver-

sion 10.6.1 (Tree Star).

TCR sequencing and data analysis
TCRa and TCRb cDNA libraries were prepared using a Human TCR Kit (MiLaboratory LLC) with tem-

plate switch-based incorporation of UMIs as described previously (Egorov et al., 2015). Libraries

were sequenced in paired-end mode (150 + 150 bp) on a NextSeq500 (Illumina). Raw sequence data

were analyzed using MIGEC software version 1.2.9 (Shugay et al., 2014). Briefly, UMI sequences

were extracted from demultiplexed data using the Checkout utility, yielding sample barcode

matches in ~90% of cases. Data were then assembled using the erroneous UMI filtering option in the

Assemble utility. For most tasks, the minimum required number of reads per UMI was set at 1. For

analyses of overlap and publicity, which are sensitive to even minor cross-sample contaminations,

the minimum required number of reads per UMI was set at 3 (Egorov et al., 2015). In-frame TCRa

and TCRb repertoires were extracted using MiXCR software version 2.1.1 (Bolotin et al., 2017;

Bolotin et al., 2018; Bolotin et al., 2015). At a threshold of 3 reads per UMI, the number of

obtained UMI-labeled cDNA molecules per repertoire per sample ranged from 5300 to 303,500,

and the number of CDR3 clonotype variants at the nucleotide level per repertoire per sample

ranged from 1200 to 83,200. Normalization, data transformation, in-depth analyses, and statistical

calculations were performed using R scripts and VDJtools software version 1.2.1 (Shugay et al.,

2015). Analyses of averaged CDR3 characteristics were weighted by the abundance of each clono-

type in each sample. Basic characteristics included CDR3 length, the number of N additions, interac-

tion strength, hydrophobicity (Kidera factor 4), volume, and surface, which were selected in previous

Table 3. Frequencies of sorted naive CD4+ T-cell subsets.

Donor
Th1-like
CCR4�CXCR3+

Th2-like
CCR4+CXCR3�

CCR4�

CXCR3�
CCR4+

CXCR3+
Treg CD25high

CD127low

D1 1.75 5.46 44.80 0.23 0.73

D2 0.77 6.77 20.40 0.32 0.57

D3 0.15 5.67 42.60 0.19 1.70

D4 0.16 6.33 33.10 0.05 1.11

Shown as % of live CD3+CD4+CD8�CD14�CD19� naive cells. Details in Figure 6—figure supplement 2.
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analyses of various somatically rearranged lymphocyte receptor datasets (Izraelson et al., 2018;

Egorov et al., 2018; Davydov et al., 2018). The amino acid properties used in these analyses can

be viewed at https://github.com/mikessh/vdjtools/blob/master/src/main/resources/profile/aa_prop-

erty_table.txt. The strength feature reflects the predicted sum of interaction affinities between pairs

of amino acids at the TCR-pMHC interface, Kidera factor 4 reflects the abundance of hydrophobic

amino acids on an inverted scale, and the surface characteristic reflects the relative abundance of

amino acids with no predicted changes in accessibility during TCR engagement with cognate

pMHCs. Amino acid hierarchies by probability of active involvement at the protein-protein interface

or conformational stability relative to the native form in the absence of an interaction were derived

from previous work (Martin and Lavery, 2012), in which extensive cross-docking experiments were

performed across 198 proteins and 300 partners in silico to infer the general roles of amino acids at

protein-protein interfaces. Physicochemical characteristics were calculated and averaged for the five

amino acid residues located in the middle of each CDR3 loop, which are most likely to contact the

peptide epitope in any cognate pMHC (Egorov et al., 2018). Principal component analysis was per-

formed using 28 parameters computed as the average across each CDR3a and CDR3b cloneset:

Kidera factors (n = 10), strength, mjenergy, count (CDR3 length), NDN length, number of N inser-

tions, vdins, djins, core, rim, volume, polarity, disorder, surface, alpha, beta, turn, charge, and

hydropathy (VDJtools software version 1.2.1). No significant variations in V/J segment use were

detected among subsets (data not shown). Network visualization was performed using Cytoscape

(https://cytoscape.org). Repertoire overlap was analyzed using the unweighted D (reflecting the pro-

portion of shared clonotypes between paired repertoires) and weighted F2 (reflecting the propor-

tion of shared T cells between paired repertoires) metrics in VDJtools software version 1.2.1.

Quantification and statistical analysis
Statistical analyses were performed on processed datasets in R. Multiple parameter inferences were

estimated using ANOVA if the data were distributed normally or the Kruskal-Wallis test if any of the

data were not distributed normally. The corresponding p values were calculated using the two-sam-

ple Welch t-test or the Wilcoxon rank sum test. The false discovery rate was controlled using Benja-

mini-Hochberg correction unless stated otherwise. Post-hoc tests were performed using the ggpubr

package (https://CRAN.R-project.org/package=ggpubr).
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Kasatskaya, Ladell, et al. eLife 2020;9:e57063. DOI: https://doi.org/10.7554/eLife.57063 19 of 22

Research article Immunology and Inflammation

https://doi.org/10.1111/ajt.14513
http://www.ncbi.nlm.nih.gov/pubmed/28941323
https://doi.org/10.3389/fimmu.2014.00630
https://doi.org/10.3389/fimmu.2014.00630
http://www.ncbi.nlm.nih.gov/pubmed/25566245
https://doi.org/10.1016/j.celrep.2020.02.022
https://doi.org/10.1016/j.celrep.2020.02.022
http://www.ncbi.nlm.nih.gov/pubmed/32130900
https://doi.org/10.1016/j.immuni.2012.08.016
http://www.ncbi.nlm.nih.gov/pubmed/23123063
https://doi.org/10.1084/jem.20082238
http://www.ncbi.nlm.nih.gov/pubmed/19414553
https://doi.org/10.1016/j.immuni.2009.12.004
https://doi.org/10.1016/j.immuni.2009.12.004
http://www.ncbi.nlm.nih.gov/pubmed/20079668
https://doi.org/10.1038/ncomms4770
https://doi.org/10.1038/ncomms4770
http://www.ncbi.nlm.nih.gov/pubmed/24796719
https://doi.org/10.1038/mi.2012.128
http://www.ncbi.nlm.nih.gov/pubmed/23250275
https://doi.org/10.1038/ni.1993
http://www.ncbi.nlm.nih.gov/pubmed/21278737
https://doi.org/10.1182/blood-2006-06-027409
http://www.ncbi.nlm.nih.gov/pubmed/16917003
https://doi.org/10.1371/journal.pcbi.1004244
http://www.ncbi.nlm.nih.gov/pubmed/26185983
https://doi.org/10.1111/imm.12857
https://doi.org/10.1111/imm.12857
http://www.ncbi.nlm.nih.gov/pubmed/29080364
https://doi.org/10.1038/86302
http://www.ncbi.nlm.nih.gov/pubmed/11276200
https://doi.org/10.1038/ncomms2260
http://www.ncbi.nlm.nih.gov/pubmed/23232398
https://doi.org/10.1007/BF01025492
https://doi.org/10.1007/BF01025492
https://doi.org/10.4049/jimmunol.180.3.1499
http://www.ncbi.nlm.nih.gov/pubmed/18209045
https://doi.org/10.1073/pnas.0808081105
https://doi.org/10.1073/pnas.0808081105
http://www.ncbi.nlm.nih.gov/pubmed/18946038
https://doi.org/10.1038/nature08997
http://www.ncbi.nlm.nih.gov/pubmed/20445539
https://doi.org/10.1155/2016/5393894
http://www.ncbi.nlm.nih.gov/pubmed/27974866
http://www.ncbi.nlm.nih.gov/pubmed/27974866
https://doi.org/10.7554/eLife.57063


drive therapeutic immune responses to cancer. Nature 520:692–696. DOI: https://doi.org/10.1038/
nature14426, PMID: 25901682

Lathrop SK, Santacruz NA, Pham D, Luo J, Hsieh C-S. 2008. Antigen-specific peripheral shaping of the natural
regulatory T cell population. Journal of Experimental Medicine 205:3105–3117. DOI: https://doi.org/10.1084/
jem.20081359, PMID: 19064700

Lee YK, Turner H, Maynard CL, Oliver JR, Chen D, Elson CO, Weaver CT. 2009. Late developmental plasticity in
the T helper 17 lineage. Immunity 30:92–107. DOI: https://doi.org/10.1016/j.immuni.2008.11.005, PMID: 1911
9024

Lei H, Kuchenbecker L, Streitz M, Sawitzki B, Vogt K, Landwehr-Kenzel S, Millward J, Juelke K, Babel N,
Neumann A, Reinke P, Volk HD. 2015. Human CD45RA� FoxP3hi memory-type regulatory T cells show distinct
TCR repertoires with conventional T cells and play an important role in controlling early immune activation.
American Journal of Transplantation 15:2625–2635. DOI: https://doi.org/10.1111/ajt.13315, PMID: 25988290

Leipe J, Pirronello F, Klose A, Schulze-Koops H, Skapenko A. 2020. Increased plasticity of non-classic Th1 cells
toward the Th17 phenotype. Modern Rheumatology 30:930–936. DOI: https://doi.org/10.1080/14397595.2019.
1667473, PMID: 31512538

Levine AG, Arvey A, Jin W, Rudensky AY. 2014. Continuous requirement for the TCR in regulatory T cell
function. Nature Immunology 15:1070–1078. DOI: https://doi.org/10.1038/ni.3004, PMID: 25263123

Li MO, Rudensky AY. 2016. T cell receptor signalling in the control of regulatory T cell differentiation and
function. Nature Reviews Immunology 16:220–233. DOI: https://doi.org/10.1038/nri.2016.26, PMID: 27026074

Linterman MA, Pierson W, Lee SK, Kallies A, Kawamoto S, Rayner TF, Srivastava M, Divekar DP, Beaton L, Hogan
JJ, Fagarasan S, Liston A, Smith KG, Vinuesa CG. 2011. Foxp3+ follicular regulatory T cells control the germinal
center response. Nature Medicine 17:975–982. DOI: https://doi.org/10.1038/nm.2425, PMID: 21785433

Logunova NN, Kriukova VV, Shelyakin PV, Egorov ES, Pereverzeva A, Bozhanova NG, Shugay M, Shcherbinin DS,
Pogorelyy MV, Merzlyak EM, Zubov VN, Meiler J, Chudakov DM, Apt AS, Britanova OV. 2020. MHC-II alleles
shape the CDR3 repertoires of conventional and regulatory naı̈ve CD4+ T cells. PNAS 117:13659–13669.
DOI: https://doi.org/10.1073/pnas.2003170117, PMID: 32482872

Maceiras AR, Almeida SCP, Mariotti-Ferrandiz E, Chaara W, Jebbawi F, Six A, Hori S, Klatzmann D, Faro J, Graca
L. 2017. T follicular helper and T follicular regulatory cells have different TCR specificity. Nature
Communications 8:15067. DOI: https://doi.org/10.1038/ncomms15067, PMID: 28429709

Maggi L, Santarlasci V, Capone M, Rossi MC, Querci V, Mazzoni A, Cimaz R, De Palma R, Liotta F, Maggi E,
Romagnani S, Cosmi L, Annunziato F. 2012. Distinctive features of classic and nonclassic (Th17 derived) human
Th1 cells. European Journal of Immunology 42:3180–3188. DOI: https://doi.org/10.1002/eji.201242648,
PMID: 22965818

Marks BR, Nowyhed HN, Choi JY, Poholek AC, Odegard JM, Flavell RA, Craft J. 2009. Thymic self-reactivity
selects natural interleukin 17-producing T cells that can regulate peripheral inflammation. Nature Immunology
10:1125–1132. DOI: https://doi.org/10.1038/ni.1783, PMID: 19734905

Martin J, Lavery R. 2012. Arbitrary protein-protein docking targets biologically relevant interfaces. BMC
Biophysics 5:7. DOI: https://doi.org/10.1186/2046-1682-5-7, PMID: 22559010

McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, Hoffmüller U, Baron U, Olek S, Bluestone
JA, Brusko TM. 2011. Plasticity of human regulatory T cells in healthy subjects and patients with type 1
diabetes. Journal of Immunology 186:3918–3926. DOI: https://doi.org/10.4049/jimmunol.1003099, PMID: 2136
8230

McDonald DR. 2012. TH17 deficiency in human disease. Journal of Allergy and Clinical Immunology 129:1429–
1435. DOI: https://doi.org/10.1016/j.jaci.2012.03.034, PMID: 22554706

McGee HS, Agrawal DK. 2006. TH2 cells in the pathogenesis of airway remodeling: regulatory T cells a plausible
Panacea for asthma. Immunologic Research 35:219–232. DOI: https://doi.org/10.1385/IR:35:3:219,
PMID: 17172648

Messi M, Giacchetto I, Nagata K, Lanzavecchia A, Natoli G, Sallusto F. 2003. Memory and flexibility of cytokine
gene expression as separable properties of human Th1 and Th2 lymphocytes. Nature Immunology 4:78–86.
DOI: https://doi.org/10.1038/ni872, PMID: 12447360

Misiak A, Leuzzi R, Allen AC, Galletti B, Baudner BC, D’Oro U, O’Hagan DT, Pizza M, Seubert A, Mills KHG.
2017. Addition of a TLR7 agonist to an acellular pertussis vaccine enhances Th1 and Th17 responses and
protective immunity in a mouse model. Vaccine 35:5256–5263. DOI: https://doi.org/10.1016/j.vaccine.2017.08.
009, PMID: 28823618

Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, Huehn J, Hori S. 2012. Plasticity of Foxp3+ T
cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T
cells. Immunity 36:262–275. DOI: https://doi.org/10.1016/j.immuni.2011.12.012, PMID: 22326580

Miyara M, Amoura Z, Parizot C, Badoual C, Dorgham K, Trad S, Nochy D, Debré P, Piette JC, Gorochov G.
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