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Abstract Primary ciliary defects cause a group of developmental conditions known as ciliopa-
thies. Here, we provide mechanistic insight into ciliary ubiquitin processing in cells and for mouse 
model lacking the ciliary protein Mks1. In vivo loss of Mks1 sensitises cells to proteasomal disrup-
tion, leading to abnormal accumulation of ubiquitinated proteins. We identified UBE2E1, an E2 
ubiquitin-conjugating enzyme that polyubiquitinates β-catenin, and RNF34, an E3 ligase, as novel 
interactants of MKS1. UBE2E1 and MKS1 colocalised, and loss of UBE2E1 recapitulates the ciliary 
and Wnt signalling phenotypes observed during loss of MKS1. Levels of UBE2E1 and MKS1 are 
co-dependent and UBE2E1 mediates both regulatory and degradative ubiquitination of MKS1. We 
demonstrate that processing of phosphorylated β-catenin occurs at the ciliary base through the 
functional interaction between UBE2E1 and MKS1. These observations suggest that correct β-cat-
enin levels are tightly regulated at the primary cilium by a ciliary-specific E2 (UBE2E1) and a regula-
tory substrate-adaptor (MKS1).

Editor's evaluation
It has long been recognized that ciliary dysfunction leads to increased canonical Wnt signaling but 
the mechanism has been elusive. Your work connecting β-catenin stability to Mks1 through Ube2e1 
is an important advance in understanding this mechanism. I am certain that your work will stimulate 
more effort in this important area.

Introduction
Primary cilia are microtubule-based organelles that sense and transduce extracellular signals on many 
mammalian cells. The cilium has essential roles throughout development during mechanosensation 
(Praetorius and Spring, 2001; Nauli et al., 2003), in transduction of multiple signalling pathways 
(Huangfu et al., 2003; Simons et al., 2005; Schneider et al., 2005) and in the establishment of left-
right asymmetry (Nonaka et al., 1998). Primary cilia have a complex ultrastructure with compartmen-
talisation of molecular components that together form functional modules. Mutations in proteins that 

RESEARCH ARTICLE

*For correspondence: 
G.Wheway@soton.ac.uk (GW); 
c.johnson@leeds.ac.uk (CAJ)
†Deceased

Competing interest: The authors 
declare that no competing 
interests exist.

Funding: See page 20

Preprinted: 09 January 2020
Received: 05 April 2020
Accepted: 10 February 2022
Published: 16 February 2022

Reviewing Editor: Gregory 
J Pazour, University of 
Massachusetts Medical School, 
United States

‍ ‍ Copyright Szymanska et al. 
This article is distributed under 
the terms of the Creative 
Commons Attribution License, 
which permits unrestricted use 
and redistribution provided that 
the original author and source 
are credited.

https://en.wikipedia.org/wiki/Open_access
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://doi.org/10.7554/eLife.57593
mailto:G.Wheway@soton.ac.uk
mailto:c.johnson@leeds.ac.uk
https://doi.org/10.1101/2020.01.08.897959
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


 Research article﻿﻿﻿﻿﻿﻿ Cell Biology

Szymanska et al. eLife 2022;11:e57593. DOI: https://doi.org/10.7554/eLife.57593 � 2 of 24

are structural or functional components of the primary cilium cause a group of human inherited devel-
opmental conditions known as ciliopathies (Adams et  al., 2008). Examples of ciliopathies include 
Meckel-Gruber syndrome (MKS) and Joubert syndrome (JBTS). Many proteins that are mutated 
in ciliopathies, including the MKS1 protein (Szymanska and Johnson, 2012; Reiter et al., 2012), 
localise to the transition zone (TZ), a compartment of the proximal region of the cilium. Mutations 
in the MKS1 gene cause about 15% of MKS, a lethal neurodevelopmental condition that is the most 
severe ciliopathy (Khaddour et al., 2007).

The MKS1 protein contains a B9/C2 domain with homologies to the C2 (calcium/lipid-binding) 
domain of the synaptotagmin-like and phospholipase families (Kyttälä et al., 2006). MKS1 interacts 
with TMEM67, the transmembrane receptor encoded by the TMEM67 gene (Dawe et al., 2007), and 
two other B9/C2-domain containing proteins, B9D1 and B9D2 (Gupta et al., 2015). B9D1, B9D2, 
and MKS1 are predicted to bind lipids in the ciliary membrane, and all three have been shown to 
localise at the ciliary TZ (Bialas et al., 2009) forming components of a functional module (known as 
the ‘MKS-JBTS module’). This module contains other transmembrane proteins (TMEMs), namely the 
Tectonic proteins (TCTN1-3), TMEM17, TMEM67, TMEM231, and TMEM237, as well as other C2-do-
main proteins (jouberin, RPGRIP1L, and CC2D2A) (Garcia-Gonzalo et al., 2011; Sang et al., 2011; 
Huang et al., 2011). TZ proteins are thought to form a diffusion barrier at the base of the cilium 
that restricts entrance and exit of both membrane and soluble proteins (Garcia-Gonzalo and Reiter, 
2012). The compartmentalisation of the cilium is essential for the regulated translocation of signalling 
intermediates, most notably during Sonic hedgehog (Shh) signalling (Chih et al., 2011), and muta-
tions of TZ components invariably cause Shh signalling defects during development (Weatherbee 
et al., 2009). For example, mouse embryos from the Mks1Krc knock-out mutant line have severe Shh 
signalling and left-right patterning defects during early embryonic development (Weatherbee et al., 
2009). Previously, we have described the Mks1 knock-out mouse line, for which mutant embryos have 
deregulated, increased canonical Wnt/β-catenin signalling and increased proliferation defects in the 
cerebellar vermis and kidney (Wheway et al., 2013).

Other studies have shown that the ciliary apparatus restricts the activity of canonical Wnt/β-catenin 
signalling (Corbit et al., 2008; Lancaster et al., 2011; Simons et al., 2005), although the mechanistic 
detail by which signal transduction is regulated remains unclear. One regulatory pathway involves the 
ciliary TZ protein jouberin (also known as AHI1), which shuttles β-catenin between the cytosol and 
nucleus in order to regulate Wnt signalling (Lancaster et al., 2011). However, ubiquitin-dependent 
proteasomal degradation by the ubiquitin-proteasome system (UPS) is the best-characterised mecha-
nism for regulating canonical Wnt signalling (Aberle et al., 1997). In the absence of a Wnt signal, cyto-
plasmic β-catenin is phosphorylated in a complex of proteins (referred to as the destruction complex) 
that include axin, adenomatous polyposis coli (APC), and glycogen synthase kinase 3 (GSK-3)(Ikeda 
et al., 1998; Munemitsu et al., 1995; Rubinfeld et al., 1996). Subsequent ubiquitination of β-catenin 
leads to its degradation by the proteasome, meaning that in the absence of Wnt signalling the steady 
state levels of cytoplasmic β-catenin are low. Part of this regulation appears to be mediated by a func-
tional association of the ciliary apparatus with the UPS (Gerdes et al., 2007), and UPS components 
have been shown to interact with ciliopathy proteins (e.g. USP9X and lebercilin) (den Hollander et al., 
2007). RPGRIP1L (a ciliary TZ protein mutated in a range of ciliopathies including MKS and JBTS) has 
been reported to interact with the proteasome proteins, PSMD3 and PSMD5 (Gerhardt et al., 2015). 
Furthermore, discrete localisation of ubiquitin has been observed at the ciliary base suggesting that 
UPS processing can be constrained and regulated by the cilium (Gerhardt et al., 2015). However, 
the mechanistic basis to substantiate the association between the UPS and ciliary apparatus remains 
unclear and, in particular, it is unknown if the pathomechanism of Wnt signalling defects in ciliopathies 
depends on defective regulation of β-catenin localisation and processing by ciliary proteins.

Here, we describe the interaction and functional association of MKS1 with ciliary UPS components, 
specifically the E2 ubiquitin-conjugating enzyme UBE2E1 (also known as UbcH6) and the E3 ubiq-
uitin ligating enzyme RNF34. In addition to ciliogenesis defects, loss of MKS1 causes deregulation of 
both proteasome activity and canonical Wnt/β-catenin signalling. These cellular phenotypes are also 
observed after loss of UBE2E1. MKS1 and UBE2E1 colocalise during conditions of cilia resorption, 
and levels of MKS1 and UBE2E1 are co-dependent. We show that in the absence of MKS1, levels of 
ubiquitinated proteins, including β-catenin, are increased. Furthermore, polyubiquitination of MKS1 
is dependent on both UBE2E1 and RNF34, and lysine (Lys)63-linked polyubiquitination of MKS1 is 
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dependent on UBE2E1. This suggests that regulation of intracellular signalling, specifically canonical 
Wnt/β-catenin signalling, can be regulated and constrained at the primary cilium by a ciliary-specific 
E2 and MKS1, a substrate-adaptor.

Results
Mks1 mutation causes deregulation of proteasome activity
Loss of ciliary basal body proteins perturbs both UPS function and Wnt signalling (Gerdes et  al., 
2007), and we have previously reported de-regulated increases of canonical Wnt signalling in Mks1-

/- mutant mice (Wheway et al., 2013). To investigate the mechanistic basis for regulation of canonical 
Wnt/β-catenin signalling and possible UPS processing of β-catenin by a ciliary protein, we first charac-
terised these processes in cells and tissues lacking functional MKS1. We derived immortalised dermal 
fibroblasts from a human MKS patient, carrying compound heterozygous MKS1 mutations [c.472C 
> T]+[IVS15-7_35del29] causing the predicted nonsense and splice-site null mutations [p.R158*]+[p.
P470fs*562] (Khaddour et  al., 2007; Figure  1—figure supplement 1a) leading to loss of MKS1 
protein (Figure 1—figure supplement 1b-c). MKS1-mutated fibroblasts had decreased cilia incidence 
and length (Figure 1—figure supplement 1d), and de-regulated canonical Wnt/β-catenin signalling 
(Figure 1a). MKS1-mutated fibroblasts had moderately increased levels of total β-catenin and the Wnt 
downstream target cyclin D1 (Figure 1a). SUPER-TOPFlash reporter assays confirmed that increased 
levels of β-catenin in MKS1-mutated fibroblasts caused de-regulated increases in canonical Wnt 
signalling in response to Wnt3a (a canonical Wnt ligand; Figure 1b). Treatment with the non-specific 
proteasome inhibitor MG-132 also increased levels of phosphorylated β-catenin (Figure 1a). Since 
β-catenin is phosphorylated to mark it for processing by the 26 S proteasome, we also tested if prote-
asome enzymatic activity was affected in MKS1-mutated fibroblasts. We observed increased protea-
some activity, which was inhibited by treatment with lactacystin that targets the 20 S catalytic core of 
the proteasome, as well as moderate increased levels of the proteasome subunit α7 (Figure 1c). This 
was accompanied by increased levels of mono- and poly-ubiquitinated proteins in the MKS1-mutated 
fibroblasts following protease inhibition (Figure 1—figure supplement 1e).

To substantiate an in vivo association between de-regulated canonical Wnt signalling and prote-
asome activity in the ciliopathy disease state, we crossed the Mks1 knock-out mouse line (Wheway 
et al., 2013) with the UbG76V-GFP transgenic reporter line. UbG76V-GFP constitutively degrades GFP-
ubiquitinated proteins, leading to an absence of GFP signal if proteasome processing is unimpaired 
(Lindsten et al., 2003). Confirming our observations with human MKS1-mutated fibroblasts, Mks1-/- x 
UbG76V-GFP mouse embryonic fibroblasts (MEFs) also had de-regulated proteasome enzymatic activity 
(Figure 1d) compared to Mks1+/+ x UbG76V-GFP wild-type littermate MEFs. Furthermore, after intra-
peritoneal injection of MG-262 into pregnant dams at E11.5, Mks1-/- x UbG76V-GFP mutant embryos at 
embryonic day E12.5 had increased levels of GFP, detected by both epifluorescence confocal micros-
copy and western blotting, in the neocortex (Figure 1e) and other tissues (Figure 1—figure supple-
ment 2) compared to wild-type littermate controls. This suggests that in mutant mice abnormally 
high levels of polyubiquitinated proteins stimulate increased proteasome function (Figure 1d) that 
facilitates protein degradation and maintenance of correct levels of polyubiquitinated proteins in 
the cell. Upon proteasome inhibition, GFP-polyubiquitinated proteins accumulated in mutant mice 
tissues, indicating that there is a defect of abnormal increased protein polyubiquitination in mice 
lacking Mks1. Furthermore, these defects accompanied increased levels of active β-catenin in the 
neuroepithelium of Mks1-/- x UbG76V-GFP mutant ventricular zone (Figure 1—figure supplement 2).

MKS1 interacts with the E2 ubiquitin-conjugation enzyme UBE2E1, 
with colocalisation during cilia resorption
To understand why mutation or loss of MKS1 causes de-regulated increases of both proteasome 
activity and canonical Wnt/β-catenin signalling, we sought to identify MKS1-interacting proteins. We 
performed a yeast two-hybrid screen using amino acids 144–470 of MKS1 that contain the B9/C2 
domain as bait (Figure 2a) and identified the E2 ubiquitin conjugation enzyme UBE2E1 (also known as 
UbcH6) (Hong et al., 2008) as an interactant of MKS1 (Figure 2b). We confirmed this interaction by 
a ‘one-to-one’ yeast two-hybrid assay (Figure 2c). Additionally, we identified the E3 ubiquitin ligase 
RNF34 and confirmed its interaction and colocalisation with MKS1 (Figure 2—figure supplement 
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Figure 1. Deregulation of canonical Wnt signalling and proteasome activity following loss or mutation of MKS1. (a) Immunoblots for total soluble 
β-catenin, phospho-β-catenin, cyclin D1 and β-actin (loading control) in either wild-type normal or MKS1-mutated immortalised human fibroblasts from 
an MKS patient (MKS-562) following treatment with MG-132 proteasome inhibitor (+) or vehicle control (-). (b) SUPER-TOPFlash assays of canonical Wnt 
signalling activity in human MKS1-mutated fibroblasts compared to wild-type control fibroblasts following treatment with control conditioned medium, 
Wnt5a, Wnt3a, or a mixture of Wnt3a and Wnt5a media, as indicated. Statistical significance of pairwise comparisons is shown (* indicates p < 0.05, 
paired two-tailed Student t-test). Error bars indicate s.e.m. with results shown for four independent biological replicates. (c) Proteasome activity assays 
for wild-type or MKS1-mutated human fibroblasts or an irrelevant control (ASPM-mutant fibroblasts), following treatment with c-lactacystin-β-lactone 
(+) or vehicle control (-). Statistical significance of pairwise comparison as for (b); *** indicates p < 0.001 for three independent biological replicates. 
Immunoblots show levels of the 20 S proteasome α7 subunit compared to β-actin loading control. (d) Protease activity assays of crude proteasome 
preparations from Mks1+/+ or Mks1-/- mouse embryonic fibroblasts (MEFs), expressed as pmol AMC released per µg proteasome per hr. Treatment 
with lactacystin is the assay control. Statistical analysis as for (b); ** indicates p < 0.01 for three independent biological replicates. (e) Accumulation of 
GFP-tagged ubiquitin (GFP; green) in Mks1-/- x UbG76V-GFP E12.5 embryonic cerebral neocortex treated with MG-262 proteasome inhibitor. Immunoblot 
for GFP in Mks1-/- x UbG76V-GFP and wild-type littermate E12.5 embryo protein lysates, with immunoblotting for β-actin as a loading control, showing 
accumulation of GFP-tagged ubiquitin (Ub-GFP) in Mks1-/-.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Characterisation of MKS1-mutated human patient fibroblasts: full western blots.

Figure 1 continued on next page
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1). In support of a possible role of MKS1 in regulating ubiquitinated signalling proteins, UBE2E1 
has been described to function as an E2 with the E3 JADE-1 during the ubiquitination of β-catenin 
(Chitalia et al., 2008). We therefore further substantiated the interaction of UBE2E1 with MKS1. We 
purified GST-tagged UBE2E1 and confirmed the interaction between MKS1 and UBE2E1 by a GST 
pull-down assay (Figure 2d). The interaction between endogenous MKS1 and UBE2E1 was confirmed 
by co-immunoprecipitations (co-IPs) using anti-MKS1 (Figure 2e). This was further corroborated when 
an interaction between endogenous UBE2E1 and exogenously expressed cmyc-tagged MKS1 was 
detected by co-IP with an anti-UBE2E1 antibody (Figure 2f).

The UBE2E1-MKS1 interaction is required for cilia resorption
Having confirmed UBE2E1-MKS1 interaction in vitro and in cells, we next assessed if this was important 
for cilia function. UBE2E1 and MKS1 co-localised at the basal body in a subset of confluent, ciliated 
hTERT-immortalised retinal pigment epithelium RPE1 and ARPE19 cells during G0 of the cell cycle 
following serum starvation for 48  hr (Li et  al., 2011 Figure  3a–d). Serum starvation, followed by 

Figure supplement 1. Characterisation of MKS1-mutated human patient fibroblasts.

Figure supplement 1—source data 1. Characterisation of MKS1-mutated human patient fibroblasts: full western blots & gels.

Figure supplement 2. In vivo loss of MKS1 causes deregulated ubiquitin-proteasome processing.

Figure 1 continued
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Figure 2. The E2 ubiquitin conjugation enzyme UBE2E1 interacts with MKS1. (a) Domain structure of MKS1 and UBE2E1 proteins for the indicated 
isoform showing the locations of the B9/C2 domain, putative ubiquitinated lysines in blue (predicted by UbPred), a predicted coiled-coil (CC) motif, and 
the E2 ubiquitin (UBQ) conjugation domain in UBE2E1. Numbering indicates the amino acid residue. Dashed lines indicate the region used as ‘bait’ in 
MKS1 for the yeast two-hybrid assay and the ‘prey’ clones in the UBE2E1 interactant. (b) List of preys identified in the MKS1 Y2H screen (c) Left panel: 
yeast ‘one-to-one’ assays for the indicated bait, prey and control constructs. Right panel: only colonies for the positive control (p53+ SV40 large T) 
and MKS1 bait+ UBE2E1 prey grew on triple dropout (-Leu -Trp -His) medium. (d) GST-UBE2E1 purified from bacterial extracts (left panel) pulled down 
endogenous MKS1 from ARPE19 whole cell extract. (e) Co-immunoprecipitation (co-IP) of endogenous UBE2E1 by rabbit polyclonal anti-MKS1, but not 
pre-immune serum or an irrelevant antibody (Ab; anti cmyc); IgG light chain (LC) is indicated. (f) Co-IP of exogenously expressed cmyc-MKS1 by anti-
UBE2E1 but not pre-immune serum or an irrelevant antibody.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. The E2 ubiquitin conjugation enzyme UBE2E1 interacts with MKS1: full western blots.

Figure supplement 1. The E3 ubiquitin ligase RNF34 interacts with MKS1 and co-localises at the basal body.

Figure supplement 1—source data 1. The E3 ubiquitin ligase RNF34 interacts with MKS1 and co-localizses at the basal body: full western blot.

https://doi.org/10.7554/eLife.57593
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re-addition of serum for 3 hr, caused rapid cilia resorption (Li et al., 2011) with further significant colo-
calisation of UBE2E1 and MKS1 at the basal body (Figure 3b and d). This suggests that the interaction 
between MKS1 and UBE2E1 is particularly important during the process of cilia resorption.

UBE2E1 mutation or loss causes ciliogenesis defects, and de-regulated 
increases in both proteasome activity and Wnt/β-catenin signalling
Since correct UPS function appears to be required for ciliogenesis (Gerhardt et al., 2015), we next 
asked if loss or mutation of UBE2E1 had an effect on ciliogenesis. UBE2E1 is an enzyme that trans-
fers ubiquitin to a substrate, with or without the presence of an E3, in a reaction that is dependent 
on an active enzymatic domain. To assess if enzymatic activity of UBE2E1 is necessary for correct 
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ciliogenesis, we mutated the active site cysteine residue 131 to serine (Nuber et al., 1996) to make 
a dominant negative (DN) catalytically inactive form of UBE2E1. Over-expression of the Cys131Ser 
form of UBE2E1 caused significant loss and shortening of cilia in mouse inner medullary collecting 
duct (mIMCD3) cells (Figure 4a–b), suggesting that catalytically active UBE2E1 is required for normal 
ciliogenesis. Over-expression of wild-type (WT) UBE2E1 had a moderate dominant negative effect on 
cilia length only (Figure 4a–b).

To model the effect of UBE2E1 loss on ciliogenesis, we first used pooled and individual siRNA 
duplexes targeting Ube2e1 in mIMCD3 cells. This affected ciliogenesis in mIMCD3 cells by reducing 
cilia incidence and length, but achieved only moderate knockdown of UBE2E1 protein levels 
(Figure 4—figure supplement 1a). To ensure more robust, long-term knockdown of UBE2E1, we 
derived stably-transfected mIMCD3 cell-lines with three different Ube2e1 shRNA constructs. Each 
Ube2e1 shRNA construct reduced UBE2E1 protein levels (compared to cells expressing scrambled 
shRNA), and significantly reduced both numbers of ciliated cells and mean cilium length (Figure 4c–d). 
To understand the effect loss of Ube2e1 had on Mks1, we pulled down Mks1 at different ciliogenesis 
stages in control cells and cells with stable knockdown of Ube2e1 followed by identification of inter-
acting proteins by LC-MS/MS mass spectrometry analysis (Figure 4e,f, Figure 4—source data 1). 
We observed significant decreases in peptide counts for shUbe2e1 knockdown cells across different 
conditions of ciliogenesis (Figure 4—source data 1; χ2 test p < 0.05), particularly under conditions 
of ciliary resorption (Figure 4e). Analysis for enrichment of GO terms identified specific biological 
processes that included ‘cell-cell adhesion’, ‘ubiquitin-dependent protein catabolism’, ‘actin fila-
ment capping’, and ‘beta-catenin destruction complex’ (Figure 4f). Interestingly, the ‘actin filament 
capping’ term includes known interactants of ciliopathy proteins such as filamin A (Flna) (Adams et al., 
2012; Figure 4—figure supplement 1b).

Since UBE2E1 and MKS1 both interact and co-localise, we next determined if UBE2E1 loss reiter-
ates the cellular phenotypes caused by MKS1 loss or mutation. Indeed, we observed increased prote-
asome enzymatic activity compared to scrambled shRNA (shScr) negative control cells (Figure 4g). 
Furthermore, in agreement with MKS1-mutated fibroblasts and Mks1-/- MEFs, shUbe2e1 knock-down 
cells had de-regulated canonical Wnt/β-catenin signalling in response to Wnt3a (Figure 4h). This was 
accompanied by increased levels of mono- and poly-ubiquitinated proteins in shUbe2e1 knock-down 
cells following proteasome inhibition (Figure 4—figure supplement 1c), also consistent the effect 
observed in MKS1-mutated fibroblasts. These data highlight a possible important role of UBE2E1 
in mediating correct protein ubiquitination, proteasome function and Wnt signalling in the context 
of cilia. The striking similarities in ciliary phenotypes suggest a close functional association between 
MKS1 and UBE2E1, and led us to hypothesise that they are placed in the same regulatory pathway.

Mutual inhibition of MKS1 and UBE2E1 protein levels
To further investigate the possible functional association between MKS1 and UBE2E1, we tested if 
de-regulated Wnt signalling could be rescued by over-expression experiments. In a control experi-
ment, expression of cmyc-tagged MKS1 partially rescued normal canonical Wnt signalling responses 
to Wnt3a in MKS1-mutated fibroblasts (Figure 5a). However, expression of FLAG-tagged UBE2E1 led 
to almost complete rescue of normal Wnt signalling responses (Figure 5a). Conversely, expression of 
MKS1 in shUbe2e1 knock-down cells also rescued canonical Wnt signalling (Figure 5b), suggesting 
co-dependency between MKS1 and UBE2E1. We confirmed this following transient siRNA knockdown 
of MKS1 that caused significantly increased levels of UBE2E1 in cells (Figure 5c). In the reciprocal 
experiment, MKS1 protein levels were significantly increased in shUbe2e1 knock-down cells, partic-
ularly under conditions of ciliary resorption (Figure 5c). To further support co-dependency, we over-
expressed both MKS1 and UBE2E1. At higher levels of UBE2E1, we observed a moderate decrease in 
MKS1 levels (Figure 5d). Conversely, expression of high levels of MKS1 caused a decrease in UBE2E1 
protein levels (Figure 5d). These results show a striking co-dependency in protein levels between 
MKS1 and UBE2E1, suggesting inhibitory roles for each of these proteins on the protein level of the 
other.

https://doi.org/10.7554/eLife.57593
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μ

Figure 4. UBE2E1 is required for regulation of ciliogenesis, proteasome activity, and canonical Wnt signalling. (a) Primary cilia in mIMCD3 cells following 
transfection with either wild-type (WT) UBE2E1 (E2) or dominant negative (DN) UBE2E1 carrying the active site mutation C131S, compared to mock-
transfected negative control. Scale bars = 10 μm. (b) For experiments shown in (a), statistical significance of pairwise comparisons with control (untransf.) 
for three independent biological replicates are shown (n.s. not significant, * p < 0.05, ** p < 0.01, *** p < 0.001; unpaired two-tailed Student t-test; 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.57593
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MKS1 is polyubiquitinated and its polyubiquitination depends on 
UBE2E1
UBE2E1 is an E2 ubiquitin conjugating enzyme, and we next tested the obvious hypothesis that it 
participates in polyubiquitination and targeting MKS1 for degradation. We therefore investigated 
if MKS1 is indeed tagged with ubiquitin chains and if absence of UBE2E1 affects ubiquitination of 
MKS1. We determined MKS1 levels and its polyubiquitination status in different ciliogenesis condi-
tions, namely: proliferating cells (grown in normal medium supplemented with serum); ciliated cells 
(quiescent cells grown in serum-deprived medium); and cells undergoing ciliary resorption (grown in 
serum-deprived medium, followed by serum re-addition for 3 hr). shUbe2e1 knock-down cells consis-
tently had significantly increased levels of MKS1 as well as polyubiquitinated MKS1 (Figure 6a; p < 
0.05 two-way ANOVA between shScr and shUbe2e1). The highest levels of MKS1 were observed in 
cells undergoing cilia resorption, when MKS1 and UBE2E1 co-localisation is the strongest. Despite 
modest statistical significance, this finding was consistent between biological replicates. Further-
more, expression of exogenous UBE2E1 led to moderate decreases in MKS1 levels for both shScr and 
shUbe2e1 knock-down cells, suggesting that UBE2E1 inhibits both MKS1 levels and polyubiquitina-
tion of this protein.

To substantiate the central role of UBE2E1 in regulating MKS1 levels, we confirmed that shUbe2e1 
cells had increased levels of polyubiquitinated cmyc-tagged MKS1 using TUBE (Tandem Ubiquitin 
Entity) assays. Total polyubiquitinated proteins from cell extracts were pulled-down using TUBEs 
bound to agarose beads, resolved by SDS-PAGE and analysed by western blotting using an anti-
cmyc antibody. TUBE assays confirmed that MKS1 was polyubiquitinated (Figure 6b, upper panel). 
Treatment of pull-downs with either a pan-specific deubiquitinase (DUB) and a DUB specific for K63-
linked polyubiquitination confirmed that MKS1 polyubiquitination occurred through both K63 and 
other ubiquitin lysine linkages such as K48 (Figure 6b, lower panel). Importantly, these results suggest 
that ubiquitination of MKS1 has dual functions in targeting this protein for degradation, as well as 
other regulatory functions through K63. Although UBE2E1 could be an E2 in an MKS1 degradation 
pathway, our data suggests that loss of UBE2E1 caused an increase in the levels of polyubiquitinated 
MKS1 consistent with an inhibitory function for UBE2E1 in ubiquitinating MKS1. To test this alternative 
hypothesis, we therefore performed in vitro ubiquitination assays in which purified MKS1 was used 
as a substrate of the reaction, purified UBE2E1 was the E2 and RNF34 was a possible cognate E3. 
We observed that UBE2E1 underwent auto-ubiquitination and that ubiquitination was enhanced but 
not dependent on RNF34 (Figure 6c, Figure 6—figure supplement 1a). MKS1 inhibited UBE2E1 
ubiquitination, suggesting that this could be the basis for the co-dependent regulation of protein 
levels. This action was attenuated by addition of β-catenin, but β-catenin by itself did not inhibit 

error bars indicate s.e.m.). (c) shRNA-mediated knockdown of Ube2e1 in stably-transfected mIMCD3 cell-line #3 causes decreased ciliary incidence and 
length. Scale bar = 10 μm. Immunoblot shows loss of UBE2E1 protein expression compared to β-actin loading control following shRNA knockdown. 
(d) Bar graphs quantifying decreased ciliary incidence and length with statistical analysis as for (b). (e) Scatter plot of relative differences in the proteins 
pulled-down by anti-MKS1 immunoprecipitations, under different conditions of ciliogenesis (proliferating cells, ciliated cells, cells undergoing ciliary 
resorption), expressed as the ratios of peptide counts for shScr: shUbe2e1 knockdowns. Statistical significance of pairwise comparisons for each set of 
ratios was calculated as for (b) (paired two-tailed Student t-tests). Error bars indicate s.d. Full data-sets are available in Figure 4—source data 1. (f) Bar 
graph of -log10 p values for significantly enriched GO terms (biological processes) for proteins included in (e), with cut-off for p < 0.05 indicated by the 
red dashed line. Enrichment for GO terms was analyzed by using DAVID (https://david.ncifcrf.gov/). (g) Protease activity assays of crude proteasome 
preparations from shScr and shUbe2e1 mIMCD3 knockdown cells, showing increased proteasomal activity in shUbe2e1 as assayed by pmol AMC 
released per μg proteasome per hour. Treatment with lactacystin is the assay control. Statistical significance of pairwise comparisons as for (b). (h) 
SUPER-TOPFlash assays of canonical Wnt signalling activity in shUbe2e1 cells compared to shScr following treatment with control conditioned medium, 
Wnt5a, Wnt3a, or a mixture of Wnt3a and Wnt5a media, as indicated. Statistical significance of pairwise comparisons of at least four independently 
replicated experiments as for (b).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Mass spectrometry results for MKS1 pull-downs from mIMCD3 cells across different conditions of ciliogenesis.

Source data 2. UBE2E1 is required for regulation of ciliogenesis, proteasome activity, and canonical Wnt signalling: full western blot.

Figure supplement 1. Validation of Ube2e1 siRNA knockdown in mIMCD3 cells and effect of shRNA Ube2e1 knockdowns on MKS1 interacting proteins 
under different conditions of ciliogenesis.

Figure 4 continued

https://doi.org/10.7554/eLife.57593
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Figure 5. Co-dependant regulation of MKS1 and UBE2E1. (a) SUPER-TOPFlash assays in wild-type or MKS1-mutated fibroblasts, following transient 
co-transfection with either exogenous control, MKS1-cmyc or UBE2E1-FLAG-cmyc, and treatment with either Wnt3a or control conditioned medium. 
Statistical significance of the indicated pairwise comparisons with control for three independent biological replicates are shown (* p < 0.05, ** p < 
0.01, *** p < 0.001, **** p < 0.0001; unpaired two-tailed Student t-test; error bars indicate s.e.m.) (b) SUPER-TOPFlash assays in shScr and shUbe2e1 

Figure 5 continued on next page
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UBE2E1 ubiquitination. However, poly-ubiquitination of β-catenin appeared to be dependent on 
MKS1, suggesting that UBE2E1 and MKS1 are co-regulators of β-catenin ubiquitination.

MKS1 and UBE2E1 interact to regulate Β-catenin ubiquitination
Monoubiquitination by UBE2E1 has been previously described (Schumacher et  al., 2013) and 
UBE2E1 has also been shown to be an E2 ubiquitin-conjugating enzyme required for β-catenin poly-
ubiquitination (Chitalia et al., 2008). These studies suggest that UBE2E1 has dual functions as an 
E2 in regulating protein function (for example, through monoubiquitination of MKS1) or targeting 
them for degradation (for example, polyubiquitination of β-catenin). We therefore asked the ques-
tion if the co-dependent regulation of MKS1 and UBE2E1 could regulate cellular β-catenin levels. 
We first confirmed that MKS1 and β-catenin interact (Figure 7, Figure 4—source data 1) and that 
shUbe2e1 knock-down cells have increased levels of β-catenin (Figure 7a), consistent with the up-reg-
ulated canonical Wnt/β-catenin signalling that we observed in these cells (Figure  4h). Consistent 
with the mutual inhibition of MKS1 and UBE2E1, TUBE pull-down assays confirmed that levels of 
polyubiquitinated β-catenin increased following MKS1 knockdown (Figure 7b). As expected, levels 
of polyubiquitinated β-catenin further increased in the presence of the catalytically-inactive dominant 
negative (DN) form of UBE2E1 compared to wild-type (WT) UBE2E1 (Figure 7b). We also observed 
increased levels of phosphorylated β-catenin following loss of MKS1 (Figure 1a, Figure 6—figure 
supplement 1b) but no effect on γ-tubulin levels (Figure 6—figure supplement 1b) and no consis-
tent effect on levels of non-phosphorylated (active) β-catenin (Figure 6—figure supplement 1b-c). 
Specific localisation of phosphorylated β-catenin at the base of cilia increased following MKS1 loss 
(Figure 7c), suggesting that this is the cellular location where the phosphorylated form of β-catenin is 
processed by UBE2E1 for polyubiquitination. We reasoned that, in steady state conditions, UBE2E1 
could mediate correct polyubiquitination levels of β-catenin, followed by subsequent targeted degra-
dation, maintaining regulated levels of canonical Wnt signalling. In the event of high levels of the E2, 
caused by absence of the regulator MKS1, β-catenin is over-polyubiquitated and its levels increase 
leading to dysregulation of canonical Wnt signalling (Figure 7d). These observations indicate that 
correct β-catenin levels are tightly regulated at the primary cilium by a ciliary-specific E2 (UBE2E1) and 
a regulatory substrate-adaptor (MKS1).

Discussion
A number of studies suggest that the primary cilium or basal body constrains canonical Wnt/β-catenin 
signalling activity (Lancaster et al., 2011; Corbit et al., 2008; Simons et al., 2005; Abdelhamed 
et al., 2019), and de-regulated, increased signalling is one of the hallmarks of the ciliopathy disease 
state. Canonical Wnt/β-catenin signalling is aberrantly up-regulated in several ciliopathy animal 
models, and, in particular, in postnatal cystic kidneys (Kim et al., 2009; Lancaster et al., 2009). We 
have shown previously that homozygous Mks1-/- mouse embryos also have up-regulated canonical 
Wnt signalling, reduced numbers of primary cilia and increased proliferation in the cerebellar vermis 
and kidney (Wheway et al., 2013). The mechanistic detail of Wnt signalling de-regulation in ciliopa-
thies remains unclear and controversial. A key question remains whether this ciliary signalling defect 
is a secondary consequence of cilia loss, or if it is directly and causally related to the loss of function 
of specific cilium proteins. Several studies support the latter hypothesis, including one study that 

cell-lines, following transient co-transfection with either exogenous cmyc-MKS1 or empty plasmid construct (control) and treatment with either Wnt3a 
or control conditioned medium, as indicated. Statistical comparisons as for (a). (c) Top panel: increased per cell staining intensity for UBE2E1 following 
MKS1 siRNA knockdown Bottom panel: increased per cell staining intensity for MKS1 in Ube2e1 mIMCD3 knockdown cells Scale bars = 10 µm. Bar 
graphs quantitate staining intensities for three independent biological replicates. Statistical significance of pairwise comparisons as for (a), error bars 
indicate s.e.m. Western blots (panels on right) show increased UBE2E1 protein levels for siMKS1 knockdown cells, and increased MKS1 protein levels for 
shUbe2e1 cells. Quantitation of band intensities were normalised to β-actin loading control. (d) HEK293 cells were transiently transfected with control 
vector (-), constant (+) or high (+++) levels of cmyc-MKS1 and/or FLAG-cmyc-UBE2E1. Levels were normalised to β-actin loading control. MKS1 levels 
moderately decreased with increasing levels of UBE2E1, whereas high levels of MKS1 caused loss of UBE2E1.

The online version of this article includes the following source data for figure 5:

Source data 1. Co-dependant regulation of MKS1 and UBE2E1: full western blots.

Figure 5 continued
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Figure 6. MKS1 is ubiquitinated and its ubiquitynation depends on UBE2E1. (a) shScr and shUbe2e1 mIMCD3 knockdown cells transiently transfected 
with cmyc-MKS1 and/or FLAG-cmyc-UBE2E1 under different conditions of ciliogenesis: proliferating cells grown in media containing serum (+); ciliated 
cells grown in the absence of serum (-); and cells undergoing ciliary resorption grown in the absence of serum followed by 2 hr incubation in media 
with serum (-/+). Increased levels of cmyc-MKS1 and smears representing poly-ubiquitinated (polyUb) cmyc-MKS1 in shUbe2e1 cells are indicated. 
Addition of exogenous FLAG-cmyc-UBE2E1 partially rescued correct MKS1 levels and ubiquitination. Normalised band intensities for the whole 
cmyc-MKS1 staining and only polyUb-cmyc-MKS1 are shown below the blots. Bar graph quantitates cmyc-MKS1 levels normalised to β-actin levels for 
three independent biological replicates. Data was analysed by two-way ANOVA followed by Tukey’s multiple comparison test (statistical significance 
of comparison between shScr and shUbe2e1 is p < 0.05, error bars represent s.d.). (b) TUBE experiment confirming ubiquitination of cmyc-MKS1. 
Consistently increased levels of polyubiquitinated cmyc-MKS1 were observed in shUbe2e1 knockdown cells. Broad-range deubiquitinating enzymes 
(+ DUB) and K63-specific (+ K63 DUB) deubiquitinating enzyme were used to assess the type of MKS1 ubiquitination. Normalised band intensities are 
shown below the blots. (c) In vitro ubiquitination assay for MKS1-HIS, UBE2E1-HIS, RNF34-HIS, E1-HIS, Ub, and β-catenin-GST fusion proteins. The MKS1 
blot shows possible mono-ubiquitination of MKS1 (red asterisk) in the presence of UBE2E1 and RNF34. Auto-ubiquitination of UBE2E1 (green asterisks 
indicate the addition of one, two, three, four and poly-ubiquitin chains) was inhibited by MKS1. This was further inhibited by addition of β-catenin, but 
β-catenin addition by itself did not affect UBE2E1 polyubiquitination. although β-catenin was polyubiquitinated by UBE2E1.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure 6 continued on next page
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suggests that jouberin, a component of the TZ/basal body, may modulate Wnt/β-catenin signalling by 
facilitating nuclear translocation of β-catenin in response to Wnt stimulation (Lancaster et al., 2009). 
Regulation of Wnt signalling appears to be also mediated by a functional association of the basal body 
with the UPS (Gerdes et al., 2007), through which signalling pathway components such as β-catenin 
are degraded (Aberle et al., 1997). Early studies showed that the basal body and the proteasome can 
colocalise (Fabunmi et al., 2000; Wigley et al., 1999) and normal, regulated Wnt signalling has been 
shown to be dependent on the interaction of the basal body protein BBS4 with RPN10, a component 

Source data 1. MKS1 is ubiquitinated and its ubiquitynation depends on UBE2E1: full western blots.

Figure supplement 1. MKS1 is mono-ubiquitinated in presence of UBE2E1 and RNF34.
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polyubiquitination of β-catenin was increased following MKS1 knockdown and in the presence of the wild-type (WT) UBE2E1. Inactive form of 
UBE2E1 (DN) had not had effect on polyubiquitination of β-catenin, highlighting the importance of this UBE2E1 in β-catenin degradation. (c) 
Immunofluorescence staining of hTERT-RPE1 cells showing co-localisation of phosphorylated (P)-β-catenin (green) with γ-tubulin (red) at the base of 
cilia (arrowheads). P-β-catenin localisation significantly increased following siMKS1 knockdown (paired two-tailed Student t-test, **** p < 0.0001 for 
three independent biological replicates; > 40 cells quantified per replicate). Scale bar = 5 μm. (d) Schematic representation of UPS regulation of MKS1 
and β-catenin protein levels at the ciliary apparatus. Protein levels of MKS1 (pink) and UBE2E1 (light brown) are co-dependant through regulation at the 
base of the cilium. MKS1 localises to the TZ (dashed pink lines) and is mono-/bi-ubiquitinated by a complex that includes UBE2E1 and RNF34 (blue). 
MKS1 and UBE2E1 regulate each other, what has an effect on downstream UBE2E1 role in regulation of polyubiquitination of β-catenin (yellow). The 
correct regulation between these proteins facilitates normal proteasomal function and canonical Wnt signalling (small pink arrow). Both processes are 
de-regulated following MKS1 mutation of loss (red cross), causing aberrant accumulation of UBE2E1 and polyubiquitinated β-catenin and disrupted 
tethering to the ciliary apparatus.

The online version of this article includes the following source data for figure 7:

Source data 1. MKS1 and UBE2E1 interact to regulate β-catenin ubiquitination: full western blots.

https://doi.org/10.7554/eLife.57593
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of the proteasome (Gerdes et  al., 2007). Rpgrip1l-/- knock-out mice have decreased proteasome 
activity, and a component of the proteasome (Psmd2), was shown to interact with Rpgrip1l (Gerhardt 
et al., 2015). Loss of RPGRIP1L does not alter the amount of MKS1 at the ciliary transition zone of 
mouse embryonic fibroblasts (Wiegering et al., 2018), but one explanation for the higher protea-
some activity that we observe is that MKS1 deficiency results in an increased levels of RPGRIP1L. Our 
results suggest that loss or mutation of MKS1 had no consistent effect on RPGRIP1L levels (Figure 6—
figure supplement 1c), although UBE2E1 regulation of the levels of other ciliary proteins is a mech-
anism that warrants further investigation. Furthermore, a number of other UPS proteins have been 
implicated in ciliopathies including TOPORS, an E3 ligase located at the basal body and cilium that is 
mutated in retinitis pigmentosa (RP) (Chakarova et al., 2007), and TRIM32, an E3 mutated in Bardet-
Biedl syndrome (BBS) (Chiang et al., 2006). Interestingly, TRIM32 has been shown to interact with 
UBE2E1 (Napolitano et al., 2011). UPS components have also been shown to interact with ciliopathy 
proteins, such as USP9X with lebercilin (den Hollander et al., 2007), and the UPS was an enriched 
biological module that we identified in a whole genome siRNA screen of ciliogenesis (Wheway et al., 
2015). These observations therefore support a specific role for MKS1 in UPS-mediated proteostasis 
and signalling regulation.

Here, we demonstrate that loss of MKS1 causes aberrant accumulation of β-catenin (Figure 1a) 
and aberrantly increased proteasome activity (Figure 1c–d). The increase in proteasomal activity may 
be a non-specific response to cellular stress in the absence of MKS1, but our discovery and validation 
of direct interactions of MKS1 with two proteins (UBE2E1 and RNF34) in the ubiquitination cascade 
suggest that loss of MKS1 causes a more specific defect. We confirmed biochemical and functional 
interactions of MKS1 with both UBE2E1 and RNF34 (Figure  2c–f, Figure  2—figure supplement 
1), as well as their co-localisation with the basal body (Figure 3, Figure 2—figure supplement 1). 
Loss or dominant negative expression of UBE2E1 mimicked the cellular phenotype of MKS1 mutants 
(Figure 4a–d and g–h), suggesting a functional interaction between MKS1 and UBE2E1 at the cilium. 
Using western blotting (Figure  5d) we substantiated an inverse correlation between MKS1 and 
UBE2E1 protein levels in the cell, and using in vitro ubiquitination assays (Figure 6c, Figure 6—figure 
supplement 1a) we show that this is due (at least in part) to ubiquitination of MKS1 by UBBE2E1. We 
suggest that this interaction between MKS1 and UBE2E1 plays a role in regulating Wnt signalling at 
the base of the primary cilium. In support of this, we demonstrated a functional interaction between 
UBE2E1, MKS1 and β-catenin (Figure 7a and b) and that phosphorylated β-catenin localised at the 
base of the cilium (Figure 7c), presumably prior to UPS processing. However, alternative interpreta-
tions of our data are that UBE2E1 could occupy an E2 binding position on MKS1 preventing MKS1 
degradation, or that MKS1 binds to UBE2E1 to facilitate UBE2E1 ubiquitination and degradation.

Our data indicates that MKS1 acts as a novel substrate-adaptor that interacts with UPS compo-
nents and β-catenin, thereby regulating levels of β-catenin through normal degradation during Wnt 
signalling. MKS1 could mediate the degradation of β-catenin by controlling the stability and the 
localisation of UBE2E1 at the ciliary apparatus, and perhaps ensuring the correct processing of ubiq-
uitinated β-catenin through close proximity to the proteasome at the ciliary base. This suggestion 
is supported by the biochemical interaction of another ciliopathy protein, Rpgrip1l, with protea-
some proteins and the discrete localisation of ubiquitin at the ciliary base (Gerhardt et al., 2015). 
Catalytically active UBE2E1 regulated ciliogenesis (Figure 4b and d), which implies that UBE2E1-
mediated ubiquitination of substrates such as MKS1 and β-catenin is required for ciliogenesis (Wen 
et al., 2010; Liang et al., 2008). In addition, we show for the first time, that MKS1 is polyubiquiti-
nated with non-degradative K63-linked chains, which have been shown to have scaffolding roles 
in other cell signalling networks by bridging together large signalling complexes (Hu and Sun, 
2016). Since MKS1 contains a predicted lipid-binding B9/C2 domain, MKS1 may therefore act as 
a membrane anchor to ensure the spatial organisation and co-ordinated regulation of both the 
β-catenin destruction complex (Corbit et al., 2008) and UPS components at the ciliary apparatus. 
Loss of MKS1 would lead to the disruption of both the structure and function of the ciliary transition 
zone, preventing regulated ciliary signalling and β-catenin degradation (Figure 7d). In summary, our 
results indicate that the MKS1-UBE2E1 complex plays a key role in the degradation of β-catenin, 
which in turn facilitates correct cell function and signalling. Our data provide a mechanistic expla-
nation for Wnt signalling defects in ciliopathies and highlights new potential targets in the UPS for 
therapeutic intervention.

https://doi.org/10.7554/eLife.57593
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Materials and methods

 Continued on next page

Key resources table 

Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Strain, strain background 
(Mus musculus) B6;129P2-Mks1tm1a(EUCOMM)Wtsi

Wellcome Trust Sanger 
Institute EM:05429 RRID:IMSR_EM:05429

Strain, strain background 
(Mus musculus) B6.Cg-Tg(ACTB-Ub*G76V/GFP)1Dant/J

Jackson Laboratory, Maine, 
USA 008111 RRID:IMSR_JAX:008111

Cell line (Mus musculus) mIMCD3 ATCC CRL-2123 RRID:CVCL_0429

Cell line (Homo sapiens) hTERT-RPE1 ATCC CRL-4000 RRID:CVCL_4388

Cell line (Homo sapiens) ARPE-19 ATCC CRL-2302 RRID:CVCL_0145

Cell line (Homo sapiens) HEK293 ATCC ACS-4500 RRID:CVCL_4V93

Cell line (Homo sapiens) MKS-562 fibroblasts Khaddour et al., 2007 MKS1 compound heterozygote mutations

Transfected construct 
(Homo sapiens) pCMV-cmyc-MKS1 Dawe et al., 2009

full-length cDNA (NM_017777); see Cloning, 
plasmid constructs and transfection

Transfected construct 
(Homo sapiens) pGEX5X-1-UBE2E1 Hong et al., 2008 construct used to generate UBE2E1 protein

Transfected construct 
(Homo sapiens) pCMV-UBE2E1-FLAG-cmyc Hong et al., 2008

Transfected construct 
(Homo sapiens) pCMV-UBE2E1 (DN) -FLAG-cmyc this paper

c.341T > A, p.C131S UBE2E1 active site dominant 
negative (DN) mutation; see Cloning, plasmid 
constructs and transfection

Transfected construct 
(Mus musculus) Ube2e1 shRNA Origene TR502364

Cells selected using 0.5 μg/ml puromycin for five 
passages

Transfected construct 
(Mus musculus) Ube2e1 siRNA

Dharmacon ON-TARGET PLUS 
siRNA L-062416-01-0005

Transfected construct 
(Mus musculus) Mks1 siRNA

Dharmacon ON-TARGET PLUS 
siRNA L-063962-01-0005

Antibody
Anti-cmyc, clone 9E10 (mouse 
monoclonal) Sigma-Aldrich Co. Ltd. M4439

RRID:AB_439694
WB: 1:1,000

Antibody
Anti-acetylated-α-tubulin, clone 6-11B-1 
(mouse monoclonal) Sigma-Aldrich Co. Ltd. MABT868

RRID:AB_2819178
IF: 1:1,000

Antibody
Anti-HA, clone HA-7 (mouse 
monoclonal) Sigma-Aldrich Co. Ltd. H9658

RRID:AB_260092
WB: 1:100

Antibody Anti-GFP (rabbit polyclonal)
Living Colors A.v. Peptide 
Antibody 632,377

RRID:AB_2313653
IF: 1:100

Antibody
Anti-UBE2E1, clone 42/UbcH6 (mouse 
monoclonal) BD Biosciences Inc 611,218

RRID:AB_398750
IF: 1:100
WB: 1:500

Antibody Anti-UBE2E1 (rabbit polyclonal) Aviva Systems Biology ARP43012_P050

RRID:AB_2048646
IF: 1:100
WB: 1:500

Antibody Anti-γ-tubulin (rabbit polyclonal) Sigma-Aldrich Co. Ltd. T5192
RRID:AB_261690
IF: 1:500

Antibody
Anti-β-actin, clone AC-15 (mouse 
monoclonal) Abcam Ltd. ab6276

RRID:AB_2223210
WB: 1:5,000

Antibody
Anti-cyclin D1, clone A-12 (mouse 
monoclonal) Santa Cruz Biotechnology Inc sc-8396

RRID:AB_627344
WB: 1:1,000

Antibody
Anti-phospho-β-catenin (rabbit 
polyclonal) Cell Signalling Technology Inc 9,561

RRID:AB_331729
WB: 1:1,000
IF: 1:100

Antibody
Anti-β-catenin, clone D10A8 (rabbit 
monoclonal) Cell Signalling Technology Inc 8,480

RRID:AB_2798305
WB: 1:1,000
IF: 1:100

https://doi.org/10.7554/eLife.57593
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https://identifiers.org/RRID/RRID:IMSR_JAX:008111
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Reagent type (species) 
or resource Designation Source or reference Identifiers Additional information

Antibody

Anti-mono- and polyubiquitinylated 
conjugates, clone FK2 (mouse 
monoclonal) Enzo Life Sciences, Inc ENZ-ABS840

RRID:AB_10541840
WB: 1:1,000

Antibody
Anti-20S proteasome α7 subunit, clone 
MCP72 (rabbit monoclonal) Enzo Life Sciences Inc BML-PW8110

RRID:AB_10538395
WB: 1:1,000
IF: 1:100

Antibody Anti-MKS1 (rabbit polyclonal)
Dawe et al., 2007; Näthke 
et al., 1996

WB: 1:500
IF: 1:100

Antibody Anti MKS1 (rabbit polyclonal) Proteintech 16206–1-AP

RRID:AB_10637856
WB: 1:500
IF: 1:100

Antibody
Anti-ubiquitin, clone P4D1 (mouse 
monoclonal) Santa Cruz Biotechnology, Inc sc-8017 RRID:AB_2762364

Peptide, recombinant 
protein MKS1-HIS Proteintech Group, Inc Ag9504

Peptide, recombinant 
protein UBE2E1-HIS Enzo Life Sciences, Inc UW8710

Peptide, recombinant 
protein RNF34-HIS Novus Biologicals NBP2-23440

Peptide, recombinant 
protein β-catenin-GST Abcam Ab63175

Commercial assay or kit
20 S fluorophore substrate Suc-LLVY-
AMC Enzo Life Sciences Inc BML-P802-0005

Commercial assay or kit Dual-Luciferase Reporter Assay system Promega Corp. E1910

Commercial assay or kit Ubiquitination kit Enzo Life Sciences, Inc BML-UW0400

Commercial assay or kit TUBE assays LifeSensors, Malvern, PA, USA UM-402

Chemical compound, 
drug MG-132 Sigma-Aldrich Co. Ltd. C2211 treatment at 10 μM for 3 hr

Software, algorithm Prism7 GraphPad Software Inc

 Continued

Informed consent for use of patients in research
Informed consent was obtained from all participating families or patients, with studies approved by 
the Leeds (East) Research Ethics Committee (REC no. 08 /H1306/85) on 4th July 2008.

Animals
The animal studies described in this paper were carried out under the guidance issued by the Medical 
Research Council in Responsibility in the Use of Animals for Medical Research (July 1993) in accordance 
with UK Home Office regulations under the Project Licence no. PPL40/3349. B6;129P2-Mks1tm1a(EUCOMM)

Wtsi heterozygous knock-out mice were derived from a line generated by the Wellcome Trust Sanger 
Institute and made available from MRC Harwell through the European Mutant Mouse Archive http://
www.emmanet.org/ (strain number EM:05429). The UbG76V-GFP line (25) B6.Cg-Tg(ACTB-Ub*G76V/
GFP)1Dant/J (strain number 008111) was obtained from the Jackson Laboratory, Maine, USA. Geno-
typing was done by multiplex PCR on DNA extracted from tail tips or the yolk sac of E11.5-E15.5 
embryos, or ear biopsies of adult mice. Primer sequences: exon 2 F: ​TGGG​GAAG​GACC​TCAT​AGACT, 
exon 4 R: ​CGCCAGAATTCTCCAGTTTC, exon 4 F: ​AGCGTGGTTGTTCTTGATGA, exon 6 R: ​GGAT-
TCCGCACTGAGACAAC, exon 16 F: ​AACCGGCGAATCTTCACTTA, exon 18 R: GGGGCTCACAAG-
GTCCTG. Proteasome inhibition treatment of Mks1 x UbG76V-GFP mice using MG-262 was carried out 
as previously described (Lindsten et al., 2003).

https://doi.org/10.7554/eLife.57593
https://identifiers.org/RRID/RRID:AB_10541840
https://identifiers.org/RRID/RRID:AB_10538395
https://identifiers.org/RRID/RRID:AB_10637856
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http://www.emmanet.org/
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Preparation of tissue sections
Mouse embryos or tissue for IF staining were lightly fixed in 0.4% paraformaldehyde, soaked in 30% 
sucrose/PBS, frozen in OCT embedding medium and cut into 5 μm sections on a cryostat. Fresh-frozen 
sections were left unfixed and processed for immunofluorescent staining by standard techniques.

Cells
Mouse inner medullary collecting duct (mIMCD3), human retinal pigment epithelium cells immortalised 
with human telomerase reverse transcriptase (hTERT-RPE1) and immortalised adult retinal pigment 
epithelium (ARPE19) cells were grown in Dulbecco’s minimum essential medium (DMEM)/Ham’s F12 
supplemented with 10% foetal calf serum at 37 °C/5% CO2. Human embryonic kidney (HEK293) cells 
were cultured in DMEM with 10% foetal calf serum at 37 °C/5% CO2. Cell-lines were maintained by 
weekly passaging under standard conditions and tested every 3 months for mycoplasma. Cell lines 
were sourced from American Type Culture Collection (ATCC) and used between passages 15–25. 
Cell-lines have been previously verified using arrayCGH and RNA-sequencing (Wheway et al., 2015) 
(Short Read Archive accession numbers SRX1411364, SRX1353143, SRX1411453, and SRX1411451). 
The derivation and culture of mouse embryonic fibroblasts (MEFs) has been described previously 
(Xu, 2001). MEFs were grown in DMEM/Ham’s F12 supplemented with 10% foetal calf serum and 
1% penicillin streptomycin at 37 °C/5% CO2. Fibroblasts from a normal undiseased control, a patient 
(MKS-562) with a compound heterozygous MKS1 mutation, and a female patient with a homozygous 
ASPM mutation, were immortalised following transduction with an amphotropic retrovirus encoding 
the hTERT catalytic subunit of human telomerase, and maintained in Fibroblast Growth Medium 
(Genlantis Inc San Diego, CA) supplemented with 0.2 mg/ml geneticin. Patient MKS-562, a compound 
heterozygote for the MKS1 mutations [c.472C > T]+[IVS15-7_35del29] causing the predicted nonsense 
and splice-site mutations [p.R158*]+[p.P470fs*562], has been described previously (Khaddour et al., 
2007). Proteasome inhibition treatment was carried out using 10 μM final concentration of the inhib-
itor dissolved in DMSO for 16 hr (unless otherwise stated). DMSO was used as the vehicle-only nega-
tive control.

Cloning, plasmid constructs, and transfection
Human MKS1 was cloned into the pCMV-cmyc vector as described previously (Dawe et al., 2009). 
The pGEX5X-1-UBE2E1 and pCMV-UBE2E1-FLAG-cmyc constructs have been described previously 
(Hong et al., 2008). The c.341T > A, p.C131S active site dominant negative (DN) missense mutation 
was introduced into pCMV-UBE2E1-FLAG-cmyc using the QuickChange mutagenesis kit (Stratagene 
Inc) and verified by DNA sequencing. For transfection with plasmids, cells at 80% confluency were 
transfected using Lipofectamine 2000 (Invitrogen Inc) according to the manufacturer’s instructions 
and as described previously (Dawe et al., 2009). Cells transfected with plasmids expressing Ube2e1 
shRNA (Origene) were selected for using 0.5 μg/ml puromycin for five passages. Transfection with 
Dharmacon ON-TARGET PLUS siRNAs was carried out using Lipofectamine RNAiMAX according to 
the manufacturer’s instructions and as described previously (Dawe et al., 2009). To assess co-depen-
dency of protein levels, 1 μg of cmyc-MKS1 was co-transfected with 1, 2.5, and 5 μg of FLAG-cmyc-
UBE2E1. To investigate if an increased amount of MKS1 would have an effect on UBE2E1 levels, 
3 μg of cmyc-MKS1 were co-transfected with 1 μg FLAG-cmyc-UBE2E1. After 24 hr incubation with 
transfection complexes, cells were treated with 100 μg/ml cycloheximide for 4 hr. Ubiquitination of 
cmyc-MKS1 in mIMCD3 cells was assessed after treatment with proteasome inhibitor (MG-132 at 
10 μM) for 3 hr.

Antibodies
The following primary antibodies were used: mouse anti-cmyc clone 9E10, mouse anti-acetylated-α-
tubulin clone 6-11B-1, mouse anti-HA (Sigma-Aldrich Co. Ltd.), rabbit anti-GFP (‘Living Colors A.v. 
Peptide Antibody’) and mouse anti-UBE2E1 (BD Biosciences Inc); rabbit-anti-γ-tubulin and mouse 
anti-β-actin clone AC-15 (Abcam Ltd.); mouse anti-cyclin D1 clone A-12 (Santa Cruz Biotechnology 
Inc); rabbit anti-phospho-β-catenin and rabbit anti-β-catenin (Cell Signalling Technology Inc); and 
mouse anti-mono- and polyubiquitinylated conjugates clone FK2 and rabbit anti-20S proteasome α7 
subunit (Enzo Life Sciences Inc). Rabbit anti-MKS1 has been described previously (Dawe et al., 2007; 
Näthke et  al., 1996). Secondary antibodies were AlexaFluor488-, and AlexaFluor568-conjugated 

https://doi.org/10.7554/eLife.57593
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goat anti-mouse IgG and goat anti-rabbit IgG (Molecular Probes Inc) and HRP-conjugated goat anti-
mouse immunoglobulins and goat anti-rabbit immunoglobulins (Dako Inc).

Immunofluorescence and confocal microscopy
Cells were seeded at 1.5 × 105 cells/well on glass coverslips in six-well plates, 24 hr before transfection 
and 48–96 hr before fixation. Cells were fixed in ice-cold methanol (5 min at 4 °C) or 2% paraformal-
dehyde (20  min at room temperature). Permeabilisation, blocking methods and immunofluores-
cence staining were essentially as described previously (Valente et al., 2010). Confocal images were 
obtained using a Nikon Eclipse TE2000-E system, controlled and processed by EZ-C1 3.50 (Nikon Inc) 
software. Images were assembled using Adobe Photoshop CS3 and Adobe Illustrator CS2.

Yeast 2-hybrid screening
The B9/C2 domain of human MKS1 (amino acids 144–470; Figure 4a) was cloned into the Gal4 vector 
pB27 and screened against a human fetal brain RP1 prey cDNA library. Yeast-2-hybrid screens were 
performed by Hybrigenics SA as described previously (Dawe et  al., 2009). Confirmatory ‘1-to-1’ 
pairwise assays for selected interactants were performed with the MatchMaker Two-Hybrid System 3 
(Clontech Inc).

GST fusion protein purification
GST-UBE2E1 fusion protein was prepared essentially as described previously (Hong et al., 2008), with 
protein expression induced at 20 °C using 0.2 mM IPTG for 4 hr.

Proteasome activity assays
Crude proteasomal fractions were prepared from cells (Hoffman et al., 1992) and incubated with the 
20 S fluorophore substrate Suc-LLVY-AMC (Enzo Life Sciences Inc). Fluorescence of each proteasomal 
preparation was measured on a Mithras LB940 (Berthold Technologies Inc) fluorimeter and adjusted 
against a calibration factor calculated from a standard curve to give activity measurements in pmol 
AMC release/µg cell lysate/hour. Treatment of cells with 10 μM of the proteasome inhibitors MG-132, 
MG-262 or c-lactacystin-β-lactone were positive controls for the assay. Results reported are from at 
least five independent biological replicates.

Canonical Wnt activity (SUPER-TOPFlash) luciferase assays
For luciferase assays of canonical Wnt activity, we grew cells in 12-well plates and co-transfected with 
0.5 μg SUPER-TOPFlash firefly luciferase construct (Veeman et al., 2003) (or FOPFlash, as a nega-
tive control); 0.5 μg of expression constructs (pCMV-cmyc-MKS1, or empty pCMV-cmyc vector); and 
0.05 μg of pRL-TK (Promega Corp; Renilla luciferase construct used as an internal control reporter). We 
obtained Wnt3a- or Wnt5a-conditioned media from stably-transfected L cells with Wnt3a or Wnt5a 
expression vectors (ATCC). Control media was from untransfected L cells. Activities from firefly and 
Renilla luciferases were assayed with the Dual-Luciferase Reporter Assay system (Promega Corp.) on a 
Mithras LB940 (Berthold Technologies Inc) fluorimeter. Minimal responses were noted with co-expres-
sion of the FOP Flash negative control reporter construct. Raw readings were normalised with Renilla 
luciferase values. Results reported are from at least four independent biological replicates.

Purification of UBE2E1 protein
UBE2E1-FLAGcmyc was transfected into HEK293T cells using Lipofectamine 2000 (ThermoFisher 
Scientific inc) Cells were incubated with transfection complexes for 3  hr, and changed to normal 
growing medium for further 16 hr incubation. Cells were then incubated with 10 µM MG-132 for 
5 hr and whole cell extracts (WCE) prepared as described previously (Johnson et al., 2001). Protein 
lysate was incubated with ANTI-FLAG M2 affinity gel (Sigma-Aldrich Co. LLC) and purified UBE2E1-
FLAGcmyc was eluted from the beads following the manufacturer’s instructions.

In vitro ubiquitination assays
To assess in vitro ubiquitination, we used a ubiquitination kit (Enzo Life Sciences, Inc) according to 
the manufacturer’s protocol, supplemented with MKS1-HIS (Proteintech Group, Inc), UBE2E1-HIS 
(Enzo Life Sciences, Inc), RNF34-HIS (Novus Biologicals) and β-catenin-GST (Novus Biologicals) fusion 

https://doi.org/10.7554/eLife.57593
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proteins in a total volume of 30 µl. Samples were incubated for 1.5 hr at 37 °C followed by SDS-PAGE 
and western blotting.

TUBE assays
Agarose-bound TUBE assays were used as recommended by the manufacturer (LifeSensors, Malvern, 
PA, USA). mIMCD3 cells were transiently transfected with cmyc-MKS1 and treated with proteasome 
inhibitor (MG-132 at 10 µM) for 2 hr before harvesting. Lysis buffer was based on RIPA supplemented 
with 50 mM Tris-HCl pH7.5, 0.15 M NaCl, 1 mM EDTA, 1% NP40, 10% glycerol, DUB inhibitors (50 µM 
PR619 and 5 mM 1,10-phenanthroline) and protease inhibitors. 5 µM BRISC was used as K63 deubiq-
uitinating enzyme. In short, cells were harvested after incubation with proteasome inhibitor and 
proteins were extracted using TUBE lysis buffer following standard procedures. Protein concentration 
was measured using Lowry assay and about 750 µg of protein was used in the pull down. Cell lysates 
were incubated with uncoupled agarose beads to remove unspecific binding proteins and were subse-
quently incubated with equilibrated 40 µl TUBE-agarose beads for 2 hr at 4 °C on a rocker. Beads were 
spun down, washed, eluted and neutralised. Samples were then split into three for incubation with 
TBST, DUB and BRISC for 1 hr at 37 °C. Samples were run on SDS-PAGE followed by western blotting 
using standard protocols. Membranes were blotted with mouse anti-cmyc (clone 9E10, Sigma-Aldrich 
Co. Ltd.), Ub-HRP (P4D1, Santa Cruz Biotechnology, Inc) and rabbit anti-β-catenin (Cell Signalling 
Technology Inc).

Co-Immunoprecipitation and mass spectrometry
Whole cell extracts (WCE) were prepared and co-IP performed essentially as described previously 
(Johnson et al., 2001). Co-IPs used either 5 µg affinity-purified mouse monoclonals (MAbs), or 5–10 µg 
purified IgG fractions from rabbit polyclonal antisera, coupled to protein G- and/or protein A-sep-
harose beads (GE Healthcare UK Ltd.). Proteins were eluted from beads with 0.2 M glycine HCl pH2.5. 
Samples were neutralised by addition of 0.1 volume 1 M Tris HCl ph8.5. After elution, proteins were 
precipitated with chloroform and methanol and subjected to in-solution tryptic cleavage as described 
previously (Gloeckner et al., 2009). LC-MS/MS analysis was performed on Ultimate3000 nano RSLC 
systems (Thermo Scientific) coupled to a Orbitrap Fusion Tribrid mass spectrometer (Thermo Scien-
tific) by a nano spray ion source (Boldt et al., 2016). Mascot (Matrix Science, Version 2.5.1) was used 
to search the raw spectra against the human SwissProt database for identification of proteins. The 
Mascot results were verified by Scaffold (version Scaffold_4.8.8, Proteome Software Inc, Portland, OR, 
USA) to validate MS/MS-based peptide and protein identifications.

Western blotting
Soluble protein was analysed by SDS-PAGE using 4–12% Bis-Tris acrylamide gradient gels and western 
blotting was performed according to standard protocols using either rabbit polyclonal antisera (final 
dilutions of x200-1000) or MAbs (x1000-5000). Appropriate HRP-conjugated secondary antibodies 
(Dako Inc) were used (final dilutions of x10000-25000) for detection by the enhanced chemilumines-
cence ‘Femto West’ western blotting detection system (Pierce Inc). Chemiluminescence was detected 
using a BioRad ChemiDoc MP Imaging System and Image Lab software. Volumetric analysis of immu-
noblot bands was performed using Image Lab software (Bio Rad). Full blots are shown in the source 
data files associated with each figure and figure supplement, as appropriate.

Statistical analyses
Normal distribution of data (for SUPER-TOPFlash assays, proteasome activity assays, cilia length 
measurements) was confirmed using the Kolmogorov-Smirnov test (GraphPad Software). Paired or 
unparied comparisons were analysed with either Student’s two-tailed t-test, χ2 tests or other tests as 
detailed in figure legends as appropriate using InStat (GraphPad Software). Results reported are from 
at least three independent biological replicates.
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