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Supplementary file 1A:
Differential equations: comparison with the usual Lotka-Volterra model

and scaling of differential equations

The final dynamical systems are obtained after rescaling all variables to growth rate and carrying capacity. Here, I describe
the original two-species model with asymmetric competition for resources and I present the detail of the scaling process
leading to Equation 1a in the main text.

1 Differential equations

The systems of differential equations describing the changes in density of the two species (N1 and N2) are:





dN1

d τ
= r N1

(
1− N1

K

)
− m

1 + S N1
N1

dN2

d τ
= r N2

(
1− N2 + α1N1

K

)
− m

1 + S N2
N2

(1)

The two species have the same carrying capacity K, the same growth rate r, the same mortality rate m and the same
density-dependence factor S.

Following Williams and Banyikwa (1981), these equations are equivalent to:





dN1

d τ
=

(
r − m

1 + S N1

)
N1


1− N1

K
(

1− m
r (1+S N1)

)




dN2

d τ
=

(
r − m

1 + S N2

)
N2


1− N2 + α1N1

K
(

1− m
r (1+S N2)

)




(2)

which is the usual form of Lotka-Volterra model. This form of the systems make clear that the term of conspecific positive

density dependence changes the effective carrying capacities, Keffi = K
(

1− m
r (1+S Ni)

)
(as discussed by Holt 1985, in the

case of density-independent mortality).

2 Scaling

All variables are rescaled to growth rate and carrying capacity, as follows: n1 = N1/K, rescaled density of species 1;
n2 = N2/K, rescaled density of species 2; d = m/r, rescaled mortality; s = S K, rescaled density-dependence factor;
t = τ r, rescaled time unit. The rescaled variables are dimensionless. From Equation 1 above, the dynamical system
becomes: 




dn1

d t
= n1

[
1− n1 −

d

1 + s n1

]

dn2

d t
= n2

[
1− n2 − α1 n1 −

d

1 + s n2

] (3)

This is the system of equations analyzed (Equations 1a and 1b in the main text). Equations 2 and 3 in the main text are
scaled in a similar manner.

2



Supplementary file 1B:
Analytical derivation of the two-species model

with asymmetric competition for resources

I analyze the two-species model with positive density-dependent mortality and asymmetric competition for resources.
Using basic linear algebra, I find equilibria and determine their stability. I also determine the threshold value of s (s+)
above which the coexistence equilibrium can be recovered, and I prove that the least competitive species is always less
abundant than the most competitive species at coexistence equilibrium. Finally, I show that the least competive species
is at higher density at coexistence equilibrium if s→∞ than if s = 0.
Here, I assume that 0 < d < 1 and 0 < α1 < 1. Note however that the system is characterized by more unstable equilibria
for d > 1; even without competitors, species may not invade if they are too rare due to high mortality at low density.

1 Differential equations




dn1

d t
= n1

[
1− n1 −

d

1 + s n1

]

dn2

d t
= n2

[
1− n2 − α1 n1 −

d

1 + s n2

] (4)

with: 0 < d < 1, 0 < α1 < 1 and s > 0.

2 Equilibria

Complete Extinction

n∗1 = n∗2 = 0 (5)

Only species 1



n∗1 =

(s− 1) +
√

(s− 1)2 + 4 s (1− d)

2 s
> 0

n∗2 = 0

(6)

Only species 2




n∗1 = 0

n∗2 =
(s− 1) +

√
(s− 1)2 + 4 s (1− d)

2 s
> 0

(7)

Coexistence no1




n∗1 =
(s− 1) +

√
(s− 1)2 + 4 s (1− d)

2 s
> 0

n∗2 [n∗1] =
s (1− α1 n

∗
1)− 1 +

√
∆[n∗1]

2 s

(8)

with:
∆[n∗1] = (s (1− α1 n

∗
1)− 1)

2
+ 4 s (1− α1 n

∗
1 − d) ≥ 0 (9)

Coexistence no2




n∗1 =
(s− 1) +

√
(s− 1)2 + 4 s (1− d)

2 s
> 0

n∗2 [n∗1] =
s (1− α1 n

∗
1)− 1−

√
∆[n∗1]

2 s

(10)
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3 Preliminary calculations

1− α1 n∗
1 − d at coexistence equilibrium no1 or no2:

If n∗1 =
(s−1)+

√
(s−1)2+4 s (1−d)

2 s at coexistence equilibrium, then:

1− α1 n
∗
1 − d < 0, for s >

α1 (1− α1)

α1 + d− 1
and α1 + d− 1 > 0

1− α1 n
∗
1 − d ≥ 0, otherwise

(11)

Calculation:
Given that 1− n∗1 − d

1+s n∗1
= 0 (equilibrium condition), then 1− d = n∗1 (s n∗1 + 1− s) and therefore:

1− α1 n
∗
1 − d = n∗1 (s n∗1 + 1− s− α1) (12)

Given that n∗1 > 0, 1− α1 n
∗
1 − d has the same sign than s n∗1 + 1− s− α1:

s n∗1 + 1− s− α1 =
1− s− 2α1 +

√
(1− s)2 + 4 s (1− d)

2
(13)

From this expression, we get s n∗1 + 1− s− α1 < 0 (and therefore 1− α1 n
∗
1 − d < 0) if:

s >
α1 (1− α1)

α1 + d− 1
and α1 + d− 1 > 0 (14)

1− 2 n∗
1 − d

(1+s n∗
1)2

at coexistence equilibrium no1 or no2:

If n∗1 =
(s−1)+

√
(s−1)2+4 s (1−d)

2 s at coexistence equilibrium, then:

1− 2n∗1 −
d

(1 + s n∗1)2
< 0 (15)

Calculation:
Given that 1− n∗1 − d

1+s n∗1
= 0 (equilibrium condition), then d

(1+s n∗1)2 =
(1−n∗1)2

d and therefore:

1− 2n∗1 −
d

(1 + s n∗1)2
= 1− 2n∗1 −

(1− n∗1)2

d
=
−n∗12 + 2 (1− d)n∗1 − (1− d)

d
= f(n∗1) (16)

Function f is a concave polynomial function, which maximum is negative: f ′(1− d) = 0 and f(1− d) = −(1− d) < 0.
Therefore, function f is negative and: 1− 2n∗1 − d

(1+s n∗1)2 < 0
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4 Conditions of existence of the coexistence equilibrium no1

The conditions of existence of the coexistence equilibrium no1 are:

For s ≤ 1/d :




s ≤ α1 (1− α1)

α1 + d− 1
for α1 + d− 1 > 0

s ≥ 0 for α1 + d− 1 ≤ 0

For s > 1/d : α1 <
2
(
s+ 1− 2

√
s d
)

s− 1 +
√

(s− 1)2 + 4 s (1− d)
= A(s)

(17)

Calculation:

At coexistence equilibrium no1, n∗2 is solution of 1 − n∗2 − α1 n
∗
1 − d

1+s n∗2
= 0, i.e., −s n∗22 + (s (1− α1 n

∗
1)− 1) n∗2 +

(1− α1 n
∗
1 − d) = 0.

n∗2 exists if the discriminant of the polynomial function is positive, i.e., ∆[n∗1] = (s (1− α1 n
∗
1)− 1)

2
+4 s (1− α1 n

∗
1 − d) ≥

0 leading to the condition 1− α1 n
∗
1 − d ≥ − (s (1−α1 n

∗
1)−1)2

4 s .
n∗2 ≥ 0 if the product of the roots of the polynomial is negative or the sum of the roots is positive (n∗2 is the highest

root at coexistence equilibrium no1). Using Vieta’s formulas, this is the case if
1−α1 n

∗
1−d

−s ≤ 0 or
s (1−α1 n

∗
1)−1

s ≥ 0, i.e.,

1− α1 n
∗
1 − d ≥ 0 or 1− α1 n

∗
1 − d ≥ 1

s − d.

For s ≤ 1/d

There is a coexistence equilibrium no1 if 1− α1 n
∗
1 − d ≥ 0 and therefore if:




s ≤ α1 (1− α1)

α1 + d− 1
for α1 + d− 1 > 0

s ≥ 0 for α1 + d− 1 ≤ 0

(18)

(see preliminary calculations)

For s > 1/d

There is a coexistence equilibrium no1 if 1− α1 n
∗
1 − d ≥ − (s (1−α1 n

∗
1)−1)2

4 s and 1− α1 n
∗
1 − d ≥ 1

s − d.

We can show that for s > 1/d, 1− α1 n
∗
1 − d ≥ − (s (1−α1 n

∗
1)−1)2

4 s necessarily leads to 1− α1 n
∗
1 − d ≥ 1

s − d.

If 1− α1 n
∗
1 − d ≥ − (s (1−α1 n

∗
1)−1)2

4 s , then:

s2 (1− α1 n
∗
1)

2
+ 2 s (1− α1 n

∗
1) + (1− 4 s d) ≥ 0 (19)

With X = 1− α1 n
∗
1, this is equivalent to:

s2X2 + 2 sX + (1− 4 s d) ≥ 0 (20)

This polynomial function has only one positive root X+ = −1+2
√
s d

s and therefore X ≥ X+.

Yet, for s > 1/d, X+ − 1
s = −2+2

√
s d

s > 0, i.e. X+ > 1
s .

Therefore X > 1/s and 1− α1 n
∗
1 − d > 1

s − d.

For s > 1/d, 1− α1 n
∗
1 − d > − (s (1−α1 n

∗
1)−1)2

4 s is fullfilled (there is a coexistence equilibrium no1) if X > X+:

1− α1 n
∗
1 >
−1 + 2

√
s d

s
(21)

which is equivalent to:
α1 < A(s) (22)
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with

A(s) =
2
(
s+ 1− 2

√
s d
)

s− 1 +
√

(s− 1)2 + 4 s (1− d)
(23)

Given that s d < s, s+1−2
√
s d > X2−2X+1 (with X =

√
s d), which is a positive polynomial function. Therefore:

A(s) > 0.

5 Conditions of existence of the coexistence equilibrium no2

The conditions of existence of the coexistence equilibrium no2 are:

s > 1/d and α1 < A(s) and s >
α1 (1− α1)

α1 + d− 1
and α1 + d− 1 > 0 (24)

Calculation:

At coexistence equilibrium no2, n∗2 is solution of 1 − n∗2 − α1 n
∗
1 − d

1+s n∗2
= 0, i.e., −s n∗22 + (s (1− α1 n

∗
1)− 1) n∗2 +

(1− α1 n
∗
1 − d) = 0.

Just like for coexistence equilibrium no1, n∗2 exists if the discriminant of the polynomial function is positive, i.e., ∆[n∗1] =

(s (1− α1 n
∗
1)− 1)

2
+ 4 s (1− α1 n

∗
1 − d) ≥ 0 leading to the condition 1− α1 n

∗
1 − d ≥ − (s (1−α1 n

∗
1)−1)2

4 s .
However, n∗2 ≥ 0 if the product of the roots of the polynomial is positive and the sum of the roots is positive (n∗2 is the

lowest root at coexistence equilibrium no2). Using Vieta’s formulas, this is the case if
1−α1 n

∗
1−d

−s ≥ 0 and
s (1−α1 n

∗
1)−1

s ≥ 0,

i.e., 1− α1 n
∗
1 − d ≤ 0 and 1− α1 n

∗
1 − d ≥ 1

s − d.

For s ≤ 1/d

1
s − d ≥ 0 and therefore both 1 − α1 n

∗
1 − d ≤ 0 and 1 − α1 n

∗
1 − d ≥ 1

s − d cannot be fulfilled. There is no coexistence
equilibrium no2.

For s > 1/d

There is a coexistence equilibrium no2 if 1−α1 n
∗
1−d ≥ − (s (1−α1 n

∗
1)−1)2

4 s and 1−α1 n
∗
1−d ≥ 1

s −d, and 1−α1 n
∗
1−d ≤ 0.

We showed in the last section that for s > 1/d, 1−α1 n
∗
1−d ≥ − (s (1−α1 n

∗
1)−1)2

4 s necessarily leads to 1−α1 n
∗
1−d ≥ 1

s −d.

Therefore, there is a coexistence equilibrium no2 if 1− α1 n
∗
1 − d ≥ − (s (1−α1 n

∗
1)−1)2

4 s and 1− α1 n
∗
1 − d ≤ 0.

For s > 1/d, 1−α1 n
∗
1−d > − (s (1−α1 n

∗
1)−1)2

4 s is fullfilled (there is a coexistence equilibrium no2) if X > X+ (see previous
section):

α1 < A(s) (25)

with

A(s) =
2
(
s+ 1− 2

√
s d
)

s− 1 +
√

(s− 1)2 + 4 s (1− d)
> 0 (26)

Additionally, 1− α1 n
∗
1 − d < 0 if s > α1 (1−α1)

α1+d−1 and α1 + d− 1 > 0 (see preliminary calculations).
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6 Local stability analysis

Jacobian matrix

J(n∗1, n
∗
2) =

(
1− 2n∗1 − d

(1+s n∗1)2 0

−α1 n
∗
2 1− 2n∗2 − α1 n

∗
1 − d

(1+s n∗2)2

)
(27)

Complete Extinction: unstable equilibrium

J(0, 0) =

(
1− d > 0 0

0 1− d > 0

)
(28)

Only species 1: stable equilibrium if s > α1 (1−α1)
α1+d−1 and α1 + d− 1 > 0

J(n∗1, 0) =

(
1− 2n∗1 − d

(1+s n∗1)2 0

0 1− α1 n
∗
1 − d

)
(29)

First eigenvalue: λ1 = 1− 2n∗1 − d
(1+s n∗1)2 < 0 (see preliminary calculations)

Second eigenvalue: λ2 = 1− α1 n
∗
1 − d < 0 if s > α1 (1−α1)

α1+d−1 and α1 + d− 1 > 0 (see preliminary calculations)
Therefore, for s ≤ 1/d, the equilibrium ‘only species 1’ is unstable if the coexistence equilibrium exists.
For s > 1/d, the equilibrium ‘only species 1’ may be stable even if the coexistence equilibrium exists; this occur when

the coexistence equilibrium no2 exists.

Only species 2: unstable equilibrium

J(0, n∗2) =

(
1− d 0
−α1 n

∗
2 1− 2n∗2 − d

(1+s n∗2)2

)
(30)

First eigenvalue: λ1 = 1− d > 0

Second eigenvalue: λ2 = 1− 2n∗2 − d
(1+s n∗2)2 < 0 (see preliminary calculations)

Coexistence no1: stable equilibrium

J(n∗1, n
∗
2) =

(
1− 2n∗1 − d

(1+s n∗1)2 0

−α1 n
∗
2 1− 2n∗2 − α1 n

∗
1 − d

(1+s n∗2)2

)
(31)

First eigenvalue: λ1 = 1− 2n∗1 − d
(1+s n∗1)2 < 0 (see preliminary calculations)

Second eigenvalue: λ2 = 1− 2n∗2 − α1 n
∗
1 − d

(1+s n∗2)2 < 0, under the conditions of existence.

Calculation:
Given that 1− n∗2 − α1 n

∗
1 − d

1+s n∗2
= 0 (equilibrium condition), then 1− n∗2 − α1 n

∗
1 = d

1+s n∗2
and therefore:

λ2 =
d

1 + s n∗2
− n∗2 −

d

(1 + s n∗2)2
=

−n∗2
(1 + s n∗2)2

(
s2 n∗ 2

2 + 2 s n∗2 + 1− s d
)

(32)

Given that n∗2 > 0, the sign of λ2 corresponds to the sign of −λ′2:

λ′2 = s2 n∗ 2
2 + 2 s n∗2 + 1− s d (33)

Using Vieta’s formula, the sum of the roots of this polynomial function, −2/s, is negative and roots (discriminant> 0)
are never both positive.

The higher root is Nλ′2 = −1+
√
s d

s , and −λ′2 < 0 (stable equilibrium) if n∗2 > Nλ′2 .

n∗2 −Nλ′2 =
s (1− α1 n

∗
1)− 1 +

√
∆[n∗1]

2 s
− −1 +

√
s d

s
(34)

7



n∗2 −Nλ′2 =
1

2 s

(
s (1− α1 n

∗
1) + 1− 2

√
s d+

√
∆[n∗1]

)
(35)

n∗2 −Nλ′2 =
1

2 s

(√
(s (1− α1 n∗1) + 1)

2 −
√

4 s d+
√

∆[n∗1]

)
(36)

n∗2−Nλ′2 > 0 because
√

(s (1− α1 n∗1) + 1)
2−
√

4 s d > 0. Indeed, we can show that the following polynomial function

is always positive under the conditions of existence of the coexistence equilibrium no1:

F (n∗1) = (s (1− α1 n
∗
1) + 1)

2 − 4 s d (37)

F (n∗1) = s2 (1− α1 n
∗
1)2 + 2 s (1− α1 n

∗
1) + (1− 4 s d) (38)

With the variable transformation X = s (1− α1 n
∗
1), function F is equivalent to function F̂ :

F̂ (X) = X2 + 2X + (1− 4 s d) (39)

Yet, we showed that the coexistence equilibrium no1 exists if ∆[n∗1] = (s (1− α1 n
∗
1)− 1)

2
+ 4 s (1− α1 n

∗
1 − d) > 0,

that we can rewrite as:

∆̂[X] = (X − 1)
2

+ 4X − 4 s d > 0 (40)

∆̂[X] = X2 + 2X + (1− 4 s d) = F̂ (X) (41)

Therefore, F̂ > 0, leading to n∗2 −Nλ′2 > 0 and to −λ′2 < 0.
Consequently, λ2 < 0 and the coexistence equilibrium no1 is stable if it exists.

Coexistence no2: unstable equilibrium

J(n∗1, n
∗
2) =

(
1− 2n∗1 − d

(1+s n∗1)2 0

−α1 n
∗
2 1− 2n∗2 − α1 n

∗
1 − d

(1+s n∗2)2

)
(42)

First eigenvalue: λ1 = 1− 2n∗1 − d
(1+s n∗1)2 < 0 (see preliminary calculations)

Second eigenvalue: λ2 = 1− 2n∗2 − α1 n
∗
1 − d

(1+s n∗2)2 > 0, under the conditions of existence.

Calculation:
Given that 1− n∗2 − α1 n

∗
1 − d

1+s n∗2
= 0 (equilibrium condition), then 1− n∗2 − α1 n

∗
1 = d

1+s n∗2
and therefore:

λ2 =
d

1 + s n∗2
− n∗2 −

d

(1 + s n∗2)2
=

−n∗2
(1 + s n∗2)2

(
s2 n∗ 2

2 + 2 s n∗2 + 1− s d
)

(43)

Given that n∗2 > 0, the sign of λ2 corresponds to the sign of −λ′2:

λ′2 = s2 n∗ 2
2 + 2 s n∗2 + 1− s d (44)

Using Vieta’s formula, the sum of the roots of this polynomial function, −2/s, is negative and roots (discriminant> 0)
are never both positive.

The higher root is Nλ′2 = −1+
√
s d

s , and −λ′2 > 0 (unstable equilibrium) if n∗2 < Nλ′2 .

n∗2 −Nλ′2 =
s (1− α1 n

∗
1)− 1−

√
∆[n∗1]

2 s
− −1 +

√
s d

s
(45)

n∗2 −Nλ′2 =
1

2 s

(
s (1− α1 n

∗
1) + 1− 2

√
s d−

√
∆[n∗1]

)
(46)
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n∗2 −Nλ′2 =
1

2 s

(
(s (1− α1 n

∗
1) + 1)−

(
2
√
s d+

√
∆[n∗1]

))
(47)

n∗2 −Nλ′2 has the same sign than (s (1− α1 n
∗
1) + 1)

2 −
(

2
√
s d+

√
∆[n∗1]

)2

, which is equal to:

−
[
4 s (1− α1 n

∗
1) + 4

√
s d∆[n∗1]

]
< 0 (48)

Therefore, n∗2 −Nλ′2 < 0.
Consequently, λ2 > 0 and the coexistence equilibrium no2 is unstable if it exists.

7 From s = 0 to s = 1/d: loss of the coexistence equilibrium no1 if high α1

For s ≤ 1/d, there is no coexistence equilibrium no1 if:

s >
α1 (α1 − 1)

1− α1 − d
and α1 + d− 1 > 0 (49)

There is a coexistence equilibrium no1 if s = 0. Nonetheless, if s ≤ 1/d, increasing s can lead to the loss of the coexistence
equilibrium no1. This occurs for strong asymetric competition. More precisely, increasing s to a value of 1/d can lead to
extinction of the least competitive species if:

α1 >
−(1− d) +

√
(1− d)(1 + 3d)

2 d
> 0 (50)

Calculation:

For s = 1/d, extinction of the least competitive species occurs if two conditions are fulfilled.
The first condition on α1 is:

α1 > 1− d to fulfill the condition α1 + d− 1 > 0 (51)

and the second condition on α1 must fulfill s > α1 (α1−1)
1−α1−d at s = 1/d:

α1 (α1 − 1)

1− α1 − d
− 1

d
< 0 (52)

dα2
1 + (1− d)α1 − (1− d)

d(1− α1 − d)
< 0 (53)

Given that 1− α1 − d < 0, extinction occurs at s = 1/d if:

dα2
1 + (1− d)α1 − (1− d) > 0 (54)

and therefore the second condition on α1 is:

α1 >
−(1− d) +

√
(1− d)(1 + 3d)

2 d
(55)

We can easily show the second condition on α1 necessarily fulfill the first condition:

−(1− d) +
√

(1− d)(1 + 3d)

2 d
> 1− d (56)

Therefore, for s = 1/d, extinction of the least competitive species occurs if:

α1 >
−(1− d) +

√
(1− d)(1 + 3d)

2 d
> 0 (57)
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8 From s = 1/d to +∞: loss and recovery of the coexistence equilibrium
no1

For s ≥ 1/d, there is a coexistence equilibrium no1 if:

α1 <
2
(
s+ 1− 2

√
s d
)

s− 1 +
√

(s− 1)2 + 4 s (1− d)
= A(s) (58)

If function α1 is decreasing, the coexistence equilibrium no1 may vanish with increased s (the condition necessary for
coexistence gets more restricted). On the contrary, if function α1 is increasing, the coexistence equilibrium no1 may be
recovered with increased s.

More precisely, for s >
1+
√

8 d+1+
√

2
√
−8 d2+

√
8d+1+4 d+1

4d (threshold value represented by a dashed red line in Figure 4 in
the main text), the coexistence equilibrium no1 can be recovered with increased s.

Calculation:

The derivative of function A is:

A′(s) =
d (s− 1)(s+ 1− 2

√
s d)−

√
(s− 1)2 + 4 s (1− d)

(
2
√
s d− d(s+ 1)

)

(
s− 1 +

√
(s− 1)2 + 4 s (1− d)

)2 (59)

In the numerator, d (s − 1)(s + 1 − 2
√
s d) and

√
(s− 1)2 + 4 s (1− d)

(
2
√
s d− d(s+ 1)

)
are positive for s ≥ 1/d.

Therefore, A′(s) has the same sign than:

[
d (s− 1)(s+ 1− 2

√
s d)
]2
−
[√

(s− 1)2 + 4 s (1− d)
(

2
√
s d− d(s+ 1)

)]
2 =

4 d (1− d)
[√

s d (s+ 1)3 − s
[
(s+ 1)2 + 2 d (s2 + 1)

]]

(60)
4 d (1− d),

√
s d (s+ 1)3 and s

[
(s+ 1)2 + 2 d (s2 + 1)

]
are positive. Therefore, A′(s) has the same sign than:

[√
s d (s+ 1)3

]2
−
[
s
[
(s+ 1)2 + 2 d (s2 + 1)

]]2
=
(
s2 + 2 (1− 2 d) s+ 1

) (
ds4 − s3 − 2(1− d) s2 − s+ d

)
(61)

s2 + 2 (1 − 2 d) s + 1 > 0 because 0 ≤ d ≤ 1. Therefore, A′(s) has the same sign than the polynomial function P (s) =
ds4 − s3 − 2(1− d) s2 − s+ d. Using the math software Maple, we get two real roots for 0 ≤ d ≤ 1:

s− =
1 +
√

8 d+ 1−
√

2
√
−8 d2 +

√
8d+ 1 + 4 d+ 1

4d
(62)

s+ =
1 +
√

8 d+ 1 +
√

2
√
−8 d2 +

√
8d+ 1 + 4 d+ 1

4d
(63)

We can show that s− < 1/d and s+ > 1/d:

s− − 1

d
=
−
√

2
√
−8 d2 +

√
8d+ 1 + 4 d+ 1 − (3−

√
8 d+ 1)

4d
(64)

Because 3−
√

8 d+ 1 > 0, s− − 1
d < 0.

s+ − 1

d
=

√
2
√
−8 d2 +

√
8d+ 1 + 4 d+ 1 − (3−

√
8 d+ 1)

4d
(65)

Because 3−
√

8 d+ 1 > 0, s+ − 1
d has the same sign than:

[√
2

√
−8 d2 +

√
8d+ 1 + 4 d+ 1

]2

−
[
(3−

√
8 d+ 1)

]2
= 8

[√
8 d+ 1− (2 d2 + 1)

]
(66)
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Therefore, s+ − 1
d has the same sign than:

[√
8 d+ 1

]2
−
[
2 d2 + 1

]2
= 4 d (1− d)

(
d2 + d+ 2

)
> 0 (67)

Therefore, for s > 1/d, A′(s) = 0 for s = s+.

The sign of A′(s) for 1
d ≤ s < s+ is the same than the sign of α′1(1/d). The denominator of α′1(1/d) is positive. The

numerator of α′1(1/d) is:

Numerator (C ′(1/d)) =
1

d
(1− d)

[
(1− d)− d

√
2

d
+

1

d2
− 3

]
(68)

Given that 2
d + 1

d2 − 3 > 0 for 0 ≤ d ≤ 1, α′1(1/d) has the same sign than:

(1− d)
2 −

[
d

√
2

d
+

1

d2
− 3

]2

= −4 d (1− d) < 0 (69)

Therefore, for 1
d < s < s+, A′(s) < 0, i.e., the coexistence equilibrium no1 may vanish with increased s.

Similarly, the sign of A′(s) for s > s+ is the same than the sign of lim
s→∞

A′(s):

lim
s→∞

A′(s) =
d

2
> 0 (70)

We can conclude that for s > s+ (represented by a dashed red line in Figure 4 in the main text), A′(s) > 0, i.e., the
coexistence equilibrium no1 can be recovered with increased s.

9 At coexistence equilibrium, species 2 is less abundant than species 1

Suppose that species 1 and species 2 are at equilibrium density n∗1. Then the growth rate of species 2 is:

dn2

d t

∣∣∣n1=n∗1
n2=n∗1

= n∗1

[
1− n∗1 − α1 n

∗
1 −

d

1 + s n∗1

]
(71)

Given that 1− n∗1 − d
1+s n∗1

= 0:

dn2

d t

∣∣∣n1=n∗1
n2=n∗1

= n∗1 [−α1 n
∗
1] < 0 (72)

Therefore: n∗2 < n∗1

10 At coexistence equilibrium no1, species 2 reaches a higher density if
s→∞

For s = 0:
n∗2 → (1− α1)(1− d) (73)

and for s→∞:
n∗2 → 1− α1 > (1− α1)(1− d) (74)
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Supplementary file 1C:
Numerical method for analyzing the coexistence equilibrium

in two-species models

Identifying the coexistence equilibrium

I run numerical simulations in Python (Release 2.7.15, 2018) on the interval of time [0, 5, 000]. For each combination
of parameters, I run 121 simulations with different initial species abundances (n0

1, n
0
2), with n0

1 and n0
2 having values

belonging to the discrete set { 0, 0.1, 0.2, ... 1.0 }. At the end of each simulation, the equilibrium reached is identified as a
‘coexistence equilibrium’ if species abundances are higher than 10−3. Two coexistence equilibrium points are considered
as equivalent if the Euclidean distance between the points is lower than 10−3.

For all combinations of parameters tested, only one coexistence equilibrium is identified at most.

Identifying the nature of the coexistence equilibrium

The coexistence equilibrium (n∗1, n
∗
2) identified numerically is locally stable. Otherwise, it would not have been reached at

the end of the simulation.

To identify if the coexistence equilibrium equilibrium is a global attractor, I run a simulation on the interval of time
[0, 500] with initial conditions (n∗1, 10−7), i.e., the least competitive species is very rare. At the end of the simulation, the
coexistence equilibrium is considered as a global attractor if n2 > 10−7; the least competitive species is invading even if
it is rare initially. Otherwise, the coexistence equilibrium is considered as a local attractor ; the least competitive species
does not invade and the coexistence equilibrium is not reached.
If the least competitive species can invade when it is rare, so does the most competitive species. Therefore, the criterion
of invasion of the least competitive species is sufficient to identify the coexistence equilibrium as a global attractor.

Validity of the numerical method

To test the validity of this numerical method, I applied it to the two-species model with asymmetric competition for
resources and conspecific positive density dependence acting only on mortality. I compared the output with analytical
derivations. As shown in Figure 4–Figure supplement 2, the numerical method predicts very well the condition of
existence of the coexistence equilibrium and its nature (local or global attractor). Therefore, we can confidently use this
numerical method to analyze other two-species models that we cannot analyze analytically.
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Supplementary file 1D:
Simulations of the multi-species models

Sampling initial communities

For each species i, αi,i and α′i,i are set to one. Parameters αj,i and α′j,i < 1 (∀j 6= i) therefore represents the strength of
competition for resources and interspecific reproductive interference, relative to intraspecific interactions. Four different
scenarios are considered successively.

(1) Only asymmetric competition. – All parameters linked to interspecific reproductive interference (α′i,j with
i 6= j) and to differences in basal mortality rates (δi) are set to zero. For each pair of species (i, j), αi,j and αj,i are drawn
randomly from a uniform distribution within the range [0, 0.1].

(2) Only asymmetric reproductive interference. – I assume there is symmetric competition for resources (αi,j = α
if i 6= j). All parameters linked to differences in basal mortality rates (δi) are set to zero. For each pair of species (i, j),
α′i,j and α′j,i are drawn randomly from a uniform distribution within the range [0, 0.1].

(3) Only differences in basal mortality. – I assume there is symmetric competition for resources (αi,j = α if i 6= j).
All parameters linked to interspecific reproductive interference (α′i,j with i 6= j) are set to zero. For each species i, δi is
drawn randomly from a uniform distribution within the range [0, 0.5].

(4) Random communities with all forms of asymmetry. – Species asymmetries act synergistically to promote
species exclusion. Therefore, for clarity purpose, the maximum value for each parameter is reduced by half. For each
pair of species (i, j), αi,j , αj,i, α

′
i,j and α′j,i are drawn randomly from a uniform distribution within the range [0, 0.05].

Likewise, δi is drawn randomly from a uniform distribution within the range [0, 0.25].

In supplementary analyses, parameters are drawn randomly from uniform distributions within other ranges; the results
are qualitatively similar to those obtained with the arbitrary ranges chosen in the main analysis (Figure 7–Figure sup-
plement 1).

Numerical simulations

For each scenario and for each combination of parameters, 500 species pools of 100 species each were constructed by
drawing species parameter values from appropriate probability distributions. Numerical simulations are run in Python
(Release 2.7.15, 2018) on the interval of time [0, 5000]. All species were equally abundant initially, and simulations were
run long enough for initial transients to dissipate. Species were declared extinct if their density fell below 10−3. At the
end of each simulation, the number of species remaining was recorded.

Community assembly simulations

Following Gross (2008), I repeated simulations in Figure 7 of the main text with the modification that species were
introduced one at a time instead of all at once. At every t = 200 time units, one of the species in the species pool was
selected at random and introduced with an abundance of 10−2 or 10−5 depending on the simulation. After 100 such
introductions, the simulation ran to time t = 5, 000. Species were declared extinct if their density fell below 10−3.

As shown in Figure 7–Figure supplement 9, this second set of simulations in which species were introduced one at
a time produced different results. Species richness is lower because less competitive species (in the broad sense) may
not invade the population. In particular, conspecific positive density dependence does not help produce species-rich
communities when species are introduced at low density.
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