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Abstract We have previously shown TANGO1 organises membranes at the interface of the

endoplasmic reticulum (ER) and ERGIC/Golgi (Raote et al., 2018). TANGO1 corrals retrograde

membranes at ER exit sites to create an export conduit. Here the retrograde membrane is, in itself,

an anterograde carrier. This mode of forward transport necessitates a mechanism to prevent

membrane mixing between ER and the retrograde membrane. TANGO1 has an unusual membrane

helix organisation, composed of one membrane-spanning helix (TM) and another that penetrates

the inner leaflet (IM). We have reconstituted these membrane helices in model membranes and

shown that TM and IM together reduce the flow of lipids at a region of defined shape. We have

also shown that the helices align TANGO1 around an ER exit site. We suggest this is a mechanism

to prevent membrane mixing during TANGO1-mediated transfer of bulky secretory cargos from

the ER to the ERGIC/Golgi via a tunnel.

Introduction
Intracellular membrane trafficking is key for the homeostatic regulation of compositional gradients

of proteins and lipids, required to maintain organelle identity along the secretory pathway

(von Blume and Hausser, 2019; Guo et al., 2014; Holthuis and Menon, 2014; van Meer and Lis-

man, 2002; van Meer et al., 2008). These gradients are established by the formation and transport

of highly curved transport intermediaries; a key question is whether (and how) membrane curvature

plays a major role in lipid and protein sorting (Campelo and Malhotra, 2012). While it is clear that

lipid sorting occurs during the biogenesis of transport intermediates, current evidence suggests that

curvature-mediated lipid sorting is not based on curvature alone, but requires additional protein-

lipid interactions (Brügger et al., 2000; Callan-Jones et al., 2011; Gruenberg, 2003; Klemm et al.,

2009; Roux et al., 2005; Sorre et al., 2009; Tian and Baumgart, 2009).

Protein and lipid sorting during export from the endoplasmic reticulum (ER) utilises ER export

machinery including the multisubunit COPII complex, which controls the formation of cargo-contain-

ing transport intermediates. In vitro preparations of COPII vesicles show a differential lipidomic pro-

file from the ER, including an enrichment in lysolipids such as lysophosphatidylinositol (LPI) and a

decrease in phosphatidylserine (Melero et al., 2018). COPII vesicles form at ER exit sites (ERES),

which are semi-stable specialized subdomains of the ER with structures of a pleomorphic organiza-

tion of diverse curvatures, including cup-like shapes and beaded tubes (Bannykh et al., 1996;

Hughes et al., 2009). How ERES morphology is established and maintained, and how these
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structures contribute to cargo export and protein/lipid sorting between the ER and subsequent

secretory compartments, are still open questions.

A unique challenge during ERES-mediated lipid sorting arises during the export of bulky and

complex cargoes such as procollagens from the ER. During procollagen export, the ER and the post-

ER compartment (ERGIC/Golgi) are transiently connected, yet there is a controlled transfer of pro-

teins and lipids between the two compartments. Procollagens in the ER fold and trimerize into rigid,

rod-like elements that are considered too large for conventional COPII coated vesicle-mediated

transport (Burgeson et al., 1985; Gorur et al., 2017; Kadler, 2017; Kadler et al., 2007;

McCaughey and Stephens, 2019; Omari et al., 2018). Due to large cargo size, it has been hypothe-

sized that large COPII-coated carriers mediate procollagen export from the ER to the Golgi. Outsize

COPII carriers were reported in cells overexpressing KLHL12, which generates large procollagen-

containing structures that co-label with Sec31A (Jin et al., 2012; Yuan et al., 2017; Yuan et al.,

2018). A subsequent report suggested that these structures are destined for degradation and not

bona fide transport carriers (Omari et al., 2018). Alternatively, it has been proposed that coordi-

nated assembly of inner and outer COPII coats can mediate the biogenesis of vesicles ranging from

small spheres to large tubular carriers, commensurate with the size of bulky cargoes (Hutchings and

Zanetti, 2019; Hutchings et al., 2018; Stagg et al., 2008; Zanetti et al., 2013). However, ER-to-

Golgi procollagen carriers appear pleomorphic and do not seem to contain any detectable COPII

(Mironov et al., 2003).

More recent evidence suggests an entirely different mechanism is at play. Procollagen export

from the ER requires the assembly of a functional machine centred on the transmembrane ERES-resi-

dent protein TANGO1 (Ishikawa et al., 2016; Lekszas et al., 2020; Saito et al., 2009;

Wilson et al., 2011). As a master regulator of ERES assembly, TANGO1 acts as a filamentous linac-

tant to recruit, constrain, and scaffold ERES machinery and post-ER (ERGIC) membranes for procolla-

gen export (Ma and Goldberg, 2016; Maeda et al., 2017; Nogueira et al., 2014; Raote et al.,

2017; Raote et al., 2018; Raote et al., 2019; Saito and Maeda, 2019; Saito et al., 2009;

Santos et al., 2015).

We have proposed that a procollagen carrier is not formed by sculpting a vesicle from ER mem-

brane as in the conventional model of COPII coated vesicle formation. Instead, TANGO1 utilises a

retrograde membrane tether complex (NRZ complex) to tether post-ER membranes (ERGIC/Golgi),

which fuse at the ERES to create an export route for procollagens. The membrane fusion creates a

pore or tunnel between the ER and the ERGIC which is stabilised and constrains by TANGO1, as

cargo is transferred for anterograde transport. Thus retrograde membrane (the ERGIC) is the antero-

grade carrier. During the process of cargo transfer, we propose the ERGIC and the ER are main-

tained as two distinct compartments, but how are their membrane lipids and proteins prevented

from mixing completely?

Using super-resolution (STED) microscopy to visualise TANGO1, its interactors, and associated

machinery we have described its assembly into a filament-like ring to organise the early secretory

pathway (Liu et al., 2017; Raote and Malhotra, 2019; Raote et al., 2017; Raote et al., 2018;

Raote et al., 2019; Reynolds et al., 2019). By assembling into a ring around an ERES, TANGO1 cor-

rals COPII machinery and generates a semi-stable sub-domain across multiple compartments. Could

TANGO1 also participate in preventing lipid mixing between the ERGIC and the ER? A ring of

TANGO1 is ideally spatially organised to partially separate membrane inside the ring from the rest

of the ER. Retrograde ERGIC membranes fuse within the ring, serving as an anterograde conduit for

collagen. In other words, how are ERGIC membranes effectively partitioned from the rest of the ER,

by a diffusion barrier created around the site of REGIC retrograde fusion at an ERES?

TANGO1 is a single-pass transmembrane protein with two adjacent hydrophobic helices; amino

acid residues 1177–1197 of human TANGO1 are predicted to form a transmembrane helix, while

residues 1145–1165 form a helix that penetrates the lumenal leaflet of the ER membrane

(Saito et al., 2009). Together, these helices could mediate membrane partitioning. We have recon-

stituted the two hydrophobic helices in model membrane and show that they create a diffusion bar-

rier for lipids, at a region of defined membrane curvature and shape. The diffusion barrier should

occur at the base of the tube, paralleling the neck of a growing transport carrier/tunnel at an ERES.
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Finally, using super resolution (STED) microscopy, we show that the functions mediated by the heli-

ces are incorporated into TANGO1 assembly into a ring around an ERES. We propose that such a

barrier could sub-compartmentalise ER membrane, allowing retrograde ERGIC/Golgi membrane to

be constrained during cargo transfer out of the ER, while maintaining the compositional identities of

the individual compartments.

Results and discussion

TANGO1 membrane helices partition lipids
In order to investigate whether the membrane-associated helices of TANGO1 can contribute to the

organisation of the ER-ERES boundary, we employed recombinant minimal transmembrane proteins

that were reconstituted in model membranes. In order to mimic the marked changes in curvature

that are encountered at this boundary, we employed micro-manipulation of giant unilamellar vesicles

(GUV). Here, a tube with a diameter of 50–200 nm is pulled from the surface of the GUV, providing

an ideal proxy to characterise membrane reorganisation and the role of membrane curvature and

shape during transport intermediate biogenesis at the ER.

We purified the intramembrane (IM) and transmembrane (TM) helices, tagged with monomeric

superfolder enhanced GFP (IM-TM_GFP). As an experimental control, we used the TM_GFP alone.

Proteins were expressed and purified (Figure 1A) using EXPI293F cells, as before (Ernst et al.,

2018). Proteo-GUVs were generated using an osmotic shock as described before (Motta et al.,

2015), with a lipid mixture of POPC:DSPE-PEG-biot:DOPE-Atto647N; 95: 5: 0.1. Atto647N was used

to visualize lipids in the GUV membrane.

To confirm that similar levels of protein were incorporated into GUVs in the two conditions

tested, we compared the intensities of IM-TM and TM in the GUVs and found that they are similar

under the same conditions of microscope objective, laser power and gain: 92 ± 23 a.u. for IM-TM

and 106 ± 38 a.u. for TM respectively. The lipid intensities are also the same, 191 ± 61 a.u. and

178 ± 37 a.u. for IM-TM and TM respectively. All values are mean ± standard deviation.

These fluorescence intensities can be used to arrive at an approximation of the ratio of protein to

lipids. Under our conditions, we estimate 1 IM-TM protein per 18,000 lipids, that is a typical inter-

protein distance of 80 nm (see Materials and methods section for a more detailed description of this

quantification).

Figure 1. Micromanipulation of TANGO1 transmembrane-domain minimal constructs reconstituted into GUVs. (A)

The two constructs used in this study. Schematics and Coomassie gels of the purified proteins with either both

hydrophobic helices (Intramembrane IM, and transmembrane TM) tagged with monomeric superfolder EGFP (IM-

TM_GFP left), or the transmembrane alone with the same EGFP tag (TM_GFP right). (B) The proteins (green) were

reconstituted into GUVs and a second pipette with a biotin-tagged bead was used to pull a tube from the surface

of the GUV. Scale bar 25 mm.
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A micropipette was used to grab the GUV, and a streptavidin-coated silica bead was brought in

contact with the GUV for a few seconds to form streptavidin-biotin bonds. Separation of the bead

from the GUV led to a ~ 100 mm long membrane tube, thereby generating a site of saddle-like cur-

vature at the junction of tube and the flat GUV membrane (Figure 1B). The aspiration pressure in

the GUV micropipette was varied between 5 Pa and 100 Pa, which in our geometry corresponds to

tube diameters between 200 nm and 50 nm. We did not observe any dependency in our experi-

ments on the aspiration pressure; hence this is not discussed further.

To observe lipid diffusion across the region of saddle-like curvature between the tube and the

GUV, we photobleached Atto647N in the tube membrane and quantified its recovery after photo-

bleaching. Fluorescence recovery in the tube was due to the diffusion of labelled lipids from the

GUV into the tube. This experiment was carried out in GUVs under three conditions: with no protein

(no protein), with TM_GFP (TM), and with IM-TM_GFP (IM-TM) as depicted schematically in

Figure 2A. Images of Atto647N in the tube were acquired before bleaching (prebleach), immedi-

ately after the photobleach (0 min) and six minutes later (6 min) (Figure 2B). The recovery of fluores-

cence was plotted six minutes after photobleaching (Figure 2C). This single time point was chosen

such that fluorescence recovery in the tube had plateaued (see Materials and methods section for

Figure 2. TANGO1 helices are a barrier to diffusion of lipids. (A) Schematic of the three conditions (no protein,

TM, IM-TM) with protein reconstitution into a GUV showing a tube pulled from the GUV; (B) Atto647N-labelled

lipids visualised in the pulled tube in all three conditions, before bleaching (prebleach), then immediately after

bleaching (0 min) and six minutes later (6 min). (C) Box plot quantification of the fluorescence recovery after 6 min;

(D) Frequency histogram showing the extent of fluorescence recovery in tubes pulled from GUVs with no protein

or TM pooled (yellow) or GUVs with TM_IM (blue). Most trials with low recovery rates were those where tubes were

pulled from GUVs with IM-TM (blue line vs green and red lines). ns – not significant or p<0.02 by ANOVA.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. IM-TM diffuses freely.
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details). Fluorescence recovered to 60 ± 6% (mean ±s.d.) of the prebleach intensity in tubes from

GUVs with no protein. Similarly, in tubes pulled from GUVs with the transmembrane helix alone

(TM), fluorescence recovered to 56 ± 12%. However, the two helices together (IM-TM), considerably

inhibited fluorescence recovery. Now, the recovery was only 35 ± 5% (Figure 2C), showing that

TANGO1 membrane helices together inhibited the exchange of lipids between the tube and the

rest of the GUV.

Our observations will probably under-represent the magnitude of the effect; many trials showed

no effect due to several confounds including, that proteins were disrupted by a movement of the

membranes, drift of the pipette, slight variation of pressure in the pipette, convective flow in the

buffer, etc. This is made clear in an alternate representation of the data, shown in a frequency histo-

gram of all the trials together (Figure 2D). The two treatments, no protein and TM, are grouped as

control, and compared with the trials with ‘IM-TM’. Results from the trials with IM-TM (blue bars)

appear to divide into two peaks, one with a lower recovery rate and a second peak that looks like

control trials. Most trials with low recovery rates were those observed in tubes pulled from GUVs

with IM-TM. There were almost no trials in control conditions (either no protein, or TM alone) with

slowed recovery. We expect that those trials that showed no effect might have been affected by one

or more of the confounds described above.

To make sure the low recovery in the tube is not due to a global reduced fluidity of the mem-

brane of GUV with IM-TM, we performed fluorescence recovery after photobleaching (FRAP) experi-

ments on the EGFP-labeled protein in the GUV (Figure 2—figure supplement 1A). We found a

diffusion coefficient (0.7 ± 0.3 mm2/s), consistent with a protein that is monomeric or in the form of

small oligomers (Figure 2—figure supplement 1B). These data show that the membrane (protein

and lipid) is fully fluid without hindered diffusion, confirming that the low recovery in the tube is due

to reduced crossing at the junction between the GUV and the tube.

In treatments where lipid flux between the GUV and the tube is slowed or blocked, we expect a

similar or even more pronounced behavior for transmembrane proteins. To test this hypothesis, we

attempted to use the same photobleaching and recovery assay to estimate the flux of GFP-associ-

ated fluorescence between the GUV and the tube. Unfortunately, we were unable to accurately

quantify the GFP-associated fluorescence in the tube, as the protein levels in the tube are too low to

be clearly distinguished from the background and are rapidly bleached during imaging.

Such a diffusion barrier could most likely form if the membrane helices are concentrated and

retained at the base of the pulled tube. We were unable to test this prediction and visualise an

immobile pool of protein at the base of the tube under our experimental conditions, as the diameter

of the tube is 50–200 nm and a stable pool of GFP fluorescence is indistinguishable from the fluores-

cence in the rest of the GUV, even after photobleaching the bulk of the GUV and attempting to visu-

alise GFP signal retained at the base of the tube. Visualising such a cluster of a few molecules might

be possible using total internal reflection (TIRF) microscopy. Our procedure does not permit this

type of single-molecule measurements; we used a confocal microscope with a dry objective resulting

in a relatively high background from the surrounding membrane. Additionally the dyes used are nei-

ther bright nor photostable enough for such analyses.

These results showed that the two TANGO1 helices were sufficient to partially restrict lipid

exchange between the tube and the rest of the GUV. What role do the two helices play in how

TANGO1 interacts with the ER membrane?

The intramembrane helix is not required to target TANGO1 to ERES
Proteins that insert into the lipid bilayer can bend membranes by changing the local spontaneous

curvature of the monolayer or, by being retained at a location, they can stabilise a specific shape of

membrane (Kozlov et al., 2014). We envisage that TANGO1 helices together are retained at, and/

or stabilise, the saddle-shape membrane at the junction of the tube and the GUV, as at the junction

of the ERES and a transport intermediate. Thus, we propose that the pair of helices act as a mem-

brane shape-sensing module.

What could TANGO1 use this shape sensor for, in vivo? A first possibility we could test is that it

promotes the correct localisation of TANGO1 in the ER. The ability to detect defined membrane

shapes and curvatures could be utilised by TANGO1 to localise to the site of defined shape at an

ERES, particularly the junction of the ER and an export intermediate. We have previously shown that

TANGO1 is recruited to ERES via an interaction between its C-terminal proline rich domain (PRD)
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and ERES proteins Sec23A and Sec16A. Perhaps the membrane shape-sensitivity of TANGO1 would

play an additional role in its localisation as well. To test the role of the putative shape sensor in tar-

geting TANGO1 to an ERES, we deleted the IM helix (amino acids 1145–1165, TANGO1DIM) or the

TM (amino acids 1177–1197, TANGO1DTM) from full length TANGO1 (schematic representation is

shown in Figure 3A) and assayed for the ability of the resulting proteins to localise to ERES. We

transfected these constructs in HeLa cells from which endogenous TANGO1 has been deleted using

CRISPR/Cas9 methodology (named 2H5 cells), as described before (Raote et al., 2018;

Santos et al., 2015), and observed their pattern of expression. Deletion of the IM helix had no dis-

cernible effect on the ability of TANGO1 (Figure 3B, green) to localise to ERES as visualised by its

localisation to puncta of the ERES marker Sec16A (Figure 3B, red).

Deletion of the TM helix had a more substantive effect and resulted in a loss of TANGO1 localisa-

tion to ERES (Figure 3A,B, quantified in 3C). We have previously shown that when the TM in

TANGO1 is deleted, the IM changes its topology and becomes a transmembrane. Deleting both

hydrophobic helices leads to a soluble protein in the ER lumen (Saito et al., 2009).

As a control, we confirmed that deleting either helix had no effect on targeting TANGO1 to accu-

mulations of procollagen VII in the ER (Figure 3—figure supplement 1). Both TANGO1 and TAN-

GO1DIM were recruited as small, discrete puncta, which were apposed to collagen accumulations in

the ER. The TANGO1DTM entirely overlapped with procollagen VII accumulations.

Together, these data reveal that membrane curvature/shape sensitivity in TANGO1 membrane

helices is not the dominant ERES-targeting device, instead the PRD is more important to target

TANGO1 to its cellular location at an ERES. If the membrane shape sensor is not to target TANGO1

to ERES or collagen, what role does it play?

TANGO1 membrane helices confer direction to TANGO1 molecules in a
ring
TANGO1 and procollagen VII were co-expressed in HeLa cells from which TANGO1 has been

knocked out using the CRISPR/Cas9 system (2H5 cells). As before, transfected cells were fixed and

processed for super-resolution (STED) imaging and TANGO1 was imaged at accumulations of pro-

collagen in the ER. TANGO1 can be visualised assembled into rings at ERES (Raote et al., 2017;

Raote et al., 2018). TANGO1-HA was visualised with two different antibodies raised against two

distinct epitopes in the full-length protein. One epitope is in the ER lumen (corresponding to amino

acids 472–525 of TANGO1), while the other is a cytoplasmic C-terminal HA-epitope (for schematic,

Figure 4A). Under these conditions there was a clear separation of the signal from antibodies

directed against the two different epitopes and we could identify two distinct configurations of the

ring of TANGO1. Either the C terminus coalesced into a single spot within a ring formed by the

lumenal antibody, or both could be visualised as concentric/colocalized rings (Figure 4A red vs.

green respectively).

We propose that these distinct sets of images represented discrete configurations of TANGO1

during the formation of a carrier at an ERES. Initially, the C termini of TANGO1 lie within the ring,

overlying the site of the formation of a carrier. As the carrier grows, the C termini are gradually

pushed apart (for a schematic, Figure 4D).

We used STED microscopy to monitor the organisation of TANGO1 into rings by imaging sam-

ples stained for both the TANGO1 and HA epitopes. Qualitatively, we observed that abrogating the

intramembrane helix reduced the frequency with which we observed rings, but this observation

could not be quantified given the subjective nature of the selection of fields to image. Interestingly,

in several of the rings that did form, the C termini (HA epitope) and lumenal portions of TANGO1

were now misaligned (Figure 4B). Now, the C termini were often randomly oriented with respect to

the ring formed by the lumenal epitope.

Alternatively, we mutated two hydrophobic residues in the IM helix to charged residues (phenylal-

anine 1152 and 1154 to arginine – TANGO1-FMF-RMR), such that it would no longer form a hydro-

phobic helix (Figure 4—figure supplement 1). Here too, many rings of TANGO1 showed altered

alignment of the two epitopes.

In such a ring, a nascent bud will be encircled by the ring and serve to recruit and stabilise a

membrane-shape-sensitive TANGO1 to the site. In other words, ring formation could create a feed-

back loop through orientation/shape sensing to further reinforce rings.
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Figure 3. Deletion of the intramembrane helix has no effect on TANGO1 recruitment to ERES. (A) Schematic of

TANGO1 constructs used in this study, showing the sequence of the transmembrane and intramembrane helices.

(B) The three HA-epitope tagged constructs were expressed in 2H5 cells, which were then imaged for HA and

Figure 3 continued on next page
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Regulating lipid sorting and trafficking is key in organelle homoeostasis, to control all membrane

traffic, and spatiotemporal modulation of membrane curvature is essential in this control. We

showed that the transmembrane organisation of TANGO1 is sufficient to act as a diffusion barrier

for membrane lipids. In doing so, our data suggest that TANGO1 is concentrated at the neck of a

budding membrane and can act as a fence, constraining the flow of lipids.

Figure 3 continued

Sec16A. Scale bar: 20mm, Inset: 2mm. (C) Plot of the Manders’ colocalization coefficients of the extent of overlap of

HA (TANGO1 constructs) with Sec16A.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Deletion of the intramembrane has no effect on TANGO1 recruitment to collagen.

Figure 4. TANGO1 intramembrane helix orients a ring of TANGO1 molecules. Two different epitopes on TANGO1 are visualised concomitantly. The

ER-lumenal epitope in green, the c-terminal HA epitope in red (A) TANGO1, (B) TANGO1DIM. (C) Quantification of the number of rings observed in

each configuration. Regions with diagonal bars refer to rings with HA signal (red) contained within the lumenal signal (green), while the dotted region

refers to rings with at least some HA signal (red) contained outside, but apposed to, the lumenal signal (green). (D) Schematic model of the different

configurations of TANGO1 molecules in a ring.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Targeted disruption of the intramembrane helix, replacing two phenylalanines with arginines (TANGO1-FMF-RMR), mimics the

effect of deleting the helix entirely.
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We have proposed that cargo transport through the secretory pathway can be mediated by tran-

sient tunnels or pores between successive compartments (Raote and Malhotra, 2019). We have

shown that retrograde fusion of ERGIC membrane to the ER could create a tunnel between the two

compartments for procollagen export (Nogueira et al., 2014). How are two compartments, joined

by a transient tunnel, kept biochemically distinct? How do COP coats, conventional cargo receptors,

cargo proteins, and TANGO1 function as gatekeepers between the ER and the ERGIC? Lipids such

as PI4P are required at the ERGIC-ERES interface to assist in the assembly of COPII-coated vesicles

at ERES and hence traffic from the ER (Blumental-Perry et al., 2006; Farhan et al., 2008). Yet, if lip-

ids like PI4P are largely restricted to the ERGIC/Golgi, how are they prevented from flowing from

the ERGIC/Golgi into the bulk ER membrane?

The lipid flux through the partial barrier between the GUV and the tube is proportional to the

effective perimeter of the saddle. From the recovery rates observed in Figure 2, then 50–75% of the

saddle is blocked by the membrane helices.

To what extent might these numbers recapitulate events at an ERES? There are ~172,000 mole-

cules of TANGO1 and 250–500 exit sites per cell or 350–700 TANGO1 molecules per exit site, sur-

rounding transport intermediates (Hammond and Glick, 2000; Itzhak et al., 2016). Further

reconstitution and modeling will be informative in delineating how this number of proteins generates

the perimeter block. In vivo, there will be further effects from other associated ERES proteins includ-

ing the TANGO1 family protein cTAGE5 (Saito et al., 2011).

Our data presented here suggest that by assembling into a ring at an ERES, TANGO1 can act to

reduce lipid flow at the boundary between the two compartments, delaying lipid and most likely

transmembrane protein mixing between them.

We envisage that the recruitment of TANGO1 to membrane regions of specific shape and curva-

ture will make for greater efficiency in generating a bud at an ERES. Neighbouring TANGO1 mole-

cules in the ER membrane will align along curved membrane - found at an ERES. This process,

whereby a TANGO1 fence limiting the coat polymerisation zone, could be homologous to the roles

played by proteins which contribute to the initiation of clathrin-mediated endocytosis FCHO1/2 and

EPS15/EPSR (Avinoam et al., 2015; Ma et al., 2016). Hundreds of TANGO1 molecules, at each site,

will have an additive or even synergistic effect in stabilising the bud. As the site of budding is

defined, the increased membrane curvature will promote the recruitment and localisation of curva-

ture-sensitive components including Sar1 and COPII coat proteins. These proteins will serve to rein-

force the curvature stabilisation, in effect setting up a positive feedback loop, where exit site

machinery and TANGO1 mutually recruit and constrain each other through their membrane sculpt-

ing capabilities. Aligned TANGO1 molecules will be constrained into a configuration in which it is

more likely for them to participate in lateral interactions with each other, promoting their assembly

into a filament, further reinforcing the organisation of TANGO1 and its interactors at the site.

These reinforcing activities are evident from our data, showing that only half of the rings of TAN-

GO1DIM show detectable signal outside the ring from the C-terminal epitope (Figure 4). Each ring

is likely comprised of hundreds, of TANGO1DIM molecules. For signal from the two different epito-

pes to appear normal, most molecules must be constrained in the correct orientation, probably by

the combined effects of other proteins at the site including COPII components and other TANGO1

family proteins.

It is possible that the recruitment/stabilisation of TANGO1 at a region of defined saddle-like

shape will contribute partially to the retention of TANGO1 in the ER instead of accompanying cargo

to the next secretory compartment.

Do other proteins exhibit a similar pair of helices, and could this combination of helices represent

a general mechanism to sense or stabilise membrane curvature and modulate lipid diffusion at sites

of contact between two compartments? Proteins related to TANGO1 also have two adjacent mem-

brane helices; an alternatively spliced short variant of TANGO1 (TANGO1-short) lacks lumenal

domains, but still has two helices though its IM helix has a different sequence. The TANGO1-like

protein TALI (or MIA2) also has two membrane helices and it too is a single-pass transmembrane

protein. Interestingly, a recent study described another single-pass transmembrane protein

TMEM131 with two adjacent predicted membrane helices, which functions at the interface of two

compartments. Again one of these helices must span the membrane, while the other is likely

inserted into one leaflet of a compartment membrane (Zhang et al., 2020).

Raote et al. eLife 2020;9:e57822. DOI: https://doi.org/10.7554/eLife.57822 9 of 18

Research advance Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.57822


In sum, TANGO1 through its various parts select and bind cargoes like the procollagens in the

lumen, and interacts with coats and other cytoplasmic components that tether and transiently fuse

ERES to ERGIC or the cis-Golgi (in cells that lack an ERGIC). The transmembrane helices in TANGO1

assist in its alignment into a ring to prevent membrane protein and lipid mixing during the transient

coupling of these two secretory compartments. This transient pore or tunnel thus allows cargo

movement while retaining compartmental specificity.

Materials and methods

Cell culture and transfection
HeLa cells were grown at 37˚C with 5% CO2 in complete DMEM with 10% FBS unless otherwise

stated. Plasmids were transfected in HeLa cells with TransIT-HeLa MONSTER (Mirus Bio LLC) or Lipo-

fectamine 3000 Transfection Reagent (Thermo Fisher Scientific) according to the manufacturer’s pro-

tocols. All cells in culture were tested every month to confirm they were clear of contamination by

mycoplasma.

Molecular biology
All molecular cloning, of constructs with TANGO1, was carried out using MAX Efficiency Stbl2 Com-

petent Cells (Thermo Fisher Scientific), following manufacturer’s instructions.

Antibodies
The following antibodies were used procollagen VII (rabbit anti–human [Abcam]; mouse anti–human

[Sigma-Aldrich]), Sec31A (mouse anti–human; BD), TANGO1 (rabbit anti–human; Sigma-Aldrich),

sec16A (rabbit anti-human; Sigma-Aldrich), calreticulin (goat anti–human; Enzo Life Sciences), HA

(mouse; BioLegend), TGN46 (sheep polyclonal, Bio-Rad), HA (mouse monoclonal, BioLegend; rat

monoclonal BioLegend). Mounting media used in confocal and STED microscopy were either Vecta-

shield (Vector Laboratories) or ProLong (Thermo Fisher Scientific, Waltham, Massachusetts).

Protein expression
Proteins were purified as previously described (Ernst et al., 2018). In brief, Plasmid encoding for

FLAG-tagged TM or IM-TM were transfected into EXPI293F cells according to the manufacturer

(Thermo Fisher), and incubated at 37˚C, 8% CO2 for 48 hr, pelleted, and resuspended in 50 mM

HEPES/KOH pH 7.3, 175 mM NaCl, 5 mM EDTA, 1 mM PMSF, 1 mM TCEP, protease inhibitor cock-

tail, and 8% (v/v) TX-100. After a brief microtip sonication, the lysate was placed rotating at 4˚C for 3

hr. After centrifugation of the cell debris, the lysate was incubated with FLAG-affinity resin for 2 hr at

4˚C. The resin was added to a column, settled, and washed three times with 50 mM HEPES/KOH pH

7.3, 175 mM NaCl, 5 mM EDTA, 50 mM n-Octyl-b-D-glucopyranoside (OG), and proteinase inhibitor

(Roche). Finally, the proteins were eluted by adding 125 ng/ml FLAG peptide to the OG-containing

buffer (Sigma-Aldrich) and incubating the beads for 30 min per round of elution. Eluates were ana-

lysed on 4–20% Bis-Tris gradient gels, stained with Coomassie, and analysed on a LI-COR Odyssey

infrared scanner.

Giant unilamellar vesicle (GUV) formation
The GUVs contained 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC, Avanti Polar Lipids,

product #850457C), 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[biotinyl(polyethylene gly-

col)�2000] (DSPE-PEG2000-Biotin, Avanti Polar Lipids, product # 880129C) and 1,2-Dioleoyl-sn-glyc-

ero-3-phosphoethanolamine were pro-Atto-647N (ATTO-647N-DOPE, Atto-tec) at a ratio 94.9:5:0.1

mol/mol. The first step was to prepare proteo-liposomes. 0.8 mmol of the lipid mixture (POPC:DSPE-

PEG-biot:DOPE-Atto647N; 95: 5: 0.1) was deposited in a test tube and dried by nitrogen flow fol-

lowed by desiccation for 30 min. 50 ml of either the TM or the IM-TM peptide were added to the

tube and slowly vortexed at room temperature for 15 min to resuspend the lipids. 150 ml of 10 mM

HEPES pH 7.4, 100 mM KCl buffer (190 mOsm) was then added to the tube while vortexing to

ensure homogeneous mixing. This buffer addition formed proteo-liposomes by diluting OG below

its micellar critical concentration (initial OG concentration: 50 mM, final concentration: 12.5 mM,

CMC ~ 23 mM). The solution was then injected in a dialysis cassette, which was subsequently placed
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in a large container with 4 l of 10 mM HEPES pH 7.4, 100 mM KCl buffer (190 mOsm). The container

was placed in a cold room and the buffer stirred overnight. This dialysis ensured optimum removal

of OG from the proteo-liposomes, which were subsequently transferred in a 500 ml microcentrifuge

tube.

Guvs were produced using the osmotic shock method (Motta et al., 2015). In brief, a 2 ml drop

of the proteo-liposomes was deposited on a MatTek dish (MatTek Corporation) and left to dry at

room temperature. It was then rehydrated with a 2 ml water drop. The osmotic difference between

the inside of the proteo-liposomes and the water drop immediately popped them and they resealed

in a larger structure. The drying/rehydration cycle was repeated three more times to produce larger

and more unilamellar proteo-GUVs (hereinafter called GUVs). The water drop was 6 ml for the third

and fourth rehydration. After the last rehydration, water drops were deposited at the edge of the

dish that was subsequently closed. This prevented any further evaporation while the GUVs are left to

grow for an additional 30 min (or more). Afterwards, the water drops were removed and the MatTek

dish was filled with the dialysis buffer diluted 2.5 times to slightly deflate the proteo-GUVs.

Quantification of protein to lipid ratio in the GUVs
We plotted fluorescence intensity along a straight line across the GUV and measured the intensities

of the two peaks corresponding to the membrane. We compared the intensities of lipids and GFP

from IM-TM and TM in the GUVs under the same conditions of microscope objective, laser power

and gain. Measurements were carried out on eight different GUVs from four independent experi-

ments for IM-TM and three different GUVs from two independent experiments for TM. The protein

intensity can provide a very approximate value of the concentration using a separate calibration with

Atto488 dyes. We measured that Atto488 dyes are twice as bright as Alexa488 (Figure 5A) which

itself is twice as bright as EGFP (quantum yield and brightness). In addition, increasing the gain of

image by 100 leads to approximately a twofold increase in intensity. We made GUVs with various

concentrations of Atto488 (from 0.05% to 2% lipids) and observed them with 5% laser power and a

gain of 500. The result is a linear variation with Atto488 concentration (Figure 5B).

Using these calibration data and assuming a linear increase of the intensity with laser power, the

value of 92 for the intensity of IM-TM with 20% laser power and 1250 gain leads to one protein per

18,000 lipids. It corresponds to an average of one protein per 6300 nm2, that is a typical inter pro-

tein distance of 80 nm. With our experimental conditions and parameters, this density corresponds

to one protein per pixel at the pole of the GUVs, and 10 proteins per pixel at the equator of the

GUV (because of the vertical projection). This rough estimate seems realistic with regard to the low

intensity observed in our GUV experiments (see for instance the FRAP experiments described in the

Figure 2—figure supplement 1).

Calculation of the protein density:

92 � 2 � 2 � 5=ð20�Þ2:5 1250�500

100

� �

10768

 !

¼ 0:00056%

Note that we needed to go through Atto488 intermediate because this is a bright dye, commer-

cially available on lipids.

Tube formation, bleaching and recovery
MatTek dishes were modified to have two diametrically opposed openings in the wall so that quasi-

horizontal micropipettes can move downward and reach the bottom coverslip. After GUV formation,

the MatTek dish was placed on a Leica SP8 confocal microscope and ~10,000 streptavidin coated sil-

ica beads (2 mm, Bangs Laboratories) were added. A first micropipette (inner diameter ~4 mm) was

used to grab a proteo-GUV. A second one (inner diameter 1–2 mm) grabbed a bead. The aspiration

in both micropipettes was controlled by a standard hydrostatic pressure system (relative accuracy: 1

Pa, absolute accuracy: 5 Pa, aspiration range: 5 Pa to 3,000 Pa). The GUV were then placed facing

each other ~50 mm above the coverslip. The aspiration in the GUV was reduced to 5 Pa to lower the

surface tension. Then, the bead was brought in contact with the GUV for a few seconds to ensure

the formation of several streptavidin-biotin bonds. Upon separation of the bead from the GUV,

a ~ 100 mm long tube of membrane was pulled, setting two connecting regions of very different cur-

vature: the high curvature tube and the flat GUV membrane. The aspiration in the GUV micropipette
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was increased to the desired value and the system was left alone to relax for a couple of minutes.

We varied the aspiration between 5 Pa and 100 Pa, which in our geometry corresponds to tube

diameters between 200 nm and 50 nm. We did not observe any dependency of the fluorescence

recovery on the aspiration; hence this is not discussed in the results section.

A first picture of the tube was acquired to obtain the initial tube fluorescence intensity (i0). Then,

fluorescent lipids in the tube alone (not the GUV) were almost completely bleached by illumination

with a 647 He-Ne laser at maximum power for a few seconds. A second picture was immediately

acquired and the tube fluorescence intensity after bleaching was measured (ib). Finally, a third pic-

ture was taken after 6 min, which provided the final tube fluorescence intensity (i6). The recovery was

established as (i6 - ib)/(i0 - ib). We chose not to continuously monitor the fluorescence to avoid

bleaching the fluorescent lipids as they migrate from the GUV to the tube.

We used 6 min because we wanted to be close to the fluorescence recovery plateau. We also

wished to avoid spontaneous bleaching to have as accurate a measurement as possible and there-

fore acquired only one data point.

Diffusion time varies with the square of the typical dimension. Here we are working with 30 mm

tubes, hence it takes about 10 times longer to reach the recovery plateau compared to a 10 mm

experiment (size of a cell). Thus a recovery time of 30 s for 10 mm would take 5 min here.

Being more quantitative requires a better modeling of the geometry. Namely, the system of a

tube blocked by a bead is equivalent to two mirror images (Figure 6A). With boundary conditions at

t = 0 (Figure 6B):

Figure 5. Quantification of protein concentration. (A) Alexa488 and Atto488 intensities in solution at different

concentrations. (B) Atto488 lipid intensity increases linearly with concentration.
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The 1D diffusion equation, q�
qt
� D

q
2�
qx2

� ¼ 0, can then be resolved numerically. A plot of the position

of the mid recovery x1/2 is a good representation of the kinetics (Figure 6C).

x1/2 reaches the end of the tube at t1/2 ~ 0.38 ltube
2/D. The typical diffusion coefficient of a lipid in

free membrane is ~5 mm2/s for which t1/2 is slightly more than 1 min. Even if the diffusion coefficient

of the lipid is reduced five times (unlikely), 6 min would be sufficient to be close to the recovery pla-

teau. Hence, the choice of 6 min is a good compromise between an optimum recovery and a mini-

mal experimental risk (drift of the pipettes, rupture of the GUV, etc.).

FRAP-based quantification of protein diffusion in the GUV membrane:

Experiments were carried out using the protocol we previously described (Pincet et al., 2016). In

brief, a GUV is micromanipulated and positioned slightly above the coverslip so that lower pole is

positioned in the focal plane of the confocal microscope. A disk-shaped region of interest (ROI) with

a known diameter d is chosen at the pole of the GUV. A couple of ‘prebleach’ images are acquired

with the laser power adjusted at the minimum value providing an above-noise fluorescence signal

from the ROI with minimal intrinsic bleaching. The EGFP signal from the GUV is dim, attesting the

low protein concentration. This forced us to use high laser power, 20% of the maximum value and

maximum gain. One image with 100% power was sufficient to completely bleach the fluorescence

from the ROI. Then, recovery was recorded, typically at two images per second, at 20% of the laser

power. The recovery phase was monitored over ~15–20 s. The raw data are very noisy (blue data

points in Figure 2—figure supplement 1) but still display significant intrinsic bleaching, showing the

Figure 6. Time scales of lipid diffusion in the GUV-tube system. (A) Schematic of the system. (B) Schematic of

system under boundary conditions at time t = 0. (C) Kinetics of recovery.
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difficulty to adjust the laser power and obtain quantifiable measurements. To resolve this issue, we

performed the rolling average over three successive images (orange data points in Figure 2—figure

supplement 1). The data were normalized to one before bleach and 0 right after bleach. The result-

ing curve was fitted using the standard recovery behavior for diffusive species:

I tð Þ ¼ I¥ e
�2t

t þ J0
2t

t

� �

þ J1
2t

t

� �� �

Where J0 and J1 are the modified Bessel functions of order 0 and 1, I
¥
is the fluorescence at t=¥

and t is the characteristic diffusion time. The details of the calculation leading to Equation (1) are

provided by Soumpasis, 1983. Note that I
¥
is expected to be slightly below one when there is no

intrinsic bleaching because a few percent of the total GUV area are bleached. Because of the spon-

taneous bleaching, the fit was performed over the first ~5 s of the recovery phase. The diffusion

coefficient is equal to d2/(16t).

Immunofluorescence microscopy
Cells grown on coverslips were fixed with cold methanol for 8 min at �20˚C or 4% formaldehyde

(Ted Pella, Inc) for 15 min at room temperature. Cells fixed with formaldehyde were permeabilised

with 0.1% Triton in PBS and then incubated with blocking reagent (Roche) or 2–5% BSA for 30 min

at room temperature. Primary antibodies were diluted in blocking reagent or 2% BSA and incubated

overnight at 4˚C or at 37˚C for 1 hr. Secondary antibodies conjugated with Alexa Fluor 594, 488, or

647 were diluted in blocking reagent and incubated for 1 hr at room temperature.

Confocal images were taken with a TCS SP5 (63�, 1.4–0.6 NA, oil, HCX PL APO), TCS SP8 (63�,

1.4 NA, oil, HC PL APO CS2), all from Leica Microsystems, using Leica acquisition software. Lasers

and spectral detection bands were chosen for the optimal imaging of Alexa Fluor 488, 594, and 647

signals. Two-channel colocalization analysis was performed using ImageJ (National Institutes of

Health).

STED
STED images were taken on a TCS SP8 STED 3 � microscope (Leica Microsystems) on a DMI8 stand

using a 100 � 1.4 NA oil HCS2 PL APO objective and a pulsed supercontinuum light source (white

light laser). Images were acquired and deconvolved exactly as described before (Raote et al., 2017;

Raote et al., 2018). In all images acquired and presented here, a goat-anti mouse secondary anti-

body, coupled to Abberior 635 was used to visualise anti-HA antibody localisation, while secondary

antibody coupled to Alexa 594 was used to visualise the antibody targeted against the lumenal epi-

tope of TANGO1. Axial resolution were found to be ~60 nm for the Abberior 635 channel and 50

nm for the Alexa Fluor 594 channel as described before (Raote et al., 2017).
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Ishikawa Y, Ito S, Nagata K, Sakai LY, Bächinger HP. 2016. Intracellular mechanisms of molecular recognition and
sorting for transport of large extracellular matrix molecules. PNAS 113:E6036–E6044. DOI: https://doi.org/10.
1073/pnas.1609571113, PMID: 27679847

Itzhak DN, Tyanova S, Cox J, Borner GH. 2016. Global, quantitative and dynamic mapping of protein subcellular
localization. eLife 5 e16950. DOI: https://doi.org/10.7554/eLife.16950, PMID: 27278775

Raote et al. eLife 2020;9:e57822. DOI: https://doi.org/10.7554/eLife.57822 16 of 18

Research advance Cell Biology Structural Biology and Molecular Biophysics

https://doi.org/10.1126/science.aaa9555
https://doi.org/10.1126/science.aaa9555
http://www.ncbi.nlm.nih.gov/pubmed/26089517
https://doi.org/10.1083/jcb.135.1.19
http://www.ncbi.nlm.nih.gov/pubmed/8858160
https://doi.org/10.1016/j.devcel.2006.09.001
https://doi.org/10.1016/j.devcel.2006.09.001
http://www.ncbi.nlm.nih.gov/pubmed/17084359
https://doi.org/10.1083/jcb.151.3.507
http://www.ncbi.nlm.nih.gov/pubmed/11062253
https://doi.org/10.1111/j.1749-6632.1985.tb51156.x
https://doi.org/10.1111/j.1749-6632.1985.tb51156.x
http://www.ncbi.nlm.nih.gov/pubmed/3868959
https://doi.org/10.1101/cshperspect.a004648
http://www.ncbi.nlm.nih.gov/pubmed/21421916
https://doi.org/10.1146/annurev-biochem-051710-094912
http://www.ncbi.nlm.nih.gov/pubmed/22463692
https://doi.org/10.1016/j.devcel.2018.10.024
https://doi.org/10.1016/j.devcel.2018.10.024
http://www.ncbi.nlm.nih.gov/pubmed/30458139
https://doi.org/10.1038/emboj.2008.136
https://doi.org/10.1038/emboj.2008.136
https://doi.org/10.1083/jcb.201702135
https://doi.org/10.1083/jcb.201702135
https://doi.org/10.1016/S0955-0674(03)00078-4
http://www.ncbi.nlm.nih.gov/pubmed/12892777
https://doi.org/10.1146/annurev-cellbio-100913-013012
http://www.ncbi.nlm.nih.gov/pubmed/25150009
https://doi.org/10.1091/mbc.11.9.3013
http://www.ncbi.nlm.nih.gov/pubmed/10982397
https://doi.org/10.1038/nature13474
http://www.ncbi.nlm.nih.gov/pubmed/24899304
https://doi.org/10.1242/jcs.044032
http://www.ncbi.nlm.nih.gov/pubmed/19638414
http://www.ncbi.nlm.nih.gov/pubmed/19638414
https://doi.org/10.1038/s41467-018-06577-4
https://doi.org/10.1038/s41467-018-06577-4
http://www.ncbi.nlm.nih.gov/pubmed/30297805
https://doi.org/10.1016/j.ceb.2019.04.002
http://www.ncbi.nlm.nih.gov/pubmed/31125831
https://doi.org/10.1073/pnas.1609571113
https://doi.org/10.1073/pnas.1609571113
http://www.ncbi.nlm.nih.gov/pubmed/27679847
https://doi.org/10.7554/eLife.16950
http://www.ncbi.nlm.nih.gov/pubmed/27278775
https://doi.org/10.7554/eLife.57822
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