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Abstract We review aspects of the antibody response to SARS-CoV-2, the causative agent of

the COVID-19 pandemic. The topics we cover are relevant to immunotherapy with plasma from

recovered patients, monoclonal antibodies against the viral S-protein, and soluble forms of the

receptor for the virus, angiotensin converting enzyme 2. The development of vaccines against

SARS-CoV-2, an essential public health tool, will also be informed by an understanding of the

antibody response in infected patients. Although virus-neutralizing antibodies are likely to protect,

antibodies could potentially trigger immunopathogenic events in SARS-CoV-2-infected patients or

enhance infection. An awareness of these possibilities may benefit clinicians and the developers of

antibody-based therapies and vaccines.

Introduction
Passive immunization with plasma from patients who have seroconverted to and recovered from

infection with a pathogen has a long and generally successful history. It has been used extensively

against influenza virus and on a small scale during the 1995 and 2014–2015 Ebola epidemics

(Brown et al., 2018; Mupapa et al., 1999; Mair-Jenkins et al., 2015; Hung et al., 2011;

Luke et al., 2006). Purified polyclonal (sometimes referred to as polyvalent) immunoglobulin (Ig)

from convalescents has been administered prophylactically after exposure to infectious virus

(Young, 2019). In recent years, highly specific and often broadly active neutralizing monoclonal anti-

bodies (MAbs) have been developed against several viruses, as a more advanced substitute for

patient plasma (Caskey et al., 2019; Corti et al., 2016; Corti et al., 2017; Walker and Burton,

2018; Wec et al., 2019; Zheng et al., 2020). These methods are now being considered for treating

COVID-19, the disease caused by the SARS-CoV-2 coronavirus (Dhama et al., 2020; Jawhara, 2020;

Ju et al., 2020; Zhou and Zhao, 2020; Accorsi et al., 2020; Bloch et al., 2020; Sullivan and

Roback, 2020). Several reports describe apparent benefits, with no adverse side effects, when con-

valescent plasma was infused into patients with SARS-CoV-1 or SARS-CoV-2 infection (Table 1;

Cheng et al., 2005; Yeh et al., 2005; Soo et al., 2004; Shen et al., 2020; Duan et al., 2020;

Zhang et al., 2020; Ahn et al., 2020). The US Food and Drug Administration has recently approved

plasma immunotherapy for this purpose, and has outlined safety criteria (https://www.fda.gov/vac-

cines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recom-

mendations-investigational-covid-19-convalescent-plasma). To determine the efficacy of

convalescent plasma to treat COVID-19, the FDA has called for randomized clinical trials and encour-

aged investigational new drug applications (Bloch et al., 2020; Sullivan and Roback, 2020). Here,

we review aspects of the antibody response to SARS-CoV-2, which may be relevant to immunother-

apy with plasma or MAbs. A major goal of viral vaccine development is the induction of strong and

broadly active neutralizing antibodies (NAbs), and that goal applies also to SARS-CoV-2

(Dhama et al., 2020; Graham, 2020; Amanat and Krammer, 2020). The development of vaccines,
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an essential public health tool, will also be informed by an understanding of the antibody response

during SARS-CoV-2 infection.

Assays are now available for detecting IgA, IgM, and IgG specific for SARS-CoV-2 in patient

serum, that is to demonstrate seroconversion, and also for detecting NAbs (Amanat et al., 2020;

Wu et al., 2020). These techniques are rapidly evolving, and additional information on the antibody

response to CoV-2 infection is emerging almost daily. Analyses of how long predictably protective

titers are maintained are still lacking. They will be a priority once enough time has elapsed to allow

long-term studies.

The natural history of COVID-19 and some lessons from infections with the previous SARS corona-

virus (SARS-CoV-1) and the more distantly related MERS-CoV, including animal model studies, do

raise some concerns about NAb-based therapies and vaccines, warranting careful surveillance by

clinicians during human trials. Furthermore, certain approaches may minimize risks while preserving

the benefits of passive immunization for curing COVID-19.

Antibody-mediated neutralization of SARS-CoV-2
The entry of SARS-CoV-2 into cells is initiated by the interaction of the receptor-binding domain

(RBD) of the viral Spike (S) glycoprotein with the angiotensin converting enzyme-2 (ACE2), which

acts as a receptor for the virus on the target cell surface (Hoffmann et al., 2020; Ou et al., 2020).

The most potent NAbs are directed to the RBD and some may act by simply competing with the

receptor for binding to the S-protein. Antibodies to SARS-CoV-1 and MERS-CoV generally do not

cross-neutralize SARS-CoV-2; although cross-reactive antibodies are frequently detected in S-protein

ELISA (Ju et al., 2020; Wu et al., 2020; Ou et al., 2020; Chen et al., 2005; Quinlan et al., 2020;

Wrapp et al., 2020). Recently, however, the S-protein-specific NAb S309, isolated from memory B

cells of a patient who had recovered from CoV-1 infection in 2003, was shown to neutralize both

SARS-CoV-1 and �2 potently by ligating the RBD. Cryo-electron microscopy and binding assays

Table 1. Passive immunization with convalescent plasma (CP) during SARS-CoV-1 and SARS-CoV-2 infection.

Reference Virus Antibody source Number of patients Efficacy Safety

Cheng et al., 2005
SARS-CoV-1 CP

160–640 ml
Seropositive
titer range:
160–2,560

80 patients with SARS Better outcome with
plasma before
than after day 14

No immediate
adverse effects

Yeh et al., 2005
SARS-CoV-1 CP

500 ml
IF IgG titer
>640

3 hospital
workers with SARS

Drop within 24 hr
in viral load
from ~ 105 to < 1
RNA copies/ml

No significant
side effects

Soo et al., 2004
SARS-CoV-1 CP

Ab titers not
measured

19 (plasma) vs. 21
(methylprednisolone)
SARS patients

Faster release, lower
mortality with plasma
than comparator

No immediate
adverse effects

Shen et al., 2020
SARS-CoV-2 CP 400 ml

Ab binding
>1000
NAb > 40

5 COVID-19 patients Reduced viral load,
clinical improvement
Release of 3/5

None reported

Duan et al., 2020
SARS-CoV-2 CP 200 ml

NAb > 640
10 COVID-19 patients Virus undetectable

in 7/10
Varying clinical,
laboratory, radiological
improvements

No adverse
effects observed

Zhang et al., 2020
SARS-CoV-2 CP 200–2,400 ml

Ab not measured
4 COVID-19 patients Negative PCR

Pulmonological
improvements
Discharge of 3/4

No adverse
effects observed

Ahn et al., 2020
SARS-CoV-2 CP 2 � 250 ml

Binding IgG
detected by ELISA

2 COVID-19 patients Reduced sputum viral load
Radiological and
clinical improvements

No adverse
effects observed
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demonstrated that the conserved S309 epitope comprises glycans and that in spite of the specificity

of the Mab for the RBD, it does not interfere with ACE2 binding (Pinto et al., 2020).

The neutralizing potency of antibodies against the RBD may be determined not only by their own

affinity for the S-protein but also by the affinity of the latter for ACE2, at least when they act by a

competitive mechanism (Ju et al., 2020). In this context, it is notable that the SARS-CoV-2 S-protein

has a 4–20-fold higher affinity for ACE2 than its counterpart from SARS-CoV-1 (35, 37). Although

most NAbs to SARS-CoV-1 and �2 are directed to the RBD (Pinto et al., 2020; Coughlin et al.,

2007; Greenough et al., 2005; Sui et al., 2004; ter Meulen et al., 2006; van den Brink et al.,

2005; Zhu et al., 2007), some antibodies that recognize the SARS-CoV-1 S2 fragment can also neu-

tralize (Duan et al., 2005; Elshabrawy et al., 2012). In addition, antibodies to the ectodomain of

another surface-exposed SARS-CoV-1 protein, Orf3a, are also reported to have neutralizing activity,

while antibodies to the M and E proteins can potentiate neutralization (Akerström et al., 2006;

Buchholz et al., 2004). Whether SARS-CoV-2 is similar to SARS-CoV-1 in all these respects remains

to be determined. Nonetheless, passive and active immunization approaches to COVID-19 are gen-

erally focused on NAbs against the S1-protein.

The kinetics of NAb and other antibody responses in SARS-CoV
infection
The information on the antibody responses elicited in COVID-19 patients is growing fast, but none is

yet available about the longevity of the immunity. Data on SARS-CoV-1 infection may, however, be

informative in that respect. Surprisingly, the NAb response in patients who later succumbed to the

infection has been found to be faster than in those who recovered; in the patients who later died,

the titers had peaked around day 15 after the onset of symptoms, whereas similar titers and extents

of neutralization were reached only after day 20 in the patients who recovered (Zhang et al., 2006;

Ho et al., 2005). The NAb titers in the moribund patients declined or disappeared after the early

rise, as their conditions deteriorated towards death (Zhang et al., 2006). It is unknown whether this

titer loss reflects an inability to produce antibodies due to lymphocyte losses. As NAb titers rise,

however, viral loads decline, presumably because virus replication diminishes (Wölfel et al., 2020;

To et al., 2020). These findings do not exclude the possibility that the initial viral loads, before

NAbs emerged, were particularly high and stimulated stronger and earlier antibody responses in the

patients who subsequently became most severely affected.

In plasma collected from 175 patients who had recovered from mild COVID-19, NAb and S-bind-

ing-antibody titers correlated positively with age and CRP (C-reactive protein) levels, but negatively

with lymphocyte counts; and the NAbs did not cross-neutralize SARS-CoV-1 (Wu et al., 2020). Since

no severe cases were included and viral loads were not monitored, it is unclear what promoted the

NAb responses within the patient cohort in which antibody titers, age (range 16–85 years), lympho-

penia, and inflammation were associated. The positive correlation between NAb responses and age

contrasts with a general decline in the vigor of new B-cell responses in the elderly (Siegrist and Aspi-

nall, 2009), but raises the question whether the pre-response viral load was correlated with age,

which in turn correlates with disease severity. Other studies have shown higher binding-antibody

titers to the nucleocapsid protein N in patients who recovered than in those who did not (Wu et al.,

2020; Leung et al., 2004). Such antibodies to the N-protein, which is internal and thus not exposed

on the surface of the virion, completely lack neutralizing capacity but their production might reflect

the strength of T-helper cell responses (Klasse et al., 2012).

NAb immunotherapy against SARS-CoV-1 and SARS-CoV-2
Will passive immunization with plasma from convalescent patients be beneficial for treating COVID-

19? Anti-S antibodies seem to protect against lethal CoV challenge and clear the virus in mice and

ferrets (Du et al., 2008a; Du et al., 2007; Du et al., 2008b; Fett et al., 2013). In a small experi-

ment, SARS-CoV-2 infection reportedly protected against a second challenge of macaques, which

was attributed to the development of protective antibodies (Bao et al., 2020). The outcome of

human clinical trials will, of course, outweigh animal-model experiments.

No significant adverse reactions were noted when plasma with high NAb titers were given to

SARS-CoV-1 patients; benefits such as lower viral loads and earlier release from hospital were noted

in retrospective analyses (Cheng et al., 2005; Yeh et al., 2005; Soo et al., 2004; Table 1). Recently,
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five critically ill COVID-19 patients were transfused at 10–22 days post-admission with a pool of

plasma derived from five convalescent patients; the RBD-binding antibody endpoint titers in ELISA

were >1000, and the neutralization endpoint titers were >40 (Shen et al., 2020). All the patients

(36–65 years; three male, two female) were receiving mechanical ventilation. After plasma transfu-

sion, body temperatures normalized, while organ-failure and respiratory-function scores improved to

various extents. Nasopharyngeal viral loads decreased and became undetectable within 12 days in

all five patients, while SARS-CoV-2 ELISA and NAb titers increased, reflecting the antibody-content

of the transfused plasma. Thus, in this preliminary and necessarily uncontrolled case series of five

critically ill COVID-19 patients with acute respiratory distress syndrome (ARDS), the transfusion of

NAb-containing convalescent plasma was associated with improved clinical status (Shen et al.,

2020). A subsequent larger study yielded similar results: ten patients with severe COVID-19 received

200 mL of convalescent plasma obtained from recently recovered donors with NAb inhibitory-dilu-

tion factors > 640. Three days later, clinical, pulmonary-radiological, and laboratory parameters were

improved, the latter including oxyhemoglobin saturation, lymphocyte counts, and C-reactive protein

levels; viral loads in serum became undetectable in seven patients (Duan et al., 2020; see also addi-

tional smaller studies in Table 1). Overall, these studies showed plasma transfusion to be well toler-

ated. Although beneficial effects were reported, they could not be proven because the studies were

not controlled and included other antiviral interventions.

Can antibodies contribute to SARS pathogenesis?
Strategies for passive and active immunization to combat and prevent SARS-CoV-2 infection should

take into account the pathogenesis of COVID-19, which can lead to death. The inflammatory

response to SARS-CoV-2 is thought to drive or at least exacerbate the disease process, particularly

during the second week after infection becomes symptomatic. How may these immune responses

that modulate pathogenesis be affected by NAbs?

The lethal coronaviruses cause fatal acute lung injury (ALI) by driving hypercytokinemia and

aggressive inflammation through incompletely understood mechanisms. In macaque models of

SARS-CoV-1 infection and passive or active immunization, IgG specific for the S-protein was

reported to exacerbate ALI by counteracting inflammation-resolving responses, abrogating wound-

healing, promoting monocyte chemoattractant peptide-1 (MCP-1) and interleukin-8 (IL-8) produc-

tion, and increasing proinflammatory monocyte and macrophage recruitment (Liu et al., 2019). Like-

wise, in human patients who died of SARS-CoV-1 infection, pulmonary proinflammatory

macrophages accumulated in the lungs, whereas wound-healing macrophages were absent

(Liu et al., 2019). Moreover, two observations noted above raise questions about the causal rela-

tionship between antibodies and severity of infection: NAb responses were faster in the patients

who later died than in those who recovered (Zhang et al., 2006; Ho et al., 2005; Liu et al., 2019),

and older patients who had recovered from mild COVID-19, had significantly stronger NAb and

S-protein-binding antibody responses than younger ones, whereas higher age is a major risk factor

for lethal COVID-19 (Wu et al., 2020).

In vitro, sera from subsequently deceased patients enhanced SARS-CoV-1 induced MCP-1 and IL-

8 production by human monocyte–derived wound-healing macrophages, whereas blockade of the

FcgR receptor reduced these effects (Liu et al., 2019). One must be prudent when extrapolating

from a macaque model of SARS-CoV-1 infection to human COVID-19 patients, but the antibody

response to these lethal coronaviruses might play a role in disease progression, perhaps by forma-

tion of immune complexes, and by promoting macrophage infiltration and sustained inflammation.

We hypothesize that there may be a causal link between seroconversion and the rapid deterioration

that can take place in the second week after the first symptoms, but this remains to be established.

Other reports suggest that anti-S and other CoV-specific antibodies have pathogenic effects in

animal models. Thus, multiple CoV vaccines were associated with an increase in eosinophilic proin-

flammatory pulmonary responses upon challenge of the immunized animals (Bolles et al., 2011;

Honda-Okubo et al., 2015; Iwata-Yoshikawa et al., 2014). Previous SARS-CoV-1 infection limited

virus replication in African green monkeys but not lung inflammation, when the animals were re-chal-

lenged with the same virus (Clay et al., 2012). It has not been determined which factors, such as

viral dose and the extent of the innate and adaptive immune responses, yield these problematic

effects. A particularly important knowledge gap is whether certain specificities and other properties

of antibodies are responsible.
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Pre-existing serum antibodies against influenza antigens were consistently associated with severe

illness in patients during the 2009 influenza A H1N1 pandemic (To et al., 2012; Monsalvo et al.,

2011). Of note is that those antibodies did not neutralize influenza virus (To et al., 2012) and that

immune complex formation was implicated as a pathogenic trigger (Monsalvo et al., 2011).

Whether these observations are linked to the findings reported by Liu et al. remains to be seen

(Liu et al., 2019).

Antibody-dependent enhancement of infection (ADE)
Antibodies can also exacerbate viral infection by different mechanisms that have long been

described (Halstead, 1982). In the vaccine context, infection by alpha- and flaviviruses (such as Den-

gue and Zika viruses) is enhanced when the antibody occupancy on the virion-surface epitopes falls

below a critical threshold (Pierson and Diamond, 2015). This is the stoichiometric condition of an

Fc-receptor-dependent form of ADE: the same antibodies that mediate ADE can neutralize and pro-

tect at higher occupancies on virions; alternatively, non-NAbs binding to epitopes exposed on the

virion surface to antigens that are not functional for mediating entry may confer ADE (Pierson and

Diamond, 2015; Klasse, 2014). The in vitro observations of ADE seem to account for the unfortu-

nate outcome of recent Dengue vaccine trials with examples of worsened disease post-infection

(Hurtado-Monzón et al., 2020). ADE has been reported in the coronavirus literature, although most

studies do not suggest that it will be as problematic as for alpha- and flaviviruses (Jaume et al.,

2011; Kam et al., 2007; Peeples, 2020; Wan et al., 2020; Wang et al., 2014; Wang et al., 2016;

Diamond and Pierson, 2020; de Alwis et al., 2020; Burton and Walker, 2020). An exception is a

study of vaccinia-vectored immunization of kittens with the S protein of the coronavirus feline infec-

tious peritonitis virus. The vaccine induced NAbs poorly. After challenge with the infectious virus,

deaths occurred sooner in the S-protein-vaccine group than in the vaccinia-only control group

(Diamond and Pierson, 2020; Vennema et al., 1990).

Particular problems of ADE could arise in the face of an ongoing epidemic through NAbs at sub-

protective levels, whether after incomplete vaccination courses or with poor and rapidly declining

vaccine responses, as well as after passive immunization because of insufficient efficacy of NAbs in

plasma or in purified polyclonal Ig and of MAbs.

One recent report described an unusual mechanism of MERS-CoV-infection enhancement in vitro,

whereby the antibody binding to the S protein RBD promoted endocytic uptake by engaging with

an Fc-receptor and triggered fusion by inducing a conformational change (Jaume et al., 2011). It

augurs well for vaccine development, however, that a SARS-CoV-2 RBD used as an immunogen eli-

cited strong NAb responses in rats, without any ADE (Quinlan et al., 2020). These topics will, no

doubt, be investigated thoroughly as much-needed SARS-CoV-2 vaccines undergo pre-clinical and

clinical testing.

Possible improvements to immunotherapy
How could therapeutic interventions be improved so as to preserve the capacity of the infused

NAbs to reduce virus replication while preventing the possible induction of fatal ALI through promo-

tion of IL-8 and MCP-1 production and inflammatory macrophage accumulation? One precaution

would be to administer NAbs with Fc deletions. In principle, this could be accomplished by enzy-

matic treatment of polyclonal IgGs purified from plasma to generate bivalent F(ab’)two fragments.

But in practice this would probably be too onerous. More feasible is the genetic engineering of neu-

tralizing MAbs to eliminate the ability of the Fc-domains to bind activating FcR:s. Although such

mutations would also eliminate potentially beneficial Fc-mediated effects such as ADCC, there is no

evidence that these effector functions play a role in reducing viral load. For that goal, virus neutrali-

zation may be necessary and sufficient, at least during the COVID-19 acute phase.

An alternative neutralizing intervention, which eliminates some risks associated with polyclonal

and monoclonal antibodies, is the use of a soluble, recombinant form of the ACE2 receptor, which is

potent (nM range) and effective (depending on target cells) at blocking SARS-CoV-2 infection in vitro

(Lei et al., 2020). Since the SARS-CoV-2 S-protein has a 4–20-fold higher affinity than the SARS-

CoV-1 S-protein for ACE2, it may be more sensitive to this particular intervention, at least under

some conditions of infection (Wrapp et al., 2020; Walls et al., 2020). Other advantages of these

constructs are their potency and potential breadth of action against new viral variants. But if Fc-
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receptor ligation is pathogenic (Liu et al., 2019), methods of increasing avidity other than fusing the

soluble receptor to the Fc portion of IgG could be explored. The effects on angiotensin activation

and its pharmacological inhibition may also need to be evaluated (Hoffmann et al., 2020;

Aronson and Ferner, 2020).

Conclusions
Plasma infusion as therapy for COVID-19 is a stop-gap measure that is now being used in a medical

emergency. Within the next year, effective drugs are likely to emerge, and they may well include

highly potent and specific MAbs to the SARS-CoV-2 S-protein. Animal experiments, particularly in

macaques, will be valuable for comparing the capacity of different monoclonal and polyclonal anti-

bodies, including combinations, or of recombinant receptor mimics, to clear SARS-CoV-2 infection.

Ideally, the intervention should permit or even promote the emergence of favorable innate

responses and the resolution of inflammation (Nathan and Ding, 2010). Given the urgency of the

COVID-19 pandemic, however, it may be impossible to perform such studies before human trials.

Furthermore, differences in Fc-receptor biology may invalidate some extrapolations of antibody

effects from macaques to humans (Bournazos and Ravetch, 2017). In these circumstances, an

awareness of what has occurred in other viral infections, particularly with SARS-CoV-1, as well as

what is now being published on SARS-CoV-2, may guide both treatment strategies and the develop-

ment of antibody-based vaccines (Peeples, 2020; Tseng et al., 2012; Agrawal et al., 2016). Pro-

spective or retrospective analyses of how the binding-antibody and NAb titers of transfused plasmas

are associated with clinical improvements should also guide both MAb-based therapies and vaccine

evaluation. If apparently antibody-mediated adverse events do occur, they too should help to

improve these important public health measures against the COVID-19 pandemic.
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