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Abstract The hydrothermal vent tubeworm Riftia pachyptila hosts a single 16S rRNA phylotype

of intracellular sulfur-oxidizing symbionts, which vary considerably in cell morphology and exhibit a

remarkable degree of physiological diversity and redundancy, even in the same host. To elucidate

whether multiple metabolic routes are employed in the same cells or rather in distinct symbiont

subpopulations, we enriched symbionts according to cell size by density gradient centrifugation.

Metaproteomic analysis, microscopy, and flow cytometry strongly suggest that Riftia symbiont cells

of different sizes represent metabolically dissimilar stages of a physiological differentiation process:

While small symbionts actively divide and may establish cellular symbiont-host interaction, large

symbionts apparently do not divide, but still replicate DNA, leading to DNA endoreduplication.

Moreover, in large symbionts, carbon fixation and biomass production seem to be metabolic

priorities. We propose that this division of labor between smaller and larger symbionts benefits the

productivity of the symbiosis as a whole.

Introduction
The chemoautotrophic gammaproteobacterium Candidatus Endoriftia persephone, sulfur-oxidizing

endosymbiont of the deep-sea tubeworm Riftia pachyptila (here Riftia), provides all nutrition for its

gutless host (Cavanaugh et al., 1981; Felbeck, 1981; Hand, 1987; Robidart et al., 2008). Ca. E.

persephone (here Endoriftia) densely populates Riftia’s trophosome, a specialized organ in the

worm’s trunk, where the bacteria are housed intracellularly in host bacteriocytes (Hand, 1987). Here,

fueled by the oxidation of reduced sulfur compounds (mainly sulfide), the symbionts fix CO2 and

produce considerable amounts of biomass, which constitutes the host’s source of nutrition

(Cavanaugh et al., 1981; Felbeck et al., 1981; Childress et al., 1991; Goffredi et al., 1997a;
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Girguis and Childress, 2006). Riftia acquires these nutrients mainly by directly digesting parts of the

symbiont population (Hand, 1987; Boetius and Felbeck, 1995; Hinzke et al., 2019). In addition,

the symbionts possibly also actively secrete carbon compounds into the bacteriocytes (Felbeck and

Jarchow, 1998). Thus provided, Riftia grows rapidly and reaches nearly 2 m in body length

(Jones, 1981; Lutz et al., 1994; McClain et al., 2015), despite its lack of a digestive system. This

enormous productivity is underpinned by a multitude of symbiosis-specific adaptations of both host

and symbiont. These include host proteins involved in substrate transport from the hydrothermal

vent environment to the symbionts, such as ATPases and carbonic anhydrases for CO2 uptake and

conversion (Goffredi et al., 1997b; De Cian et al., 2003), and specialized extracellular hemoglobins

which simultaneously and reversibly bind sulfide and oxygen (Childress et al., 1984). Moreover,

symbiont cells in the highly vascularized trophosome contain globules of elemental sulfur, an inter-

mediate of sulfide oxidation (Bright and Sorgo, 2003; Pflugfelder et al., 2005). As trophosome sul-

fur content is positively correlated with sulfide concentrations in the surrounding water and

decreases in the absence of external sulfide (Childress et al., 1991; Robidart et al., 2011;

Scott et al., 2012), sulfur in the symbionts likely serves as an energy reserve for times of sulfide

deprivation.

Although the symbiont population consists of a single 16S rRNA phylotype (comprising one domi-

nating and several minor genotypes; Polzin et al., 2019), it was previously shown to exhibit remark-

able metabolic versatility and redundancy: As demonstrated by proteomic analyses, symbionts from

the same host animal expressed enzymes of two CO2 fixation pathways, the Calvin cycle and the

reverse tricarboxylic acid (rTCA) cycle, as well as enzymes for both glycogen generation and glyco-

gen degradation (Markert et al., 2007; Markert et al., 2011; Gardebrecht et al., 2012;

Hinzke et al., 2019). Moreover, proteins involved in utilization of hydrogen sulfide and thiosulfate as

energy sources were expressed simultaneously by the same symbiont population; as were proteins

for the use of nitrate and oxygen as electron acceptors (Markert et al., 2011). Based on these

observations, we hypothesized that individual, metabolically distinct symbiont subpopulations in the

trophosome may exist.

These presumptive subpopulations are likely congruent with symbionts of different cell sizes: Indi-

vidual Endoriftia cells exhibit pronounced morphological diversity, ranging from small rods to small

and large cocci in ultimate proximity to each other within the same host specimen (Hand, 1987;

Bright et al., 2000; Bright and Sorgo, 2003). In individual trophosome lobules, which measure

approximately 200–500 mm in diameter, the smallest, rod-shaped symbiont cells are located close to

the central blood vessel, whereas toward the lobule periphery, symbionts gradually increase in size

and become coccoid, before they are degraded in the outermost lobule zone. Only small Endoriftia

cells and the host bacteriocytes in which they reside appear to undergo cell division, indicating that

small and large symbionts belong to a common cell cycle (Bright et al., 2000; Bright and Sorgo,

2003). Previous microscopy-based studies indicated that small and large Riftia symbionts differ not

only with regard to their frequency of cell division, but also with regard to carbon incorporation

rates, amount of stored glycogen, and area of sulfur storage vesicles (Bright et al., 2000;

Sorgo et al., 2002; Bright and Sorgo, 2003; Pflugfelder et al., 2005). This suggests that individual

cell sizes may indeed have dissimilar metabolic properties.

In this study, we aimed to analyze and compare the metabolic profiles of individual Riftia symbi-

ont subpopulations. Unlike previous molecular analyses that studied the uncultured Riftia symbiont’s

metabolic capabilities on the population level in a mixture of all cell sizes (e.g. Markert et al., 2007;

Markert et al., 2011; Gardebrecht et al., 2012), precluding comparisons between putative subpo-

pulations, we used a more sensitive approach. We enriched Endoriftia cells of different sizes by gra-

dient centrifugation of trophosome tissue homogenate and subjected these enriched gradient

fractions to separate metaproteomic analyses. Statistical evaluation using clustering and random for-

ests allowed us to deduce cell size-dependent differences in protein abundance and metabolic func-

tions. To assess whether these differences might be influenced by naturally occurring variations in

energy supply, we conducted our analyses with symbionts from both sulfur-rich and sulfur-depleted

trophosomes. Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH), trans-

mission electron microscopy (TEM), hybridization chain reaction (HCR)-FISH analyses, and flow

cytometry complemented these experiments. Our results suggest a division of labor between differ-

ent developmental stages of the symbiont, which leads to remarkable physiological heterogeneity

within the symbiont population.
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Results

Enrichment of individual symbiont cell sizes by gradient centrifugation
Our rate-zonal gradient centrifugation approach allowed us to enrich distinct symbiont cell sizes

from Riftia trophosome tissue. Based on CARD-FISH microscopy, we defined four size ranges (Fig-

ure 1): very small symbiont cells (�2.0 –<3.9 mm diameter), small (�3.9 –<5.3 mm), medium (�5.3 –

<6.8 mm), and large symbiont cells (�6.8–20.0 mm; see also Appendix section A). For subsequent

comparative metaproteomic analyses, we chose those gradient fractions that were most enriched in

one of these cell size ranges. In the following, these four gradient fractions are referred to as XS

(containing the highest percentage of very small symbiont cells) to L (containing the highest percent-

age of large cells). The enrichment procedure was highly reproducible, particularly for symbionts iso-

lated from sulfur-rich trophosome tissue (Figure 1).

Symbiont DNA quantification
Flow cytometry and fluorescence-activated cell sorting (FACS) indicated that DNA content in large

Riftia symbionts is up to 10-fold higher compared to small symbionts. To identify distinguishable

bacterial cell populations, we examined Syto9-stained cells in Riftia trophosome homogenate and in

gradient fractions from the upper and lower parts of the gradient (enriched in smaller and larger

symbionts, respectively) with regard to their light scattering properties. Forward scatter (FSC) and

side scatter (SSC) usually correlate with cell size and cell granularity, respectively (Bouvier et al.,

2001; Tracy et al., 2010). Amongst a number of particle groups with different properties (see also

Appendix section C), we found two populations, 1 and 2, which were abundantly detected in non-

enriched trophosome homogenate, but showed very dissimilar frequencies in fractions enriched in

larger or smaller symbionts (Figure 2, Figure 2—figure supplement 1): While population 1, which

exhibited relatively lower FSC and SSC signals (indicative of smaller cell size and lower cell complex-

ity), was highly abundant in fractions enriched in smaller symbionts, this population was notably less

prominent in fractions enriched in larger symbionts. Simultaneously, population 2, which gave higher

FSC and SSC signals (indicative of larger cell size and higher complexity), was highly abundant in

fractions enriched in larger symbionts but nearly absent in gradient fractions enriched in smaller sym-

bionts. This suggests that populations 1 and 2 consist of smaller and larger symbionts, respectively.

This assumption was verified by FACS-separation of both populations from trophosome homoge-

nate, and examination of the sorted cell suspensions by fluorescence microscopy along with

unsorted enriched gradient fractions and homogenate samples for reference (Figure 2—figure sup-

plement 1). For quantification of DNA in smaller and larger symbionts, we compared median fluo-

rescence intensities (MFI) per particle between populations 1 and 2 in non-enriched homogenate

and in enriched gradient fractions. In all sample types, MFI per particle was notably lower in popula-

tion 1 (between 186 and 1994 relative fluorescence units, rfu) than in population 2 (2,712–10,723

rfu). On average, MFI was 9.7-fold higher in population 2 than in population 1 (Supplementary file

6).

Protein identifications and relative protein abundance
We identified a total of 1946 symbiont proteins across all sample types, including the four gradient

fractions XS – L and non-enriched homogenate from both sulfur-rich and sulfur-depleted Riftia speci-

mens (Appendix 1—table 2). Our sample fractionation by gradient centrifugation thus facilitated

detection of around 60% of the symbiont’s theoretical proteome, which encompasses 3182 proteins

in PRJNA60889, and yielded substantially higher symbiont protein identification rates than non-

enriched trophosome homogenate samples alone (1223 total symbiont protein identifications). After

stringent filtering and normalization, a subset of 1212 symbiont proteins from gradient fractions XS

– L was included in statistical analysis using abundance profile clustering and random forests

(Supplementary file 2). A total of 465 proteins showed significant differences in relative abundance

(Appendix 1—figure 1; note that the term ‘significant’ denominates trends that were consistent

across all replicates in the context of our statistical approach). In Figure 3 and

Supplementary file 2, proteins that showed such significant changes in relative abundance are

marked with asterisks. Of all proteins with significant abundance changes, 56% (261 proteins)
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followed a clear, continuous abundance trend from fraction XS to L or vice versa, that is, protein

abundance increased or decreased with increasing symbiont cell size (Supplementary file 2).

In our comparison of energy-rich (S-rich) and energy-depleted (S-depleted) gradient fractions,

very few proteins were detected exclusively in sulfur-rich samples (61 of 1212 proteins) or only in sul-

fur-depleted samples (77 proteins). The majority of symbiont proteins showed very similar

Figure 1. CARD-FISH images of Riftia symbiont cells after density gradient centrifugation. (A) Catalyzed reporter deposition-fluorescence in situ

hybridization (CARD-FISH) images of Riftia symbiont cells after density gradient centrifugation of trophosome homogenate. After the enrichment

procedure, small bacterial cells had accumulated in the upper, less dense gradient fractions (top), whereas larger symbionts were enriched in the lower,

denser fractions (bottom). Left: DAPI staining, right: 16S rRNA signal. For better visibility, brightness and contrast were adjusted in all images. Between

300 and 1300 individual cells were measured per filter (average: 590). (B and C) Symbiont cell size distributions in individual gradient fractions. While all

cell size groups were roughly equally abundant in non-enriched trophosome homogenate (Hom), fraction XS had the highest percentage of symbiont

cells in the size range 2.0 mm - 3.9 mm, fraction S contained most symbiont cells of 3.9 mm – 5.3 mm, etc. Gradient centrifugation was performed using

four biological replicates (n = 4) of sulfur-rich trophosome tissue (B) and three biological replicates (n = 3) of sulfur-depleted trophosome tissue (C). For

an overview of which gradient fractions were chosen as fractions XS, S, M, and L in all samples see Supplementary file 1. Dots: individual % values,

triangles: average % values. Please note the different scaling of the y axes in B and C.
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abundance trends in sulfur-rich and sulfur-depleted samples. The following results will therefore not

discriminate between both sample types and subsequent figures will focus on S-rich samples (unless

otherwise stated). For a discussion of specific differences observed between symbionts from energy-

rich and energy-starved trophosome tissue, see Appendix section B.

Symbiont protein functions
Cell cycle, DNA topology, replication and repair
Proteins involved in the bacterial cell cycle and in DNA topology, -replication and -repair were differ-

entially expressed across fractions XS to L (Figure 3, Supplementary file 3a). While the cell division

protein FtsZ, as well as DNA gyrase and DNA-binding proteins decreased significantly in abundance

from fraction XS to L, abundance of other cell-division-related proteins (e.g. FtsE, MreB, division

inhibitor SlmA), and of proteins involved in DNA replication (e.g. DNA ligase, DNA polymerase) and

repair (e.g. UvrAB) increased. Interestingly, FtsZ abundance was very low in S-depleted fractions, so

that it was excluded from statistical analysis in these samples (see Appendix section B).

Figure 2. Flow-cytometry-based DNA quantification of Riftia symbionts. (A) Dot plot of forward scatter (FSC) and

side scatter (SSC), and histogram with fluorescence signal counts and fluorescence intensity (FI) per particle of a

gradient fraction enriched in smaller symbionts. (B) Gradient fraction enriched in larger symbionts. While cell

population 1 was more prominent in (A), population 2 was almost exclusively detected in (B), and both

populations were present in non-enriched trophosome homogenate (C), indicating that population 1 corresponds

to smaller symbionts, whereas population 2 corresponds to larger symbiont cells. Cells were stained with Syto9

and median fluorescence intensity (MFI) per particle at wave length 530/30 nm was used as a measure of cellular

DNA content (see Figure 2—figure supplement 1, Methods, and Supplementary file 6 for more details). This

analysis was based on two Riftia specimens with medium sulfur content.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Fluorescence microscopy and fluorescence-activated cell sorting (FACS) of Riftia symbiont

cells.
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Figure 3. Abundance trends of selected Endoriftia proteins of various functions in the four fractions XS to L. Trends are indicated by color shades from

light green (lowest protein abundance across all four fractions) to dark green (highest abundance across all four fractions; note that colors do not allow

comparison of protein abundance between proteins). Abundance values in the heat map are based on statistical evaluation of four biological replicates

with sulfur-rich trophosomes (for abundance trends of sulfur-depleted samples refer to Figure 3—figure supplement 1 and Appendix section B).

Proteins marked with asterisks show statistically significant trends, that is, differences that are consistent across all replicates in S-rich (left asterisk) or

S-depleted specimens (right asterisk), or both (two asterisks). White cells indicate that this protein was not detected in this sample or too low abundant

Figure 3 continued on next page
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Chaperones and stress proteins
Many chaperones and other proteins involved in protein folding, as well as oxidative stress-related

proteins were detected with significantly decreasing abundance from fraction XS to L, including

(amongst others) the proteases ClpB, ClpP, GroEL, the abundant alkyl hydroperoxide reductase

AhpC, superoxide dismutase SodB, and rubrerythrin (Figure 3, Supplementary file 3b).

Transport
Outer membrane proteins such as two porins and TolBC showed significant abundance differences

between the fractions, with highest relative abundance in fraction XS and lowest abundance in frac-

tions L. Porin EGV52132.1 (Por1) was the most abundant symbiont protein throughout all sample

types (Figure 3, Supplementary file 3c). On the other hand, all five detected tripartite ATP-inde-

pendent periplasmic (TRAP) transporter subunits and 10 out of 13 ABC transporter components

were relatively more abundant in fraction L (see also Appendix section D).

Central metabolism
Carbon metabolism: Several tricarboxylic acid (TCA) cycle enzymes (e.g. Icd, Mdh), as well as

enzymes of the pentose phosphate pathway (e.g. Rpe, RpiA) were detected with decreasing abun-

dances from fraction XS to L (Figure 3, Supplementary file 3d). In contrast, the key enzymes of the

two CO2-fixing pathways, Calvin cycle (ribulose-1.5-bisphosphate carboxylase/oxygenase, RubisCO,

CbbM) and rTCA cycle (ATP-citrate lyase, AclA; oxoglutarate oxidoreductase, KorAB), as well as

most of the gluconeogenesis-related (e.g. PckG), and glycogen metabolism-related enzymes (e.g.

GlgA, GlgP) increased in abundance from fraction XS to L. Relative stable isotope fingerprint (SIF)

values, that is, relative d13C values, generally also increased from fraction XS to L (see Appendix sec-

tions B and D for details).

Chemotrophy: Many sulfide oxidation-specific proteins, including both subunits of the abundant

key enzyme adenylylsulfate reductase AprAB, as well as proteins involved in sulfur storage (sulfur

globule proteins) had their highest abundance in fraction XS or S and their lowest abundance in frac-

tion M or L (Figure 3, Supplementary file 3e, Appendix 1—figure 4). In contrast, thiosulfate oxida-

tion-related proteins like SoxZ, SoxL, and other rhodanese-like proteins were detected with

significantly increasing abundance from fraction XS to fraction L. Four additional Sox proteins, that

is, SoxA, SoxB, SoxW, and SoxY, which were detected at very low abundances across the sample

types (and were therefore excluded from statistical analysis), were identified in fraction M and L, but

were completely absent from fraction XS (Supplementary file 2). Three proteins involved in energy

generation by hydrogen oxidation, HyaB, HypE and GlpC, were also detected with increasing abun-

dance from fraction XS to fraction L.

Nitrogen metabolism: Relative abundance of all three respiratory membrane-bound nitrate reduc-

tase subunits, NarGHI, decreased significantly from fraction XS to L, as did abundance of glutamine

synthetase GlnA (Figure 3, Supplementary file 3f, Appendix section E). On the other hand, various

other denitrification-related proteins (such as nitrite reductase NirS, nitrous oxide reductase NosZ,

and nitrate/nitrite signal transduction systems) and glutamate dehydrogenase GdhA showed rela-

tively higher abundances in fraction L (or M) than in fraction XS. The same trend was observed for

the periplasmic nitrate reductase components NapC and NapH. Moreover, NapG, another NapH

copy, the nitric oxide reductase subunit NorB, nitric oxide reductase activation protein NorQ, and

Figure 3 continued

to be included in statistical analyses. For an overview of all identified symbiont proteins and their relative abundances and for a summary of protein

abundance trends sorted by metabolic category see Supplementary files 2 and 3, respectively. Accession numbers refer to NCBI/JGI entries. SU:

subunit, DUF: domain of unknown function, ss: single-stranded, transcr: transcription, assoc: associated, dep: dependent, HP: hypothetical protein, put:

putative, oligopep: oligopeptide, ppc: periplasmic component, DHG: dehydrogenase: RubisCO: ribulose-1.5-bisphosphate carboxylase/oxygenase, Ox:

oxidase, OxRed: oxidoreductase, PEP: phosphoenolpyruvate, fcc: flavocytochrome c, rhd: rhodanese, resp: respiratory, cat: catalytic, Vit: vitamin and

cofactor metabolism.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Abundance trends of selected Endoriftia proteins of various functions in the four fractions XS to L in sulfur-rich (S-rich) and sulfur-

depleted (S-depl) Riftia specimens.
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the putative assimilatory nitrite reductase subunit NirB, whose overall abundances were too low to

include them in statistical analysis, were only detected in fraction M and/or L.

Other categories
Fifty (75%) of the 67 proteins involved in cofactor- and vitamin synthesis in S-rich samples had their

highest abundance in fraction M or L (Figure 3, Supplementary file 3g). Also, of the 33 identified

tRNA ligases and tRNA synthetases, 25 (75%) were most abundant in fraction M or L (in S-rich sam-

ples, Supplementary file 3h).

Potentially symbiosis-specific host proteins
Our density gradient fractionation procedure allowed not only for the identification of symbiont pro-

teins with differential abundance across different Endoriftia size ranges, but also enabled us to single

out host proteins that are potentially involved in direct interactions with the symbionts. As host pro-

teins that are attached to the symbionts are pulled down with the symbiont cells during gradient

centrifugation, these proteins should be significantly more abundant in symbiont-enriched fractions

compared to the non-enriched trophosome homogenate (Figure 4, Supplementary file 4). Besides

many ribosomal and mitochondrial host proteins, which were also enriched, putatively symbiont-

associated host proteins included the host’s peptidoglycan-recognition protein SC1a/b, beta car-

bonic anhydrase 1, digestive proteins involved in protein- and carbohydrate degradation

(for example, acid phosphatase, digestive proteases, and glycan degradation enzymes), as well as

hypoxia up-regulated proteins, a thiosulfate sulfurtransferase, and transmembrane protein 214-B.

Discussion

Symbiont growth and differentiation
Cell division plays a more prominent role in small symbionts
As indicated by the significant decrease in abundance of the cell division key protein FtsZ from frac-

tion XS to fraction L, small Endoriftia are more engaged in cell division than larger symbionts. In

accordance with the microscopy-based hypothesis of Bright and Sorgo, 2003, the smallest

Figure 4. Selected Riftia host proteins with significantly higher relative abundance in the symbiont-enriched

fractions XS and S compared to the non-enriched trophosome tissue homogenate (Hom). Relative abundance

trends are indicated by color shades from light blue (lowest protein abundance across the three sample types) to

dark blue (highest abundance), based on mean values from four biological replicates with sulfur-rich trophosome.

(Note that colors do not allow comparison of protein abundance between proteins). Accession numbers refer to

the combined host and symbiont database used for protein identification in this study (see

Materials and methods). For a complete list of host proteins with significantly higher abundance in fractions XS

and S (compared to Hom) see Supplementary file 4. This comparison includes only the symbiont-enriched

fractions XS and S, but not fractions M and L, because these latter fractions were more likely to be contaminated

by non-symbiosis-specific host proteins from host tissue fragments pelleted during centrifugation. PG:

peptidoglycan.
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Figure 5. Electron microscopy of Riftia trophosome tissue. (A) Electron micrograph of a cross-section through a Riftia trophosome lobule. Surrounding

an efferent central blood vessel (cB), small symbiont cells (SXS) are visible in bacteriocytes (i.e. symbiont-containing host cells) in the central lobule zone.

Symbiont cell size increases toward the periphery of the lobule (SL: large symbiont cells). In the outermost bacteriocytes, symbiont cells are digested by

host enzymes (S*). Bacteriocytes are interspersed with smaller blood vessels (B), which facilitate blood flow from the lobule periphery to the lobule

center (Felbeck and Turner, 1995). The image was assembled from 50 individual transmission electron micrographs of a trophosome section from a

Riftia specimen with sulfur-depleted trophosome. The full resolution image is available as Figure 5—figure supplement 1. Contrast and brightness

Figure 5 continued on next page
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symbionts, which are in situ localized in the trophosome lobule center (Figure 5), thus apparently

function as ‘stem cells’ of the symbiont population. During cell division, FtsZ forms the Z ring, to

which the other division-related proteins are successively recruited (reviewed in Weiss, 2004). Cell

size and cell division therefore likely depend on the amount of FtsZ available (Chien et al., 2012).

This correlation is, for example, also reflected by a decrease of FtsZ concentration during differentia-

tion of vegetative cells into non-dividing larger heterocysts in the cyanobacterium Anabaena

(Klint et al., 2007). (Although originally referring to eukaryotic cells, the term ‘differentiation’ is also

applied to bacteria with strongly varying morphologies, such as Rhizobia in legume root nodules

and heterocyst-forming cyanobacteria. We will therefore also use it in the following to describe the

development from small to large Endoriftia in this study.)

Interestingly, while FtsZ abundance decreased across fractions, many other proteins which inter-

act with FtsZ during cell division were detected with increasing abundance from fraction XS to L.

This indicates that these proteins are also involved in processes other than cell division, for example,

in determining cell shape and stabilization. ZapD, for example, is involved in FtsZ filament organiza-

tion, and its overexpression leads to cell filamentation (Durand-Heredia et al., 2012). DamX overex-

pression, too, was observed to induce filamentation in E. coli (Lyngstadaas et al., 1995), while

overexpression of the cell shape determination protein CcmA in E. coli and P. mirabilis lead to

enlarged, ellipsoidal cells (Hay et al., 1999), and FtsEX is required for cell elongation rather than cell

division in B. subtilis (Domı́nguez-Cuevas et al., 2013). The actin homolog MreB is pivotal for rod-

shape formation in bacteria and for cell stiffness in E. coli, could negatively regulate cell division, and

participates in chromosome segregation (Wachi and Matsuhashi, 1989; Kruse et al., 2006;

Wang et al., 2010, reviewed in Reimold et al., 2013). In large Endoriftia, these proteins might

therefore be involved in stabilizing growing symbiont cells. SlmA, which was only detected in frac-

tions M and L in our study, was shown to disassemble FtsZ polymers, thus acting as a cell division

inhibitor (Cho et al., 2011), which supports the idea of relatively less cell division in large Riftia sym-

bionts. Although Endoriftia‘s major cell division protein FtsZ was notably (1.75x) less abundant in

fraction L (compared to fraction XS), it was not completely absent. This may point to additional FtsZ

functions, besides cell division (as also suggested for Anabeana [Klint et al., 2007] and E. coli

[Thanedar and Margolin, 2004]).

Large symbionts have more genome copies and less compact
chromosomes
Endoriftia’s development into large, non-dividing (but still replicating) cells leads to endoreduplica-

tion cycles and an increase in genome copy number, as indicated by our flow cytometry analysis (Fig-

ure 2, Figure 2—figure supplement 1, Supplementary file 6). This observation is also in

agreement with earlier findings of Bright and Sorgo, 2003, who noted more than one chromatin

strand-containing area in large coccoid Riftia symbiont cells in electron microscopy images, whereas

small rods and cocci featured only one chromatin strand area. The idea of endoreduplication in

larger Riftia symbionts is additionally supported by the observation that large symbiont cells, which

apparently divide less frequently than smaller cells (see above), still actively replicate DNA, as indi-

cated by high abundances of DNA ligase and DNA polymerase III in fraction L. The observed

decreasing abundance of DNA gyrase GyrAB with increasing cell size additionally corroborates this

idea, as type II topoisomerases such as gyrase are not only involved in supercoiling and initiation of

DNA replication (Levine et al., 1998; Nöllmann et al., 2007), but also essential for decatenation of

newly replicated chromosomes in bacteria (Steck and Drlica, 1984; Guha et al., 2018). Moreover,

inhibition of topoisomerase II in eukaryotes leads to endoreduplication and polyploidy (Cortés and

Figure 5 continued

were adapted. (B) Cell division in small Riftia symbionts in the trophosome lobule center of a Riftia specimen with sulfur-rich trophosome. All

micrographs show the same dividing Endoriftia cell in three subsequent tissue sections, revealing that both daughter cells are still connected, but are

about to be separated (arrow). Scale bar: 1 mm. Despite thorough screening, we did not observe cell division in large Endoriftia cells in any of the TEM

sections. This corroborates the idea that small and large symbiont subpopulations are developmental stages of the same Endoriftia strain.

The online version of this article includes the following figure supplement(s) for figure 5:

Figure supplement 1. High-resolution TEM image of the trophosome lobule section shown in Figure 5.
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Pastor, 2003; Cortés et al., 2003). Polyploidy in thiotrophic symbionts was also observed in the

lucinid bivalve Codakia orbicularis, where larger symbiont cells contained more than four genome

copies, whereas smaller cells had only one genome copy (Caro et al., 2007), and in ectosymbionts

of Eubostrichus nematodes, in which up to 16 nucleoids per large symbiont cell were reported

(Polz et al., 1992; Pende et al., 2014). Moreover, also terminally differentiating Rhizobia undergo

Figure 6. Schematic drawing of Riftia symbiont cells inside the trophosome. (A) An adult tubeworm reaches 2 m in body length. Its symbiont-

containing organ, the trophosome (green), fills most of the body cavity (coelomic cavity), and is immersed in coelomic (non-vascular) blood (not shown).

(B) Close-up of the lobular trophosome tissue. (C) Single lobule (200–500 mm in diameter) with interior blood vessels (blood-filled spaces) and symbiont

cells visible. (D) Cross-section through a trophosome lobule (similar to that in Figure 5A) with small symbiont cells located in the center around an

efferent blood vessel. Symbiont cell size increases toward the lobule periphery, where the largest symbionts are digested by the host (curls). Blood flow

from lobule periphery to lobule center may cause gradients in nutrient availability. Based on the results of this study, the most striking characteristics of

small and large symbionts, which determine their respective roles in the symbiosis, are indicated. Note that this is a simplified illustration, in which the

various kinds of host cells (including their membranes, nuclei and organelles), as well as blood vessels or gonads that line the surface of the

trophosome were omitted for clarity’s sake. (Illustrations based on drawings, TEM images and descriptions by van der Land and Nørrevang, 1977;

Felbeck and Turner, 1995; Bright and Sorgo, 2003).
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endoreduplication cycles (Mergaert et al., 2006), and high genome copy numbers have been

reported for various bacterial insect symbionts, for example, of aphids, cockroaches, and sharp-

shooters (Komaki and Ishikawa, 2000; López-Sánchez et al., 2008; Woyke et al., 2010), suggest-

ing that polyploidy is common in symbiotic bacteria. Possibly, enlarged polyploid cells might

increase the metabolic activity and/or fitness of the Endoriftia cells. In E. coli, an mreB point muta-

tion led to increased cell size, which gave the cells a measurable fitness advantage in presence of

certain carbon sources (Monds et al., 2014). Moreover, polyploidy was suggested to provide evolu-

tionary advantages like a low mutation rate and resistance toward DNA-damaging conditions in hal-

oarchaea (Zerulla and Soppa, 2014). In plants, endoreduplication is common and might increase

transcription and metabolic activity of the cells (Kondorosi and Kondorosi, 2004), leading to

enhanced productivity (Sattler et al., 2016). More generally, in symbiotic associations, where the

bacteria are stably and sufficiently provided with carbon and energy sources, the advantages of

polyploidy might be greater than the associated costs (Angert, 2012).

Higher genome copy numbers in large Riftia symbionts seem to be accompanied by a lower

degree of DNA condensation, compared to small Endoriftia, as indicated by notably lower abundan-

ces of the histone-like DNA-binding proteins HU (HupB) and integration host factor (IHF, IhfAB), and

of DNA gyrase GyrAB in fraction L, compared to XS. Bacterial histone-like DNA-binding proteins like

HU and IHF structure the chromosome and modulate the degree of supercoiling (reviewed in

Dorman and Deighan, 2003). In E. coli, absence of HU leads to unfolding of the chromosome and

to cell filamentation (Dri et al., 1991), and unspecific DNA-binding by IHF was shown to contribute

to DNA compaction (Ali et al., 2001). Moreover, bacterial DNA gyrase was also suggested to be

involved in nucleoid compaction in E. coli (Stuger et al., 2002). Co-occurrence of endoreduplication

and decondensated DNA is also known in plant cells (Kondorosi and Kondorosi, 2004). As decon-

densation occurs in actively transcribed DNA regions (Wang et al., 2015), it might facilitate protein

synthesis and metabolic activity in large Endoriftia.

Since DNA condensation may function as a DNA protection mechanism (Ohniwa et al., 2006;

Mukherjee et al., 2008; Yoshikawa et al., 2008; Takata et al., 2013), less condensed DNA might

be more prone to various kinds of damage and require the enhanced expression of DNA repair

mechanisms. This would explain the observed higher abundance of several DNA repair proteins in

fraction L, which was enriched in larger, older symbiont cells with (presumably) larger quantities of

less condensed DNA, compared to the smaller symbiont cells. RadA, RdgC, RecCN, UvrAB, and

Mfd, which are known to be involved in DNA recombination and repair in many bacteria (Kowalczy-

kowski, 2000; Beam et al., 2002; Tessmer et al., 2005; Drees et al., 2006; Truglio et al., 2006;

Deaconescu et al., 2007), may compensate for this elevated vulnerability. In eukaryotes, chromatin

decondensation was shown to facilitate access of the DNA damage response to double-strand

breaks, thus allowing for more efficient repair (Murga et al., 2007).

Small symbionts may be exposed to elevated stress levels
Small symbionts might experience cell-division-related or host-induced stress in the early phase of

their cell cycle, as indicated by elevated levels of symbiont chaperones and stress response proteins,

as well as of reactive oxygen species (ROS) scavengers in fraction XS. This is in line with observations

in Caulobacter crescendus, where the DnaK-DnaJ and GroEL-GroES systems are crucial for cell divi-

sion (Susin et al., 2006), and in E. coli, where the protease ClpXP and the RNA chaperone Hfq are

probably involved in cell division as well (Camberg et al., 2009; Zambrano et al., 2009). Interest-

ingly, like the putative Endoriftia ‘stem cells’, eukaryotic embryonic stem cells also feature high levels

of chaperone expression and stress tolerance (Prinsloo et al., 2009). Although the reason for this

congruence is yet unknown, one might speculate that cell-division-related processes require ele-

vated levels of chaperones and stress proteins, for example, to ensure correct assembly of all parts

of the division machinery or (in case of intracellular bacteria) to counteract some sort of yet to be

determined host-induced stress.

Possibly, such host-induced stress may also involve the production of ROS in symbiont-containing

bacteriocytes, similar to animal and plant hosts, which generate ROS to defend themselves against

pathogenic bacteria (Heath, 2000; Lynch and Kuramitsu, 2000; D’Haeze and Holsters, 2004).

Small symbionts, which are relatively loosely packed in their host cell vesicles (Figure 5A) and have a

comparatively high surface-to-volume ratio, might be particularly exposed to this presumptive ROS
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stress, while larger symbionts, which are more tightly packed, may face lower ROS levels. This would

explain the observed higher abundance of the ROS scavengers rubrerythrin (Rbr2), superoxide dis-

mutase (SodB), and alkylhydroperoxide reductase (AhpC) in small symbionts. In line with this

assumption, a superoxide dismutase and also the chaperones ClpB, HtpG, and DnaK were sug-

gested to be involved in ROS protection in Serratia symbiotica (Renoz et al., 2017), and ClpB prote-

ase expression has been shown to increase during oxidative stress in the intracellular pathogen

Francisella tularensis (Twine et al., 2006).

Interestingly, we found no indications of a strong bacterial stress response in fraction L, indicating

that imminent digestion by the host poses no particular stress to the large symbionts. Possibly, bac-

terial degradation happens too fast to elicit a stress response, or a digestion-related stress response

is suppressed during symbiosis, either by the symbionts themselves or by the host via a yet to be

determined mechanism.

Host-microbe interactions may be particularly important in small Endoriftia
Abundant Endoriftia membrane proteins might play a key role in host interaction in small symbionts.

Particularly, the high and differential abundance of porin Sym EGV52132.1, the most abundant sym-

biont protein in all fractions, which was nearly three times more abundant in fraction XS

(11.7%orgNSAF) than in fraction L (4.0%orgNSAF), suggests that this protein may be of varying rela-

tive importance throughout the symbiont’s differentiation process. Porins are water-filled channels in

the outer membrane, through which small hydrophilic molecules can diffuse (Fernández and Han-

cock, 2012). In the oyster pathogen Vibrio splendidus, the porin OmpU serves as adhesin or invasin

and is involved in recognition by the host cell (Duperthuy et al., 2011), while in Neisseria gonor-

rhoeae, a porin inhibits phagocytosis by human immune cells (Mosleh et al., 1998; Lorenzen et al.,

2000). Interestingly, the phagocytosis-inhibiting action of N. gonorrhoeae porin apparently involves

interference with the host’s oxidative burst; that is, the porin allows the pathogen to evade killing by

host-produced ROS (Lorenzen et al., 2000). Although the exact function of Endoriftia porin has not

been elucidated yet, we suggest that it may have a similar function in resistance against host stress

or ROS. This would be in line with elevated levels of ROS scavengers in small Riftia symbionts (see

above). Porins are furthermore not only known to be involved in recognition by the host (e.g. in the

squid symbiont Vibrio fischeri, Nyholm et al., 2009), but were also shown to be involved in survival

in and communication with the host in other intracellular and pathogenic bacteria, rendering Vibrio

cholerae and Xenorhabdus nematophila more resistant against antimicrobial compounds

(Mathur and Waldor, 2004; van der Hoeven and Forst, 2009). As Riftia trophosome tissue has

antimicrobial effects (Klose et al., 2016), and considering that Riftia might employ histone-derived

antimicrobial peptides to modulate the symbiont’s cell division (Hinzke et al., 2019), Endoriftia

porin may enable the symbionts to reject antimicrobial compounds produced by the host. This

would be of particular importance for small symbionts, as it would ensure survival of the symbiont

‘stem cell’ subpopulation and sustain their division capability.

Besides porin, the symbiont’s outer membrane efflux pump TolC was also most abundant in frac-

tion XS, suggesting that it may play a similar role in host interaction or persistence. TolC is a versatile

export protein of Gram-negative bacteria, which interacts with different transporters of the cyto-

plasmic membrane to export proteins and drugs (reviewed in Koronakis et al., 2004). In Sinorhi-

zobium meliloti, TolC is apparently involved in establishing the symbiosis with legumes, possibly by

conferring increased stress resistance and by secreting symbiosis factors (Cosme et al., 2008),

whereas Erwinia chrysanthemi TolC enables re-emission of the antimicrobial compound berberine

and is thus essential for Erwinia growth in plant hosts (Barabote et al., 2003).

Microbe-host interactions with particular relevance in smaller Endoriftia may furthermore also be

mediated by chaperones and stress proteins, which were most abundant in fraction XS (see above).

Chaperones have been shown to play a role in host interaction and in intracellular survival in several

pathogenic and symbiotic bacteria. For example, DnaK appears to be essential for growth of Bru-

cella suis in phagocytes (Köhler et al., 1996), while HtpG seems to be involved in virulence and

intracellular survival of Leptospira (King et al., 2014), Salmonella (Verbrugghe et al., 2015), and

Edwardsiella tarda (Dang et al., 2011). Mutations in the post-transcriptional regulator hfq often lead

to reduced fitness and virulence in bacterial pathogens (reviewed in Chao and Vogel, 2010). More-

over, ClpB in Listeria is apparently specifically involved in virulence (Chastanet et al., 2004), as are
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ClpX and ClpP in Staphylococcus aureus (Frees et al., 2003). In the insect symbiont Wolbachia, HU

beta was suggested to directly interact with the host (Beckmann et al., 2013). Additional symbiont

proteins that may protect small Endoriftia from host interference, and particularly so in S-depleted

Riftia specimens, included an ankyrin protein and an FK506-binding protein (see Appendix section

B).

Interaction-specific host proteins
We detected a number of Riftia proteins which were co-enriched with symbiont cells in fractions XS

and/or S and may therefore potentially be ‘symbiosis-specific’. Although we cannot entirely exclude

the possibility that non-symbiont-related host organelle-bound proteins may also have accumulated in

this fraction (e.g. the ribosomal and mitochondrial proteins we identified), it appears very likely that

the candidates discussed below may facilitate direct host-microbe interactions or enable the host to

provide optimal conditions for the symbiont. (1) Peptidoglycan-recognition proteins, for example, are

involved in innate immunity (Kang et al., 1998) and have previously been shown or suggested to par-

ticipate in symbiotic interactions (Troll et al., 2009; Wang et al., 2009; Royet et al., 2011;

Wippler et al., 2016). (2) Since oxygen concentrations in the trophosome might be comparatively low

(benefitting the microaerophilic symbionts; Hinzke et al., 2019), the hypoxia up-regulated Riftia pro-

teins we detected may present a protective adaptation of the host to these hypoxic conditions. In sup-

port of this idea, Hyou1 was shown to have a protective function during hypoxia in human cells

(Ozawa et al., 1999). (3) Moreover, enrichment of beta carbonic anhydrase 1, which interconverts

bicarbonate and CO2 (Goffredi et al., 1999; De Cian et al., 2003), suggests that this host protein

serves to optimally provide the symbionts with CO2 for fixation. (4) The host transmembrane protein

214-B (TMP214-B), which was exclusively detected in symbiont-enriched fractions (but not in tropho-

some homogenate) may be involved in cell death of symbiont-containing bacteriocytes by an apopto-

sis-related mechanism. This would be in line with our previous suggestion that apoptosis-related

proteins may play a role in symbiont and bacteriocyte cell death (Hinzke et al., 2019) and is further

supported by the fact that TMP214-B was shown to be involved in apoptosis caused by endoplasmic

reticulum stress (Li et al., 2013). (5), Finally, the detection of degradation proteins such as cathepsin Z,

legumain, glucoamylase 1, and lysosomal alpha-glucosidase in fractions XS and S may imply that the

host digests not only large symbiont cells in the degradative trophosome lobule zone (see Figure 5A),

but that small symbionts might also be exposed to host digestion (although we did not see any evi-

dence for this in the TEM images).

Metabolic diversity among symbiont size classes
Large symbionts focus on carbon fixation and biosynthesis
Highest individual abundances of various carbon fixation and biosynthesis-related enzymes as well as

highest overall abundances of all biosynthetic categories (including carbon-, amino acid-, lipid-,

nitrogen-, and cofactor metabolism; Supplementary file 5) in fraction L suggest that large Endoriftia

cells are relatively more engaged in the production of organic material than smaller symbiont cells.

In support of this idea, we (1) observed notably higher RubisCO mRNA signal intensity in large sym-

biont cells than in smaller Riftia symbionts in our HCR-FISH analysis (Appendix section D, Appen-

dix 1—figure 3). (2) Most cofactor- and vitamin metabolism-related proteins were more abundant in

fractions M and/or L than in fractions XS or S. Moreover, (3) higher abundances of glycogen-produc-

ing enzymes in fraction L suggest that large symbionts invest relatively more of their biosynthetic

capacities in storage of fixed carbon in the form of glycogen than smaller symbionts.

These observations concur with an autoradiographic study of Bright et al., 2000, who observed

highest 14C carbon incorporation in the Riftia trophosome lobule periphery and lowest short-term

incorporation in the lobule center, and with results of Sorgo et al., 2002, who noted a glycogen gra-

dient in the symbiont cells, with increasing glycogen density from the lobule center toward the

periphery, that is, toward larger symbiont cells. Interestingly, in addition to our above observation

that overall carbon fixation appears to play a more prominent role in larger symbionts, we also found

clear indications that individual contributions of the two autotrophic pathways differ notably

between symbionts of different sizes, as suggested by very dissimilar relative d13C values in our SIF

analysis (Appendix section D).
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A possible explanation for all these findings would be a substrate gradient caused by the direc-

tion of the blood flow from lobule periphery to lobule center (Felbeck and Turner, 1995; Figure 6,

Appendix section G), which may cause carbon concentrations to be higher around the largest sym-

bionts. While such biochemical gradients were initially suggested as the immediate cause of the sym-

bionts’ diverse morphology (Hand, 1987), subsequent studies instead proposed that the symbionts’

polymorphism as well as metabolic differences between them result from their cell cycle

(Sorgo et al., 2002; Bright and Sorgo, 2003). However, both options are not mutually exclusive,

but could actually complement each other, that is, different developmental symbiont stages could

face dissimilar substrate concentrations.

The putative concentration gradient, which was suggested to trigger Endoriftia’s differentiation

(Bright and Sorgo, 2003), may thus lead to differential availability of inorganic carbon (and other

substrates, see below), which in turn likely results in differential regulation of bacterial gene expres-

sion, such as highest abundance of CO2 incorporation enzymes in large symbionts. Large Riftia sym-

bionts thus presumably not only benefit from higher CO2 levels, but also have more biosynthetic

capacities at their disposal than small symbionts.

This facilitates a division of responsibilities between the symbiont subpopulations: Small Endorif-

tia invest a considerable part of their resources in cell division and the expression of putative host

interaction-related proteins that ensure survival of the ‘stem cell’ population (see above). In contrast,

large symbionts apparently divide less frequently and may be less endangered of host interference

(before they reach the degenerative lobule zone) and can thus allocate more energy to production

of organic material. Such a division of labor provides the combined advantage of multiple genome

copies with resulting increased transcription efficiency and productivity in large cells, and a focus on

cell division in small cells. At the same time, the respective disadvantages are avoided (large Endorif-

tia would need to invest much more resources in cell division and replication of their multiple

genome copies than small cells, while smaller Endoriftia could not produce as much biomass as large

symbionts). Increased metabolic efficiency as a consequence of specialized bacteria performing com-

plementary tasks has also been reported for different bacterial species and strains working together

in other symbioses (Zheng et al., 2019; Ankrah et al., 2020). In Riftia, the largest symbionts that

are digested at the trophosome lobule periphery are those with the highest nutritional value. They

carry not only abundant carbon but also contain plenty of N-rich biomolecules in their multiple

genome copies, and are likely easier to digest than smaller symbionts, due to their lower sulfur con-

tent (see below).

Small Endoriftia store more sulfur and are more involved in sulfide oxidation
Smaller symbionts produce relatively more sulfur globules for sulfur storage than larger symbiont

cells, as indicated by relatively higher abundance of sulfur globule proteins in fraction XS (Appen-

dix 1—figure 4). Enclosed in a proteinaceous envelope, Endoriftia’s sulfur globules contain elemen-

tal sulfur that is formed during sulfide oxidation (Wilmot and Vetter, 1990; Pflugfelder et al.,

2005; Markert et al., 2011). Higher numbers of these globules in small symbionts are in agreement

with observations of Hand, 1987, who noted more sulfur deposits in central (small) than in periph-

eral (large) Riftia symbionts. Although this finding was not supported by a subsequent study

(Pflugfelder et al., 2005), our results do point to different amounts of S storage in different Endorif-

tia subpopulations. Storing relatively more sulfur in small Endoriftia, but less in large symbionts

might aid symbiont digestion by the host (S-poor symbionts being less toxic compared to S-rich

cells), a strategy that was also suggested for the thiotrophic C. orbicularis symbiosis (Caro et al.,

2007). As shown for the free-living thiotrophic model bacterium Allochromatium vinosum, activation

of stored sulfur involves trafficking proteins such as TusA, which is involved in sulfur transfer to

DsrEFH and DsrC (Stockdreher et al., 2014). In our study, the highly abundant TusA, several DsrC

copies as well as DsrEFH were all detected with highest abundances in fraction XS, thus supporting

the idea of relatively more re-mobilization of sulfur and subsequent utilization of reduced sulfur com-

pounds in small Endoriftia. As the highly abundant adenylylsulfate reductase AprAB, the ATP-sulfury-

lase SopT, and sulfide dehydrogenase subunit FccB were also detected with higher abundances in

fractions XS or S than in M or L, one might conclude that sulfide oxidation itself also plays a more

prominent role in smaller symbionts than in larger symbionts. More sulfide oxidation would also be

the most straightforward explanation for the observed higher amounts of stored sulfur in small
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symbionts (see above). However, as we detected the dissimilatory sulfite reductase DsrAB, the third

key enzyme of cytoplasmic sulfide oxidation, with a rather ambiguous abundance pattern

(Supplementary file 3e), this idea remains speculative and requires further analysis.

In large symbionts, thiosulfate oxidation plays a more prominent role
Larger symbionts may rely relatively more on thiosulfate oxidation – in addition to sulfide oxidation –

than smaller Endoriftia, as suggested by highest abundance of SoxZ and detection of several other

(low-abundant) Sox proteins in fraction L. Although Endoriftia prefers sulfide (Wilmot and Vetter,

1990), it was also shown to oxidize thiosulfate, and may supplement sulfide oxidation with thiosul-

fate oxidation for energy production (Robidart et al., 2011). Since expression of the thiosulfate-oxi-

dizing Sox (sulfur oxidation) complex was shown to be upregulated in the presence of thiosulfate in

A. vinosum (Grimm et al., 2011), we speculate that higher Sox abundance in large symbionts indi-

cates higher thiosulfate concentrations in the trophosome lobule periphery than in the lobule center.

This could be due to a concentration gradient (as proposed above for CO2) and/or possibly also a

result of host thiosulfate production. The Riftia host appears to be able to oxidize toxic sulfide to

the less toxic thiosulfate in its mitochondria (Hinzke et al., 2019). Higher abundance of host thiosul-

fate sulfurtransferase in symbiont-enriched fractions compared to non-enriched trophosome homog-

enate in our present study suggests that this putative detoxification process could be particularly

important in the symbiont-containing bacteriocytes. With sulfide supposedly reaching the tropho-

some lobule periphery first with the blood flow, free sulfide concentrations might be higher there

and, consequently, host sulfide oxidation to thiosulfate might be more frequent in bacteriocytes at

the lobule periphery than in the center. The idea of more thiosulfate oxidation in large Endoriftia is

further substantiated by highest abundance of six rhodanese family proteins in fraction L, as rhoda-

nese-like proteins can cleave thiosulfate into sulfite and sulfide and were proposed to be involved in

thiosulfate oxidation (Hensen et al., 2006; Welte et al., 2009). The combined use of both sulfide

and thiosulfate has also been reported for chemoautotrophic symbionts of snails and mussels

(Beinart et al., 2015). In these symbioses, thiosulfate oxidation supported carbon fixation just as

effectively as sulfide (or even more effectively). Using thiosulfate as their (additional) energy source

may therefore not be an energetic disadvantage for Riftia symbionts. Moreover, thiosulfate oxidation

in Endoriftia may have the positive side-effect of reducing competition for sulfide between larger

and smaller symbionts.

Interestingly, overall abundance of all proteins involved in the symbiont’s energy-generating sul-

fur metabolism, the most abundant of all metabolic categories, remained relatively unchanged

across the four fractions (Supplementary file 5). This indicates that sulfur oxidation-based energy

generation, a fundamental basis of all other metabolic processes, is equally important throughout

the symbiont’s differentiation process, even if individual contributions of reduced sulfur compounds

may differ. (For a detailed overview of sulfur oxidation reactions in Endoriftia see Appendix section

F).

Hydrogen oxidation is more relevant in large symbionts
In large symbionts, the use of hydrogen may furthermore play a more prominent role than in smaller

symbiont cells, as suggested by increasing abundances of the Isp-type respiratory H2-uptake [NiFe]

hydrogenase large subunit HyaB, a Fe-S oxidoreductase (GlpC) encoded next to HyaB, and the

hydrogenase expression/formation protein HypE from fraction XS to L. The small hydrogenase sub-

unit HyaA (Sym_EGV51837.1) and an additional hydrogenase expression/formation protein (HoxM,

Sym_EGV51835.1), both of which are encoded upstream of HyaB in the symbiont genome, were

detected with increasing abundance toward fraction L as well (although at very low concentrations;

Supplementary file 2b), supporting the idea of relatively more hydrogen oxidation in large sym-

bionts. Like for CO2 and thiosulfate, this might be due to a concentration gradient with highest

hydrogen concentrations at the lobule periphery and lowest concentrations toward the lobule cen-

ter. Use of hydrogen as an energy source has been described or suggested for free-living sulfur oxi-

dizing bacteria like A. vinosum (Weissgerber et al., 2011), and for a variety of thiotrophic symbionts

of marine invertebrates, including Riftia (Petersen et al., 2011). However, above-seafloor hydrogen

concentrations in diffuse-flow fluids at our particular sampling site were reported to be very low

(<2 mM; McNichol et al., 2018), and it is presently unclear whether and how ambient hydrogen
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would reach the intracellular symbionts in the trophosome. Nevertheless, taking advantage of hydro-

gen oxidation in addition to sulfide- and thiosulfate oxidation, that is, using a broader repertoire of

electron donors, would potentially enhance the metabolic flexibility, particularly of large Endoriftia.

However, H2 was recently suggested to be involved in maintaining intracellular redox homeostasis

rather than working as electron donor in the Riftia symbiosis (Mitchell et al., 2019), and hydroge-

nase may in fact also play a role in sulfur metabolism (as suggested for A. vinosum

(Weissgerber et al., 2014); Appendix section F). Therefore, the exact role of hydrogen oxidation in

Endoriftia and why it might be relatively more relevant in larger symbionts remains to be discussed.

Small and large symbionts favor separate parts of the denitrification
pathway
Our results suggest that small Riftia symbionts rely relatively more on the NarGHI-mediated first

step of anaerobic respiratory nitrate reduction to nitrite. In contrast, Nap-mediated nitrate reduction

and all subsequent denitrification steps via NO and N2O to N2 seem to be more prominent in larger

symbionts. While Endoriftia has the genomic potential for complete denitrification to N2 and was

experimentally shown to use nitrate for respiration (Hentschel and Felbeck, 1993), our results thus

point to differential use of separate parts of this pathway in small and large symbionts. Since expres-

sion of membrane-bound nitrate reductase Nar is inhibited by oxygen (Moreno-Vivián et al., 1999),

highest NarGHI abundance in fraction XS suggests that O2 levels might be particularly low around

smaller symbionts. This is presumably due to an oxygen gradient from lobule periphery to center

(see also Appendix section G). Following this idea, increasing abundances of NapCHG, subunits of

the periplasmic nitrate reductase Nap complex, from fraction XS to L indicate that Nap could take

over the role of Nar in larger symbionts. As the inhibitory effect of oxygen on denitrification was pro-

posed to be largely due to inhibition of nitrate transport across the cytoplasmic membrane to Nar

(Denis et al., 1990; Moir and Wood, 2001), the periplasmic Nap nitrate reductase is not affected

by elevated oxygen concentrations (Moreno-Vivián et al., 1999). Some denitrifying bacteria there-

fore couple Nap to nitrite reductase Nir, nitric oxide reductase Nor and nitrous oxide reductase Nos

under oxic or microaerophilic conditions for aerobic denitrification (Ji et al., 2015). We propose that

large Endoriftia adopt this strategy of aerobic denitrification when exposed to higher oxygen levels

at the lobule periphery. Presumed higher nitrate concentrations around large Endoriftia may addi-

tionally facilitate increased expression of Nap, Nir, Nor, and Nos (compared to smaller symbionts).

Moreover, while Nar is an energy-conserving enzyme and generates a proton motive force, which is

potentially advantageous during cell division in small symbionts (see Appendix section B), the peri-

plasmic Nap conserves less energy and does not contribute to the proton gradient (Bell et al.,

1993). Only larger symbionts may therefore be able to afford Nap.

While the above scenario of anaerobic nitrate reduction in small Endoriftia and aerobic denitrifica-

tion in large Endoriftia seems quite plausible in the context of our findings, some aspects of this

hypothesis are still unclear. Nar, Nap, and Nir may not be exclusively involved in respiration, but

could as well operate in nitrate assimilation (Liao et al., 2014; Hinzke et al., 2019). Highest NarGHI

and Nap abundances in small and large Endoriftia, respectively, may therefore be due to either of

the two functions or (more likely) a combination of both. Also, the fate of nitrite produced by Nar-

GHI during dissimilatory nitrate reduction in small symbionts is dubious. Nitrite is toxic and needs to

be removed from the cells either by conversion into ammonium or by export (Moir and Wood,

2001). Although assimilation appears to be the most likely option, Endoriftia’s assimilatory nitrite

reductase was not detected in fractions XS and S (but only in fractions M and L and at extremely low

abundance; large subunit NirB) or not detected at all (small subunit NirD, Sym_2601635198). Simi-

larly, the nitrite extrusion protein NarK had its lowest abundance in fraction XS. Whether nitrite

assimilation in Endoriftia relies on enzymes other than NirBD, or whether nitrite is removed from the

small symbionts by other exporters or by diffusion, and possibly even passed on to large Endoriftia

for further reduction, therefore needs to be elucidated in future studies.

Regulation of gene expression may be less stringent in large symbionts
Relative abundance of the RNA polymerase sigma factor RpoD decreased from fraction XS to L (Fig-

ure 3, Supplementary file 3h) in S-rich and in S-depleted samples, pointing to relatively more

growth-related activities in small Endoriftia (see also Appendix section B). RpoD is the primary sigma
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factor for vegetative growth (s70), which regulates transcription of most genes involved in exponen-

tial growth in many bacteria (Helmann and Chamberlin, 1988; Fujita et al., 1994; Ishihama, 2000).

This would be in agreement with the idea of small Riftia symbionts being mainly occupied with cell

division and proliferation in a quasi-exponential growth phase, while large symbionts function as bio-

synthetic ‘factories’, focusing on carbon fixation and biomass production. Interestingly, RpoS, the

master transcriptional regulator of stationary phase gene expression and antagonist of RpoD, was

not detected in any of our samples (although it is encoded in the symbiont genome). RpoS abun-

dance increases upon stress and limitation during transition to the stationary phase in free-living

model bacteria (Hengge-Aronis, 1993; Fujita et al., 1994; Ishihama, 2000). Its absence in the Riftia

symbiont’s proteome suggests that, unlike free-living bacteria, the symbiont does not experience a

stationary phase-like growth arrest even in later developmental stages, probably because it is ideally

supplied with all necessary substrates by the host. The symbiont likely adapts to this ‘lack’ of stress

or limitation by less stringent regulation of gene expression, which could explain the metabolic

diversity we observed particularly in large symbionts, such as multiple ways of energy generation

(thiosulfate- and hydrogen oxidation in addition to sulfide oxidation) and two CO2 fixation pathways.

Calvin cycle and rTCA cycle are in fact in all likelihood expressed in the very same (large) symbiont

cells, as suggested by our HCR-FISH experiments (Appendix 1—figure 3). Under these premises,

the previously observed simultaneous expression of such seemingly redundant metabolic pathways

in Riftia symbionts (Markert et al., 2011) very likely reflects this presumptive ‘de-regulation’ of gene

expression in large parts of the symbiont population (i.e. in the large symbionts), which allows

Endoriftia to fully exploit its versatile metabolic repertoire to the advantage of the symbiosis.

Conclusion
Our results show that Endoriftia cells of different differentiation stages likely employ distinct meta-

bolic profiles, thus confirming our initial hypothesis. The symbionts divide responsibilities: Whereas

small Endoriftia ensure survival of the symbiont population, large Endoriftia are primarily engaged in

biomass production.

The factors that trigger Endoriftia’s development from smaller to larger cells remain to be eluci-

dated. For Rhizobium, a steep O2 concentration gradient inside legume nodules was proposed to

be involved in signaling for symbiont differential gene expression (Soupène et al., 1995). Similarly,

some of the differences we observed in small and large Endoriftia might also be connected to the

availability of electron donors or acceptors, and hence differentiation of Endoriftia cells might

depend on substrate availability. Symbiont differentiation in Riftia might furthermore be induced by

specific host effectors, for example, histone-derived antimicrobial peptides, which were recently pro-

posed to play a role in symbiont cell cycle regulation (Hinzke et al., 2019), or other compounds that

allow Riftia to modulate the symbiont’s expression of certain metabolic pathways. Besides such

direct interference, Riftia likely also exerts indirect influence on symbiont gene expression by provid-

ing copious amounts of all necessary substrates to the bacterial partner.

We speculate that this constantly high nutrient availability inside the host causes Endoriftia’s bio-

synthetic pathways to be regulated less stringently (compared to what we would expect in free-living

bacteria). This would explain the previously observed metabolic versatility of symbionts in the same

host: Large Endoriftia can afford to employ multiple – even redundant – metabolic pathways at the

same time. Division of labor between subpopulations, which enables such an ‘advantageous deregu-

lation’ in specialized cells, thus likely enhances symbiont productivity during symbiosis. We suggest

that such symbiont differentiation into functionally dissimilar subpopulations with complementary

roles in the same host might be an important key to success of microbe-host associations in various

environments.

Materials and methods

Sample collection and enrichment of symbiont subpopulations
Riftia samples for enrichment of symbiont subpopulations were collected at the East Pacific Rise

hydrothermal vent field at 9˚50’ N, 104˚17’ W in a water depth of about 2500 m during a research

cruise with R/V Atlantis in November 2014 (AT26-23). Samples for electron microscopy were

obtained during a second cruise (AT37-12) at the same site during March-April 2017 (Hinzke et al.,

Hinzke et al. eLife 2021;10:e58371. DOI: https://doi.org/10.7554/eLife.58371 18 of 45

Research article Microbiology and Infectious Disease

https://doi.org/10.7554/eLife.58371


2019). Sample details and numbers of biological replicates are summarized in Supplementary file

1.

Trophosome sulfur content of the specimens was estimated based on the trophosome tissue’s

color: sulfur-rich (S-rich) specimens have a light green or yellowish trophosome, due to the sulfur

stored in the symbionts, whereas trophosomes of sulfur-depleted (S-depleted) specimens appear

dark green to black (Pflugfelder et al., 2005). For proteomic analyses, we used seven healthy-look-

ing Riftia specimens, of which four had S-rich trophosomes and three had S-depleted trophosomes.

(Note that sulfur content does not provide any information on the symbiosis’ state of health, that is,

worms with S-depleted trophosomes are not ‘unhealthier’ than worms with S-rich trophosomes.)

Since trophosome sulfur content is positively correlated with habitat sulfide concentrations

(Childress et al., 1991; Robidart et al., 2011; Scott et al., 2012), it can serve as an indicator for the

energetic situation of the symbiosis at the time of sampling.

To enrich symbiont cells of varying sizes (i.e. morphologically distinct symbiont subpopulations),

Riftia specimens were dissected onboard the research vessel immediately after recovery of the

worms. Approximately 3 ml trophosome tissue were homogenized in a Dounce glass homogenizer

in 6 ml imidazole-buffered saline (IBS, 0.49 M NaCl, 0.03 M MgSO4, 0.011 M CaCl2, 0.003 M KCl,

0.05 M imidazole). As described in Hinzke et al., 2018, the homogenate was subjected to rate-zonal

density gradient centrifugation, which allows to separate particles based on their size (Gra-

ham, 2001). In brief, an 8–18% Histodenz density gradient was created using a dilution series of His-

todenz in IBS (1% steps, 1 ml per step), which was stacked in a 15 ml tube so that Histodenz

concentration was highest at the bottom and lowest at the top. On top of this gradient, 0.5 ml tissue

homogenate was layered and the gradient was centrifuged (1000 x g, 5 min, 4˚C) in a swing-out

rotor. Smaller symbiont cells were thus enriched in less dense gradient fractions (lower Histodenz

concentrations) in the upper part of the gradient, while larger cells migrated to lower gradient frac-

tions. After centrifugation, gradients were disassembled by carefully fractionizing the entire gradient

volume into 0.5 ml subsamples, giving a total of 24 fractions. Enrichment of distinct symbiont subpo-

pulations in these subsamples was confirmed using catalyzed reporter deposition-fluorescence in

situ hybridization (CARD-FISH, see below). For this purpose, 20 ml of each gradient fraction subsam-

ple and 15 ml of homogenate was fixed in 1% PFA in IBS, and symbiont cells were subsequently fil-

tered onto GTTP polycarbonate filters (pore size 0.2 mm, Millipore) as described previously

(Ponnudurai et al., 2017).

CARD-FISH
Enrichment of symbiont cell sizes in gradient fractions was analyzed employing fluorescence micros-

copy with samples labeled by CARD-FISH in five biological replicates (Riftia specimens) with S-rich

trophosome and three biological replicates with S-depleted trophosomes. CARD-FISH labeling was

performed as previously described (Ponnudurai et al., 2017), using the probe Rif445

(Nussbaumer et al., 2006) and Alexa Fluor 594-labeled tyramide. For counterstaining, 0.1% (w/v)

4,6-diamidino-2-phenylindole (DAPI) was added to the embedding medium (4:1 Citifluor AF1 (Citi-

fluor) and Vectashield (Vector Laboratories)). CARD-FISH filters were analyzed using an

Axio Imager.M2 fluorescence microscope (Carl Zeiss Microscopy GmbH). For semi-automated cell

counting and to measure the longest cell dimension, we used a custom Fiji (Schindelin et al., 2012)

macro with the Fiji plugins Enhanced Local Contrast (CLAHE; Saalfeld, 2010) and Bi-exponential

edge preserving smoother (BEEPS; Thévenaz et al., 2012). After image processing, we excluded

objects with a size of less than 2 mm (as these were mainly artifacts) and set the maximum object size

to 20 mm. To assign cell sizes to size classes (i.e. cell size ranges), we used a quartile split: We calcu-

lated quartiles of cell sizes in non-enriched homogenate samples (i.e. 25% of all cells in homogenate

samples were assigned to each class). This resulted in the four calculative size classes very small

(�2 mm –<3.912 mm), small (�3.912 mm –<5.314 mm), medium (�5.314 mm –<6.83275 mm), and large

(�6.83275 mm – 20 mm). The majority of cells in all size classes were coccoid. Rod-shaped cells were

almost exclusively present in the smallest size class. Individual gradient fractions (subsamples) were

screened for their respective share of cells in each size class and the subsample with the highest per-

centage of cells in the respective quartile was chosen for metaproteomic analysis. For example, if of

all 24 subsamples of a sample, the fifth fraction (counted from the top of the gradient) had the high-

est percentage of very small cells, that is, most of the cells in fraction 5 were between 2 mm and

3.912 mm in diameter (as measured by our Fiji macro), this fraction was chosen as representative of
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very small symbiont cells in the respective biological replicate (worm). The fraction containing the

highest percentage of very small cells is referred to as ‘fraction XS’ in the manuscript. The fractions

containing the highest percentages of small, medium, and large symbiont cells are referred to as ‘S’,

‘M’, and ‘L’, respectively. If the same subsample had the highest percentage of cells in two size clas-

ses, this subsample was chosen as representative for one of these size classes, and for the other size

class, the subsample with the second highest percentage of cells in that class was used as represen-

tative. Cell size distributions in the four size class representatives are summarized in Figure 1. For

each biological replicate, fractions XS, S, M, and L, as well as non-enriched trophosome homogenate

were subjected to separate metaproteome analyses (see below).

Transmission electron microscopy (TEM)
Trophosome samples used for TEM in this study (see Supplementary file 1 for details) were pre-

pared and analyzed as described previously (Hinzke et al., 2019). Tissue sections were recorded on

sheet films (Kodak electron image film SO-163, Plano GmbH, Wetzlar) as described by

Petersen et al., 2020. To create a composite high-resolution TEM image of a trophosome lobule

(Figure 5A), we merged 50 individual micrographs of one section using Serif Affinity Photo (https://

affinity.serif.com/en-us/photo/). All 50 partially overlapping images were loaded and the fully auto-

mated ‘Panorama Stitching’ technique was applied, resulting in a panorama image still showing

some vignette marks caused by inhomogeneous exposure at the former edges of individual images.

The global smooth frequencies reflecting these exposure errors were removed using the frequency

separation filter with a large radius. The gradation curve was manually corrected. For acquisition of

the images in Figure 5B, a wide-angle dual speed CCD camera Sharpeye (Tröndle, Moorenweis,

Germany) was used, operated by the ImageSP software. All micrographs were edited using Adobe

Photoshop CS6.

HCR-FISH and confocal laser scanning microscopy (CLSM)
A gradient fraction enriched in large symbiont cells (see Supplementary file 1 for details) that was

fixed for CARD-FISH and immobilized on GTTP polycarbonate filters as described above was used

for hybridization chain reaction FISH (HCR-FISH) according to Choi et al., 2014. We used an HCR-

FISH v2.0 Custom Kit (Molecular Technologies) according to the manufacturer’s instructions. Probes

targeted the Riftia symbiont’s 16S rRNA (fluorescence marker: Alexa Fluor 488), and the mRNAs of

ATP-citrate lyase subunit AclB (Alexa Fluor 647) and RubisCO (Alexa Fluor 594). Assisted by the

probe manufacturer, we designed five individual probes per target RNA (for 16S and AclB) and four

probes for RubisCO, each of which targeted a 50 nucleotides long sub-sequence of the respective

RNA of interest. The sub-sequences were spread out across the length of each target RNA (see

Appendix 1—table 1 for the probe sequences). In brief, filter sections were washed twice with 50%

hybridization buffer (50% formamide, 5x sodium chloride sodium citrate (SCSC, 0.75 M NaCl,

75 mM Na3C6H5O7), 9 mM citric acid, pH 6.0, 0.1% Tween 20, 50 mg/ml heparin, 1x Denhardt’s solu-

tion, 10% dextran sulfate) in 2x mPBS (89.8 mM Na2HPO4, 10.2 mM NaH2PO4, 0.9 M NaCl) at 45˚C

for 30 min for pre-hybridization, and incubated overnight (16 hr, 45˚C) with probe solution (1 pmol

of each probe in 500 ml hybridization buffer). Excess probes were removed with several washing

steps in 75–25% probe wash buffer (50% formamide, 5x SCSC, 9 mM citric acid, pH 6.0, 0.1% Tween

20, 50 mg/ml heparin in 5x SCSC) for 15 min at 45˚C, 300 rpm, and subsequently in 5x SCSC for 30

min at 45˚C and 300 rpm. Samples were pre-amplified with DNA amplification buffer (5x SCSC, 0.1%

Tween 20, 10% dextran sulfate). Hairpins were activated by snap-cooling and added to the samples.

After overnight incubation (16 hr, room temperature) with the hairpin solution, samples were washed

with 5x SCSC, containing 0.05% Tween 20 (room temperature, 300 rpm, four times 5 min, two times

30 min), and embedded in Mowiol 4–88 (Carl Roth GmbH) embedding medium prepared according

to the manufacturer’s instructions. Confocal microscopy was performed on a Zeiss LSM510 meta

equipped with a 100x/1.3 oil immersion objective. Probes were excited with laser lines 633 (ATP-cit-

rate lyase), 561 (RubisCO) and 488 (16S rRNA) and signals were detected with filters suitable for dye

maximal emissions at 670 nm, 595 nm and 527.5 nm, respectively. Signal intensities and cell sizes

(from eight frames showing a total of 33 cells on a filter from one biological replicate, n = 1) were

quantified using the Fiji software package (Schindelin et al., 2012). Individual cells were defined as

regions of interest (ROI), in which signal intensity per pixel was recorded. Mean pixel intensity of ROI
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was calculated and background was corrected. Global background values were calculated for every

channel based on up to six ROIs randomly placed in each image frame. The following cell size

parameters were calculated: (i) Feret’s diameter (the longest distance between any two points along

the boundary of the ROI) and (ii) the area of the ROI. As described by Nikolakakis et al., 2015, two

negative control preparations were performed to identify artifact signals: Two filters from the same

biological replicate as above were incubated (a) without probes but with fluorophore-carrying hair-

pins (n = 1; to test for non-specific amplification of hairpins) and (b) without probes or hairpins

(n = 1; to test for autofluorescence), and analyzed using an Axio Imager.M2 fluorescence microscope

(Carl Zeiss Microscopy GmbH). Since Endoriftia is uncultivable as yet, a target-free control sample

(i.e. an Endoriftia knockout mutant without the respective RNAs of interest) is not available at this

point. Nonspecific binding of the probes to non-target RNAs was therefore excluded based on the

following considerations: (i) In nucleic acid hybridizations, the hybridization rate decreases to zero

when mismatches increase to more than 30% (Wetmur, 1991). (ii) There is only one symbiont phylo-

type in Riftia, preventing false-positive binding to other bacterial RNAs, and (iii) false-positive

matches to host RNAs could be excluded, since symbiont cells were co-labeled with the 16S rRNA-

specific probe which confirmed the identity of the cells. Finally (iv), to ensure probe sequence speci-

ficity, we blast-searched all probe candidates against the Riftia symbiont genome (NCBI whole-

genome shotgun sequences NZ_AFOC00000000.1 and NZ_AFZB00000000.1) at low stringency

(BLASTn optimized for somewhat similar sequences, seed length: 7, expectation threshold: 1), and

subjected all resulting matches to in silico hybridization behavior analyses using the mathFISH web

tool (Yilmaz et al., 2011). These calculations confirmed that in Riftia symbiont cells, either of the

two mRNA probes has only one target sequence to which it binds with a hybridization efficiency of

100%, whereas hybridization efficiency of off-target sequences was 0% (data not shown).

Flow cytometry
Subsamples of fresh homogenate, of three gradient fractions enriched in small symbionts, and

of three fractions enriched in large symbionts were fixed in 1% PFA as for CARD-FISH (see above) in

two biological replicates (i.e. from two Riftia specimens). Right before flow cytometry analysis, fixed

cells were carefully pelleted and incubated in 0.1 mg/ml RNAse A (from bovine pancreas, DNase-

free, Carl Roth, Germany) for 30 min at 37˚C to remove RNA, and stained with Syto9 (final concen-

tration 0.5 mmol/l in PBS), a dye that selectively stains DNA and RNA (Stocks, 2004). The fluores-

cence signal was analyzed using a FACSAria high-speed cell sorter (Becton Dickinson Biosciences,

San Jose, CA, USA) with 488 nm excitation from a blue Coherent Sapphire solid state laser at 18

mW. Optical filters were set up to detect the emitted Syto9 fluorescence signal at 530/30 nm (FITC

channel). All fluorescence data were recorded at logarithmic scale with the FACSDiva 8.02 software

(Becton Dickinson). Prior to measurement of experimental samples, the proper function of the instru-

ment was determined by using the cytometer setup and tracking software module (CS and T)

together with the CS and T beads (Becton Dickinson Biosciences). During sample measurements, the

present populations were shown in a side scatter (SSC)-area versus forward scatter (FSC)-area dot

plot. The detection thresholds and photomultiplier (PMT) voltages were adjusted by using an

unstained sample. The Syto9 signal from the scatter populations was monitored in a Syto9-area his-

togram. For each sample at least 10,000 events in the scatter gate were recorded. For further analy-

sis, the Syto9-stained bacteria (populations 1 and 2, see Figure 2) were sorted from the bivariate

dot plot, SSC versus Syto9 (FITC-channel). Prior to sorting, the proper function of the cell sorter was

determined using the AccuDrop routine. Data analysis was done with the software FlowJo V10. To

evaluate the results of the sorting procedure, FACS-sorted cell populations as well as unsorted sub-

samples of homogenate and gradient fractions were examined using an Axio Imager.M2 fluores-

cence microscope (Carl Zeiss Microscopy GmbH).

Peptide sample preparation
For four biological replicates with S-rich trophosome and three biological replicates with S-depleted

trophosome, non-enriched trophosome homogenate and the four density gradient fractions deter-

mined as XS, S, M, and L by CARD-FISH analyses (see above) were individually subjected to meta-

proteomic analyses. Proteins were extracted as described in Hinzke and Markert, 2017. Briefly,

cells were mixed with lysis buffer (1% (w/v) sodium deoxycholate (SDC), 4% (w/v) sodium dodecyl
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sulfate (SDS) in 50 mM triethylammonium bicarbonate buffer (TEAB)), heated for 5 min at 95˚C and

600 rpm and cooled on ice. Samples were then placed in an ultrasonic bath for 5 min and subse-

quently cooled on ice. Cell debris was removed by centrifugation (14,000 x g, 10 min, room temper-

ature). Protein concentration was determined using the Pierce BCA assay according to the

manufacturer’s instructions. Peptides were generated using a 1D gel-based approach as in

Ponnudurai et al., 2017 with minor modifications. In brief, 20 mg of protein sample was mixed with

Laemmli sample buffer containing DTT (final concentration 2% (w/v) SDS, 10% glycerol, 12.5 mM

DTT, 0.001% (w/v) bromophenol blue in 0.06 M Tris-HCl; Laemmli, 1970) and separated using pre-

cast 4–20% polyacrylamide gels (BioRad). After staining, protein lanes were cut into 10 pieces,

destained (600 rpm, 37˚C, 200 mM NH4HCO3 in 30% acetonitrile), and digested with trypsin

(sequencing grade, Promega) overnight at 37˚C, before peptides were eluted in an ultrasonic bath.

Peptides were stored at -80˚C until LC-MS analysis.

LC-MS/MS analysis
MS/MS measurements were performed as described previously by Ponnudurai et al., 2017. In brief,

samples were measured with an LTQ-Orbitrap Velos mass spectrometer (Thermo Fisher, Waltham,

MA, USA), coupled to an EASY-nLC II (ThermoFisher) for peptide separation using a 100 min binary

gradient. MS data were acquired in data-dependent MS/MS mode for the 20 most abundant precur-

sor ions. After a full scan in the Orbitrap analyzer (R = 30,000), ions were fragmented via CID and

recorded in the LTQ analyzer. Samples were measured in a randomized design.

Protein identification and function prediction
Proteins were identified by searching the MS/MS spectra against the Riftia host and symbiont data-

base (Hinzke et al., 2019), which was constructed from the host transcriptome and three symbiont

genome assemblies, that is, NCBI project PRJNA60889 (endosymbiont of Riftia pachyptila (vent

Ph05)), NCBI project PRJNA60887 (endosymbiont of Tevnia jerichonana (vent Tica)), and JGI IMG

Gold Project Gp0016331 (endosymbiont of Riftia pachyptila (vent Mk28)). The cRAP database con-

taining common laboratory contaminants (The Global Proteome Machine Organization, 2017) was

added to complete the database. Database search was conducted using Proteome Discoverer v.

2.0.0.802 as described in Kleiner et al., 2018. Briefly, raw spectra were searched against the data-

base using the Sequest HT node. False discovery rates (FDRs) for peptide spectrum matches were

calculated and filtered using the Percolator Node (FDR < 0.05). FidoCT was used to infer proteins

with a protein-level false discovery rate of 5% (q-value <0.05, at least one unique peptide). The mass

spectrometry proteomics data have been deposited to the PRIDE

proteomics identification database (https://www.ebi.ac.uk/pride/; Vizcaı́no et al., 2016) with the

dataset identifier PXD016986.

To systematically screen the Riftia symbiont metagenome for dissimilatory sulfur metabolism-

related proteins, candidates identified in different studies were searched against the Endoriftia

metaproteome database using bioedit (Hall, 1999; Supplementary file 7). Host proteins were addi-

tionally annotated using the same tools as in Hinzke et al., 2019. Symbiont hydrogenase sequences

were classified using HydDB (Søndergaard et al., 2016).

Relative stable isotope fingerprints (relative SIFs, relative d13C values) of all S-rich (n = 4) and

S-depleted (n = 3) gradient fractions were calculated using Calis-p 2.0 (Kleiner et al., 2018), with

fraction XS of S-rich trophosome as baseline.

Statistical evaluation of metaproteomics data and abundance
quantification
Filtering and normalization
For samples from sulfur-rich specimens, four replicates for each of the four size classes were used

(resulting in 16 samples); for analysis of symbionts from sulfur-depleted specimens, three replicates

were available per size class (giving a total of 12 samples). For comparisons of protein abundance (i)

across different samples, for example, to determine a protein’s abundance trend across gradient

fractions XS to L, edgeR-RLE-normalized spectral counts were calculated (see below), while

(ii) %orgNSAF values were used for abundance comparisons of different proteins within one sample,

for example, to determine the ‘most abundant’ proteins in a sample.
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i. To allow for comparisons of protein abundance across different samples, spectral count data
were first filtered so that they included only proteins that had at least five spectral counts in
at least four out of 16 (S-rich specimens) or three out of 12 (S-depleted specimens) samples.
The filtered dataset was then normalized using Relative Log Expression (RLE) normalization
with the package edgeR v.3.24.3 (Robinson et al., 2010) in R v. 3.5.1 (R Development Core
Team, 2018; Supplementary file 2a). The filtering and normalization step was included to
avoid biasing the analysis toward symbiont proteins that were only detected in the high-den-
sity fractions M and L (enriched in larger symbiont cells), but which were absent in fractions
of lower density (XS and S, containing primarily smaller cells). Fractions S and particularly XS
contained relatively more host proteins, leading to a lower total number of detectable symbi-
ont proteins. (Note that these values were not normalized to protein size, so that a protein’s
relative abundance changes can be followed across different samples, but abundances can-
not be compared between proteins). We tested for significant differences in symbiont pro-
tein abundance between individual gradient factions (representing enrichments of different
cell size classes) using two methods, that is, profile clustering (STEM analysis) and random
forests (see below).

ii. To be able to compare relative symbiont protein abundances within samples and to identify
particularly abundant proteins, normalized spectral abundance factor (NSAF) values were cal-
culated from unfiltered spectral counts by normalization to protein size and to the sum of all
proteins in a sample (Zybailov et al., 2006; Mueller et al., 2010). %orgNSAF values give an
individual protein’s percentage of all proteins of a given organism (‘org’) in the same sample
(Supplementary file 2b). Note that %orgNSAF values in this analysis cannot be compared
across different samples, due to the unequal number of total host and symbiont proteins in
different samples.

STEM analysis
For protein expression profile clustering, we employed the Short Time Series Expression Miner

(STEM; Ernst and Bar-Joseph, 2006) v. 1.3.11., which fits gene expression profiles in ordered short

series datasets (like the cell cycle stages of Ca. E. persephone), to model profiles representing differ-

ent expression patterns. Filtered and RLE-normalized data were log-normalized, repeat data were

defined to be from different time points and data were clustered using the STEM method with

default options. For STEM filtering, the minimum correlation between repeats and the minimum

absolute expression change were set to 0.5. All permutations were used. For correction, the false

discovery rate (FDR) was set to 0.05. Profiles were clustered with a minimum correlation percentile

of 0.5. Other parameters were left at default values. Proteins which were assigned to model profiles,

that is, all proteins which were not removed by filtering and showed a consistent trend in all repli-

cates, were used for further analysis. This means that differences in protein abundance patterns

were considered significant if proteins were detected with a consistent abundance trend across all

replicates (increase, decrease, or alternating increase and decrease of abundance from fraction XS

to L).

Random forests
For random forest analysis, we used the ranger package v. 0.10.1 (Wright and Ziegler, 2015) in R v.

3.5.1 (R Development Core Team, 2018). Random forests are a machine learning technique, which

can be used to find the variables – here proteins – that allow to predict which datasets or samples

are similar (and which ones are not; Degenhardt et al., 2019). For variable importance calculation,

we employed the method from Janitza et al., 2018 as implemented in the ranger package. This

method uses a heuristic approach, where a null distribution for p-value calculation is generated

based on variables with importance scores of zero or negative importance scores. For pairwise com-

parisons, the data set was subjected to an additional filtering step, so that only proteins with a mini-

mum of five spectral counts in at least six out of eight (S-rich) or four out of six (S-depleted) samples

were included. The comparison of all 16 S-rich samples included only such proteins which had a mini-

mum of five spectral counts in at least five samples, and the comparison of all twelve S-depleted

samples included only proteins with five or more spectral counts in a minimum of four samples. The

filtered and RLE-normalized data were used for random forest analysis as follows: 2000 forests with

10,000 trees per forest were grown for pairwise comparisons as well as for comparisons including
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the samples representing all four size classes. Proteins which had a p-value below 0.05 in >90% of

the forests were included in further analyses.

Significant differences in protein abundance
Proteins that showed significant abundance differences as determined by STEM analysis or by ran-

dom forest analysis (see above) or by both methods were included in a common list. Please note

that this approach of determining significant protein abundance differences was not based on indi-

vidual p-values. For proteins with significant abundance differences, we clustered the z-scored mean

abundances using hierarchical clustering (Pearson correlation, complete linkage) in R to visualize

their abundance trends (Appendix 1—figure 1). For this purpose, we employed the R base package

stats (R Development Core Team, 2018) as well as the packages cluster (Maechler et al., 2018)

and ComplexHeatmap (Gu et al., 2016). For comparison of S-rich and S-depleted symbionts of the

same size class, we used the R package edgeR v. 3.24.3 (Robinson et al., 2010), which uses a

Bayes-moderated Poisson model for count data analysis, with an overdispersion-adapted analogon

to Fisher’s exact test for detecting differentially expressed genes (Robinson et al., 2010).

Host proteins
Host proteins which were more abundant in symbiont-enriched fractions as compared to the non-

enriched trophosome homogenate are candidates for direct host-symbiont interaction, as they might

be secreted into symbiont compartments or even physically associated with symbiont cells. For eval-

uation of host protein enrichment, we used fractions XS and S, enriched in the two smallest symbiont

size classes (i.e. fractions collected from the upper part of the gradient). As the lower gradient frac-

tions sometimes contained the gradient pellet, in which host proteins can also accumulate when

host tissue fragments are pelleted, these fractions were not used for host protein analysis. Compari-

sons of relative host protein abundance between trophosome homogenate and fractions XS and S

were performed using the R package edgeR v. 3.24.3. Spectral count data were filtered to include

only proteins which had at least five spectral counts in at least four (for S-rich specimens) or three (in

S-depleted specimens) samples and RLE-normalized abundance values were compared between

samples. Proteins which were significant in the edgeR comparison and had a higher mean RLE-nor-

malized abundance in fractions XS and S than in the homogenate sample were included in further

analysis.
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was carefully disassembled into 24 subsamples/fractions (numbered 1 to 24), all of which were ana-

lyzed by CARD-FISH to identify those fractions in which the percentage of very small, small, medi-

um-sized and large symbionts cells was highest. These fractions were designated XS, S, M, and L for

the respective worm and included in comparative proteomic analyses.

. Supplementary file 2. Symbiont proteins identified in this study, which were included in statistical

analyses. Relative abundance of symbiont proteins in fractions XS, S, M, and L in sulfur-rich (S-rich)

and sulfur-depleted (S-depl) trophosomes is displayed as edgeR-RLE-corrected spectral count val-

ues, which represent average values of four biological replicates (S-rich) and three biological repli-

cates (S-depl). Abundance trends, that is increase or decrease of relative protein abundance across

the four gradient fractions is indicated by spark lines (columns „Trend“) and by color shades from

light green/light gray (lowest protein abundance across all four fractions) to dark green/dark gray

(highest abundance). Significant changes in S-rich or S-depl specimens (or both) are indicated by *

(these trends are consistent in all replicates according to STEM trend analysis and pairwise compari-

son between fractions by random forests; for a detailed definition of significance as applied in this

study see Materials and methods). Protein accession numbers refer to NCBI/Uniprot entries (EGV-

and EGW- accessions) and JGI entries (all other accessions). The prefix ‘Sym_’ indicates that this

accesion number refers to a symbiont protein in our combined host-and-symbiont database, while

host proteins have the prefix ‘Host_’ (note that the prefixes were omitted in Figure 3 and Figure 4

in the main text for readability’s sake). Please note that this table includes only such identified symbi-

ont proteins, which were detected with at least five spectral counts in a minimum of four (of 16) indi-

vidual replicate S-rich samples or a minimum of three (of 12) individual S-depl samples in fractions

XS - L (see Materials and methods for details). Note also, that edgeR-RLE-corrected spectral count

values as displayed here can be used to compare a given protein’s abundance between the individ-

ual fractions, but do not allow for comparisons between proteins of the same sample. A complete

list of all symbiont protein identifications, including low abundant proteins and proteins detected in

unenriched homogenate samples, which allows for abundace comparison between proteins is pre-

sented in b. (b) Unfiltered list of all symbiont proteins identified in this study in density gradient frac-

tions XS, S, M, and L and in unenriched trophosome tissue homogenate (Hom) from sulfur-rich (S-

rich) and sulfur-depleted (S-depl) Riftia specimens. Relative protein abundance is displayed as

%orgNSAF (normalized spectral counts, see Materials and methods), which give a protein’s abun-

dance as percentage of all symbiont proteins in the same sample, allowing for comparison between

individual proteins within a given sample. %orgNSAF values are average values of four biological

replicates (S-rich) and three biological replicates (S-depl). A protein’s ‘abundance rank’ indicates

overall abundance across all samples (rank one being the most abundant protein). The 100 most

abundant proteins according to this ranking are highlighted in yellow in column B. Protein accession

numbers refer to NCBI/Uniprot entries (EGV- and EGW- accessions) and JGI entries (all other acces-

sions). The prefix ‘Sym_’ indicates that this accesion number refers to a symbiont protein in our com-

bined host-and-symbiont database, while host proteins have the prefix ‘Host_’ (note that the

prefixes were omitted in Figure 3 and Figure 4 in the main text for readability’s sake). Proteins in

gray font are low-abundant proteins, which were not included in statistical analyses. %orgNSAF val-

ues of these low-abundant proteins are less reliable and should be interpreted with care. Proteins

that were exclusively identified in homogenate samples were also excluded from statistical analyses

and are therefore also set in gray font. Please note that %orgNSAF values cannot be compared

accross sample types, due to the unequal total identification numbers in the individual sample types.

For cross-sample comparisons, please refer to the edgeR-corrected values in a, which contains all

proteins in black font.

. Supplementary file 3. Abundance trends of Endoriftia proteins in various metabolic categories

across the four fractions XS to L in sulfur-rich (S-rich) and sulfur-depleted (S-depl) Riftia specimens.

Trends are indicated by color shades from light green/light gray (lowest protein abundance across

all four fractions) to dark green/dark gray (highest abundance across all four fractions; note that col-

ors do not allow comparison of protein abundance between proteins). Abundance values are based

on statistical evaluation of four biological replicates (S-rich) and three biological replicates (S-depl).

Proteins marked with asterisks show statistically significant trends, that is, differences that are consis-

tent across all replicates in S-rich or S-depl specimens (or both). White cells indicate that this protein

was not detected in this sample or was too low abundant to be included in statistical analyses. For
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an overview of all identified symbiont proteins and their relative abundances see

Supplementary file 2. Protein accession numbers refer to NCBI/Uniprot entries (EGV- and EGW-

accessions) and JGI entries (all other accessions). The prefix ‘Sym_’ indicates that this accession num-

ber refers to a symbiont protein in our combined host-and-symbiont database (note that the prefix

was omitted in Figure 3 and Figure 4 in the main text for readability’s sake).

. Supplementary file 4. Riftia host proteins with significantly higher abundance (FDR 0.05) in fractions

XS and S (containing predominantly very small and small symbiont cells, respectively), compared to

the non-enriched trophosome homogenate (Hom). Spectral count data from sulfur-rich (S-rich) and

S-depleted specimens were normalized separately in edgeR using RLE normalization (RLE-SC). For

details regarding statistical analysis see Materials and methods. In the significance columns, ‘1’ refers

to significantly higher abundance in fractions XS and S, ‘0’ to non-significant differences. Blast-

KOALA functional categories: FE: family eukaryote, GE: genus eukaryote. TH: transmembrane heli-

ces. SP: signal peptide. WoLF PSORT subcellular location prediction: cyto: cytosol, cysk:

cytoskeleton, E.R.: endoplasmic reticulum, extr: extracellular, golg: golgi apparatus, lyso: lysosome,

mito: mitochondrial, nucl: nucleus, pero: peroxisome, plas: plasma membrane. TargetP secretory

pathway prediction: M: mitochondrion, S: secretory pathway, ‘_’: other location. Phobius/SignalP sig-

nal peptide prediction: Y: signal peptide predicted, N: no signal peptide predicted. Accession num-

bers refer to the combined host-and-symbiont database used for protein identification in this study

(see Materials and methods, Hinzke et al., 2019). The prefix ‘Host_’ indicates that this accession

number refers to a host protein (note that the prefix was omitted in Figure 4 in the main text for

readability’s sake).

. Supplementary file 5. Total (summed up) relative abundance of Endoriftia proteins involved in spe-

cific metabolic categories in fractions XS, S, M, and L in sulfur-rich (S-rich) Riftia specimens (average

values, n = 4) and sulfur-depleted (S-depl) Riftia specimens (average values, n = 3). Only those 1212

symbiont proteins presented in Supplementary file 2a, which are included in the edgeR statistical

evaluation, are included (proteins with low abundance and/or only one or two replicate values were

excluded). To allow comparison and summing of protein abundances across proteins within one

sample, edgeR-RLE-corrected spectral count values were normalized (a) to protein size and (b) to

the sum of all proteins before summing up the proteins within categories (100% = all proteins in

Supplementary file 2a). These results indicate that morphological differences between individual

symbiont differentiation stages are accompanied by a gradual change in metabolic function. During

differentiation from small to large cells, Riftia symbionts rearrange their metabolic priorities, allocat-

ing resources to those processes that are most important in their respective life phase and role in

the symbiosis.

. Supplementary file 6. Riftia trophosome homogenate and gradient fractions enriched in small and

large symbionts, respectively, were stained with Syto9 and subjected to flow cytometry analysis in a

FACSAria high-speed cell sorter with 488 nm excitation (see Materials and methods for details). Two

cell populations were identified, Pop1 and Pop2, which correspond to smaller and larger symbiont

cells, respectively (see main text Figure 2 and Figure 2—figure supplement 1). Median fluores-

cence intensity (FI) per particle, a measure of DNA content per cell, was compared between the two

populations 1 and 2 to quantify differences in genome copy number between smaller and larger

symbionts (column ‘ratio’). Note that FI ratios were not calculated for samples consisting of sorted

populations (bottom rows), because these samples contained high cell numbers of either of the two

populations, but very low cell numbers of the respective other population, preventing meaningful

comparison. Analyses were performed with samples from two Riftia specimens (two biological repli-

cates, BR).

. Supplementary file 7. Proteins identified as likely involved in dissimilatory sulfur metabolism in

Ca. E. persephone after Blast-comparison against proteins identified in the literature:

Weissgerber et al., 2014.; Rodriguez et al., 2011; Gregersen et al., 2011. Significant - protein

abundance significantly different between fractions containing symbionts of different size (see Mate-

rials and methods for details on statistical analysis). Y - yes, N - no, M - maybe.

. Transparent reporting form
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Data availability

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

(ProteomeXchange - ProteomeCentral) via the PRIDE partner repository (Vizcaı́no et al., 2016) with

the dataset identifier PXD016986.

The following dataset was generated:
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U, Becher D,
Schweder T,
Markert S

2020 Metabolic differences between
morphologically distinct symbiont
populations in the tubeworm Riftia
pachyptila
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Chen J, Brevet A, Fromant M, Lévêque F, Schmitter JM, Blanquet S, Plateau P. 1990. Pyrophosphatase is
essential for growth of Escherichia coli. Journal of Bacteriology 172:5686–5689. DOI: https://doi.org/10.1128/
JB.172.10.5686-5689.1990, PMID: 2170325

Chien AC, Hill NS, Levin PA. 2012. Cell size control in bacteria. Current Biology 22:R340–R349. DOI: https://doi.
org/10.1016/j.cub.2012.02.032, PMID: 22575476

Childress JJ, Arp AJ, Fisher CR. 1984. Metabolic and blood characteristics of the hydrothermal vent tube-worm
Riftia pachyptila. Marine Biology 83:109–124. DOI: https://doi.org/10.1007/BF00394718

Childress JJ, Fisher CR, Favuzzi JA, Kochevar RE, Sanders NK, Alayse AM. 1991. Sulfide-driven autotrophic
balance in the bacterial symbiont-containing hydrothermal vent tubeworm, Riftia pachyptila Jones. The
Biological Bulletin 180:135–153. DOI: https://doi.org/10.2307/1542437, PMID: 29303639

Cho H, McManus HR, Dove SL, Bernhardt TG. 2011. Nucleoid occlusion factor SlmA is a DNA-activated FtsZ
polymerization antagonist. PNAS 108:3773–3778. DOI: https://doi.org/10.1073/pnas.1018674108,
PMID: 21321206

Choi HM, Beck VA, Pierce NA. 2014. Next-generation in situ hybridization chain reaction: higher gain, lower cost,
greater durability. ACS Nano 8:4284–4294. DOI: https://doi.org/10.1021/nn405717p, PMID: 24712299

Cortés F, Pastor N, Mateos S, Domı́nguez I. 2003. Roles of DNA topoisomerases in chromosome segregation
and mitosis. Mutation Research 543:59–66. DOI: https://doi.org/10.1016/S1383-5742(02)00070-4,
PMID: 12510017

Cortés F, Pastor N. 2003. Induction of endoreduplication by topoisomerase II catalytic inhibitors. Mutagenesis
18:105–112. DOI: https://doi.org/10.1093/mutage/18.2.105, PMID: 12621064

Cosme AM, Becker A, Santos MR, Sharypova LA, Santos PM, Moreira LM. 2008. The outer membrane protein
TolC from Sinorhizobium meliloti affects protein secretion, polysaccharide biosynthesis, antimicrobial
resistance, and symbiosis. Molecular Plant-Microbe Interactions 21:947–957. DOI: https://doi.org/10.1094/
MPMI-21-7-0947, PMID: 18533835

D’Haeze W, Holsters M. 2004. Surface polysaccharides enable bacteria to evade plant immunity. Trends in
Microbiology 12:555–561. DOI: https://doi.org/10.1016/j.tim.2004.10.009, PMID: 15539115

Dahl C, Franz B, Hensen D, Kesselheim A, Zigann R. 2013. Sulfite oxidation in the purple sulfur bacterium
Allochromatium vinosum: identification of SoeABC as a major player and relevance of SoxYZ in the process.
Microbiology 159:2626–2638. DOI: https://doi.org/10.1099/mic.0.071019-0, PMID: 24030319

Dang W, Hu YH, Sun L. 2011. HtpG is involved in the pathogenesis of Edwardsiella tarda. Veterinary
Microbiology 152:394–400. DOI: https://doi.org/10.1016/j.vetmic.2011.05.030, PMID: 21664076

Davidson AL, Dassa E, Orelle C, Chen J. 2008. Structure, function, and evolution of bacterial ATP-binding
cassette systems. Microbiology and Molecular Biology Reviews 72:317–364. DOI: https://doi.org/10.1128/
MMBR.00031-07, PMID: 18535149

De Cian MC, Andersen AC, Bailly X, Lallier FH. 2003. Expression and localization of carbonic anhydrase and
ATPases in the symbiotic tubeworm Riftia pachyptila. Journal of Experimental Biology 206:399–409.
DOI: https://doi.org/10.1242/jeb.00074, PMID: 12477910

Deaconescu AM, Savery N, Darst SA. 2007. The bacterial transcription repair coupling factor. Current Opinion in
Structural Biology 17:96–102. DOI: https://doi.org/10.1016/j.sbi.2007.01.005, PMID: 17239578

Degenhardt F, Seifert S, Szymczak S. 2019. Evaluation of variable selection methods for random forests and
omics data sets. Briefings in Bioinformatics 20:492–503. DOI: https://doi.org/10.1093/bib/bbx124, PMID: 2
9045534

Denis KS, Dias FM, Rowe JJ. 1990. Oxygen regulation of nitrate transport by diversion of electron flow in
Escherichia coli. J Biol Che. 265:18095–18097.

Domı́nguez-Cuevas P, Porcelli I, Daniel RA, Errington J. 2013. Differentiated roles for MreB-actin isologues and
autolytic enzymes in Bacillus subtilis morphogenesis. Molecular Microbiology 89:1084–1098. DOI: https://doi.
org/10.1111/mmi.12335, PMID: 23869552

Dorman CJ, Deighan P. 2003. Regulation of gene expression by histone-like proteins in bacteria. Current
Opinion in Genetics & Development 13:179–184. DOI: https://doi.org/10.1016/S0959-437X(03)00025-X,
PMID: 12672495

Drees JC, Chitteni-Pattu S, McCaslin DR, Inman RB, Cox MM. 2006. Inhibition of RecA protein function by the
RdgC protein from Escherichia coli. Journal of Biological Chemistry 281:4708–4717. DOI: https://doi.org/10.
1074/jbc.M513592200

Dri AM, Rouviere-Yaniv J, Moreau PL. 1991. Inhibition of cell division in hupA hupB mutant bacteria lacking HU
protein. Journal of Bacteriology 173:2852–2863. DOI: https://doi.org/10.1128/JB.173.9.2852-2863.1991,
PMID: 2019558

Hinzke et al. eLife 2021;10:e58371. DOI: https://doi.org/10.7554/eLife.58371 29 of 45

Research article Microbiology and Infectious Disease

https://doi.org/10.1128/AEM.01683-06
http://www.ncbi.nlm.nih.gov/pubmed/17259363
https://doi.org/10.1126/science.213.4505.340
http://www.ncbi.nlm.nih.gov/pubmed/17819907
https://doi.org/10.1016/j.mib.2010.01.001
http://www.ncbi.nlm.nih.gov/pubmed/20080057
https://doi.org/10.1128/JB.186.4.1165-1174.2004
http://www.ncbi.nlm.nih.gov/pubmed/14762012
https://doi.org/10.1128/JB.172.10.5686-5689.1990
https://doi.org/10.1128/JB.172.10.5686-5689.1990
http://www.ncbi.nlm.nih.gov/pubmed/2170325
https://doi.org/10.1016/j.cub.2012.02.032
https://doi.org/10.1016/j.cub.2012.02.032
http://www.ncbi.nlm.nih.gov/pubmed/22575476
https://doi.org/10.1007/BF00394718
https://doi.org/10.2307/1542437
http://www.ncbi.nlm.nih.gov/pubmed/29303639
https://doi.org/10.1073/pnas.1018674108
http://www.ncbi.nlm.nih.gov/pubmed/21321206
https://doi.org/10.1021/nn405717p
http://www.ncbi.nlm.nih.gov/pubmed/24712299
https://doi.org/10.1016/S1383-5742(02)00070-4
http://www.ncbi.nlm.nih.gov/pubmed/12510017
https://doi.org/10.1093/mutage/18.2.105
http://www.ncbi.nlm.nih.gov/pubmed/12621064
https://doi.org/10.1094/MPMI-21-7-0947
https://doi.org/10.1094/MPMI-21-7-0947
http://www.ncbi.nlm.nih.gov/pubmed/18533835
https://doi.org/10.1016/j.tim.2004.10.009
http://www.ncbi.nlm.nih.gov/pubmed/15539115
https://doi.org/10.1099/mic.0.071019-0
http://www.ncbi.nlm.nih.gov/pubmed/24030319
https://doi.org/10.1016/j.vetmic.2011.05.030
http://www.ncbi.nlm.nih.gov/pubmed/21664076
https://doi.org/10.1128/MMBR.00031-07
https://doi.org/10.1128/MMBR.00031-07
http://www.ncbi.nlm.nih.gov/pubmed/18535149
https://doi.org/10.1242/jeb.00074
http://www.ncbi.nlm.nih.gov/pubmed/12477910
https://doi.org/10.1016/j.sbi.2007.01.005
http://www.ncbi.nlm.nih.gov/pubmed/17239578
https://doi.org/10.1093/bib/bbx124
http://www.ncbi.nlm.nih.gov/pubmed/29045534
http://www.ncbi.nlm.nih.gov/pubmed/29045534
https://doi.org/10.1111/mmi.12335
https://doi.org/10.1111/mmi.12335
http://www.ncbi.nlm.nih.gov/pubmed/23869552
https://doi.org/10.1016/S0959-437X(03)00025-X
http://www.ncbi.nlm.nih.gov/pubmed/12672495
https://doi.org/10.1074/jbc.M513592200
https://doi.org/10.1074/jbc.M513592200
https://doi.org/10.1128/JB.173.9.2852-2863.1991
http://www.ncbi.nlm.nih.gov/pubmed/2019558
https://doi.org/10.7554/eLife.58371


Duperthuy M, Schmitt P, Garzón E, Caro A, Rosa RD, Le Roux F, Lautrédou-Audouy N, Got P, Romestand B, de
Lorgeril J, Kieffer-Jaquinod S, Bachère E, Destoumieux-Garzón D. 2011. Use of OmpU porins for attachment
and invasion of Crassostrea gigas immune cells by the oyster pathogen Vibrio splendidus. PNAS 108:2993–
2998. DOI: https://doi.org/10.1073/pnas.1015326108, PMID: 21282662

Durand-Heredia J, Rivkin E, Fan G, Morales J, Janakiraman A. 2012. Identification of ZapD as a cell division
factor that promotes the assembly of FtsZ in Escherichia coli. Journal of Bacteriology 194:3189–3198.
DOI: https://doi.org/10.1128/JB.00176-12, PMID: 22505682

Ernst J, Bar-Joseph Z. 2006. STEM: a tool for the analysis of short time series gene expression data. BMC
Bioinformatics 7:191. DOI: https://doi.org/10.1186/1471-2105-7-191, PMID: 16597342

Eshwar AK, Tasara T, Stephan R, Lehner A. 2015. Influence of FkpA variants on survival and replication of
Cronobacter spp in human macrophages. Research in Microbiology 166:186–195. DOI: https://doi.org/10.
1016/j.resmic.2015.02.005, PMID: 25724920

Felbeck H. 1981. Chemoautotrophic potential of the hydrothermal vent tube worm, Riftia pachyptila Jones
(Vestimentifera). Science 213:336–338. DOI: https://doi.org/10.1126/science.213.4505.336, PMID: 17819905

Felbeck H, Childress JJ, Somero GN. 1981. Calvin-Benson cycle and sulphide oxidation enzymes in animals from
sulphide-rich habitats. Nature 293:291–293. DOI: https://doi.org/10.1038/293291a0

Felbeck H, Jarchow J. 1998. Carbon release from purified chemoautotrophic bacterial symbionts of the
hydrothermal vent tubeworm Riftia pachyptila. Physiological Zoology 71:294–302. DOI: https://doi.org/10.
1086/515931, PMID: 9634176

Felbeck H, Turner PJ. 1995. CO2 transport in catheterized hydrothermal vent tubeworms, Riftia pachyptila
(vestimentifera). Journal of Experimental Zoology 272:95–102. DOI: https://doi.org/10.1002/jez.1402720203

Fernández L, Hancock RE. 2012. Adaptive and mutational resistance: role of porins and efflux pumps in drug
resistance. Clinical Microbiology Reviews 25:661–681. DOI: https://doi.org/10.1128/CMR.00043-12,
PMID: 23034325

Frees D, Qazi SN, Hill PJ, Ingmer H. 2003. Alternative roles of ClpX and ClpP in Staphylococcus aureus stress
tolerance and virulence. Molecular Microbiology 48:1565–1578. DOI: https://doi.org/10.1046/j.1365-2958.
2003.03524.x, PMID: 12791139

Fujita M, Tanaka K, Takahashi H, Amemura A. 1994. Transcription of the principal sigma-factor genes, rpoD and
rpoS, in Pseudomonas aeruginosa is controlled according to the growth phase. Molecular Microbiology 13:
1071–1077. DOI: https://doi.org/10.1111/j.1365-2958.1994.tb00498.x, PMID: 7531806

Gardebrecht A, Markert S, Sievert SM, Felbeck H, Thürmer A, Albrecht D, Wollherr A, Kabisch J, Le Bris N,
Lehmann R, Daniel R, Liesegang H, Hecker M, Schweder T. 2012. Physiological homogeneity among the
endosymbionts of Riftia pachyptila and Tevnia jerichonana revealed by proteogenomics. The ISME Journal 6:
766–776. DOI: https://doi.org/10.1038/ismej.2011.137, PMID: 22011719

Geier B, Sogin EM, Michellod D, Janda M, Kompauer M, Spengler B, Dubilier N, Liebeke M. 2020. Spatial
metabolomics of in situ host-microbe interactions at the micrometre scale. Nature Microbiology 5:498–510.
DOI: https://doi.org/10.1038/s41564-019-0664-6, PMID: 32015496

Girguis PR, Childress JJ. 2006. Metabolite uptake, stoichiometry and chemoautotrophic function of the
hydrothermal vent tubeworm Riftia pachyptila: responses to environmental variations in substrate
concentrations and temperature. Journal of Experimental Biology 209:3516–3528. DOI: https://doi.org/10.
1242/jeb.02404, PMID: 16943492

Goehring NW, Beckwith J. 2005. Diverse paths to midcell: assembly of the bacterial cell division machinery.
Current Biology 15:R514–R526. DOI: https://doi.org/10.1016/j.cub.2005.06.038, PMID: 16005287

Goffredi S, Childress J, Desaulniers N, Lee R, Lallier F, Hammond D. 1997a. Inorganic carbon acquisition by the
hydrothermal vent tubeworm Riftia pachyptila depends upon high external PCO2 and upon proton-equivalent
ion transport by the worm. The Journal of Experimental Biology 200:883–896. PMID: 9318669

Goffredi SK, Childress JJ, Desaulniers NT, Lallier FJ. 1997b. Sulfide acquisition by the vent worm Riftia
pachyptila appears to be via uptake of HS-, rather than H2S. The Journal of Experimental Biology 200:2609–
2616. PMID: 9359367

Goffredi SK, Girguis PR, Childress JJ, Desaulniers NT. 1999. Physiological functioning of carbonic anhydrase in
the hydrothermal vent tubeworm Riftia pachyptila. The Biological Bulletin 196:257–264. DOI: https://doi.org/
10.2307/1542950, PMID: 28296490

Graham JM. 2001. Biological Centrifugation. Oxford, United Kingdom: BIOS Scientific Publishers Ltd.
Gregersen LH, Bryant DA, Frigaard NU. 2011. Mechanisms and evolution of oxidative sulfur metabolism in green
sulfur bacteria. Frontiers in Microbiology 2:116. DOI: https://doi.org/10.3389/fmicb.2011.00116, PMID: 21
833341

Grein F, Pereira IA, Dahl C. 2010. Biochemical characterization of individual components of the Allochromatium
vinosum DsrMKJOP transmembrane complex aids understanding of complex function in vivo. Journal of
Bacteriology 192:6369–6377. DOI: https://doi.org/10.1128/JB.00849-10, PMID: 20952577

Grimm F, Franz B, Dahl C. 2011. Regulation of dissimilatory sulfur oxidation in the purple sulfur bacterium
Allochromatium vinosum. Frontiers in Microbiology 2:51. DOI: https://doi.org/10.3389/fmicb.2011.00051,
PMID: 21927612

Gu Z, Eils R, Schlesner M. 2016. Complex heatmaps reveal patterns and correlations in multidimensional genomic
data. Bioinformatics 32:2847–2849. DOI: https://doi.org/10.1093/bioinformatics/btw313, PMID: 27207943

Guha S, Udupa S, Ahmed W, Nagaraja V. 2018. Rewired downregulation of DNA gyrase impacts cell division,
expression of topology modulators, and transcription in Mycobacterium smegmatis. Journal of Molecular
Biology 430:4986–5001. DOI: https://doi.org/10.1016/j.jmb.2018.10.001, PMID: 30316784

Hinzke et al. eLife 2021;10:e58371. DOI: https://doi.org/10.7554/eLife.58371 30 of 45

Research article Microbiology and Infectious Disease

https://doi.org/10.1073/pnas.1015326108
http://www.ncbi.nlm.nih.gov/pubmed/21282662
https://doi.org/10.1128/JB.00176-12
http://www.ncbi.nlm.nih.gov/pubmed/22505682
https://doi.org/10.1186/1471-2105-7-191
http://www.ncbi.nlm.nih.gov/pubmed/16597342
https://doi.org/10.1016/j.resmic.2015.02.005
https://doi.org/10.1016/j.resmic.2015.02.005
http://www.ncbi.nlm.nih.gov/pubmed/25724920
https://doi.org/10.1126/science.213.4505.336
http://www.ncbi.nlm.nih.gov/pubmed/17819905
https://doi.org/10.1038/293291a0
https://doi.org/10.1086/515931
https://doi.org/10.1086/515931
http://www.ncbi.nlm.nih.gov/pubmed/9634176
https://doi.org/10.1002/jez.1402720203
https://doi.org/10.1128/CMR.00043-12
http://www.ncbi.nlm.nih.gov/pubmed/23034325
https://doi.org/10.1046/j.1365-2958.2003.03524.x
https://doi.org/10.1046/j.1365-2958.2003.03524.x
http://www.ncbi.nlm.nih.gov/pubmed/12791139
https://doi.org/10.1111/j.1365-2958.1994.tb00498.x
http://www.ncbi.nlm.nih.gov/pubmed/7531806
https://doi.org/10.1038/ismej.2011.137
http://www.ncbi.nlm.nih.gov/pubmed/22011719
https://doi.org/10.1038/s41564-019-0664-6
http://www.ncbi.nlm.nih.gov/pubmed/32015496
https://doi.org/10.1242/jeb.02404
https://doi.org/10.1242/jeb.02404
http://www.ncbi.nlm.nih.gov/pubmed/16943492
https://doi.org/10.1016/j.cub.2005.06.038
http://www.ncbi.nlm.nih.gov/pubmed/16005287
http://www.ncbi.nlm.nih.gov/pubmed/9318669
http://www.ncbi.nlm.nih.gov/pubmed/9359367
https://doi.org/10.2307/1542950
https://doi.org/10.2307/1542950
http://www.ncbi.nlm.nih.gov/pubmed/28296490
https://doi.org/10.3389/fmicb.2011.00116
http://www.ncbi.nlm.nih.gov/pubmed/21833341
http://www.ncbi.nlm.nih.gov/pubmed/21833341
https://doi.org/10.1128/JB.00849-10
http://www.ncbi.nlm.nih.gov/pubmed/20952577
https://doi.org/10.3389/fmicb.2011.00051
http://www.ncbi.nlm.nih.gov/pubmed/21927612
https://doi.org/10.1093/bioinformatics/btw313
http://www.ncbi.nlm.nih.gov/pubmed/27207943
https://doi.org/10.1016/j.jmb.2018.10.001
http://www.ncbi.nlm.nih.gov/pubmed/30316784
https://doi.org/10.7554/eLife.58371


Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows
95/98/NT. Nucleic Acids Symposium Series 41:95–98. DOI: https://doi.org/10.14601/Phytopathol_Mediterr-
14998u1.29

Hand SC. 1987. Trophosome ultrastructure and the characterization of isolated bacteriocytes from invertebrate-
sulfur bacteria symbioses. The Biological Bulletin 173:260–276. DOI: https://doi.org/10.2307/1541878, PMID: 2
9314988

Harada M, Yoshida T, Kuwahara H, Shimamura S, Takaki Y, Kato C, Miwa T, Miyake H, Maruyama T. 2009.
Expression of genes for sulfur oxidation in the intracellular chemoautotrophic symbiont of the deep-sea bivalve
Calyptogena okutanii. Extremophiles 13:895–903. DOI: https://doi.org/10.1007/s00792-009-0277-8, PMID: 1
9730970

Hay NA, Tipper DJ, Gygi D, Hughes C. 1999. A novel membrane protein influencing cell shape and multicellular
swarming of Proteus mirabilis. Journal of Bacteriology 181:2008–2016. DOI: https://doi.org/10.1128/JB.181.7.
2008-2016.1999, PMID: 10094676

Heath MC. 2000. Nonhost resistance and nonspecific plant defenses. Current Opinion in Plant Biology 3:315–
319. DOI: https://doi.org/10.1016/S1369-5266(00)00087-X, PMID: 10873843

Helmann JD, Chamberlin MJ. 1988. Structure and function of bacterial sigma factors. Annual Review of
Biochemistry 57:839–872. DOI: https://doi.org/10.1146/annurev.bi.57.070188.004203, PMID: 3052291

Hengge-Aronis R. 1993. Survival of hunger and stress: the role of rpoS in early stationary phase gene regulation
in E. coli. Cell 72:165–168. DOI: https://doi.org/10.1016/0092-8674(93)90655-A, PMID: 8425216
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Weissgerber T, Sylvester M, Kröninger L, Dahl C. 2014. A comparative quantitative proteomic study identifies
new proteins relevant for sulfur oxidation in the purple sulfur bacterium Allochromatium vinosum. Applied and
Environmental Microbiology 80:2279–2292. DOI: https://doi.org/10.1128/AEM.04182-13, PMID: 24487535

Welte C, Hafner S, Krätzer C, Quentmeier A, Friedrich CG, Dahl C. 2009. Interaction between Sox proteins of
two physiologically distinct bacteria and a new protein involved in thiosulfate oxidation. FEBS Letters 583:
1281–1286. DOI: https://doi.org/10.1016/j.febslet.2009.03.020, PMID: 19303410

Wetmur JG. 1991. DNA probes: applications of the principles of nucleic acid hybridization. Critical Reviews in
Biochemistry and Molecular Biology 26:227–259. DOI: https://doi.org/10.3109/10409239109114069,
PMID: 1718662

Wilmot DB, Vetter RD. 1990. The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a
sulfide specialist. Marine Biology 106:273–283. DOI: https://doi.org/10.1007/BF01314811

Wippler J, Kleiner M, Lott C, Gruhl A, Abraham PE, Giannone RJ, Young JC, Hettich RL, Dubilier N. 2016.
Transcriptomic and proteomic insights into innate immunity and adaptations to a symbiotic lifestyle in the
gutless marine worm Olavius algarvensis. BMC Genomics 17:942. DOI: https://doi.org/10.1186/s12864-016-
3293-y

Woyke T, Tighe D, Mavromatis K, Clum A, Copeland A, Schackwitz W, Lapidus A, Wu D, McCutcheon JP,
McDonald BR, Moran NA, Bristow J, Cheng JF. 2010. One bacterial cell, one complete genome. PLOS ONE 5:
e10314. DOI: https://doi.org/10.1371/journal.pone.0010314, PMID: 20428247

Wright MN, Ziegler A. 2015. Ranger: a fast implementation of random forests for high dimensional data in C++
and R. Journal of Statistical Software 77:1–17. DOI: https://doi.org/10.18637/jss.v077.i01

Yilmaz LS, Parnerkar S, Noguera DR. 2011. mathFISH, a web tool that uses thermodynamics-based mathematical
models for in silico evaluation of oligonucleotide probes for fluorescence in situ hybridization. Applied and
Environmental Microbiology 77:1118–1122. DOI: https://doi.org/10.1128/AEM.01733-10, PMID: 21148691

Yoshikawa Y, Mori T, Magome N, Hibino K, Yoshikawa K. 2008. DNA compaction plays a key role in
radioprotection against double-strand breaks as revealed by single-molecule observation. Chemical Physics
Letters 456:80–83. DOI: https://doi.org/10.1016/j.cplett.2008.03.009

Zambrano N, Guichard PP, Bi Y, Cayrol B, Marco S, Arluison V. 2009. Involvement of HFq protein in the post-
transcriptional regulation of E. coli bacterial cytoskeleton and cell division proteins. Cell Cycle 8:2470–2472.
DOI: https://doi.org/10.4161/cc.8.15.9090, PMID: 19571680

Zerulla K, Soppa J. 2014. Polyploidy in Haloarchaea: advantages for growth and survival. Frontiers in
Microbiology 5:274. DOI: https://doi.org/10.3389/fmicb.2014.00274, PMID: 24982654

Zheng H, Perreau J, Powell JE, Han B, Zhang Z, Kwong WK, Tringe SG, Moran NA. 2019. Division of labor in
honey bee gut microbiota for plant polysaccharide digestion. PNAS 116:25909–25916. DOI: https://doi.org/10.
1073/pnas.1916224116, PMID: 31776248

Zybailov B, Mosley AL, Sardiu ME, Coleman MK, Florens L, Washburn MP. 2006. Statistical analysis of membrane
proteome expression changes in Saccharomyces cerevisiae. Journal of Proteome Research 5:2339–2347.
DOI: https://doi.org/10.1021/pr060161n, PMID: 16944946

Hinzke et al. eLife 2021;10:e58371. DOI: https://doi.org/10.7554/eLife.58371 36 of 45

Research article Microbiology and Infectious Disease

https://doi.org/10.1128/JB.00154-13
http://www.ncbi.nlm.nih.gov/pubmed/23873913
http://www.ncbi.nlm.nih.gov/pubmed/23873913
https://doi.org/10.1128/AEM.04182-13
http://www.ncbi.nlm.nih.gov/pubmed/24487535
https://doi.org/10.1016/j.febslet.2009.03.020
http://www.ncbi.nlm.nih.gov/pubmed/19303410
https://doi.org/10.3109/10409239109114069
http://www.ncbi.nlm.nih.gov/pubmed/1718662
https://doi.org/10.1007/BF01314811
https://doi.org/10.1186/s12864-016-3293-y
https://doi.org/10.1186/s12864-016-3293-y
https://doi.org/10.1371/journal.pone.0010314
http://www.ncbi.nlm.nih.gov/pubmed/20428247
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.1128/AEM.01733-10
http://www.ncbi.nlm.nih.gov/pubmed/21148691
https://doi.org/10.1016/j.cplett.2008.03.009
https://doi.org/10.4161/cc.8.15.9090
http://www.ncbi.nlm.nih.gov/pubmed/19571680
https://doi.org/10.3389/fmicb.2014.00274
http://www.ncbi.nlm.nih.gov/pubmed/24982654
https://doi.org/10.1073/pnas.1916224116
https://doi.org/10.1073/pnas.1916224116
http://www.ncbi.nlm.nih.gov/pubmed/31776248
https://doi.org/10.1021/pr060161n
http://www.ncbi.nlm.nih.gov/pubmed/16944946
https://doi.org/10.7554/eLife.58371


Appendix 1

Supplementary results and discussion
A. Symbiotic Endoriftia cells exist in a remarkable size range

Symbiont cell sizes in Riftia trophosome tissue range from 1 to 2 mm to more than 15 mm (main text:

Figure 1, Figure 5). This is in line with previous microscopy-based observations, which suggested

that the symbiont cells differentiate from small rod-shaped cells in the trophosome lobule center to

larger coccoid cells towards the lobule periphery (Bright and Sorgo, 2003). With an about 10-fold

increase in diameter, Endoriftia cells enlarge their volume by a factor of ~1000 during their develop-

ment from smallest to largest coccoid symbiont cells. Considerable enlargement of bacterial cells in

the course of symbiotic differentiation has also been observed in the intracellular thiotrophic symbi-

ont of the shallow water clam Codakia orbicularis (increases 10-fold in length; Caro et al., 2007), in

Sinorhizobium meliloti in alfalfa nodules (increases four- to seven-fold in length; Oke and Long,

1999), in symbionts of the nematode Eubostrichus (increase up to 13-fold in length; Pende et al.,

2014), and in the giant bacterium Epulopiscium fishelsoni, intestinal symbiont of surgeon fish

(increases up to 3,000-fold in volume; Bresler and Fishelson, 2003). Such enormous size gradients

are rather the exception than the rule in bacteria, however. Cell sizes, that is, length or diameter, of

free-living model bacteria like Bacillus subtilis or Escherichia coli usually vary only by factor 2 (during

cell division), that is, mathematically, these bacteria may increase their volume twofold (assuming a

cylindrical shape) to eightfold (assuming a spherical shape) at most (Chien et al., 2012). This sug-

gests that the remarkably large size range observed for Endoriftia presents a consequence of its

symbiotic life style.

B. Comparative analysis of enriched symbiont fractions from S-rich vs.
S-depleted Riftia specimens
Overview
Our comparative analyses of symbiont-enriched fractions XS to L revealed that in both S-rich and

S-depleted samples, protein profiles differed with increasing symbiont cell size (Appendix 1—figure

1). Many groups of proteins (e.g. carbohydrate metabolism-related proteins) showed similar trends

across size classes in S-rich and S-depleted specimens, even if individual protein abundances dif-

fered. Statistical testing for significant differences in protein abundance between S-rich and

S-depleted fractions of the same size class returned only very few (edgeR) or no (random forest) hits.

This may in part be due to the less effective enrichment of symbionts from S-depleted trophosome

tissue homogenate. However, very similar abundance patterns in symbionts from sulfur-rich and sul-

fur-depleted hosts might also reflect the fact that symbionts are very well buffered against environ-

mental changes (as previously suggested, Hinzke et al., 2019) and, therefore, functional differences

between symbiont morphotypes in S-rich vs. S-depleted symbionts might largely be negligible.

Some of these differences, however, seemed to be specific for the respective energy situation and

are outlined below.

Cell division
In sulfur-depleted hosts, Riftia symbionts appear to divide less frequently than in sulfur-rich speci-

mens, as indicated by lower abundance of the major cell division protein FtsZ in all S-depleted frac-

tions compared to their S-rich counterparts (Supplementary file 2; please note that, due to its low

abundance, FtsZ was not included in statistical analysis in S-depleted samples). In S-depleted fraction

XS, FtsZ abundance was about 3.5 times lower than in S-rich fraction XS.

Less symbiont cell division in S-depleted Riftia accords with the idea of severe energy limitation in

sulfur-depleted symbionts and is in agreement with our previous finding that symbiont proteina-

ceous biomass is lower in trophosomes of S-depleted specimens (Hinzke et al., 2019). In this previ-

ous study, we suggested that S-depleted hosts digest a larger part of their symbiont population as

compared to S-rich tubeworms. As the host mainly digests large symbionts at the trophosome lob-

ule periphery (Figure 5 main text; Bright and Sorgo, 2003), one might expect that more digestion

leads to relatively more smaller symbionts in S-depleted trophosomes as compared to S-rich hosts.
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This was, however, not the case, as symbiont size distribution was quite comparable in trophosome

homogenates of S-rich and S-depleted trophosomes (see Figure 1, main text). Such similar distribu-

tions would be in line with the hypothesis that the host may digest small symbionts, too, besides

large Endoriftia (see main text). However, as we could not see evidence for small symbionts in the

process of digestion in any of our TEM images, we rather propose that both more symbiont diges-

tion and less symbiont cell division co-occur in S-depleted worm specimens, leading to the previ-

ously observed loss in total symbiont biomass.

Carbon fixation
Enzymes of the two autotrophic pathways, Calvin cycle and rTCA cycle, did not show significant dif-

ferences in protein abundance patterns when comparing S-rich and S-depleted gradient fractions.

However, based on our SIF analysis (Appendix 1—figure 2, see below), both pathways could be dif-

ferentially used between the two sample sets: Throughout all gradient fractions, S-depleted samples

Appendix 1—figure 1. Abundance trends of 465 Riftia symbiont proteins with significant abundance differences between the four analyzed gradient

fractions XS (enriched in very small symbiont cells) to L (containing the highest percentage of large symbiont cells) in S-rich and S-depleted Riftia

trophosomes. Heat maps show relative protein abundances (z-scores of edgeR-RLE-corrected spectral count values; see Methods for details) and line

graphs indicate trends in the observed differences.
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had a notably more positive d13C value than the respective S-rich fractions. This indicates that in

S-depleted Endoriftia, the relative contribution of the rTCA cycle to overall carbon fixation is higher

than in S-rich symbionts. This is in good agreement with earlier findings of comparative proteomic

analyses (Markert et al., 2007). Since the rTCA cycle is more energy-efficient than the Calvin cycle,

this shift towards a higher contribution of the less costly autotrophic pathway might be beneficial

during energy limitation.

Growth-related processes
Highest abundance of RNA polymerase subunits, transcription elongation factors, transcription anti-

termination protein and various translation-related proteins in fraction XS of S-rich and S-depleted

specimens indicates that small symbionts devote relatively more energy and resources to protein

synthesis than large symbionts (Supplementary file 3h). This is in agreement with the idea that small

Endoriftia function as actively dividing and growing ‘stem cells’ of the Endoriftia population, whereas

large symbionts have the role of highly efficient biomass producers (see main text).

This proposed greater importance of growth-related processes in small symbionts may result in

higher intracellular pyrophoshate levels, as suggested by high abundance of pyrophosphatases in

fraction XS. The highly abundant pyrophosphate-energized proton pump HppA (Sym_EGV49909.1)

and the inorganic pyrophosphatase Ppa (Sym_EGV49908.1) had their highest abundances in fraction

XS in S-rich samples (Supplementary file 2). Pyrophosphatases play an important role in energy

metabolism by catalyzing the hydrolysis of inorganic pyrophosphates (PPi), which are produced at

particularly high rates by biosynthetic reactions in growing cells (Klemme, 1976; Chen et al., 1990).

By removing PPi, pyrophosphatases shift the thermodynamic equilibrium to favor reactions like

DNA, RNA, and protein synthesis (Lahti, 1983).

HppA may furthermore have an additional growth-related function: During PPi hydrolysis, HppA

pumps protons into the periplasm, thus establishing a proton motive force (Maeshima, 2000). As

cell division is an energy-expensive process, which requires not only ATP but also proton motive

force (Goehring and Beckwith, 2005), HppA may be upregulated to accommodate this increased

demand in small, dividing Endoriftia. At the same time, HppA presumably increases energy effi-

ciency of the Calvin cycle (Markert et al., 2011). Interestingly, HppA abundance was notably lower

in S-depleted XS fractions, supporting the idea of reduced cell division in energy-depleted sym-

bionts (see above).

Besides HppA, highly abundant nitrate reductase NarGHI showed a very similar abundance pat-

tern with (i) decreasing abundance from fraction XS to L and (ii) notably lower abundances in

S-depleted fractions compared to their respective S-rich counterparts (Supplementary file 2).

NarGHI, which catalyzes the first step of anaerobic denitrification (see main text), also produces a

proton motive force (Bertero et al., 2003). We therefore speculate that it may also support cell divi-

sion in small symbionts, and that its lower abundance in S-depleted samples correlates with less cell

division in these symbionts.

Host interactions
Proteins which may protect the symbiont from digestion by the host could be most important in

small symbiont cells and particularly so in S-depleted Riftia, as suggested by highest abundances of

an ankyrin protein and of the FK506-binding protein FkpA in S-depleted fraction S

(Supplementary file 2).

In S-rich and S-depleted samples, the ankyrin-like symbiont protein (Sym_EGV51005.1) decreased

in abundance from fraction S to L. Endoriftia ankyrin repeat-containing proteins were previously sug-

gested to be involved in microbe-host interactions, possibly to counteract digestion by the host

(Hinzke et al., 2019). As small Endoriftia are the main dividing symbiont subpopulation and thus

ensure survival of the symbiont population as a whole, digesting those cells would harm not only the

symbiont, but also the host itself. The ankyrin protein could fulfill a protective role especially for

these smaller symbionts.

The Riftia symbiont’s FK506-binding protein (Sym_EGV50540.1), which showed a comparable

abundance trend, might have a similar role. In Salmonella typhimurium and Cronobacter, FkpA is
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involved in survival inside host cells (Horne et al., 1997; Eshwar et al., 2015), suggesting that the

Endoriftia FkpA, too, provides protection for the intracellular symbiont.

C. Flow cytometry of Riftia symbionts

According to our flow cytometry data, Riftia trophosome homogenate and enriched gradient frac-

tions were quite heterogeneous (Figure 2—figure supplement 1), with a number of other popula-

tions present besides populations 1 (small symbionts) and 2 (large symbionts). This heterogeneity

may, to a minor degree, result from contaminating host organelles, but is presumably mostly due to

the fact that (a) symbionts exist not only as small or large cells, but also adopt any intermediate size,

and (b) intracellularly stored sulfur influences the cells’ light-scattering properties (especially side

scatter, SSC), considerably (as shown for thiotrophic lucinid symbionts; Caro et al., 2007).

We sorted one of the additional populations, with SSC between 104 and 105 and FSC between

103 and 104 (i.e. with higher SSC but lower FSC than populations 1 and 2) to examine it separately.

Fluorescence microscopy revealed that this population consisted mostly of medium-sized symbionts,

which – unlike populations 1 and 2 – contained numerous sulfur globules (images not shown). It

could be assumed that other symbiont cell populations, for example, small S-rich and large S-rich

cells, might also be present. This hypothesis awaits confirmation in future studies. To estimate symbi-

ont DNA content in the present study, we only included populations 1 and 2, which were readily

comparable due to their similar sulfur content (i.e. there were hardly any sulfur globules visible).

As also described for a thiotrophic lucinid symbiont (Caro et al., 2007), cell populations were not

entirely congruent across the two bioreplicates in our Endoriftia flow cytometry analyses. Conse-

quently, individual fluorescence intensity (FI) values varied by a factor of 2 (on average;

Supplementary file 6). Nevertheless, both replicates clearly showed the same trend, that is, higher

FI per particle in population 2 compared to population 1 across all samples, strongly indicating mul-

tiple genome copy numbers in large symbionts.

D. CO2 metabolism is differentially regulated across Endoriftia cell sizes
Small and large Endoriftia differ with regard to their autotrophic pathway
use
Relative contributions of Calvin cycle and rTCA cycle to autotrophic net carbon fixation appear to

differ distinctly between small and large Endoriftia, as revealed by our analysis of stable carbon iso-

tope fingerprints (SIFs, Appendix 1—figure 2). The Calvin cycle, with its type II RubisCO, fixes pref-

erentially 12CO2 rather than
13CO2, that is, it discriminates against 13C with a shift of �5 to �25‰. In

contrast, the rTCA cycle discriminates only with �2 to �13‰ against 13C, which makes it possible to

distinguish between carbon fixed by either of the two pathways or by varying contributions of both

(Pearson, 2010). The differences in SIF values we observed point to differential use of Calvin cycle

and rTCA cycle in small vs. large symbionts: Fraction XS had the most negative of all d13C values,

indicating that relatively more of the carbon in these samples was fixed by the Calvin cycle key

enzyme RubisCO than in the other fractions, that is, the Calvin cycle’s relative contribution to autot-

rophy is highest in small symbionts. With growing symbiont cell size, this contribution appears to

decrease, as indicated by more positive d13C values. Highest relative d13C values in fractions M and

L suggest that the relative contribution of the rTCA cycle to fixed carbon was highest in large

symbionts.

In addition to this, we observed that d13C values were notably more positive in all S-depleted

samples, compared to their S-rich counterparts. This strongly indicates that the rTCA cycle, which is

presumably more energy-efficient than the Calvin cycle, is relatively more used in S-depleted (i.e.

energy-depleted) symbionts of all sizes (see Appendix section B above).

The carbon fixation key enzyme RubisCO is more abundant in large
Endoriftia
The Calvin cycle key enzyme RubisCO was detected with notably higher mRNA-based fluorescence

intensities in large Endoriftia cells, compared to smaller symbionts. This is in agreement with our

proteomic results (see main text), and supports the conclusion that large symbionts are more

involved in carbon fixation and, generally, in biomass production, than small symbionts
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(Appendix 1—figure 3). Potential differences in mRNA fluorescence intensity of the rTCA cycle key

enzyme ATP-citrate lyase subunit B (AclB) were poorly distinguishable between smaller and larger

symbiont cells. However, an AclB signal was quite clearly visible in the very same large cells in which

RubisCO was detected. This strongly suggests that Calvin cycle and rTCA cycle are expressed simul-

taneously by the same symbiont cells.

Expression patterns of TCA cycle enzymes are ambiguous
Like RubisCO, the rTCA cycle key enzyme ATP-citrate lyase small subunit (AclA, Sym_2601634392)

was detected with significantly increasing abundance from fraction XS to L in our proteomic analy-

ses, suggesting that carbon fixation plays a relatively more important role in large Riftia symbionts

than in small symbionts (see main text). However, expression of other (r)TCA cycle enzymes was sur-

prisingly inconstistent, that is, while abundance of some enzymes increased towards fraction L

(including the key enzymes AclA and KorAB), other enzymes showed the opposite, albeit non-signifi-

cant, trend and became less abundant (e.g. AclB, isocitrate dehydrogenase Icd; Supplementary file

3d, Supplementary file 2). Further contributing to this ambiguous pattern, the AclB mRNA signal

was detected with very similar (and very low) abundances in small and large Endoriftia cells (see

Appendix 1—figure 3). A possible explanation for these observations might be that Endoriftia’s

(r)TCA cycle enzymes can run in either direction, depending on cellular requirements. While certain

key reactions of TCA and rTCA cycle have long been considered as irreversible, this seems not

always to be the case, as, for instance, reported for citrate synthase, key enzyme of the oxidative

TCA cycle, which can also operate in the reverse direction, cleaving citrate (Mall et al., 2018).

Endoriftia’s citrate synthase (although encoded in the genome) was not detected at all on the pro-

tein level in this study, allowing for the speculation that AclAB might functionally replace citrate syn-

thase in the oxidative version of the TCA cycle by running in reverse, possibly even producing ATP

in the process. Assuming that the observed discrepancies in Endoriftia (r)TCA cycle enzyme abun-

dance trends are thus indeed caused by flexible changes in the enzymes’ operating directions, Icd

could, for example, produce oxaloacetate (e.g. for glutamate synthesis) and NADH in small sym-

bionts, while in large symbionts, Icd might fix CO2 by running in the reverse direction. Further stud-

ies are required to solve the regulation of the symbiont (r)TCA cycle. The recently described

combination of matrix-assisted laser desorption/ionization mass spectrometry and FISH (metaFISH),

Appendix 1—figure 2. Protein stable carbon isotope values (d13C values) of Riftia gradient fractions enriched in

symbionts of different cell size (XS – L) relative to fraction XS of S-rich trophosome as baseline. Light squares:

S-rich symbionts (average values, n = 4), dark triangles: S-depleted symbionts (n = 3). Error bars indicate standard

errors of the mean.
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which allows for discrimination of symbiont subpopulations based on the metabolites they produce

(Geier et al., 2020), might be a promising tool for this purpose.

Large symbionts may take up organic compounds in addition to CO2

Our detection of five Riftia symbiont TRAP transporter subunits and four ABC transporter compo-

nents putatively involved in uptake of organic material with increasing relative abundance from frac-

tion XS to L indicates that Endoriftia imports small organic compounds, particularly in the late stage

of differentiation, that is, in large cells. ABC transporters can mediate uptake of small molecules

(such as sugars, amino acids, or vitamins), and metal ions (Davidson et al., 2008), while TRAP trans-

porters facilitate import of C4-dicarboxylates like fumarate, succinate, and malate (Dct type;

Mulligan et al., 2011) or of amino acids like glutamate and glutamine (TAXI type; Mulligan et al.,

2007). All these compounds may be relevant heterotrophic substrates in large Endoriftia, which

could channel amino acids and peptides into protein biosynthesis, while sugars could be stored as

Appendix 1—figure 3. A gradient fraction enriched in large symbionts (but also containing small symbiont cells) was fixed as for CARD-FISH analysis

and incubated with fluorescently labeled RNA probes against the Endoriftia 16S rRNA and the mRNAs of Calvin cycle key enzyme RubisCO and rTCA

cycle key enzyme ATP-citrate lyase (subunit AclB) before examination by confocal laser scanning microscopy (CLSM, see Materials and methods). (A)

Background-corrected mean signal intensities per pixel calculated from a total of 33 cells (in eight images on a filter from one biological replicate,

n = 1) plotted against cell area (left) and Feret’s diameter of the cell (right). Straight lines indicate the linear between mean pixel intensities and cell

size. Average RubisCO mRNA signal intensity increased notably with cell size (orange lines), while AclB signal intensity increased only very slightly (blue

lines). (B) CLSM image of Endoriftia cells (the same cells are visible with different fluorophores in the three panels). Supporting the quantitation in (A)

and in line with our proteomic results, the RubisCO signal is markedly more intense in large symbiont cells than in small cells, while the AclB signal is

very weak and signal intensity differences between large and small cells seem to be minor. Scale bar = 5 mm. Image brightness and contrast were

manually adjusted. Hybridizations of several filters from one biological replicate (n = 1) without probes but with fluorophore-carrying hairpins, and

without probes or hairpins were used as negative controls and produced no fluorescence signals (images not shown).
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glycogen. Heterotrophy in thiotrophic symbionts was previously shown for a ciliate symbiont

(Seah et al., 2019) and for ectosymbionts of shrimp (Ponsard et al., 2013). Although the Riftia sym-

biont’s potential for mixotrophy, that is, for both autotrophy and heterotrophy, had been predicted

from the symbiont’s genome, it was previously assumed that heterotrophy might be particularly rele-

vant in free-living Endoriftia, but not during symbiosis (Robidart et al., 2008). Our results challenge

this assumption and suggest that Endoriftia relies on mixotrophy even when in symbiosis, which

would allow re-cycling of carbon from host to symbiont.

E. Small Endoriftia might be nitrogen-limited

Small Endoriftia may rely relatively more on the glutamine synthetase-glutamate synthase (GS-

GOGAT) pathway for ammonia assimilation, while large symbionts cells seem to preferably use glu-

tamate dehydrogenase (GDH) for this purpose. In both S-rich and S-depleted samples, a glutamine

synthetase copy (GlnA), glutamate synthase subunit GltB and nitrogen regulatory protein P-II (GlnB)

were detected with decreasing abundance from fraction XS to L (Figure 3 main text,

Supplementary file 3f). In contrast, glutamate dehydrogenase (GdhA) showed the opposite trend

with lowest abundance in XS and highest abundance in L (S-rich) or M (S-depleted). The GS-GOGAT

pathway, which is energetically more expensive than the GDH-pathway, was shown to be used under

energy-rich conditions or during nitrogen limitation in E. coli (reviewed in Reitzer, 2003). GS-

Appendix 1—figure 4. Energy-generating oxidation of reduced sulfur compounds in Endoriftia. Proteins in bold were detected in this study. (Figure

adapted from Grein et al., 2010; Markert et al., 2011; Rodriguez et al., 2011; Stewart et al., 2011; Dahl et al., 2013; Stockdreher et al., 2014;

Weissgerber et al., 2014). As the role of hydrogen as electron donor in the Riftia symbioses was recently questioned (Mitchell et al., 2019), the

associated reactions are labeled in gray and with a question mark.
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GOGAT was furthermore shown to have a higher affinity towards ammonium than GDH (Reit-

zer, 2003). This suggests that small symbionts could be nitrogen-limited, either due to a concentra-

tion gradient (with highest nitrogen levels in the peripheral lobule zones), and/or due to their own

high demand for nitrogen compounds for growth. Further investigations are required to evaluate

this speculation.

F. Sulfur metabolism

While many of the energy-generating reactions of the uncultured Riftia symbiont’s sulfur metabolism

have been elucidated previously (Markert et al., 2011), several details remained vague. Our new

proteome data enabled us to propose a more detailed model of the Endoriftia sulfur metabolism

(Appendix 1—figure 4, Supplementary file 7).

Appendix 1—table 1. Nucleotide sequences used for Hybridization chain reaction (HCR) FISH

analyses in this study.

See Materials and methods for details.

>Endoriftia_RubisCO-1–3 CAACGGGGTAGGCGATCTTCATCAGCTCTTTGGCTTCATCGATCTCATAG

>Endoriftia_RubisCO-1–6 CACATATCCTGGATGTTGACCGCAGGACCGTCGTACAGGCGCAGGTATTT

>Endoriftia_RubisCO-1–11 ATGCACCCAGCAGACGGGTCATCTTGATGTGTACGAAAGCGGTGTAACCA

>Endoriftia_RubisCO-1–14 AAAGGACTCGAAGGCGCGAGCGAACTCTTTGTGCTCTTTCGCGTACTCGA

>Endoriftia_AclB-1–1 AGACGGCGGTAGATAGACCACCGCCACATTGAATTCACAGCCGTCGTCAA

>Endoriftia_AclB-1–6 CGAACTTCTCCATGAACCACTCTTCCTTGGCGACGGCATTGTCACCGGAA

>Endoriftia_AclB-1–8 CTGGTGTCGGTCGGATCTTCGATGCCTGCTTTCTTGAACAGCTCCATCAT

>Endoriftia_AclB-1–12 GTGGGCGAAACCGGTATGGGTGAGGAAACCGATATAGCCTTTGTTGACCT

>Endoriftia_AclB-1–18 AAACAGGAACGTGGTGAAGGCGGCAGATTCCATGGTCGCGTCGCTGATCT

>Endoriftia_16srRNA-1 TATTAGCTCGGATTTCTCCGAGTTGTCCCCCACTACTGGGCAGATTCCTA

>Endoriftia_16srRNA-5 ACGGAGTTAGCCGGTGCTTCTTCTAAAGGTAACGTCAAGACCCAAGGGTA

>Endoriftia_16srRNA-9 TTTACGGCGTGGACTACCAGGGTATCTAATCCTGTTTGCTACCCACGCTT

>Endoriftia_16srRNA-13 TCGGCTCCCGAAGGCACCAATCTATCTCTAGAAAGTTCCGAGGATGTCAA

>Endoriftia_16srRNA-14 GTTCCCCTAGGGCTACCTTGTTACGACTTCACCCCAGTCATGAATCACAA

Appendix 1—table 2. Overview of symbiont protein identification numbers in all sample types in

this study, that is in gradient fractions XS - L and in non-enriched trophosome homogenate (Hom).

ID count: number of identified proteins. Numbers are based on four biological replicates for sulfur-

rich samples and three biological replicates for sulfur-depleted samples. Note that not all proteins

were included in statistical analyses (StAn; see Materials and methods for details). GF: gradient

fractions.

sulfur-rich trophosome sulfur-depleted trophosome total

Hom XS S M L Hom XS S M L

ID count 1151 1022 1296 1603 1722 1017 1099 1260 1605 1572 1946

ID count (Hom only) 1151 1017 1223

ID count (total all GF) 1821 1727 1898

ID count (total all sample types) 1867 1773 1946

Proteins in StAn 940 1081 1135 1134 1008 1091 1150 1143 1212

Proteins in StAn (total all GF) 1135 1151 1212
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DsrC: The Endoriftia genome encodes several copies of DsrC family proteins, four of which were

detected as proteins in this study (Supplementary file 2). One of them, Sym_EGV52266.1, was one

of the most abundant symbiont proteins, pointing to considerable physiological importance of this

protein. Similar to the situation in Endoriftia, three putative DsrC copies were found in the Calypto-

gena okutanii symbiont (Harada et al., 2009), and DsrC was also the single most abundant sulfur

metabolism mRNA in the Solemya velum symbiont (Stewart et al., 2011). DsrC has been described

to fulfill a key role in dissimilatory sulfur metabolism, including a putative function in transcription

regulation and a function as a sulfur trap to allow for maximum DsrAB efficiency (Venceslau et al.,

2014). Considering this role of DsrC as enhancer of sulfide oxidation efficiency, highest abundance

of all Endoriftia DsrC copies in fraction XS (and lowest DsrC abundance in fraction M or L), corrobo-

rates our hypothesis of relatively more H2S oxidation for energy generation in small Riftia symbionts

(see main text).

SoeABC: In addition to AprAB and SopT, two of the key enzymes of cytoplasmic sulfide oxida-

tion, we also found SoeABC to be expressed in Endoriftia. In Allochromatium vinosum, SoeABC cat-

alyzes direct oxidation of sulfite to sulfur, independently of AMP (Dahl et al., 2013).

SreABC: We found the putatively sulfur oxidation-related proteins SreABC in the metagenome

and detected SreA on the protein level in Endoriftia. While the exact function of SreABC in the oxi-

dation of reduced sulfur compounds is unclear, for A. vinosum it was speculated that the Sre pro-

teins could oxidize polysulfides, which are intermediates generated during sulfide oxidation to sulfur

(Weissgerber et al., 2013).

HyaAB: Endoriftia’s uptake hydrogenase HyaAB might be involved in sulfur oxidation. In A. vino-

sum, concentration of the Isp-type hydrogenase HydLS was shown to increase substantially in the

presence of sulfide (Weissgerber et al., 2014), leading to the proposition that hydrogen-derived

electrons may be fed into sulfide oxidation via hydrogenase as illustrated in Appendix 1—figure 4.

A. vinosum’s HydL (Alvin_2036) and Endoriftia’s HyaB (EGV51840.1) protein sequences are 75.69%

identical (NCBI BlastP), indicating that both may have similar functions in sulfur oxidation.

G. Considerations on the blood flow direction in Riftia trophosome lobules

Blood flow across Riftia trophosome lobules is commonly accepted to proceed from the lobule

periphery inwards to the lobule center, based on observations of van der Land and Nørrevang,

1977, Felbeck and Turner, 1995 and Bright and Sorgo, 2003 (see also Figure 6 in the main text).

This direction would facilitate a potential substrate gradient with highest concentrations of CO2, N2,

O2, reduced sulfur compounds and other substances at the lobule periphery and lowest concentra-

tions in the lobule center. Such a periphery-to-center gradient is in agreement with and corroborates

many of our findings. For example, (1) lower oxygen concentrations in the lobule center accord with

increasing abundances of all four cytochrome c oxidase subunits (Cco: Sym_EGV51283.1,

Sym_EGV51282.1, Sym_2601635240, Sym_EGV51284.1; see Supplementary file 2) from fraction XS

to M or L. Lowest oxygen levels around the smallest symbionts would furthermore explain highest

levels of nitrate-reducing NarGHI in fraction XS. (2) Highest CO2 levels at the lobule periphery sup-

port higher abundances of CO2 fixation enzymes in large symbionts, and (3) highest abundances of

thiosulfate oxidation proteins in large symbionts may be related to more host sulfide oxidation at

the lobule periphery, where sulfide concentrations are highest. Providing highest raw substrate con-

centrations to the large symbionts would support them in their role as major biomass producers in

the symbiosis. Moreover, (4) nutrients released during symbiont digestion in the lobule periphery

would likely enter the blood stream and subsequently be transported inwards. Decreasing relative

abundances of TRAP-type transporters from fraction L to XS (see section D above) suggest that

these compounds are imported by the symbionts along the way, with largest Endoriftia benefiting

from highest nutrient concentrations.

Riftia‘s blood flow and ensuing putative substrate gradients thus go hand in hand with symbiont

differentiation. Quite possibly, they might even be involved in triggering this differentiation.
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