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Abstract The extent of non-coding RNA alterations in patients with sepsis and their relationship

to clinical characteristics, soluble mediators of the host response to infection, as well as an

advocated in vivo model of acute systemic inflammation is unknown. Here we obtained whole

blood from 156 patients with sepsis and 82 healthy subjects among whom eight were challenged

with lipopolysaccharide in a clinically controlled setting (human endotoxemia). Via next-generation

microarray analysis of leukocyte RNA we found that long non-coding RNA and, to a lesser extent,

small non-coding RNA were significantly altered in sepsis relative to health. Long non-coding RNA

expression, but not small non-coding RNA, was largely recapitulated in human endotoxemia.

Integrating RNA profiles and plasma protein levels revealed known as well as previously

unobserved pathways, including non-sensory olfactory receptor activity. We provide a benchmark

dissection of the blood leukocyte ‘regulome’ that can facilitate prioritization of future functional

studies.

Introduction
Sepsis is a multifaceted syndrome that develops as the consequence of an abnormal host response

to infection leading to organ failure and high risk of death (Angus and van der Poll, 2013;

Cecconi et al., 2018). It is estimated that 2–5 million deaths worldwide are attributable to

sepsis (Fleischmann et al., 2016). Despite empirical antimicrobial therapy and advances in intensive

care, it is expected that sepsis will remain a major healthcare problem. As such, sepsis has been rec-

ognized as a global health priority in 2017 by the World Health Assembly and WHO (World Health

Organization, 2017). In spite of more than 100 clinical trials having evaluated drugs targeting spe-

cific components of the host response to infection (Marshall, 2014), no specific treatment for sepsis

has been approved (Angus and van der Poll, 2013; Cecconi et al., 2018). This argues for a deeper
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understanding of sepsis immunopathology to identify veritable drug targets (Marshall, 2014;

Tse, 2013).

Protein-coding RNA expression profiling of blood leukocytes from sepsis patients has helped to

broaden our understanding of sepsis immunopathology (van der Poll et al., 2017), for example, by

unmasking defects in leukocyte energy metabolism of sepsis patients (Cheng et al., 2016), and by

classifying sepsis patients as transcriptomic endotypes with prognostic and pathophysiological

value (Scicluna et al., 2017; Davenport et al., 2016; Wong et al., 2009). From fruit flies to man,

the protein-coding part of genomes from different species is remarkably similar in numbers and

functions (Liu et al., 2013), which suggests that numerous aspects of complex biology in eukaryotes

might stem from non-protein-coding regions of the genome. The increase in genomic coverage of

tiled microarrays and massive cDNA sequencing undertaken by the Functional Annotation of the

Mammalian genome (FANTOM) consortium revealed pervasive transcription outside of the known

gene loci (Kapranov et al., 2002; Carninci et al., 2005). Moreover, such studies facilitated the dem-

onstration that non-coding RNAs were under negative evolutionary selection, which implied func-

tionality rather than plain ‘transcriptional noise’ (Ponjavic et al., 2007). Indeed, a substantial

proportion of non-coding RNA, by general convention defined as long (>200 nucleotides) or small

(<200 nucleotides) non-coding RNAs, yields clear phenotypic effects in both in vitro and in vivo func-

tional studies (Zhu et al., 2016; Gebert and MacRae, 2019; Atianand et al., 2016;

Carpenter et al., 2013). Ever-growing numbers of small non-coding RNAs, for example micro (mi)

RNAs (20–24 nucleotides), or long non-coding RNAs such as long intergenic non-coding (linc)RNAs,

have been linked to human diseases (Bao et al., 2019; Esteller, 2011). An important aspect of non-

coding RNAs is their capacity for precise regulation of cellular biological processes via epigenetic

mechanisms, including complex immune system processes (Carpenter, 2018; Atianand and Fitzger-

ald, 2014; Mehta and Baltimore, 2016).

Knowledge of the non-coding RNA landscape in patients with sepsis is limited. Here we report a

comprehensive screen of non-coding RNA expression patterns in blood leukocytes of patients with

sepsis and their relation to clinical characteristics and soluble mediators of the host response. In

addition, by using a guilt-by-association approach we positioned non-coding RNAs in network mod-

ules encompassing protein-coding RNA reflecting distinct cellular biological pathways.

Results

Protein-coding and non-coding blood transcriptomes
In order to build a comprehensive map of RNA expression in the context of sepsis, we evaluated

protein-coding, long and small non-coding RNA expression in whole blood leukocytes from 156 sep-

sis patients and 82 healthy subjects (median age (Q1–Q3), 54 (42 – 60); 26% male). Patient character-

istics are tabulated in Table 1, causative pathogens in Supplementary file 1. Principal component

(PC) analysis of the most abundant protein-coding RNAs (n = 18,063) and long non-coding RNAs

(n = 16,087) showed clear partitioning of patients with sepsis distinct from healthy subjects

(Figure 1A). In contrast, small non-coding RNAs (n = 4949) showed only minimal separation between

patients and healthy subjects. We observed similar patterns after calculating the molecular distance

to health (MDTH)(Berry et al., 2010; Dunning et al., 2018) index, a measure of transcript-level

expression perturbation relative to health, with significantly higher MDTH indices in sepsis

(Figure 1B). Notably, long non-coding RNA transcripts exhibited the broadest expression perturba-

tions in healthy participants and sepsis patients, exemplified by the highest overall MDTH indices

(Figure 1B).

Comparing sepsis patients to healthy subjects identified 15,097, 13,158, and 635 significantly

altered (adjusted p-value <0.01) protein-coding, long non-coding, and small non-coding RNAs,

respectively (Figure 1C). Ingenuity pathway analysis of the significantly altered protein-coding RNA

transcripts revealed associations with various canonical signaling pathways that included elevated

pro- and anti-inflammatory pathways, cell cycle, DNA damage response, and metabolic pathways

(Figure 1—figure supplement 1). Transcripts with reduced expression were predominantly associ-

ated with T helper cell activation, antigen presentation, and B cell responses. Results on protein-cod-

ing RNA profiles are in agreement with previous reports from our and other groups (van der Poll

et al., 2017). LincRNAs, antisense, and pseudogene RNA transcripts represented the most highly
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altered long non-coding RNA biotypes in sepsis relative to health (Figure 1D). Micro (mi)RNAs, stem

loop RNAs, and small nucleolar (sno)RNAs were the most abundant small non-coding RNA biotypes

(Figure 1E).

Protein-coding and non-coding blood transcriptomes, demographics,
and clinical characteristics
In order to understand inter-individual variation in RNA expression profiles, we set out to determine

the contribution of demographics and clinical characteristics to protein-coding and non-coding RNA

expression variation in sepsis patients (Figure 2), as well as healthy subjects. Using a variance parti-

tion (multivariable) approach (Hoffman and Schadt, 2016), differences in gender and age of healthy

subjects explained 5%, 4%, and 4% of the variation in protein-coding, long non-coding, and small

non-coding RNA expression, respectively (Figure 2—figure supplement 1A). Specific transcripts

had high percentages of explainable variance, in particular long non-coding RNAs against gender.

Not surprisingly, expression of long non-coding RNAs positioned on the X and Y chromosomes, for

example TXLNGY, LINC00278, and XIST had 98%, 97%, and 94% of variance explained by gender,

respectively (Figure 2—figure supplement 1B). In sepsis patients, a multivariable model that incor-

porated demographics and common clinical characteristics, including APACHE IV, SOFA scores,

Table 1. Baseline characteristics and outcomes of critically ill patients with sepsis.

Parameter
Sepsis patients
(n = 156)

Age, years 62 (50 - 70)

Male sex 98 (62.8)

White ethnicity 140 (89.7)

Medical admission 117 (75.0)

Immune suppression 45 (28.8)

Cardiovascular insufficiency 43 (27.6)

Malignancy 45 (28.8)

Renal insufficiency 18 (11.5)

Respiratory insufficiency 37 (23.7)

Charlson comorbidity index 4 (2 - 6)

APACHE IV score 72 [58 - 92]

SOFA score 7 (4 - 9)

Shock 86 (55.1)

Mechanical ventilation 128 (82.1)

Primary diagnosis

Pneumonia 99 (63.5)

Community-acquired 68 (43.6)

Hospital-acquired 31 (19.9)

Abdominal sepsis 57 (36.5)

Outcome

28-day mortality 48 (30.8)

90-day mortality 59 (37.8)

1-year mortality 77 (49.4)

Data presented as median [Q1–Q3], or n (%).

Abbreviations: APACHE, Acute Physiology and Chronic Health Evaluation; ICU, Intensive care unit; GI, gastrointesti-

nal; SOFA, Sequential Organ Failure Assessment.

The online version of this article includes the following source data for Table 1:

Source data 1. Baseline characteristics and outcomes of critically ill patients with sepsis.
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Figure 1. Coding and non-coding RNA expression in leukocytes of sepsis patients and healthy individuals. (A)

Principal component (PC) plot depicting PC1 and PC2, and (B) the molecular distance to health (MDTH) index of

protein-coding (n = 18,063), long non-coding (n = 16,087), and small non-coding RNAs (n = 4949) in healthy

subjects and sepsis patients. **p<0.01; ***p<0.001. (C) Volcano plot representation of differences in coding and

non-coding RNA expression between sepsis patients and healthy subjects. Horizontal (black) line denotes �log10

transformed adjusted p-value of 0.01. (D) Pie chart showing the subclass distribution of significant long non-coding

RNA (adjusted p<0.01). LincRNA, long intergenic non-coding RNA; rRNA, ribosomal RNA; TEC, to be

experimentally confirmed; Mt tRNA, mitochondrial transfer RNA; Mt rRNA, mitochondrial ribosomal RNA. (E) Pie

chart showing the subclass distribution of significant small non-coding RNA (adjusted p<0.01). miRNA, microRNA;

Figure 1 continued on next page

Scicluna et al. eLife 2020;9:e58597. DOI: https://doi.org/10.7554/eLife.58597 4 of 23

Tools and resources Immunology and Inflammation

https://doi.org/10.7554/eLife.58597


shock and Charlson comorbidity indices, cumulatively explained 18%, 13%, and 8% of protein-cod-

ing, long non-coding, and small non-coding RNA expression variance, respectively (Figure 2A). Spe-

cifically, sepsis primary site of infection (lung or abdomen) and place of acquisition (community or

hospital) explained the highest proportion of variation in protein-coding (6.7%) and long non-coding

(4.4%) RNA expression (Figure 2A). Despite overall low proportions of variance explained, outlier

RNA transcripts could be detected. For example, some specific transcripts demonstrated high indi-

vidual explained variance against primary sepsis diagnosis, including protein-coding RNA encoding

basic leucine zipper and W2 domains 1 (BZW1); long non-coding RNA SUMO2 pseudogene 1

(SUMO2P1); and small non-coding RNA miRNA hsa-miR-7855–5 p (Figure 2B). Septic shock

explained low proportions of variation in RNA expression (Figure 2A), and directly comparing

patients with septic shock to patients without shock resulted in 837 and 80 significantly altered pro-

tein-coding and long non-coding RNA, respectively (Figure 2C). High expression protein-coding

RNA included matrix metalloproteinase 8 (MMP8), resistin (RETN), and lipocalin 2 (LCN2). Low

expression protein-coding RNA included a Na+/Ca2+ exchanger (SLC8A1), membrane metalloendo-

peptidase (MME), and interleukin (IL-) six receptor (IL6R). Long non-coding RNA included lincRNA

lung cancer-associated transcript 1 (LUCAT1; low expression) and antisense RNA (LRRC75A-AS1;

high expression) (Figure 2C). No significant alterations were identified in small non-coding RNA

expression profiles. Evaluating RNA expression in patients discordant for survival after 28 days iden-

tified 146 significantly altered protein-coding RNA (Figure 2—figure supplement 1C). No significant

differences were uncovered in non-coding RNA expression profiles, suggesting that non-coding

RNA profiles obtained on ICU admission may not be suitable as mortality predictors.

Protein-coding and non-coding RNA profiles of sepsis patients relative
to human endotoxemia
Previous studies have compared the protein-coding RNA response in patients with sepsis or trauma

(non-septic) to the response after lipopolysaccharide (LPS) administration to healthy volunteers in a

controlled clinical setting (human endotoxemia) (Cheng et al., 2016; Calvano et al., 2005;

Scicluna et al., 2013; Perlee et al., 2018; Seok et al., 2013; Xiao et al., 2011; Takao and Miya-

kawa, 2015). Here we sought to extend on those observations by evaluating long and small non-

coding RNA expression in sepsis relative to temporal leukocyte responses in human endotoxemia

(Figure 3). As previously reported in this model (Cheng et al., 2016; Calvano et al., 2005;

Scicluna et al., 2013; Perlee et al., 2018), robust alterations in protein-coding RNA expression

were noted after 2, 4, and 6 hr of LPS administration (Figure 3—figure supplement 1). Fold expres-

sion in sepsis (relative to health) was directly correlated with fold expression after 2, 4, and 6 hr LPS

(Figure 3A). Long non-coding RNA expression was robustly altered in endotoxemia, with 2361,

5053, 2925, and 43 significant differences after 2, 4, 6, and 24 hr endotoxemia, respectively (Fig-

ure 3—figure supplement 2A). Pseudogenes, lincRNA, and antisense RNA were the most abundant

long non-coding RNA biotypes (Figure 3B). Small non-coding RNA were modestly altered in human

endotoxemia (Figure 3—figure supplement 2B). The most abundant biotypes of small RNA were

miRNA (Figure 3C). Comparing fold expression in sepsis (relative to health) to human endotoxemia

revealed significant correlations after 2, 4, and 6 hr of endotoxemia (Figure 3D). The highest r2 was

found for sepsis and 4 hr post-LPS (r2 = 0.51). Correlation analysis of small RNA fold expression dur-

ing endotoxemia against fold expression in sepsis revealed indirect correlations (Figure 3E).

Functional inference of non-coding RNA
To better understand the functional organization of the non-coding leukocyte transcriptome in sep-

sis, particularly long non-coding RNA, we undertook a guilt-by-association approach. On the basis of

a bi-weight midcorrelation matrix of the most variable protein-coding and long non-coding RNA

Figure 1 continued

snoRNA, small nucleolar RNA; C/D box snoRNA, C/D box small nucleolar RNA; H/ACA box snoRNA, H/ACA box

small nucleolar RNA; scaRNA, small cajal body-specific RNA.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Ingenuity pathway analysis of significant protein-coding RNA in sepsis relative to health.
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Figure 2. Variance in coding and non-coding RNA expression attributed to demographics and clinical characteristics of sepsis patients. (A) Violin plots

of percent variation in protein-coding, long non-coding, and small non-coding RNA expression explained by sepsis patient demographics and clinical

variables. Black dots depict outlier RNA transcripts. (B) Percent variance of select protein-coding and long non-coding RNA partitioned into the

segment attributable to each demographic and clinical variable ranked by percent variation (>20%) for primary diagnosis (site of infection and place of

acquisition). (C) Volcano plots depicting the changes in protein-coding and long non-coding RNA in patients discordant for septic shock on ICU

admission. Horizontal (black) line denotes the adjusted p-value threshold for significance (adjusted p�0.01). Abbreviations: BC+, blood culture positive

Figure 2 continued on next page
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(n = 8539; coefficient of variation >5%) in sepsis patients only (Figure 4), a weighted network was

built with scale-free topology (Figure 4—figure supplement 1A; Langfelder and Horvath, 2008;

Langfelder and Horvath, 2012; Scicluna et al., 2015a). Hierarchical clustering uncovered 23 net-

work modules (clusters) each harboring more than 100 inter-correlating RNA transcripts (Figure 4A

and Figure 4—figure supplement 1B). Of the 8539 RNA transcripts, 158 transcripts did not cluster

(designated as a gray module). Seventeen modules were associated with specific gene ontologies or

canonical signaling pathways that included cell death/olfactory receptor activity/cell-cycle G2/M

DNA damage checkpoint and regulation (turquoise module, n = 1001 transcripts) and RNA biosyn-

thesis/RNA binding (yellow module, n = 579 transcripts) (Figure 4A). Eight modules in the co-

expression network were significantly enriched for long non-coding RNA relative to protein-coding

RNA (Fisher’s adjusted p<0.01; Figure 4B). This suggests that the leukocyte long non-coding tran-

scriptome of sepsis patients is primarily co-expressed with protein-coding RNA, but 34% of non-cod-

ing RNA modules were organized into distinct units. Evaluation of total and intra-module

connectivities, which measure the importance of each module relative to the overall structure of co-

expression networks (Langfelder and Horvath, 2008), identified two ‘driver’ modules, namely the

cell death/olfactory receptor activity/cell-cycle G2/M DNA damage checkpoint and regulation (tur-

quoise module, n = 1001 transcripts) and RNA biosynthesis/RNA binding (yellow module, n = 579

transcripts) modules (Figure 4C and D and Figure 4—figure supplement 1C). The former module

included protein-coding RNA encoding ATM serine/threonine kinase (ATM), TNF alpha-induced pro-

tein 3 (TNFAIP3 or A20), histone deacetylase 2 (HDAC2), and mucosa-associated lymphoid tissue

lymphoma translocation protein 1 (MALT1) paracaspase (Figure 4D). Non-coding RNA included

GABPB1-AS1, THAP9-AS1, and SCARNA9. We subsequently focused our attention on integrating

miRNA profiles to the co-expression network. Considering miRNA profiles that were significantly

altered in sepsis patients relative to health (Figure 1C), and miRNA-to-gene interactions (miRWalk

method), we detected 49 small RNAs in five network modules with explained variance esti-

mated >20%, including hsa-miR-200c-3p (translation initiation module), SNORD84 (regulation of

cytokine secretion/Toll-like receptor [TLR] signaling module), HBII-276 (translation initiation module),

hsa-miR-1275 (sensory perception of chemical stimulus/olfactory receptor activity module), and hsa-

miR-664b-3p (neutrophil degranulation/extracellular exosome module) (Figure 4E). Of note, hsa-

miR-200c-3p has been shown to modify TLR4 signaling efficiency dependent on MYD88-mediated

pathways in an embryonic kidney cell line (HEK293) (Wendlandt et al., 2012).

Next, we evaluated the association of network modules with soluble mediators of the host

response and clinical severity scores. Neutrophil degranulation (secretory; red), protein ubiquitina-

tion (pink), and mitotic cell cycle (tan) modules correlated with soluble mediators of inflammation (C

reactive protein [CRP], IL-6, IL-10, IL-8), endothelial responses (E-selectin and angiopoietin-2

[ANG2]), coagulation (D-Dimer), and clinical variables of disease severity (Figure 5A). In contrast,

antigen presentation/Th1-Th2 cell activation (green module), regulation of cytokine secretion/TLR

signaling (black module), and type-I interferon signaling/double stranded RNA binding (salmon mod-

ule) were indirectly correlated with various soluble mediators and clinical severity indices. Patients

with septic shock showed significantly higher neutrophil degranulation (secretory) expression pat-

terns (Figure 5B). Protein-coding RNA transcripts in the neutrophil degranulation (secretory) module

included matrix metalloproteinases (MMP8 and MMP9), neutrophil activation cluster of differentia-

tion 177 (CD177), lipocalin 2 (LCN2), and arginase 1 (ARG1) (Figure 5C). LincRNA and antisense

RNA included an inducer of differentiation MYOSLID (myocardin-induced smooth muscle LncRNA,

inducer of differentiation), cell proliferation, and metastasis-associated antisense RNA of the titin

gene (TTN-AS1) and an IL10 receptor beta subunit antisense RNA, IL10RB-AS1. Calculating intra-

modular connectivities enabled us to define ‘hub’ transcripts, which are understood to represent

Figure 2 continued

microbiology; diagnosis, infection site (lung or abdomen) and source (community or hospital); Charlson, Charlson comorbidity index; Apache IV, Acute

Physiology and Chronic Health Evaluation; ICU, Intensive care unit; SOFA, Sequential Organ Failure Assessment.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Variance partition of protein-coding and non-coding RNA expression in health and differential expression in sepsis non-survivors

relative to survivors.
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Figure 3. Comparison of the coding and non-coding transcriptome in sepsis to human endotoxemia. (A) Dot plots depicting the correlation between

protein-coding RNA fold expression indices in sepsis (compared to health) and fold expression after 2, 4, 6, and 24 hr lipopolysaccharide (LPS) infusion

relative to pre-LPS. (B) Pie chart illustrating the biotypes of significantly altered long non-coding RNA (adjusted p<0.01) across endotoxemia time points

(2, 4, 6, and 24 hr after 2 ng/kg LPS). LincRNA, long intergenic non-coding RNA; rRNA, ribosomal RNA; TEC, to be experimentally confirmed; Mt tRNA,

Figure 3 continued on next page
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cogs in the functional output of a network module (Langfelder and Horvath, 2008; Zhao et al.,

2010), and identified MYOSLID (neutrophil degranulation; red module) and LUCAT1 (Lung Cancer

Associated Transcript 1) in the TLR-signaling (black) module, as module ‘hubs’. In line with their

respective module eigengene correlations with inflammatory response markers, MYOSLID expres-

sion was directly correlated with levels of inflammatory response markers IL-6, IL-8, IL-10, and acute

phase response protein CRP (Figure 5D). In contrast, LUCAT1 expression was indirectly correlated

with soluble mediators of inflammation, except for CRP (Figure 5E).

Discussion
In this study we found that the transcriptional changes in critically ill patients with sepsis are not

exclusive to protein-coding RNAs. Whole blood long non-coding RNAs, and to a lesser extent small

non-coding RNAs, were significantly altered in sepsis patients relative to healthy subjects. The pat-

tern of protein-coding and long non-coding RNA profiles in sepsis was mimicked by expression pro-

files in a human endotoxemia model, notably at a time point indicative of endotoxin tolerance. Small

non-coding RNA profiles in sepsis patients were not recapitulated in human endotoxemia. In gen-

eral, common clinical characteristics explained low proportions of variation in protein-coding and

non-coding RNA profiles, suggesting that variation in leukocyte responses are largely not explained

by clinical parameters. Leveraging on the concepts of network biology, protein-coding and non-cod-

ing RNA were clustered as functional biological units with RNA binding/RNA biosynthesis and cell

death/olfactory receptor activity/cell-cycle G2-M DNA damage checkpoint and regulation modules

central to network architecture.

Advances in genomics, notably massively parallel cDNA sequencing, have shown that active tran-

scription is not exclusive to protein-coding RNA regions (Carninci et al., 2005). Regions of the

genome void of protein-coding genes have since been shown to be actively transcribed in the con-

text of various diseases (Esteller, 2011). Small non-coding RNAs, mainly microRNAs, as well as long

non-coding RNAs were linked to specific immune processes (Mehta and Baltimore, 2016;

Fitzgerald and Caffrey, 2014). While microRNAs have been established as veritable epigenetic

modifiers of transcriptional outputs, studies on the functional aspects of long non-coding RNAs have

only recently begun. However, those studies were centered primarily on mouse

models (Atianand et al., 2016; Carpenter et al., 2013). This presents a problem for translation to

human physiology because non-coding RNA sequences are typically not conserved between species

(Diederichs, 2014). Furthermore, expression of non-coding RNAs was shown to exhibit substantially

higher inter-individual variation in healthy subjects as compared to protein-coding RNAs

alone (Kornienko et al., 2016). In line with those observations our data showed that long non-cod-

ing RNA expression patterns were far more variable across individuals (healthy or sepsis) than pro-

tein-coding and small non-coding RNAs. The sources of increased inter-individual variation in long

non-coding RNA expression relative to protein-coding and small non-coding RNAs are as yet

unknown. Lower conservation coupled with faster evolution rates of long non-coding RNA regions,

which seemingly harbor more single nucleotide polymorphisms (SNPs) than protein-coding

genes (Necsulea and Kaessmann, 2014), as well as the possibility of their relatively higher suscepti-

bility to environmental and lifestyle factors (Dumeaux et al., 2010), may be at the basis of the exten-

sive variation in long non-coding RNA expression.

Figure 3 continued

mitochondrial transfer RNA; Mt rRNA, mitochondrial ribosomal RNA. (C) Pie chart showing the biotypes of significantly altered small non-coding RNA

(adjusted p<0.05) in human endotoxemia. miRNA, microRNA; snoRNA, small nucleolar RNA; C/D box snoRNA, C/D box small nucleolar RNA; H/ACA

box snoRNA, H/ACA box small nucleolar RNA; scaRNA, small cajal body-specific RNA. (D) Dot plots illustrating the correlation between long non-

coding RNA fold expression indices in sepsis (compared to health) and fold expression of 2, 4, 6, and 24 hr after LPS relative to pre-LPS. rho,

Spearman’s coefficient. (E) Dot plots depicting the correlation between small non-coding RNA fold expression indices in sepsis (compared to health)

and 2, 4, 6, and 24 hr after LPS relative to pre-LPS. rho, Spearman’s coefficient.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Comparing fold expression in sepsis (relative to health) to human endotoxemia.

Figure supplement 2. Volcano plot representations of significantly altered.
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Figure 4. Network analysis of coding and non-coding RNA expression. (A) Circular plot of protein-coding and long non-coding co-expression network

modules characterized by significantly associated (Fisher’s adjusted p<0.01) gene ontologies and Ingenuity canonical signaling pathways. Seventeen

modules were associated with specific ontologies or canonical signaling pathways. (B) Bar plot depicting the distribution of protein coding and long

non-coding RNA in each network module. *Fisher’s Benjamini–Hochberg adjusted p<0.01. (C) Dot plot illustrating the correlation between intramodular

and total connectivities of each RNA transcript in their respective network module. Yellow dots illustrate protein-coding and long non-coding RNA in

the RNA biosynthesis/RNA binding module; Turquoise dots depict the cell death and olfactory receptor activity module. (D) Diagrammatic

representation of Ingenuity’s biofunctions (z-score <2 or >2 and adjusted p<0.05) together with predicted long intergenic non-coding RNA (lincRNA)

Figure 4 continued on next page
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In line with previous studies (Seok et al., 2013; Takao and Miyakawa, 2015), we found that pro-

tein-coding RNA alterations during endotoxemia mimicked those that ensue in sepsis patients. The

human endotoxemia model is a highly relevant in vivo model of acute systemic inflammation in the

context of a controlled clinical setting (Lowry, 2005). In general, the model is characterized by a

robust systemic response, including leukocyte transcriptional responses, exhibiting shared and

unique temporal changes that resolve within 24 hr of bolus administration (Calvano et al., 2005;

Perlee et al., 2018). In extension to the previously reported data, based on a single time-point of

human endotoxemia (Seok et al., 2013; Takao and Miyakawa, 2015), we found that the correlation

between sepsis and human endotoxemia was also dependent, at least in part, on timing of the

response to LPS. The highest correlation was found at 4 hr, a time point at which the capacity of

cytokine production by leukocytes is typically reduced in the human endotoxemia model, indicative

of endotoxin tolerance (Cheng et al., 2016; de Vos et al., 2009). Long non-coding RNA alterations

in human endotoxemia also mimicked those in sepsis, with similar time dependencies as protein-

coding RNA. In contrast, small non-coding RNA expression profiles in sepsis patients were not reli-

ably recapitulated in human endotoxemia, primarily showing indirect correlations. This may be due

to typically low expression patterns of miRNA, compared to protein-coding and long non-coding

RNA, and reported high specificities of miRNA to developmental stage and cell-

type (Bernstein et al., 2003). The host response during infection is characterized by a balance

between resistance (seeking to limit the pathogen load) and tolerance (aiming to retain cell and

organ functions) (Schneider and Ayres, 2008). In sepsis both mechanisms can become uncontrolled,

wherein aberrant activation of resistance pathways results in tissue damage and inadequate toler-

ance can cause immune suppression with enhanced susceptibility to secondary infections (Bauer and

Wetzker, 2020). While our time-sequential data in healthy humans injected with LPS suggest that

coding and long non-coding RNA profiles in blood leukocytes of sepsis patients particularly reflect a

tolerant state, time course studies in patients are needed to increase the insight into the role of dis-

tinct RNA species in the interplay between resistance and tolerance.

A substantial proportion of variance in protein-coding and non-coding RNA expression in critically

ill patients with sepsis remained unexplained. Other sources of variation, not assessed in this study,

include patient genetics and time between the onset of sepsis and ICU admission (Schadt et al.,

2003; Maslove and Wong, 2014). The former represents an important source of inter-individual var-

iation where SNPs segregating in populations are in part tightly related to RNA expression

variability (Schadt et al., 2003). This was shown in a recent prospective study in sepsis due to com-

munity-acquired pneumonia (CAP), wherein SNPs influencing gene expression patterns were

identified (Davenport et al., 2016). The time of onset of sepsis is a current ‘black box’ in the field as

it cannot be accurately determined, thereby resulting in considerable uncertainty since patients are

presumably admitted to the ICU at various stages of the sepsis syndrome. Overall, we determined

that clinical characteristics and outcome explained low proportions of variation in RNA expression;

however, specific protein-coding and long non-coding RNA transcripts had high percent variation

attributable to, particularly, primary diagnosis that included infections site (lung or abdomen) and

place of acquisition (community or hospital), which may constitute important proxies to discern

organ-specific infections that are typically caused by different causal pathogens (van Vught et al.,

2016a; van Vught et al., 2016b; Sartelli, 2010).

Ascribing long non-coding RNA function to cellular biological pathways is a major challenge. To

address this challenge, we undertook a guilt-by-association strategy that sought to position long

non-coding RNA in co-expression modules of tightly correlating protein-coding RNA, thereby infer

on functional outputs of long non-coding RNA by virtue of the pathways that associate with protein-

coding RNA in each module. By leveraging on the concepts of scale free networks (Barabási, 2009),

Figure 4 continued

and antisense RNA in the cell death/olfactory receptor activity/cell-cycle G2/M DNA damage checkpoint and regulation module (turquoise). Blue,

reduced expression; red, elevated expression in sepsis relative to health (fold change �1.2 or ��1.2; adjusted p-value<0.01). (E) Violin plots of network

module eigengene (first principal component) percent variance attributable to small non-coding RNA.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Co-expression network analysis.
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Figure 5. Relationship of protein-coding, non-coding RNA network modules to soluble mediators and clinical severity. (A) Heatmap representation of

Pearson correlation coefficients (adjusted p<0.05) calculated for each network module eigengene (first principal component) against soluble mediators

of inflammation, endothelial function, coagulation, as well as clinical parameters of disease severity. APACHE IV, Acute Physiology and Chronic Health

Evaluation; SOFA, Sequential Organ Failure Assessment. Red denotes direct correlations and blue denotes indirect correlations (B) Boxplot showing

Figure 5 continued on next page

Scicluna et al. eLife 2020;9:e58597. DOI: https://doi.org/10.7554/eLife.58597 12 of 23

Tools and resources Immunology and Inflammation

https://doi.org/10.7554/eLife.58597


we built a map of protein-coding and non-coding RNA relationships that pointed to cell death/olfac-

tory receptor activity/cell-cycle G2/M DNA damage checkpoint and regulation (turquoise module)

and RNA biosynthesis/RNA binding (yellow module) as central to the organization of the co-expres-

sion network. Cell death or exhaustion, particularly in lymphocytes, have been proposed as causal

features of immunosuppression and lethality in sepsis (Hotchkiss et al., 2013). Our findings further

strengthen this hypothesis and position previously unknown non-coding RNA, including an autoph-

agy and chemical stress responder GABPB1-AS1 (Tani et al., 2014; Luan et al., 2019), as putative

regulators of cell death in the context of sepsis. Interestingly, protein-coding RNA in the cell death

(turquoise) module also included olfactory receptors and cell-cycle DNA damage regulators. Modu-

lation of DNA damage responses was demonstrated as a potential therapeutic path that might be

exploited to confer protection to severe sepsis (Figueiredo et al., 2013). Little is known about olfac-

tory receptors in non-chemosensory cells, but a growing body of evidence suggests they are not

exclusive to the nose (Kang and Koo, 2012). They have been shown to be involved in cell–cell rec-

ognition, migration, proliferation, and apoptosis (Maßberg and Hatt, 2018).

In conclusion, we here describe the non-coding RNA landscape in blood leukocytes of sepsis

patients upon admission to the ICU. By considering non-coding RNA expression patterns in relation

to protein-coding RNA we provide an important layer to the blood leukocyte ‘regulome’ in a clinical

context, which may facilitate prioritization of non-coding RNA in future functional studies.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Biological
sample
(Homo
sapiens)

Total RNA Leukocytes

Commercial
assay or kit

PAXgene Blood
miRNA kit

Qiagen Cat no./ID: 763134

Commercial
assay or kit

Human
Transcriptome
Array 2.0

Affymetrix; Thermo Fisher microarray

Commercial
assay or kit

miRNA 4.1
96-array plate

Affymetrix; Thermo Fisher microarray

Commercial
assay or kit

FlexSet
cytometric
bead arrays

BD Biosciences

Commercial
assay or kit

Immuno
turbidimetric
assay

Roche diagnostics

Commercial assay or kit Luminex Flow
Cytometry
Analyzer

Luminex Corp. RRID:SCR_018025

Commercial
assay or kit

Sysmex CA-
1500 System

Siemens Healthineers

Continued on next page

Figure 5 continued

differences in neutrophil degranulation (red) module eigengene values in sepsis patients discordant for septic shock on intensive care unit admission.

High module eigengene values mean overall elevated RNA expression; low module eigengene values mean reduced expression. (C) Diagrammatic

representation of the neutrophil degranulation (secretory; red) module (Ingenuity’s biofunction z-score <2 or >2; adjusted p<0.05) together with

predicted long intergenic non-coding RNA (lincRNA) and antisense RNA. Red or blue nodes denote high or low expression RNA transcripts in sepsis

relative to health, respectively. ***Mann–Whitney p<0.001. (D and E) Dot plots of (D) MYOSLID expression and (E) LUCAT1 expression against soluble

mediators of inflammation IL-6, IL-8, and IL-10, as well as the acute phase response protein CRP. Rho, Spearman’s coefficient.
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

Lipopolysaccharide-
Escherichia coli,
100 ng/ml,
Ultrapure

Invivogen Cat#0111:B4

Software,
algorithm

R Project for
Statistical
Computing,
(version 3.5.0)

R Development
Core Team

RRID:SCR_001905

Software, algorithm Oligo
(version 1.44)

Bioconductor (Carvalho and
Irizarry, 2010)

RRID:SCR_015729

Software,
algorithm

SVA
(version 3.28)

Bioconductor (Leek and
Storey, 2007)

RRID:SCR_012836

Software,
algorithm

genefilter
(version 1.62)

Bioconductor (Bourgon et al., 2010)

Software,
algorithm

arrayQuality
Metrics

Bioconductor (Kauffmann
et al., 2009)

RRID:SCR_001335

Software,
algorithm

Affymetrix
Transcriptome
Analysis Console

Affymetrix RRID:SCR_018718

Software,
algorithm

limma
(version 3.36)

Bioconductor (Smyth, 2005)
RRID:SCR_010943

Software,
algorithm

Ingenuity
pathway
analysis
software

Qiagen RRID:SCR_008653

Software,
algorithm

WGCNA
(version 1.64)

Bioconductor (Langfelder
and Horvath, 2008)

RRID:SCR_003302

Software,
algorithm

miR-Walk 2.0 University of
Heidelberg,
Germany (Dweep et al., 2011)

Software,
algorithm

variance
Partition
(version 1.10)

Bioconductor (Hoffman
and Schadt, 2016)

Software,
algorithm

mixOmics Bioconductor (Rohart
et al., 2017)

RRID:SCR_016889

Other Deposited
data
super-series

Gene Expression Omnibus GSE134364

Patient population and inclusion criteria
This study was part of the Molecular Diagnosis and Risk Stratification of sepsis (MARS) project, a

prospective observational study in the mixed ICUs of two tertiary teaching hospitals in the Nether-

lands (Academic Medical Center, Amsterdam and University Medical Center Utrecht, Utrecht)

(ClinicalTrials.gov identifier NCT01905033) (van Vught et al., 2016a; Klein Klouwenberg et al.,

2013; Scicluna et al., 2015b). For the current study, we selected consecutive patients with sepsis

from the MARS biorepository who were older than 18 years of age and had been admitted to the

ICU between July 2012 and January 2014. Sepsis (n = 156) was defined as the presence of CAP, hos-

pital-acquired pneumonia (HAP), or intra-abdominal infection diagnosed within 24 hr of ICU admis-

sion with a culture proven or probable likelihood using criteria as described (Zimmerman et al.,

2006), accompanied by at least one additional general, inflammatory, hemodynamic, organ dysfunc-

tion, or tissue perfusion variable described in the third international consensus definitions for sepsis

and septic shock (Singer et al., 2016). Patients with aspiration pneumonia, with multiple sites of

infection, and patients admitted to the ICU more than 2 days after the initiation of antibiotics were

excluded. All readmissions and patients transferred from another ICU were also excluded, except
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when patients were referred to one of the study centers on the same day of presentation to the first

ICU. Severity was assessed by APACHE IV (Zimmerman et al., 2006) and SOFA score excluding the

central nervous system component (Vincent et al., 1996). Shock was qualified by the use of vaso-

pressors (norepinephrine, epinephrine, or dopamine) for hypotension in a norepinephrine-equivalent

dose of more than 0.1 mg/kg/min in patients with a SOFA score of at least 2 (Singer et al., 2016).

Blood was collected in PAXgene tubes (Becton-Dickinson, Breda, The Netherlands) and ethylenedia-

minetetraacetic acid (EDTA) vacutainer tubes within 24 hr of ICU admission. Definitions of comorbid

and immunocompromised conditions are reported in the online data supplement.

Healthy participants and endotoxemia
PAXgene and EDTA tubes were also obtained from 82 healthy subjects. Eight male subjects were

exposed to intravenous LPS in a Phase I, randomized, single-blind, parallel group, placebo con-

trolled study (Clinicaltrials.gov identifier NCT02328612); the subjects who received placebo were

used in the current study (Perlee et al., 2018). Subjects were infused with LPS over 1 min (2 ng/kg;

from Escherichia [E. coli], US standard reference endotoxin, kindly provided by Anthony Suffredini,

National Institute of Health, Bethesda, MD). Whole blood was collected in PaxGene Blood tubes

(Qiagen) before and 2, 4, 6, and 24 hr after LPS administration.

Immunological markers
EDTA-anticoagulated blood plasma collected on ICU admission was used for soluble mediator meas-

urements. IL-6, IL-8, IL-10, soluble intercellular adhesion molecule-1 (ICAM-1), soluble E-selectin, and

fractalkine were measured using FlexSet cytometric bead arrays (BD Biosciences, San Jose, CA)

using a FACS Calibur (Becton Dickinson, Franklin Lakes, NJ, NJ, USA). Neutrophil gelatinase-associ-

ated lipocalin (NGAL), ANG-1, ANG-2, protein C, antithrombin, matrix metalloproteinase (MMP)�8

(R and D Systems, Abingdon, UK), and D-dimer (Procartaplex, eBioscience, San Diego, CA) were

measured by Luminex multiplex assay using a BioPlex 200 (BioRas, Hercules, CA). CRP was deter-

mined by an immunoturbidimetric assay (Roche diagnostics). Platelet counts were determined by

hemocytometry, prothrombin time (PT), and activated partial thromboplastin time (aPTT) by using a

photometric method with Dade Innovin Reagent or by Dade Actin FS Activated PTT Reagent,

respectively (Siemens Healthcare Diagnostics). Normal biomarker values were obtained from 27 age-

and sex-matched healthy subjects, except for CRP, platelet counts, PT, and aPTT (routine laboratory

reference values).

Microarrays and data processing
Total RNA was isolated by means of PaxGene blood miRNA isolation kit (Thermo-Fisher) as per man-

ufacturer’s instructions. Quality RNA (Agilent 2100 Bioanalyzer, Agilent Technologies; RIN > 6) was

processed and hybridized to either the GeneChip Human Transcriptome Array (HTA) 2.0 (Thermo-

Fisher) or the miRNA 4.1 96-array plate (Thermo-Fisher) following manufacturer’s instructions. Both

arrays were done on all samples (sepsis patients, controls, and healthy subjects injected with LPS).

Microarrays were scanned at the Cologne Center for Genomics, Cologne, Germany.

The HTA 2.0 scans (.CEL) were processed in the R language and environment for statistical com-

puting version 3.5.0 (R Development Core Team, Foundation for Statistical Computing, Vienna, Aus-

tria). Following robust multi-average (RMA) background-correction, quantile normalization, and log2-

transformation using the oligo method (version 1.44) (Carvalho and Irizarry, 2010) data were evalu-

ated for non-experimental chip effects by means of surrogate variable analysis (SVA; version 3.28)

and adjusted using the combat method (Leek and Storey, 2007). Probes were annotated using bio-

mart (version 2.36.1) (Smedley et al., 2015), and low expression probes were filtered by means of

the genefilter method (version 1.62) (Bourgon et al., 2010). The miRNA-4.1 scans (.CEL) were ana-

lyzed by means of Affymetrix Expression Console software (Thermo-Fisher). Probes were normalized

using the RMA method and detection above background (DABG) probe level detection. Homo sapi-

ens annotated probes with detection p-value <0.05 in at least one sample were considered for

downstream analyses. Quality of HTA2.0 and miRNA-4.1 arrays was evaluated by means of the array-

qualitymetrics R package (Kauffmann et al., 2009). Comparisons between study groups were done

using the limma method (version 3.36) (Smyth, 2005) and significance was demarcated by Benja-

mini–Hochberg multiple test adjusted probabilities (adjusted p<0.01). The linear model included age
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and sex as additive covariates. The MDTH index was calculated as described

previously (Berry et al., 2010; Dunning et al., 2018). Ingenuity Pathway Analysis (Ingenuity systems,

Qiagen) was used to determine the most significant canonical signaling pathways for elevated and

reduced protein-coding RNA transcripts considering adjusted Fisher’s probabilities (adjusted

p<0.05) specifying the Ingenuity knowledgebase as reference and human species. All other parame-

ters were default.

The novelty of our study, that is, profiling non-coding RNA expression in leukocytes of patients

with sepsis, precludes an adequate study power estimation. However, considering known co-regula-

tion with protein-coding RNA expression, we provide study power estimates based on previous

observations in typical gene expression studies (Cheng et al., 2016; Scicluna et al., 2017;

Davenport et al., 2016). Considering a false discovery rate of 5%, beta error level 5% (95% power),

and typical effect sizes greater than 0.25 in sepsis relative to health, a sample size of 42 per group

was estimated. In addition, eight healthy volunteers in a human endotoxemia challenge would have

more than 95% power to detect differences relative to pre-challenge (baseline)

samples (Cheng et al., 2016; Davenport et al., 2016; Calvano et al., 2005; Scicluna et al., 2013;

Perlee et al., 2018; Seok et al., 2013; Xiao et al., 2011; Takao and Miyakawa, 2015). Using a con-

tinuous model, we estimated that 156 patients would have more than 98% power to detect signifi-

cant associations with demographic or clinical variables (false-discovery rates of 5%).

Co-expression network and pathway analysis
The weighted gene co-expression network analysis (WGCNA) method (version 1.64) was used to

build the leukocyte co-expression network as described previously (Langfelder and Horvath, 2008;

Scicluna et al., 2015a; Zhao et al., 2010). A pair-wise biweight midcorrelation matrix of the most

variable transcripts (coefficient of variation >5%) was transformed into an adjacency matrix by using

a ‘soft’ power function of 8 ensuring scale-free topology (Langfelder and Horvath, 2008;

Zhao et al., 2010). The adjacency matrix was further transformed into a topological overlap matrix

to enable the identification of modules (clusters) encompassing highly inter-correlating RNA tran-

scripts by using a dynamic tree cut method (version 1.63) (Langfelder and Horvath, 2008;

Zhao et al., 2010). Modules were summarized by means of the eigengene value, defined as the first

PC of the module expression matrix and the module membership measure. Protein-coding RNA in

each module were analyzed for enrichment of gene ontologies for biological processes (GO:BP),

molecular function (GO:MF), and cellular compartment (GO:CC) using the Gene Ontology Consor-

tium database with significance defined by adjusted p-value <0.05 (http://www.geneontology.

org) (Ashburner et al., 2000). Biofunctions were predicted using Ingenuity Pathways software (Inge-

nuity pathway analysis, Qiagen Bioinformatics) specifying activation z-score <2 or >2 and adjusted

p-value <0.05. The miR-Walk atlas of gene-miRNA-target interactions was used to evaluate pre-

dicted interactions of miRNA with module-specific genes by specifying the miR-Walk

algorithm (Dweep et al., 2011; Mills et al., 2017). Human species annotations and 3’ untranslated

region (UTR) interactions as well as a minimum seed length equating to seven were specified. All

other parameters were default.

Statistics
Statistical analysis was performed in the R statistical environment (v 3.5.0). Comparison of continuous

data between categories was done with the Wilcoxon rank sum test. Correlation analysis of continu-

ous data was performed using Pearson’s method unless otherwise stated as well as the coefficient of

determination (r2). Categorical data were analyzed by Fisher exact tests or chi-squared tests. Multi-

ple comparison (Benjamini–Hochberg) adjusted p-values <0.05 defined significance. The proportion

of variance in RNA expression explained by demographics and clinical characteristics was calculated

using a multivariate approach implemented in the variancePartition method (version

1.10) (Hoffman and Schadt, 2016). A multivariate linear model was fit including age, gender, pri-

mary diagnosis, total SOFA, APACHE IV scores, shock, and Charlson comorbidity indices.

PC analysis was done using the mixOmics package, specifying 10 components (Rohart et al., 2017).

Data is presented in the form of volcano plots, pie charts, dot plots, bar charts, and circular and vio-

lin plots.
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Appendix 1

Patients
Comorbidities were defined as follows: cardiovascular compromise was defined as a medical history

of congestive heart failure, chronic cardiovascular disease, myocardial infarction, peripheral vascular

disease, or cerebrovascular disease. Malignancy was defined as a medical history of either metastatic

or not metastatic solid tumor, or hemodynamic malignancy. Patients with a history of chronic renal

insufficiency or treated with chronic intermittent hemodialysis or continuous ambulatory peritoneal

dialysis were marked as renal insufficient. Respiratory insufficiency included patients with a history of

chronic respiratory insufficiency, chronic obstructive pulmonary disease, or treated at home with oxy-

gen or ventilator support. Patients with a history of immune deficiency, human immunodeficiency

virus (HIV) infection, acquired immune deficiency syndrome (AIDS), asplenia, or chronically treated

with corticosteroids, antineoplastic or other immune suppressive medications were deemed

immunocompromised.
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